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Autism Spectrum Disorder (ASD) belongs with the category of neuro-developmental disorders, which can be majorly 
categorized under decreased social relationships, communication and thought processes. Various studies in the field of 
biological networks prove that one of the defining features of ASD is altered brain connectivity. Hence, the understanding of 
the brain networks can pave the way to delve deeper into the underlying behaviour of the Autistic brains. Moreover, many 
studies also reveal that human brains exhibit small-world characteristics which are usually seen in simple model neural 
networks that emerge spontaneously upon adaptive rewiring according to the dynamical functional connectivity. Graph 
theory-based approaches are finding their way into the understanding of the altered connectivity in various neurological 
disorders. For that matter, the study focuses on implementing a graph theory-based approach to investigate on the small-
world network of Autistic as well as typically developing brains and understand the behavioural changes for an Audio and 
Video Stimuli. The graphically generated data is then measured for functional connectivity using a symmetrical parameter 
known as the coherence measure.  
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Introduction 
Autism Spectral Disorder (ASD) is a class of neuro-

developmental disorders that are mostly characterized 
by lesser than optimal levels of social communication 
and the subsistence of repetitive patterns of behaviour 
and activities.1 ASD mainly materializes in the early 
days of life and has a gender bias of 4:1 tilting more to-
wards the male gender.2 It is usually perennial, and the 
impairments of their senses are quantifiably low. They 
might be extremely sensitive or under sensitive to all 
kinds of sensory stimulus.2 It is now evident that there 
is a dearth of knowledge and statistics to have a holistic 
understanding of the subject. It is abstruse as to the 
manifestation of the symptoms of ASD and its changes 
from childhood to later adolescence.3 Several 
symptoms of ASD include being irresponsive to their 
name by about 12 months of age, avoiding eye contact, 
having delayed speech and language skills, echolalia, 
tendency to be alone and also have obsessive interests 
and disinterest in feelings as a whole. In Bock et al. 4, 
the author stresses the point that early detection of 
ASD is very important as the prevalence rate of ASD 
has seen to increase in various places across the globe 
for the past decade.  

The studies conducted on adults in Hollocks et al.5 
shows the prevalence of autism in adults, and ties in the 
correlation between ethnicity and their community. It is 
also observed that as age increases, the symptoms also 
increase. The various distinctive features of ASD vary 
widely and depend on the age, cognitive ability, and 
their ability to communicate properly and articulately. 
There seems to be a greater link between spoken 
language and ASD. When they can speak much better 
than before, then the number of symptoms they exhibit 
decreases.6 Presently, the detection and identification 
of autism is done in many ways; checklist based and 
reading based. In India, the prevailing guidelines on 
this topic are addressed in Indian Scale for Assessment 
of Autism (IASM) and the Diagnostic Statistic 
Manual.7 In some other countries, question-based 
studies are used to identify the disorder, mainly CHAT 
and M-CHAT.8 CHAT is based on 14 questions that 
initially served as a checklist for autism in toddlers. 
This is however used for children who are lesser than 
two to three years. M-CHAT is a modified form of 
CHAT and this has about twenty-three questions that 
are yes/no based. This served as a better version of the 
former and was used predominantly used in the last 
decade. However, there were limitations in this study 
as well, as being questions they could not address the 
neuro-biological aspects of the disorder, and hence the 
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researchers were invited to many false positives which 
hindered the study of its reach. Also, these are not 
representative of autism in older people as their needs 
and actions vary highly than that of the children. 
However, there have been many implications discussed 
in Havdahl et al.9, which suggests that the method used 
in Rescorla et al.10 is less successful for the children 
with developmental and emotional/behavioural 
problems. Bogdan et al.11 explains a multimodal 
approach to understand an Autistic brain, by combining 
EEG, fMRI and DTI by studying their neurological 
basis.  

