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Abstract. A nonlinear two degree-of-freedom model, describing a flexible elastic suspended cable undergoing
galloping oscillations, is analyzed. By using a perturbative approach, the critical conditions occuring for different
values of the aerodynamic coefficients are described. Two different type of critical conditions, corresponding
to simple or double Hopf bifurcations are found. The nonlinear postcritical behavior of single taut strings in
1:1 primary internal resonance is studied through the multiple scale perturbation method. In the double Hopf
bifurcation case the influence of the detuning between the critical eigenvalues on the postcritical behavior is
illustrated. It is found that quasi-periodic motions, which are likely to occur in the linear field when the two
critical frequencies are incommensurable, are really unstable in the nonlinear range. Therefore, the postcritical
behavior of the string consists of stable periodic motions for any detuning values.

Sommario.Viene analizzato un modello non lineare a due gradi di libertà, rappresentativo di un cavo elastico
flessibile sospeso alle estremità e soggetto ad oscillazioni galoppanti. Utilizzando un approccio perturbativo,
vengono descritte le condizioni critiche per differenti valori dei coefficienti aerodinamici. Sono presenti due
diversi tipi di condizioni critiche, corrispondenti a biforcazioni di Hopf semplici e doppie. Attraverso il metodo
perturbativo delle scale multiple viene studiato il comportamento post-critico non lineare di singole stringhe
tese in risonanza interna primaria 1:1. Nel caso di biforcazione doppia di Hopf viene illustrata l’influenza del
detuning tra gli autovalori critici sul comportamento post-critico. Si trova che i moti quasi-periodici, presenti in
campo lineare quando le due frequenze critiche sono incommensurabili, sono in realtà instabili in campo non
lineare. Quindi, il comportamento post-critico della stringa risulta composto da moti periodici stabili per un
qualsiasi valore del detuning.
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1. Introduction

Transmission lines subject to icing conditions must be designed with large clearances to prevent
clashing and possible power failures as they can experience self-excited aeroelastic oscillations
of large amplitude due to wind, predominantly in the vertical plane, called galloping. The
problem has been studied in the literature for slender beams or taut strings, both in linear
and nonlinear fields, using simple models with one or two d.o.f. (e.g. [1]). Large galloping
oscillations of suspended cables have only recently been analyzed for a three d.o.f. system [2].
In these works, however, only the aerodynamic nonlinearities have been taken into account,
while geometric nonlinearities have been ignored. The latter, on the contrary, play an important
role in describing the dynamic behavior of cables, as already highlighted in many works on the
subject (e.g. [3, 4]). Therefore, to correctly describe the nonlinear galloping of iced suspended
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cables it is necessary to formulate a consistent mechanical model accounting for both types of
nonlinearity, as presented in [5]. In that paper, coupled in-plane and out-of-plane motions of a
flexible elastic suspended cable in internal resonance conditions of 1:2 type have been analyzed,
and the nonlinear postcritical behavior around a simple Hopf bifurcation has been studied.

However, the simple Hopf bifurcation is not the only instability form experienced by cables
subject to wind. In fact, in [6] it has been shown that when the in-plane and out-of-plane fun-
damental frequencies of the cable coincide, two qualitatively different critical conditions occur
for different values of the aerodynamic coefficients, called ‘galloping’ and ‘complex galloping’,
the latter characterized by beating motion. In this way the Den Hartog criterion (valid for in-
plane galloping) is extended to take into account the intrinsic coupling between in-plane and
out-of-plane motion. These results have been generalized in [7], where detuned frequencies have
been considered too, and a perturbative approach has been used, leading to simpler analytical
expressions. It has been pointed out that, the true characteristic of ‘complex galloping’ is not
the complexity (which, on the contrary, is common in galloping as regards eigensolutions),
but the existence of two couples of critical eigenvalues (i.e. double Hopf bifurcation), whereas
the usual galloping critical condition is a simple Hopf bifurcation. This new type of critical
condition is potentially very dangerous and can be responsible for possible bi-modal galloping
and quasi-periodic motions. In neither papers, [6] and [7], has the complete scenario of the
critical conditions in the parameter space been furnished. Moreover, only the linear bifurcation
problem has been dealt with, so that no information is available on the postcritical behavior of
the cable. In particular the existence of quasi-periodic motions predicted from the linear theory
has not been checked in the nonlinear field.

