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Cabled Underwater Information Networks (CUINs) is an important platform for ocean observation where the Constant 

Current Remote Power Supply System (CCRPSS) guarantees the safe and normal operation of CUINs. The CCRPSS is mainly 

composed of the main node and underwater cables which require frequent fault diagnosis but how to improve the fault diagnosis 

rate is a difficult problem. This paper proposed a fault diagnosis method for the CCRPSS based on the Improved Water Cycle 

Algorithm (IWCA) and the multi-classifier group based on the Least Squares Support Vector Machine (LSSVM). Firstly, the multi-

feature extraction method is used to obtain the characteristic information in the time and frequency domain; secondly, IWCA is 

established by combining the traditional Water Cycle Algorithm (WCA) with the chaotic mutation strategy, the elite memory 

strategy and the population reconstruction strategy. By applying 13 typical test functions to performance test, it can be found that 

the IWCA can effectively improve the global search ability and balance of the WCA algorithm. At last, IWCA is used to optimize 

the parameters of the LSSVM classifier and improve the classification efficiency. The comparisons of simulated results with 

traditional methods show that the proposed diagnostic model can not only obtain complete fault feature information, but also obtain 

the optimal classification parameters of LSSVM faster. Therefore, the proposed diagnostic method is verified to be suitable for the 

fault diagnosis of the constant current remote power supply system in CUINs. 

[Keywords: Cabled Underwater Information Networks (CUINs), Constant Current Remote Power Supply System (CCRSS), 
Fault diagnosis, Improved Water Cycle Algorithm (IWCA), LSSVM multi-classifier group] 

Introduction 

Recently, with the rapid development of 

communication, energy, sensor and network technology, 

etc., as one of the most important means to explore and 

study the ocean, the comprehensive level of seabed 

observation system has been continuously improved
1
. 

Cable Underwater Information Networks (CUINs), as a 

widely used network in seabed observation system, 

plays an irreplaceable role in seabed biological resources 

mineral resources explorations, seabed hydrological 

monitoring and recording the impact of human activities 

on the ocean. Following the ground/ocean surface and 

space observation system, the cable underwater 

information network breaks the constraints of time and 

space in the traditional mode, and can meet the human 

requirements for long-term, continuous and all-weather 

ocean observations. CUINs consist of Shore Power 

Feeding Equipment (SPFE), submarine photoelectric 

composite cables and other related testing equipment. 

The power supply of CUINs comes from the shore by 

transmitting the power from shore to the seabed by a 

submarine photoelectric composite cable. Therefore, a 

good submarine photoelectric composite cable working 

well has become a prerequisite for the normal operation 

of CUINs. At present, remote power supply in CUINs 

mainly includes DC constant voltage and DC constant 

current
2
. The most typical submarine network with DC 

constant voltage remote supply system is Neptune 

observation network jointly established by the United 

States and Canada
3
, and the most typical DC constant 

current remote power supply submarine network is 

DONet network built in Japan
4
. 

In the mooring underwater information network, the 

fault diagnosis and section positioning of the remote 

power supply system is an important guarantee for the 

safety and operation of the whole system. With the 

changes of seabed environment and geological 

movement having strong uncertainty, the fault diagnosis 

of remote supply system of cable underwater 

information network is becoming more and more 

difficult correspondingly. Thus, it is very necessary to 

study the simple and effective fault diagnosis method of 



ZUO et al.: FAULT DIAGNOSIS OF THE CONSTANT CURRENT REMOTE POWER SUPPLY SYSTEM 
 

 

915 

remote supply system of cable underwater information 

network which can adapt to complex working 

environment. At present, the fault diagnosis of remote 

power supply system mainly uses fault diagnosis and 

interval positioning to determine the fault area. 

Meanwhile, there are many relevant research results and 

findings: for example, when DC power is used for 

power supply in DC remote power supply system in Lin 

et al.
5
, the traditional AC voltage and current phase 

angle measurement method cannot be used for state 

diagnosis of trunk line. Feng
6
 used the average residual 

value of the measured voltage to identify the open circuit 

fault of the constant voltage remote supply system, and 

locate the fault interval through the change of voltage 

during the open circuit. A new type of submarine 

information network is introduced together with the 

sensors, detection equipment and power supply 

standards which are used in the network
7
. The 

applications of constant current voltage source and 

current source technology in the remote power supply of 

submarine information network are systematically 

studied and discussed
8-12

. 
 