In-order to delve into the intricacies of a 
complicated disorder like Autism, it is necessary to 
understand the processes that takes place within the 
neural system. To get a clearer picture of the 
pathological process, the Autistic brain activities are 
compared with that of the Normal processes in the 
brain. While either of them calls for a necessity to 
understand a complex network that connects several 
nodes and works in parallel. What makes it complex is 
the process of understanding the hidden dependencies 
that is observed in a dynamically performing system of 
networks that are capable of executing various tasks 
simultaneously in a given frame of time.12 While 
picking a method to understand the brain connectivity, 
one must beware that the swift temporal progression of 
how the data has been integrated from diverse sections 
of the brain performs very important role in 
understanding such complex disabilities like that of 
Autism. For this purpose, the information provided by 
the imaging techniques like fMRI has proven to be 
insufficient and inaccurate, and hence EEG data has 
been incorporated largely for these kinds of studies, 
due to its good temporal resolution. Hence, this paper 
focuses on extracting the information from the EEG 
signals.  

Electroencephalogram (EEG) is a non-invasive 
method for the assessment of electrical activity in the 
human brain. It involves recording of electrical signals 
of brain by attaching surface electrodes to the subject’s 
scalp. It provides high temporal resolution i.e., 
sampling rates between 200 to 2000 Hz13.  
Koudelková et al.14 from the literature reviews, it could 
be understood that EEG data plays a major role in 
analyzing Autism. Jolanta et al.15 elucidates the EEG 
changes they are located in many different areas of the 
brain. It was reported that the anomalies in EEG are a 
neurophysiologic biomarker for the severity in 
cognitive and behavioural problems associated with 

ASD.16 The paper also recommends EEG studies to be 
carried out in individuals who are diagnosed with ASD 
and would thereby help in identifying abnormalities. 
Another evidence throwing light to the importance of 
EEG was observed in Swatzyna et al.17, which explains 
that most medications prescribed for ASD lower the 
seizure threshold and increase side-effects. Therefore, 
it may be prudent to order an EEG for ASD cases to 
validate the efficacy of the medicines and tests used.18 
Recently research is carried out to promote the use of 
EEG signals due to their effectiveness in giving ample 
amount of information necessary to understand the 
neural behaviour in depth and also, due to its 
economical nature.  

Related Works 
Autism is a kind of disorder, that although marks its 

onset at an early stage, will be detected in most of the 
cases, only once the behavioural changes become 
apparent. But these complex disorders however exhibit 
their functional signatures long before they can be 
identified through the behavioural symptoms.19 The 
Human brain can be visualized as an organization of 
vast and complex network units that are interconnected 
by small units called neurons and are responsible to 
carry the information from the central processing unit 
of the brain. The functioning of a healthy brain depends 
on the effective communication between the various 
regions of the brain and within these regions, that are 
largely driven by the network of neurons.20 The 
synchronization between the different regions of brain 
can be quantified to construct a functionally connected 
network. These complex networks show a self-
similarity in all scales when characterized as dense 
locally connected networks and sparse long-range 
connected networks. These enable the networks to 
globally integrate all the information available, along 
with a local specialization. Bosl et al.19 explains a 
comparative study made on the network properties 
using fMRI on the brains of adults as well as children, 
and their observation that it exhibited a scale-free 
organization or small-world organization with a 
difference in the hierarchical organization and inter-
regional connectivity.  

Many biological systems exhibit small-world 
connectivity. Due to which, the brain connectivity can 
be visualized and studied through the graph-theoretical 
approaches to examine the large-scale complex brain 
networks. Graphs are basically data structures having 
nodes and edges between them. In such a modelling 
representation, a node corresponds to a brain region 
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and the edge corresponds to the functional connectivity 
between two regions.21 And graph theory describes the 
mathematical representation of the relation between the 
nodes and edges. In the work of Smit et al.22, the author 
explains in Fig. 1 about an article by Watts and 
Strogatz model, where the later authors describe a 
model of networks derived from biological or non-
biological networks using – clustering coefficient C 
and average path length L. The former parameter 
represents the amount of local interconnectedness or 
the proportion of neighbouring vertices that are 
interconnected amongst each other, taking values 
between 0 and 1 while the later one represents the 
global inter-connectedness, or the average number of 
steps required to go from one vertex to another. 