In this paper both items are addressed: (1) to present the scenario of the critical conditions
and to discuss their codimension; (2) to analyze the local postcritical behavior of the cable,
by focusing the attention on the existence and stability of coupled, two-mode solutions. The
continuous model presented in [5] is considered again. Here, attention is focused on taut
strings for which 1:1 internal resonance occur. After discretization and use of the multiple
scale perturbation method, amplitude and phase equations are obtained. Steady-state amplitude
solutions are determined as a function of the non-dimensional mean wind speed, assumed as the
control parameter. For a wind speed over critical value, phase curves are obtained by numerical
integrations of the amplitude modulation equations; the stability and the attraction basins of the
fixed points are analyzed.

2. Model

Let us consider a flexible heavy hyperelastic cable suspended between two fixed supports.
Referring to the Frenet triad, in which the aerodynamic forces are more easily expressed, the
non-dimensional equations that govern the prevalently transversal motion of the cable in the
small curvature regime are [4, 8]:

[1 + αe]u′′
1 + f1 = π2ü1

[1 + αe]u′′
2 + αβe + f2 = π2ü2, ui(0, t) = ui(1, t) = 0

(1)

where

e = u′
3 − βu2 + 1

2(u
′2
2 + u

′2
1 ) (2)

is the dynamic component of the Lagrangian strain when the curvature is small, which is
(approximately) constant along the cable. The following non-dimensional quantities are used in
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equations (1) and (2):

ui = Ui

L
, s = S

L
, fi = L

H
Fi, t = π

L

√
H

m
T,

α = EA

H
, β ≈ 8d

L
, µ = ρbV

m

√
L

g
(3)

whereui are the out-of-plane(i = 1) and in-plane(i = 2) displacement components measured
from the static equilibrium configuration;fi are distributed dynamic force components due to
wind, depending on velocitieṡui and on the non-dimensional mean wind speedµ; m is the mass
per unity length of the cable (ice included);g is the acceleration due to gravity;L is the cable
length;H is the horizontal component of static tension;EA is the axial stiffness;d is the cable sag
at mid-span. Dots and apices denote derivatives with respect to the non-dimensional timet and
curvilinear abscissas, respectively. Torsional effects are neglected since single cables usually
have torsional frequency much higher than two flexural frequencies [9]. The aerodynamic forces
fi are determined with reference to a spring-mounted damped rigid cylinder of indefinite length,
subjected to a bidimensional turbulent flow of uniform velocityV , in the quasi-static regime
(i.e. at much lower oscillation frequencies than the vortex-shedding frequency).

By applying the Galerkin method and using the first in-plane and out-of-plane eigenfunction
of the linearized problem, a discrete model is obtained [5]:

q̈1 + b1q̇1 + b2q̇2 + ω2
1q1 + c1q1q2 + c2q

3
1 + c3q1q

2
2 + b5q̇

2
1 + b6q̇

2
2 +

+ b7q̇1q̇2 + b8q̇
3
2 = 0 (4)

q̈2 + b3q̇1 + b4q̇2 + ω2
2q2 + c4q

2
1 + c5q

2
2 + c6q

2
1q2 + c7q

3
2 + b9q̇

2
1 +

+ b10q̇
2
2 + b11q̇1q̇2 + b12q̇

3
2 = 0, (5)