In fact, most of the fault diagnosis methods in the 

above literatures are simple and time-consuming 

because the limits caused by the physical 

characteristics of analog circuits. When the remote 

power supply system is in a complex and changeable 

working environment, the above-mentioned methods 

may have a diagnostic blind area. Therefore, it is 

urgent to study the fault diagnosis method of remote 

power supply system with higher efficiency and 

stronger applicability. In recent years, data-driven fault 

diagnosis methods such as Support Vector Machine 

(SVM)
13

 and Least Squares Support Vector Machine 

(LSSVM)
14

 have become a promising and effective 

approach to solve fault diagnosis. LSSVM algorithm 

trains the input and output of sampling data to obtain 

the functional relationship. Then the optimization 

method is adopted to search the optimal parameters to 

ensure that the obtained functional relationship has the 

minimum fitness error. At the same time, LSSVM has 

been used for fault diagnosis of complex systems and 

already achieved good results
15-18

.  
 

In present paper, aimed at better solving the 

problem of fault diagnosis of constant current remote 

power supply system, a new fault diagnosis method 

based on Improved Water Cycle Algorithm (IWCA) 

and LSSVM multi classifier group is proposed for 

fault diagnosis of constant current remote power 

supply system in CUINs. The comparisons of 

simulated results with traditional methods show the 

better capability of proposed new fault diagnosis 

method. 

 
Characteristics extraction 

In this paper, the fault diagnosis signal in the 

constant current remote supply system is a direct 

current, thus, the Empirical Mode Decomposition 

(EMD) method is used to extract the signal frequency 

domain characteristics for preliminary analysis. By 

adding a different white noise n(t) each time to 

change the extreme point characteristics of the low-

frequency components in the original signal x(t). As a 

result, the Intrinsic Mode Function (IMF) obtained by 

the EMD decomposition can be overall averaged. The 

mode confusion caused by the discontinuity of IMF in 

the EMD method can be cancelled by the added noise 

n(t) effectively. At last, in order to use the data 

information to identify the characteristics of the signal 

in frequency domain more clearly, the wavelet packet 

transform function is used to perform three-layer 

wavelet decomposition on the extracted IMF time 

series to obtain the target dimension feature vector, 

which is input to the classifier as a fault diagnosis 

basis. 
 

Water Cycle Algorithm (WCA) 
 

Traditional water cycle algorithm 

The water cycle algorithm is an optimization 

algorithm proposed by Eskandar et al.
19

, which 

achieves the purpose of finding the optimal solution 

by simulating the earth's water cycle process. With 

good global search capabilities, the algorithm can 

solve complicated system optimization problems. The 

population updating approach and calculation method 

for each iteration in the WCA algorithm are expressed 

by Eqs. 1 – 7. The main parameters are defined 

below. 
 

                          … (1) 
 

            
  

   
   
   

                      

… (2) 
 

       
           

                
         

   
… (3) 
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                  … (7) 

 

Where, Npop is number of members of the 

population; Nstream: The number of members 

representing the river in the population;    : The 

number of members representing rivers and oceans in 

the population;       : The number of members 

representing the river in the population; t: Current 

iteration number;        
 : The member variable 

representing the stream in the current iteration;       
 : 

Member variable representing the river in the current 

iteration;     
 : Member variables representing the 

ocean in the current iteration; C: A coefficient that 

varies linearly in the interval
1,2

;     : Condition of 

judgment;   : Lower limit of population member 

variable;   : Upper limit of population member 

variable;        
 : Stream member vector updated in 

the current iteration 
 

Improved Water Cycle Algorithm (IWCA)  

Considering any single promotion strategy cannot 

comprehensively improve the whole performance of 

the optimization algorithm, multiple strategies are 

introduced at the same time. The elite memory 

strategy, the population chaotic mutation strategy and 

the population reconstruction strategy were introduced 

to establish an improved water cycle algorithm. Among 

the three improvement strategies, the elite memory 

strategy helps to balance the ability of exploitation and 

exploration, while the population chaotic mutation 

strategy and the population reconstruction strategy can 

improve the global optimization ability and avoid 

getting trapped by the local optimization. The above 

mentioned improvement strategies are described in 

detail as follows: 
 
(1) A movement strategy inspired by PSO 

PSO has good search capabilities because the 

guidance strategy of elite memory is applied to the 

movement strategy of each iteration of PSO
20,21

. The 

movement strategy based on the improved PSO is 

described as Eqs. 8 and 9
(ref. 9)

, through which each 

particle agent updates its position vector. After 

IWCA's movement strategy updates each position 

vector of the population, another movement strategy 

inspired by PSO is used to update each position vector 

of the population. This step can effectively improve 

the search capabilities of WCA. 