Though various methods are in the study for 
analyzing the EEG signals, like the statistical methods, 
linear analysis like coherence studies, the non-linear 
methods have been found to capture the dynamic brain 
activity. The studies on small-world networks have 
been trending in recent times with their applications in 
various health disorders. But, the study of autism 
disorders in Children and their early detection using 
EEG signals has found to be a novel area of research. 
Hence, we have focused largely on the application of 
Small-world networks to the EEG data to analyze and 
understand the behaviour of the human brain, 
especially the Autistic brains. 

Small World Networks 
A small-world network is defined quantitatively, as 

a combination of the high clustering and short path 
length between the nodes. As part of the rapid growth 
in the field of connectomes, the small world network 
began to be widely utilized as a metric and was 
applied for the analysis of various neuroimaging and 

other neuroscience data.23 Hence, Small world 
networks are an important and feasible concept in the 
field of Neuroscience. It has been accepted however 
that small-worldness is a nearly universal and 
functionally valuable attribute of the nervous system, 
which are embedded economically in anatomical 
space. Network analysis of functional connectivity 
based on the graph theoretical models can provide 
information on the complex cognitive process 
happening within the brain and allow us to understand 
better, the relationship between the network structure 
and these processes.24 The quantification of 
efficacious interactions between the various regions 
of the brain plays a vital role in the research of 
neuroscience. Many of the conventional methods rely 
on the simple linear methods to estimate the effective 
connectivity in the brain. However, usage of linear 
connectivity models oversimplifies the functions and 
dynamics of the brain. Thus, there is a need for non-
causal relationships.25 Studies on human connectomes 
suggests that, apart from the small-world features 
brain exhibit a modular small-world network along 
with rich club organization. Even with extremely 
simple models like coupled maps such properties can 
emerge sporadically from randomly organized 
networks with dynamic functional connectivity.26 This 
however occurs in accordance to a principle that 
represents the structural plasticity in developing as 
well as adult brains, which is known as adaptive 
rewiring. 

Moreover, there is enough evidence of an atypical 
functional connectivity in ASD, which suggests that 
the nature of such an atypical functionality in ASDs 
could vary over time with noticeable patterns of group 
differences across transient states. However, these 
transient relations between the networks of neurons 
cannot be captured using the conventional static 
functional connectivity analysis, hence dynamic 
functional connectivity approaches are incorporated. 
These studies could also find an overall predominance 
of static over connectivity and hyper variability over 
time in ASDs across numerous brain regions. The 
study in Dardo et al.27 used fMRI data and analyzed the 
functional connectivity in ASD and NT subjects. They 
concluded that in contrast to the original hypothesis, 
their observation could reveal local-under connectivity 
in the anterior thalamus, and increased long range 
connectivity of thalamus with auditory, somatosensory, 
motoric and interoceptive cortices with parietal 
regions. Dynamic functional connectivity (dFC) is used 

Fig. 1 — Watts and Strogatz model for Small-world network.
Ring network represented in the top left corner has all its nodes
connected to same number of nearest neighbours (l = 3), the
second one is a Watts and Strogatz Model generated by removing
each edge with a uniform and independent probability p, and
rewiring them to get an edge between a pair of nodes chosen
randomly. The last one represents a random network 
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to analyze the differences between individuals with 
Schizophrenia (SZ) and ASD.28 The test shows that the 
dFC was able to distinguish the differences between SZ 
and healthy control, whereas, in the case of ASD, they 
weren't able to disparate the individuals using dFC and 
weren't as successful with ASD as they were in 
classifying SZ with temporal dynamic FC. 

The small world connectivity analysis goes hand in 
hand with EEG signals for more effective and 
insightful analysis. The measures based on 
connectivity attained popularity particularly for the 
analysis of multiple electric signals recorded at the 
scalp using EEG. Iandolo et al. 29 uses small world 
networks and EEG readings to arrive at a novel 
method to study the resting state functional 
connectivity. The goal of the study is to extract graph-
theory related metrics, such as small-worldness 
measures and use them as electrophysiological 
biomarkers. It gives useful perception about the 
possibility of incorporating hd-EEG and graph theory 
as robust tool to investigate the frequency-specific 
properties of the patterns of brain functional 
connectivity. The study in Stam et al.30 investigated if 
the functional brain networks are atypically organized 
in Alzheimer ’s disease (AD). Their results concluded 
that for a broad range of thresholds, the characteristic 
path length L was remarkably longer in the Alzheimer 
patients, whereas the cluster coefficient C showed no 
significant changes.  