whereqi(t)describe the temporal behavior of the out-of-plane(i=1)and in-plane(i=2)degree-
of-freedom;ωi are the Hamiltonian non-dimensional natural frequencies;bi are coefficients
of linear and nonlinear aerodynamic forces depending onµ; ci are coefficients of nonlinear
geometric terms; constant forces, driven by the mean wind speed, are neglected likewise in [6, 7].
The expressions of coefficientsbi andci are given in Appendix A. By focusing attention on
simple taut strings, the Hamiltonian frequencies are coincident,ω1=ω2=ω, and the mechanical
quadratic coefficients are equal to zero(c1=c4=c5=0)while aerodynamic quadratic coefficients
(b5, b6, b7, b9, b10, b11) are still different from zero. Equations (1), (4) and (5) admit the trivial
solutionui = 0 andqi = 0, respectively, for any value of the mean wind speedµ.

3. Critical Conditions Scenario

The first step of the analysis concerns the study of the critical conditions. It requires evaluation
of the eigenvalues of the linear part of the discretized equations (4) and (5). In [7], by assuming
that all damping coefficientsbi are small of the same order and applying a perturbative method,
an approximate expression for the eigenvalues is obtained in the more general case of slightly
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Figure 1. Critical conditions in the plane of aerodynamic damping matrix invariants.

detuned frequencies. In particular, for taut strings, they read:

λ1,2 = ±iω − b1 + b4

4
+ 1

4

√
(b1 − b4)2 + 4b2b3,

λ3,4 = ±iω − b1 + b4

4
− 1

4

√
(b1 − b4)2 + 4b2b3. (6)

Here, starting from equations (6), the galloping critical condition scenario is built up. By separat-
ing the total damping matrixC in its structuralCs and aerodynamicCa components and assuming
structural damping coefficient equal in both directions (i.e.C = Cs + µCa, Cs = 2ω diag{ξ}),
equations (6) are rewritten in the following expressive way:

λ1,2 = ±iω − ωξ − µ

4
(trCa −

√
(trCa)2 − 4 detCa) = α1 + i (β1 ± ω)

λ3,4 = ±iω − ωξ − µ

4
(trCa +

√
(trCa)2 − 4 detCa) = α2 + i(β2 ± ω), (7)

wherei is the imaginary unity, and trCa and detCa are respectively the trace and the determinant
of the aerodynamic damping matrixCa. It can be checked that the critical conditionsαi = 0
(i = 1, 2) furnished by equations (7) coincide with the exact conditions given in [6]. Moreover,
if βi = 0 (radical quantity positive) the critical modes are real, whereas ifβi 6= 0 (radical
quantity negative) two complex critical modes exist with non-nil components on both degrees
of freedom.

The scenario is represented in the plane of the invariants(detCa, trCa), where the paths of
the eigenvalues on the complex plane, when the mean wind speedµ is increased from zero,
are illustrated for each region. The presence of a region of possible double Hopf bifurcations,
bounded in the fourth quadrant by the horizontal axis and the parabola, takes on particular
interest. The figure is discussed for different values of the determinant of the aerodynamic
damping matrix, keeping the trace constant, that is by considering a class of iced cables with
different aerodynamic properties (e.g. different ice shapes). There are two main cases, depending
on the sign of the trace. For negative trace, going from left to right (dashed line in Figure 1),
different bifurcation mechanisms exist. At first, in the third quadrant, a simple Hopf bifurcation
occurs. As soon as the vertical axis is passed through, two couples of eigenvalues cross the
imaginary axis but in a non-simultaneous way. On the parabola, a double Hopf bifurcation occurs
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Figure 2. Stability boundaries: (a)(µ, detCa)-plane, trCa < 0; (b) (µ, trCa)-plane, detCa > 0.

with coincident critical eigenvalues. In this limit case the detuning1 := |β2 − β1| ≡ ω20 − ω10

between the couples of critical eigenvalues is equal to zero. Here a defective situation occurs, in
which the geometric multiplicity of the critical eigenvalue is less than its algebraic multiplicity.
Finally, when the parabola is passed, double Hopf bifurcations occur with a non-vanishing
detuning1, which progressively increases to the right. When the trace is positive, going from
left to right (dot-dashed line in Figure 1), only a simple Hopf bifurcation is encountered for
negative determinant, while the system is always stable in the first quadrant.