  
           

               
     

  
                

       
      … (8) 

 

  
         

       
       … (9) 

 

Where, ω is a constant in [0,1],    and    are 

coefficients generated from [0,2],  ,   are random 

variables in [0,1],     means the global best position 

in current iteration,     means personal best position 

in current iteration,        . 
 

(2) A movement strategy based on chaotic mutation operator 

The chaotic mutation operator overcomes the 

problems caused by randomness and improves the 

ability to avoid local convergence or premature 

maturity. In the literature
22

, ten chaotic maps are 

proposed but here the sine chaotic map is selected as a 

kind of chaotic map. The movement strategy of the 

population can be described in Eq. 10. 
 

            
                  … (10) 

 

Where, a = 2.3,        . 

When each position vector of the population is 

updated by Eq. 10, a new position vector will be 

obtained. By comparing the objective function value 

of each position vector with that of the new position, 

the one with smaller objective function value will be 

kept in the position vectors of the population. The 

whole process of the hybrid algorithm is described in 

Figure 1. 
 

(3) Population reconstruction strategy 

The procedure of the population reconstruction 

strategy is shown in Figure 2, and the details are as 

follows: 
 

Step 1: Generate each individual in Population 1 

through the Opposition Based Learning (OBL)
7
, 

and obtain a new population (Population 2). 

Step 2: Perform Chaotic Mutation (CM)
8
 on each 

individual of Population 1 and Population 2, 

respectively, and obtain two new chaotic 

sequences, namely Population 3 and  

Population 4. 

Step 3: Combine Population 1, Population 2, 

Population 3 and Population 4 into a group, and 

calculate the objective function value of each 

individual. 

Step 4: Sort all individuals by the minimum value, and 

select the top 25 % of individuals to form a new 

population. 
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Optimized performance test using improved water cycle algorithm 

In order to verify that the optimization performance 

of IWCA is better than that of WCA, 13 benchmark 

functions
23

 proposed in Table 1 are tested using WCA 

and IWCA respectively as shown in Table 1. Each 

test is repeated 30 times independently. In these tests, 

the overall scale is 30, the total number of iterations is 

500, and the dimensions of F1 to F13 are 30. Other 

settings of WCA and IWCA are as follows: the initial 

coefficients of WCA, IWCA are set following 

Eskandar
 
et al.

19
. 

The 13 test function results of the three algorithms 

of PSO, WCA and IWCA are compared and listed in 

Table 2. In Table 2, ‘fmin’ means the best value of 

each benchmark function. The closer the benchmark 

function value is to ‘fmin’, the better the benchmark 

function value is. By the results in Table 2, except 

PSO is better for F2, WCA is better for F6 and PSO is 

better for F10 compared to IWCA, it is seemed that 

the optimization performance of IWCA is better than 

that of PSO by best value of 11 to 2, while the 

optimization performance of IWCA is better than that 

of PSO by best value of 13 to 0. Any single 

improvement strategy will improve one performance 

of the algorithm while it probably reduces the 

performance of the algorithm in other aspects. 

Therefore, multiple improvement strategies are 

helpful to comprehensively improve the optimization 

performance of the algorithm. 

Therefore, the comparison proves that the 

optimization performance of IWCA has been 

improved on the basis of WCA which indicates the 

effectiveness of the improvement strategy, and the 

optimization performance of IWCA is better than that 

of PSO and WCA. 