Graphical Methods 
Recent studies on the brain have found to apply 

graph theory concepts to understand the functional 
connectivity of the neuronal network. These theories 
are suited well for the studies relating to disorders like 
ASD, since these are categorized under disconnection 
related syndromes, where functional disability is 
theoretically linked to the disruption or abnormal 
integration of spatially distributed regions of the 
brain, which normally constitute a large-scale network 
sub-serving function.31 In the case of ASD the theory 
of developmental disconnection proposes a decreased 
long-range integration along with an increased local 
connectivity.32 

A graph G (V, E) can be defined as a set of n 
vertices V = {v1, v2, v3, ... vn} and m edges E = {e1, 
e2, e3, ... em}, where an edge is a pair of vertices u 
and v which can be ordered e = (u, v) € V×V (directed 
graphs) or unordered e = (u, v) where u, v € V(non-
directed graphs). In terms of the brain, the networks 
are described as a collection of nodes and edges, 

where the nodes indicate the electrode placement 
nodes and the edges indicate the associations between 
these nodes.33 A valued graph or network comprises 
of the vertex set V and edge set E augmented with an 
edge value function ρ such that a real value ρ (e) is 
assigned to each of the edges.  

Modelling the network is the primary step in the 
analysis. The network is modelled in the study using a 
Spiking Neural Network Architecture Model, known 
as NeuCube. During modelling phase, the 
interdependencies of the data input to the model is 
trained using the machine intelligence for all the 
subjects for each pair of the nodes. The result of 
training is obtained as an un-weighted undirected 
graph, which pictorially represents the strength of 
connections for each subject for each pair of nodes. 
The graph obtained after training is as shown in 
Fig. 2. After generating the graph, data 
characterization is done in-order to reduce the 
information by considering only the required network 
points and the connectivity strength involving those 
points for further analysis. 

A connectivity measuring parameter is applied onto 
the weighted matrix obtained to measure the nodes 
that responds well for the stimuli and understand the 
nature of functional activities in Autistic brains. From 
the literature surveys made on the various parameters 
that can effectively analyze the connectivity 
measures, Coherence measures were found to give 
good results, especially with EEG data.33 Coherence 
is a parameter that estimates the neural 
synchronization between two electrodes or nodes. The 
connections in the brain, that makes up the functional 
network are primarily measures of linear or non-linear 

Fig. 2 — Graphical representation of the interactions between
various nodes in the EEG data after training 
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statistical dependence of two time-series. Coherence 
exhibits itself as a measure of the stability in the 
phase correlations over time and is sensitive to both 
power and phase changes. The coherence between the 
distant brain regions have found to reflect the 
physiological activities at the sub-cortical neural 
networks, hence high values of coherence indicate a 
strong connectivity between those brain regions or co-
occurrence of neuronal oscillations at same frequency 
while a low coherence value indicate the segregation 
of the nodes in the network.33 Patterns of over and 
under connectivity can hence be measured by the 
coherence.  Since specific brain sites have been 
mapped for certain cognitive function, this could 
easily help to understand the underlying nature of 
response towards the stimuli. A comparative analysis 
of both Normal and Autistic brains could help 
estimate the difference in the way of processing of the 
same stimuli for both the specimens under 
consideration. The coherence parameter in this study 
has been supported by Thomas et al.34 which gives the 
functional analysis of different brain regions mapped 
with one another. As part of data characterization, 
only those channels mentioned in35 were taken into 
consideration for the analysis.  