In order to perform a postcritical nonlinear analysis, it is necessary to identify the control
parameters correctly. Equations (7) point out that the eigenvalues real partαi depends onµ,
trCa and detCa; hence, it appears that control parameters have to be selected from among them.
The stability boundaries related to the three parameters are shown in Figure 2, for fixed values
of trace (Figure 2(a)) or determinant (Figure 2(b)). Along branches I and II a simple Hopf
bifurcation occurs (α1 = 0 orα2 = 0 respectively); along branch III a double Hopf bifurcation
manifests itself (α1 = α2 = 0). Therefore there exists a line in<2 Euclidean space (or a
surface in<3 space) representing the locus of both single and double Hopf bifurcations. With
regard to this latter, in a generic case in which the critical frequencies are in a non-integer
ratio (i.e. in a non-resonant condition), the bifurcation is described by a single parameter, that
is, the problem has codimension one. This is very unusual for double Hopf bifurcations which
generally have codimension two (e.g. [10, 11]). Here, a non-generic case for a single parameter is
represented by the point C (1 = 0, Figure 2), which corresponds to a defective bifurcation having
codimension two. In this paper point C will not be studied, since the relevant analysis requires
employing a special technique. However, a neighborhood of C is tentatively studied (nearly-
resonant condition) by assuming that, sufficiently far from C, the two eigenvectors are linearly
independent (non-defective case) while the associated eigenvalues are still close to each other. In
fact the eigenvectors of weakly damped Hamiltonian systems (as those presented here) exhibit
marked sensitivity in a small neighborhood of the defective system, whereas the eigenvalues are
moderately sensitive [12]. Thus, the actual system is considered as a1-perturbation of an ideal
non-defective resonant system.

In the non-resonant case, the more significant control parameter appears to be the non-
dimensional mean wind speedµ; in the nearly-resonant case, the detuning1 (depending both
on trCa and detCa) has to be added as second control parameter.
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4. Nonlinear Analysis

The equation of motion (4, 5) are written in the first-order local form as follows:

ẋ = F(x, ν) (8)

in which x(t) = {q̇1, q̇2, q1, q2}T andν := µ − µc is the new control parameter, whereµc

corresponds to a critical condition. A second control parameter will be introduced later in the
nearly-resonant case.

Equation (8) admits the trivial equilibrium solution consisting of the set of states0 :=
{(x, ν)|x = 0}. At O ≡ (x = 0, ν = 0) it undergoes a single or double Hopf bifurcation. Equa-
tion (8) is solved around the bifurcation pointO by using the multiple scale method (MSM), by
looking for a family of monoparametric solutions of the form:

x = x(ε, t0, t2, . . . ), ν = ν(ε), (9)

wheret0 = t, t2 = (ε2/2!)t, . . . , t2k = [ε2k/(2k)!] t are independent temporal scales.
Under hypotheses of regularity, equations (9) are expressed in Mac Laurin series:

x =
∞∑

k=1

εk

k!
xk, ν =

∞∑
k=2,4,...,

εk

k!
νk, (10)

wherexk = xk(t0, t2, . . . ), and ε = 0 selects the bifurcation point. The time derivative is
expressed as:

d

dt
= d0 + ε2

2!
d2 + · · · + ε2k

2k!
d2k + · · · , (11)

where dk = ∂/∂tk. By differentiatingk times equation (8) with respect to the parameterε and
evaluating the derivatives atε = 0, the perturbative equations ofk-order are obtained. For
k = 1, 2, 3, by using equations (10) and (11), they read:

(d0E − F0
x)x1 = 0, (12)

(d0E − F0
x)x2 = F0

xxx2
1, (13)

(d0E − F0
x)x3 = 3ν2F0

xνx1 + 3F0
xxx1x2 + F0

xxxx3
1 − 3d2x1, (14)

whereE is the 4× 4 identity matrix, the subscripts(x, ν) denote partial differentiation and the
apex 0 indicates that the related quantity is calculated atε = 0.