 
Fault diagnosis model based on improved water cycle 

algorithm and LSSVM classifier 
 

LSSVM classifier  

The Least Square Support Vector Machine 

(LSSVM) algorithm is developed from the Support 

Vector Machine (SVM) algorithm. The LSSVM 

algorithm trains the input and output of the training 

sample to find a proper functional relationship, and 

uses an optimization method to search for the optimal 

parameters which will give rise to the functional 

relationship with the smallest fitting error. Therefore, 

the LSSVM algorithm can be used to solve the 

classification problem with the calculation steps 

shown below: 

Step 1: Determine the training sample and model 

organization. {                   ,j=1,2,...M} is 

the training sample set, where cj, rj are the output and 

input of the training sample, M is the number of 

training samples, m is the input dimension. The 

functional relationship between sample input and 

output can be described as: 
 

              … (11) 
 

Where, P represents the unit normal vector of the 

hyperplane, a represents the distance from the origin 

 
 

Fig. 1 — The flowchart of IWCA 

 

 

 
Fig. 2 — The procedure of reconstruction strategy 
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to the hyperplane, and f(∙) represents the nonlinear 

mapping function. 

Step 2: Determine the nonlinear function which can 

describe the relationship between the input and output 

of the sample. In this paper, the Gaussian kernel 

function is selected as the nonlinear function 

relationship of the LSSVM model with the expression 

presented as follows: 
 

               
  

    

       
 

 … (12) 

 

Where, σ is the width constant of the nuclear 

parameter. 

Step 3: optimization of σ and γ parameter. When the 

Gaussian kernel function is selected as the sample input 

and output nonlinear function relationship, it is 

necessary to use the training sample to determine a set of 

parameters σ and γ to minimize the fitting accuracy of 

the LSSVM model. Therefore, the fitting process of the 

LSSVM model becomes a parameter optimization 

process. Eq. 13 is the objective function and constraint 

conditions of LSSVM model parameter optimization. 
 

 

                
  

   

     
                 

    ，        
 
  … (13) 

Table 1 — Benchmark functions for testing 

Function Range 
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Where, ej is the fitting error of the j-th input and 

output samples, and γ is the error penalty factor. 

Step 4: Obtain the LSSVM regression model. The 

LSSVM regression model can be obtained by using 

the optimized parameters σ and γ as the model 

parameters. The model is expressed as follows: 
 

                       
     … (14) 

 

Where, Aj is a constant coefficient vector. 

Step 5: LSSVM classification calculation. 

Substitute the calculated value L(r) of the LSSVM 

classification model into the sign function to obtain 

sign(L(r)) and determine the sample category 

according to sign(L(r)). 
 

LSSVM classifier parameter optimization 

The steps of parameter optimization process using 

the IWCA-based LSSVM model are as follows: 
 

Step 1: Determine the training set and test data set 

required for LSSVM model training, and 

divide the input data and output data in the 

training set and test set. 

Step 2: Generate an initial population in the IWCA 

algorithm, use the penalty coefficient γ and 

the kernel function σ as decision variables. At 

last, the composition vector of each member 

of the population is composed of decision 

variables. 

Step 3: Use IWCA to obtain the optimized penalty 

coefficient γ and the kernel function σ.  

Step 4: The IWCA algorithm judges whether the end 

condition is met, and the iterative calculation 

ends when the condition is met, otherwise, 

continue to step 3. In this paper, the end 

condition is that the calculation error of test 

value in LSSVM classifier is less than the set 

value. 
 

Decision fusion strategy using LSSVM classifier group  

In order to make full use of the feature information 

in the time-frequency domain and ensure that each 

sub-classifier can achieve complementary advantages, 

the classification results of each sub-classifier are 

merged using an ensemble algorithm based on the 

evaluation matrix. The basic idea is: use a confusion 

matrix to measure the recognition ability of each 

classifier for each type of fault, and adaptively assign 

decision weights to each classifier according to the 

preliminary diagnosis, and finally make full use of 

training information to improve the accuracy of 

classification decision. 
 

Fault diagnosis method based on IWCA and LSSVM 

For the remote power supply system in CUINs, the 

fault diagnosis can be completed based on IWCA and 

LSSVM according to the following steps: 
 

(1) First, divide the submarine composite cable of 

the remote supply system into regions, and 

collect the current and voltage signals in each 

division. 

(2) Use the EMD method to extract features of the 

collected signals. 

(3) Optimize the parameters of each sub-classifier in 

the LSSVM classifier group. 

(4) Use the fusion strategy to evaluate all sub-

classifier decisions and obtain the final diagnosis 

result. 
 

Simulation and analysis 

The remote power supply system in cable-based 

underwater information network is mainly composed 

of Shore Power Feeding Equipment (SPFE), Primary 

Node (Primary Node, PN) and submarine cables. All 

the above-mentioned parts assemble together to form 

the remote power supply system loop. 