Brain connectivity analysis are of three main 
categories a) Structural Connectivity, estimates the 
pattern of anatomical connections, typically the 
morphological change and plasticity, b) Functional 
Connectivity, measures the neuronal activation 
patterns of the structurally separated brain regions c) 
Effective Connectivity also details the influence of 
one neuronal system on another, thereby reflecting the 
interactions between active brain regions. Studies 
show that functional connectivity shows a positive 
correlation with structural connectivity and effective 
connectivity and, functional connectivity derive from 
the temporal characteristics of the brain. Functional 
connectivity has been explained as a statistical 
measure of temporal coherence or cross-correlation 
between two regions of the brain.36–39 Hence 
coherence measures quantify the degree of association 
between two brain regions, hence evaluating the 
functional connectivity. Most of the studies that apply 
the coherence measures in brain connectivity analyses 
have been concentrating on ADHD or OCD.33,39 The 
studies concentrating on ASD have been very less and 
mostly based on the study of Autistic Adults.38 The 
utilization of coherence as a biomarker for early 
detection of Autism in growing children is a novel 

area of research and this has been the major 
motivation of this work. 

In this study, we have considered the strength of 
the connectivity graph predicted by the spiking neural 
architecture (SNN) based NeuCube model to derive at 
the graphical representation of the data points 
acquired for the given stimuli. This graphical model is 
a Small-world network depicting the interactions of 
various regions of the brain is shown in Fig. 3. Unlike 
the works made in various literature reviews, we have 
tried to extract the path length manually depending on 
the thickness of the connections between various 
nodes. Since these are undirected graphs, the weights 
of the graphs could be converted to an n × n matrix, 
where n gives the number of electrodes from which 
the signal was acquired. The average of matrices for 
all the data samples could then be used for a 
comparative analysis. The average values for the 
samples from Normal and Autism data are then 
considered for the analysis of coherence. The 
coherence measures are applied here to analyze the 
connectivity graph and understand the nature of 
interaction between the pair of electrodes(nodes) to 
get a clearer view of the underlying behavioral pattern 
within the brain.  

Research gaps and Significance of the proposed research 
The proposed work effectively addresses the 

following research gaps in EEG signal analysis for 
Autism detection.  

 The questionnaire-based diagnosis of autism results
in false positive results and cannot address the
neuro-biological aspects of the disorder.

 The studies about the hypo connectivity and hyper
connectivity among the brain regions is in nascent
stage.

 The study on the statistical dependencies between
two regions of the brain can give better insight into
the behaviour of the brain.

 The study on the physiological activities among the
neural network regions must be developed for better
understanding of the connectivity and interaction

Fig. 3 — Workflow of the proposed work 
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among the regions, and the segregation of the nodes 
in the network. 

Contributions 
 The proposed work attempts for EEG analysis by

utilizing the potential of graph theory, i.e., the
small-world networks

 The small world connectedness among the brain
regions is converted to weighted graph structure

 Creation of matrices for the graph for normal and
autistic children

 Construction of the mean and standard deviation
matrices based on the weight of the edges

 And a quantitative measure of coherence is done

Materials and Methods 
The proposed workflow for the study is as depicted 

in Fig. 3. The approach consisted of two main parts, 
Data preparation and data processing. Machine 
learning was incorporated in the proposed system as 
part of data processing, to extract out the necessary 
information from the acquired data samples. Analyses 
were done on the processed data manually and the 
results were compared with the previous works 
studied from literature reviews. 

Data Acquisition 
EEG data were obtained from 9 subjects. Since the 

study is about early identification of autism in 
children, the subjects we have considered were 
children of the age group 3–12 years, who showed 
Autistic characteristic as well as typical development. 
The study protocol was based on the manual 
“Helsinki Ethical Principles and ICMR Ethical 
Guidelines”. The data was acquired from the subjects 
using a 16-channel electrode, which was positioned 
according to the 10–20 electrode system as depicted 
in Fig. 4. EEG recording is done as a series of 
Montages (Bipolar and Referential being the two 
main types). Bipolar montage is chosen because of its 
superior ability to capture localized activity via its use 
of the neighbouring electrode as a reference. Signals 
were captured at a sampling frequency of 500 Hz 
from all the 16 channels. 
 