With reference to a double Hopf bifurcation, depending on the magnitude of the detuning1

at the critical point, two cases are analyzed: (a)1 ∼= 0 (nearly-resonant case) or (b)1 = O(1)

(non-resonant case). They correspond to critical conditions (a) near or (b) far from to the double
Hopf bifurcation boundaries, represented in Figure 1 by the parabola. In both cases the generating
solution of equation (12) is given by:

x1 = A1(t2, t4, . . . )u1e
iω10t0 + A2(t2, t4, . . . )u2e

iω20t0 + c.c., (15)

where the functionsAj are undetermined at this level anduj are the right eigenvectors of the
Jacobian matrixF0

x associated with the critical eigenvaluesωj0 (Figure 2).
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Substituting the first-order solution given by equation (15) into equation (13) yields:

(d0E − F0
x)x2 = A2

1F0
xxu2

1 ei2ω10t0 + A2
2F0

xxu2
2 ei2ω20t0 +

+ 2A1A2F0
xxu1u2 ei(ω10+ω20)t0 + A1Ā1F0

xxu1ū1 +
+ A2Ā2F0

xxu2ū2 + 2A1Ā2F0
xxu1ū2 ei(ω10−ω20)t0 + c.c. (16)

If the one-to-two internal resonance is excluded, all terms on the right-hand side of equation (16)
are non-resonant; therefore the solution of equation (16) is:

x2 = A2
1z11e

i2ω10t0 + A2
2z22e

i2ω20t0 + 2A1A2z12e
i(ω10+ω20)t0+

+ A1Ā1z11̄ + A2Ā2z22̄ + 2A1Ā2z12̄e
i(ω10−ω20)t0 + c.c.,

(17)

where thezrs ’s andzrs ’s (r, s = 1, 2) are solutions of the non-singular algebraic problems:

[i(pω10 + qω20) E − F0
x]zrs = F0

xxurus

[i(pω10 − qω20) E − F0
x]zrs̄ = F0

xxur ūs (18)

beingp andq the coefficients ofω10 andω20, respectively, which appear in equation (17) in the
associated exponential functions. Moreover, the following properties hold:zrs = zsr , z̄rs̄ = zr̄s .

Substituting equations (15) and (17) into equations (14), it follows:(
d0E − F0

x

)
x3 = 3

{
ν2A1F0

xνu1 + A2
1Ā1

[
F0

xx

(
2u1z11̄ + z11ū1

) + F0
xxxu2

1ū1
] +

+ 2A1A2Ā2
[
F0

xx

(
u1z22̄ + u2z12̄ + z12ū2

) + F0
xxxu1u2ū2

] −
− d2A1u1} eiω10t0 +
+ 3

{
ν2A2F0

xνu2 + A2
2Ā2

[
F0

xx

(
2u2z22̄ + z22ū2

) + F0
xxxu2

2ū2
] +

+ 2A2A1Ā1
[
F0

xx

(
u2z11̄ + u1z1̄2 + z12ū1

) + F0
xxxu1ū1u2

] −
− d2A2u2} eiω20t0 +
+ 3A2

1Ā2
[
F0

xx

(
2u1z12̄ + ū2z11

) + F0
xxxu2

1ū2
]
ei(2ω10−ω20)t0 +

+ 3A2
2Ā1

[
F0

xx

(
2u2z1̄2 + ū1z22

) + F0
xxxu2

2ū1
]
ei(2ω20−ω10)t0 +

+ c.c. + N.S.T . (19)

Because the homogeneous part of equation (14) has a nontrivial solution the nonhomogeneous
equation (19) has a solution only if a solvability condition is satisfied. This condition requires
the right-hand side of equation (19) be orthogonal to every solution of the adjoint homogeneous
problem.