It can be seen from Figure 3 that two adjacent 

master nodes are connected by submarine composite 

Table 2 — Test results of 13 benchmark functions 

F fmin  PSO WCA IWCA 

F1 0 Ave 7.11e-5 1.15e-5 9.337e-6 

Std 8.35e-5 3.783e-5 1.534e-5 

F2 0 Ave 2.59e-4 2.5040 0.0531 

Std 9.74e-5 5.4997 0.0229 

F3 0 Ave 196.36 122.63 18.773 

Std 68.371 62.89 25.369 

F4 0 Ave 3.691 18.887 0.6651 

Std 0.7158 5.005 1.0617 

F5 0 Ave 59.376 242.403 0.3591 

Std 44.397 662.82 0.2587 

F6 0 Ave 4.89e-5 1.11e-5 3.07e-5 

Std 9.58e-5 3.418e-5 5.995e-4 

F7 0 Ave 0.0267 0.6786 0.01753 

Std 0.0184 0.2848 0.4193 

F8 -12569 Ave -6769.3 -8007.4 -8362.3 

Std 807.091 744.58 544.37 

F9 0 Ave 55.92 106.165 47.633 

Std 22.419 27.435 12.479 

F10 0 Ave 0.00135 7.0250 0.6557 

Std 0.0033 4.318 0.5821 

F11 0 Ave 0.0237 0.0408 0.00945 

Std 0.0215 0.0330 0.0143 

F12 0 Ave 0.00978 1.1064 5.02e-4 

Std 0.0157 1.5687 1.68e-3 

F13 0 Ave 0.0066 0.0427 0.00489 

Std 0.0043 1.5687 0.00617 
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cables. Consequently, cable faults can be easily 

judged based on the current changes in the cables 

between the two nodes. The whole judge steps include 

firstly, dividing the submarine composite cable of the 

remote supply system into sections; collecting the 

current value of each section and compare the current 

changes in the section before and after each sampling 

period; using the IWCA and LSSVM fault diagnosis 

models to diagnose and obtain the diagnosis result. 

After dividing the intervals of the constant current 

remote supply system, each interval can be regarded 

as composed of an equivalent RLC loop whose 

equivalent circuit is presented in Figure 4
(ref. 24)

. 

As shown in Figure 4, there are six intervals in the 

simulation experiment, namely j = 6. The length of the 

submarine cable in the interval is 30 km, the equivalent 

inductances L1 – L6 are all 20 mH, the equivalent 

capacitances C1 – C7 are 7.2 μF, and the equivalent 

resistances R1 – R6 are all 30 Ω. It is assumed that the 

shore-based output current of the constant current 

remote supply system is 1.5 A. 

According to the 6-segment interval model in Figure 

4, the corresponding training data can be obtained. 

After the parameters of the LSSVM classifier are 

optimized, the fault diagnosis method is obtained and 

used to analyze the data in Table 3. In LSSVM 

classifier optimized by IWCA which is trained by data 

of cable fault, each classifier means that there is a fault 

in a section of the line corresponding to the classifier. 

Therefore, a conclusion that there is an open circuit 

fault in interval 4 is obtained by model calculation 

including modelling and LSSVM classifier. Based on 

the experimental results, the proposed fault diagnosis 

method has a good diagnosis rate for the constant 

current remote supply system. Because parts of the 

training process can be performed offline, the operating 

efficiency is greatly improved and calculation costs get 

reduced. Therefore, the proposed fault diagnosis 

method is proved to be suitable for fault diagnosis of 

submarine cable systems. What is more, the proposed 

diagnosis method has great possibility of being 

successfully applied into solving other problems 

involving into underwater observation network such as 

the underwater manipulation
25

, system control
26

, etc. 
 

Conclusions 

This paper proposed a new fault diagnosis method 

for the constant current remote power supply system 

in CUINs based on the Improved Water Cycle 

Algorithm (IWCA) and the LSSVM multi-classifier 

group. The improved IWCA algorithm is developed 

based on the WCA algorithm by combining chaotic 

mutation strategy, the elite memory strategy and the 

population reconstruction strategy. At last, the 

effectiveness of the new fault diagnosis method is 

verified by simulation experiments. 
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