The goal of the study is to understand the 
difference in activities happening in the brains of 
autistic kids compared to that of typically developing 
kids for audio and visual stimuli, and thereby find a 
suitable biomarker that can identify the difference at 
an early stage. During the experiment, the subjects 
were assisted to sit facing a visual screen, and the 

EEG electrodes were placed with the help of 
conductive gel and tapes. Video stimuli was used here 
for eight minutes. The EEG data were acquired form 
the subject at this time 

NeuCube Model 
NeuCube is a development environment to 

implement SNN for different problems.40 SNN is a 
third-generation Artificial Neural Network model, 
where the neurons communicate through spikes. 
Networks constituted from spiking neurons are 
capable of processing considerably a huge amount of 
data in a smaller number of spikes and the 
communication between the neurons are estimated by 
the timing and existence of individual spikes.41 

The dataset that we had acquired from the 
respective subjects are loaded into the NeuCube 
model, along with the cube containing the brain 
coordinates depicting the electrode from which the 
respective signals are acquired. This is to indicate the 
machine, the details about the electrodes from which 
the signals are captured. The mapping locations that 
map the features are also included. With every data 
loaded, the target (decides the type of dataset: Autistic 
brain or the typically developed brain) is also 
provided along. There is an inbuilt encoder module 
within the NeuCube architecture, which encodes the 
information into spike activity. Various encoders like 
the Ben's Spike Algorithm (BSA), Temporal Contrast 
(threshold-based), Step-Forward Spike Algorithm 
(SF) etc were available in the architecture to convert 
the input EEG data into spikes, of which, Threshold-
based spike encoder was chosen for encoding the 
input EEG data points. In temporal Contrast or 
Threshold-based spike encoder, the spikes are 

Fig. 4 — The electrode locations for an international standard
10-20 system with 16 channel montage
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represented as a significant change in the intensity of 
the signal within a given threshold and the switching 
on and off events depends on the sign of changes.42 
For a given signal S(t) for t =1,2,3, ...n, a baseline B(t) 
variation is defined during the time t with B(1) = S(1). 
If the incoming signal intensity S(t1) exceeds the 
baseline B(t1−1) by a value Th known as the 
threshold, then a positive spike is encoded at t1 with 
the value B(t1−1) + 1 else, a negative spike would be 
encoded with a value B(t1−1) − 1. 
 
Small-World Connectivity Graph 

The NeuCube architecture also helps to 
conceptualize the variety of results obtained at each 
stage of the process i.e. from encoding the data to 
obtaining the small-world network. The first step in 
training is supplying the data and encoding them into 
spikes. The dataset from 9 samples were given to the 
architecture as input with differentiated target 
variables for the machine to identify the kind of 
dataset. Threshold-based encoding algorithm was 
used for spike encoding, with a threshold of 0.5. The 
threshold value was set after some trial-and-error 
experiments on the dataset. Once the spikes are 
encoded, they can be plotted and viewed as a function 
of time of data being fed. After training the network, 
the connectivity strength of the trained model, i.e. the 
Small World Network is obtained. The spiking 
activity after training the small world network using 
different threshold values for spike encoding is 
obtained. 
 

These connections are generated homogeneously 
over the whole model, in a small-world manner. In the 
cube generated, the blue lines characterize the 
positive connectivity, the red lines represent the 
negative connectivity. Also, the brown spots indicate 
strong connectivity between the points. The clustering 
is performed based on the synaptic weights between 
each neuronal pairs after training. The connections 
can be visualized graphically as presented in Fig. 5. 
The thickness of lines represents the strength of the 
connection between the nodes, i.e. thicker the lines, 
greater the connection. 
 
Matrix Generation and Coherence Analysis 

To construct the matrix from the undirected graph 
we assigned weights to the graph, depending on the 
connectivity strength depicted on it, i.e. largest 
thickness association is represented as 1 and the least 
thick association is marked 0. This is done for all the 
trained dataset. From all the obtained matrices, the 

average was computed, which was used for the 
comparative analysis.39 gives evidence that EEG 
coherence can describe the relationship between two 
surface electrodes, as an average of the time data 
points. This is done for both Autistic and typically 
developing samples of data. The synchronization 
event is now compared for coherence measurement. 
As a matter of limiting the number of associations to a 
small set, only those values were considered that 
showed significant differences. 