First, the nearly-resonant case is dealt with. To express the nearness ofω20 to ω10, the
detuning:

1 = (ω20 − ω10) ε−2 (20)

is introduced as a second parameter. Substituting equation (20) into equation (19) and eliminating
the secular terms from equation (19), it follows:

d2A1 = C11ν2A1 + 8C12A
2
1Ā1 + 8C13A1A2Ā2 +

+ (C14ν2A2 + 8C15A
2
2Ā2 + 8C16A2A1A1)e

i1t2 +
+ 8C17A

2
1Ā2e

−i1t2 + 8C18A
2
2Ā1e

i21t2 (21)
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d2A2 = (C21ν2A1 + 8C22A
2
1Ā1 + 8C23A1A2Ā2)e

−i1t2 +
+ C24ν2A2 + 8C25A

2
2Ā2 + 8C26A1A2Ā1 +

+ 8C27A
2
1Ā2e

−i21t2 + 8C28A
2
2Ā1e

i1t2, (22)

where the coefficientsC’s are given in Appendix B. ExpressingAj in the polar form:

Aj = 1
2aje

iϕj (23)

and separating equations (21) and (22) into real and imaginary parts, coming back to the real
time t by means of equation (11) and reabsorbing the parameterε, the following autonomous
equation set is drawn:

ȧ1 = νR11a1 + R12a
3
1 + R13a1a

2
2 +

+ (νR14a2 + R15a
3
2 + R16a

2
1a2) cosγ − (νI14a2 + I15a

3
2 + I16a

2
1a2) sinγ +

+ R17a
2
1a2 cosγ + R18a1a

2
2 cos 2γ + I17a

2
1a2 sinγ − I18a1a

2
2 sin 2γ (24)

ȧ2 = νR24a2 + R25a
3
2 + R26a2a

2
1 +

+ (νR21a1 + R22a
3
1 + R23a1a

2
2) cosγ + (νI21a1 + I22a

3
1 + I23a1a

2
2) sinγ +

+ R28a1a
2
2 cosγ − a1a

2
2I28 sinγ + R27a

2
1a2 cos 2γ + I27a

2
1a2 sin 2γ (25)

a1a2γ̇ = (νI21a1 + I22a
3
1 + I23a1a

2
2)a1 cosγ −

− (νR21a1 + R22a
3
1 + R23a1a

2
2)a1 sinγ +

+ νI24a1a2 + I25a1a
3
2 + I26a

3
1a2 + I27a

3
1a2 cos 2γ − R27a

3
1a2 sin 2γ −

− a2
(
νI11a1 + I12a

3
1 + I13a1a

2
2

) − (
νI14a2 + I15a

3
2 + I16a2a

2
1

)
a2 cosγ −

− (νR14a2 + R15a
3
2 + R16a2a

2
1)a2 sinγ + R28a

2
2a

2
1 sinγ + I28a

2
2a

2
1 cosγ −

− I17a
2
1a

2
2 cosγ + R17a

2
1a

2
2 sinγ − I18a1a

3
2 cos 2γ −

− R18a1a
3
2 sin 2γ + a1a21, (26)

whereγ := ϕ2 − ϕ1 + 1t is the phase difference and coefficientR’s andI ’s are respectively
the real and imaginary parts of the coefficientC’s. The fixed points of the equations (24–26)
are determined by settinġa1 = ȧ2 = γ̇ = 0. These solutions correspond to a one-frequency
periodic motion of the original system (equations (4) and (5)).