According to Saunders et al. & Collura et al. the 
coherence analysis for EEG data can be done on 8 
positions with 4 active channels, with 6 major 
interconnections. Each of the interconnection 
represents a particular brain function. The hyper-
coherence and hypo-coherence estimation gave 
different behavioural characteristics which help in 
achieving the primary objective of the study. The 
channels that were selected for estimating the 
coherence levels and hence identifying their 
characteristics are represented in Table 1 from the 
study of Saunders et al. For example, in the Frontal-
midline and Temporal Lobes T3 and T4 are two 
positions measured above the ear. The primary 
information from the electrodes in these regions 
generally include those involving the sensorimotor 
integration, logical and emotional memory formation, 
and storage. A hyper-coercivity in the interaction of 
these electrodes indicate a lack of flexibility of 
logical/emotional memory whereas hypo-coercivity 
indicates logical/emotional memory of lesser 
efficiency.35 
 

Results and Discussion 
According to the study conducted in this work, it 

was understood that EEG can be used as a potential 
biomarker in identifying and understanding the 
underlying behaviour of the human brain. It also 
helped us to identify as well as differentiate the 
typically developing brains with that of an Autistic 
brain. Since autism falls under the category of 
complex dis-functional disability, identification of the 
disorders at a very early stage could be much helpful 
for the patients and help them get through the 
disability with proper treatment and guidance. Since 
early detection of Autism remains under the research, 
it has opened the way for many novel ideas that could 
be taken into consideration for the study, by delving 
deep into the functional characteristics of it. The brain 
reactions, do not just depend on the stimulus, but also 
varies from person to person. To generalize the 
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behaviour of a particular group of people, studies of 
various types were performed on the samples to 
conclude. The statistical analysis of the EEG signals 
acquired for AD and TD children are highlighted in 
Table 2 and 3 for few subjects.  

The major motive behind the study is to detect 
Autism at an early stage in children and help identify 
the regions or nodes of the brain that actively 
participates for an audio and visual stimulus. Though 
the functional characteristics of the brain have been 
studied in various works, it could be seen that most of 
the works focus primarily on Alzheimer’s disease, 
ADHD or Schizophrenia. Autism is an ongoing and 
complex field of research in the present scenario. The 
increasing number of Autism patients worldwide have 
urged to develop a means to help identify the 
disability long before the symptoms get evident. The 

human brain is a complex structure with dynamically 
functioning networks of neurons, that transfer 
messages at a very fast pace. The decoding of the 
information from neuron to neuron is however out of 
the scope of this work but decoding the information in 
each region of the brain can give the information 
regarding its behaviour. Functional connectivity in the 
brain can be analyzed using various methods, 
statistical, linear, non-linear methods etc. Most of the 
works referred for this study has also shown evidence 
of analyzing the functional connectedness of the brain 
network by extracting and analyzing the constituent 
EEG signals, i.e., alpha, beta, theta, gamma and delta 
waves. In this study, we have considered the EEG 
signals that were captured using a 16-channel EEG 
cap. The data were processed on a spike-based 
encoder system, to study the process of transmission 
of signals from one region (or Node) to another. 
Artificial intelligence was then applied to the encoder 
outputs to train a machine and learn about the 
connectivity pattern shown in each of the samples 
belonging to the different groups under study. The 
learning is based on Spiking Neural Network model, 
that generates a specific trajectory of spiking activities 
based on the input pattern of the signal. The 
connections can be dynamically visualized after the 
training of the input data as shown in Fig. 5. 

It has been discussed in the preceding sections that 
the functional connectivity of the brain exhibits small-
world organization across different time frames, and 
the neurons in functionally active regions of the brain 
are more densely interconnected and the degree of 
closeness indicated the strength of connectivity 
between them. The Fig. 6 depicts the connectivity of 
the brain after training the input EEG signals in the 
NeuCube. As in the Fig., the spiking activities can be 
visualized in a 3-D space where the brain coordinates 
are mapped. This can as well be depicted in a 2-D 
space. But, in both cases, a conclusion cannot be 
drawn as the strength of connectivity cannot be 
precisely drawn upon from these Figures. From Fig. 6 
and Fig. 7 the connectivity graphs for Typically 
developing and Autism affected subject’s brains can 
be visualized. Thicker lines indicate greater strength 
in connectivity between the two electrodes. As 
evident from the graph, there is lesser clustered 
connectivity observed in autistic brains as weighed 
against the typically developing brain.  

The matrix contains the mean value of strengths for 
Normal and Autism samples that were encoded by the 

Table 1 — Electrode pairs selected for the analysis of coherence35 

Electrode Pair Area Hemisphere 

F3-O1 Frontal-occipital 

Intra-hemispheric 

F4-O2 Frontal-occipital 
Fp1-F3 Frontal polar-frontal 
Fp2-F4 Frontal polar-frontal 
C3-P3 Central-Parietal 
C4-P4 Central-Parietal 
Fp1-Fp2 Frontal polar-frontal polar 

Inter-hemispheric 

F7-F8 Frontal frontal 
F3-F4 Frontal frontal 
C3-C4 Central-central 
P3-P4 Parietal-parietal 
O1-O2 Occipital-occipital 

 

Table 2 — Statistical analysis of EEG signals for ASD children. 

S. NO ASD 

Mean Median SD 

1. 7.0139 0.4166 129.2685 
2. 1.03063 −0.3116 65.5353 
3. −10.0492 4.0616 77.8141 
4. −0.4547 −0.1916 56.2123 
5. 0.34823 −0.19 38.4431 
6. 0.8184 2.08 39.2148 

 

Table 3 — Statistical analysis of EEG signals for TD children. 

S. NO TD 

Mean Median SD 

1. 0.1708 −4.0766 52.5821 
2. 0.9894 −2.0733 52.3569 
3. 0.0484 0.4988 22.6372 
4. 0.4317 1.19 19.9154 
5. 0.4447 −0.445 20.2641 
6. 0.1087 0.3500 15.4075 
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NeuCube architecture. From the tabulated matrix, all 
possible combinations of electrodes with their strengths 
were extracted and were compared using coherence 
analysis. This would give us 16 × 16 combinations and 
2 sets of values for comparison as shown below. 

Coherence is a parameter that evaluates the 
synchrony between two measured signals, equivalent 
to a cross-correlation function. To identify the 
parameter that could effectively distinguish the two 
categories of samples, only some of the combinations 

 
 

Fig. 5 — The dynamic visualization of region-wise connectivity for the (i) & (ii) Typically Developing and (iii) & (iv) Autism. The data 
were encoded using a Threshold of 0.06 using Threshold-based spike encoding method 
 

 
 

Fig. 6 — The graphical representation of connectivity in a typically developing brain data sample for audio and visual stimuli 
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of the 16 × 16 must be taken into consideration. In 
Collura et al.35 the functional connectivity was studied 
using coherence measures along with the 
corresponding behavioral patterns which showed 
changes in coherence parameter. We have tried to 
map our data and understand the pattern shown in the 
behavior of a typically developing child with that of a 
child affected with Autism. The coherence plots for 
autistic and typically developing kids are presented in 
Fig. 8 and Fig. 9.  
 
Conclusions 

From the comparative studies conducted in this work, 
we could observe a greater coherence or hyper-
coherence in the channels namely C3C4, C3F7, C4F8, 
F7F8, F7C3, P3P4. The indications of greater coherence 
parameter in these channels include lack of flexibility of 
sensori motor integration from right to left, in terms of 
verbal, emotional expressions and logical memory. The 
results obtained from the study could indicate that the 

 
 

Fig. 7 — The graphical representation of connectivity in an Autism affected brain data sample for audio and visual stimuli 
 

 
 

Fig. 8 — Coherence plots for TD with respect to Frontal, Parietal, Temporal and Occipital lobes of the brain 
 

 

Fig. 9 — Coherence plots for AD with respect to Frontal, Parietal,
Temporal and Occipital lobes of the brain 
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Autism affected brains have less efficient attention 
towards the stimulus and shows weaker responses to 
them. It was also understood that the logical memory in 
these subjects was weak compared to a typically 
developing subject of the same age group. This research 
can be further extended by including a wide range of 
subjects from different geographic regions.  
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