In the non-resonant case, the bifurcation equations are formally obtained from equations (21)
and (22) by omitting terms in exp(±i1t2). This procedure leads to the following four equations:{

ȧ1 = νR11a1 + R12a
3
1 + R13a1a

2
2

ȧ2 = νR24a2 + R25a
3
2 + R26a2a

2
1

(27a)

{
a1ϕ̇1 = a1(νI11 + I12a

2
1 + I13a

2
2)

a2ϕ̇2 = a2(νI24 + I25a
2
2 + I26a

2
1).

(27b)

In equations (27) amplitude modulation equations (27a) are uncoupled from the phase modula-
tion equations (27b) and can be studied by portrait phase techniques. Steady-state solutions of
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the equations (27a) are determined by settingȧ1 = ȧ2 = 0. The fixed points of the equation (27a)
correspond to one-frequency periodic motion(a1 6= 0, a2 = 0) and(a1 = 0, a2 6= 0) or two-
frequency quasi-periodic motions(a1 6= 0, a2 6= 0) of the original system (equations (4) and
(5)).

Equations (27) are identical to those obtained in [10] and they are also identical to equations in
standard normal form obtained by means of Center Manifold Theory [11]. In particular they are
formally identical to double pendulum equations presented in [11] but with a lower codimension.
This implies that, only one scenario of phase portrait exists for anyν > 0. In any case, from
[11] it is deduced that non-resonant two-component solutions are always unstable.

Finally, the case in which a simple Hopf bifurcation occurs at the pointO it is still obtained
from nearly-resonant equations. For example, by lettinga2 = ϕ2 = 0 anda1 = a, ϕ1 = ϕ in
equations (27), the standard normal form of the simple Hopf bifurcation equations is drawn:

ȧ = νR11a + R12a
3 aϕ̇ = a(νI11 + I12a

2), (28)

wherea andϕ are amplitude and phase of the periodic bifurcated solution. These amplitude
equations are identical to those obtained in [13] for a simple Hopf bifurcation of a generic
system.

Therefore, the proposed amplitude modulation equations (21) and (22) are comprehensive
of all particular cases (simple and double, non-resonant and nearly-resonant Hopf bifurcations)
except in the case of nilpotent critical Jacobian matrix (1 = 0).

In order to check the fitting between resonant and non-resonant solutions it is necessary
to analyze the asymptotic behavior of the nearly-resonant amplitude equations (24–26) when
the detuning1 becomes large, i.e. when the ordering (20) is violated. In such a case, if the
amplitudesa1 anda2 are of the same order, the last term of equation (26) dominates the remaining
ones and cannot be balanced. Thereforeγ̇ = 0 entailsa1 � a2 or a2 � a1, i.e. weakly
coupled bi-modal steady-state solutions. For example, by lettinga1 → 0 in equations (24–
26), equation (25) tends to the corresponding non-resonant equation (27a2), from which a2

is drawn, whereas the remaining two equations furnish the other two unknowns. Thus, one-
frequency non-resonant periodic solutions are (nearly) recovered. On the other hand, when
a1 = O(a2), from equation (26) it follows thatγ ' γ (0) + 1t , so that equations (24) and
(25) differ from the associated equations (27a) for the presence of high-frequency forcing-
terms. Nearly-resonant solutions are therefore identical to non-resonant solutions apart from
small high-frequency periodic perturbations. It should be noted that, due to such perturbations,
two-frequencies quasi-periodic non-resonant motions are not recovered as fixed-points of the
asymptotic form of equations (24–26). By comparing resonant and non-resonant solutions it is
possible to check whether a system is actually resonant or not, and consequently to evaluate the
width of the resonant region.

5. Numerical Results

The behavior of a string around a double Hopf bifurcation is analyzed. A cross-section with
a particularly thick ice accretion shape which has appeared in the literature (NDT-modified,
[6]), is considered, subjected to non-symmetric wind flow. In fact, by using equations (7), it is
easy to check that if the flow is symmetric (i.e. modes are decoupled) simple Hopf bifurcations
only may occur, since detCa < 0. A taut string is considered with parametersα = 928.13,
β = 0, L = 244 m,m = 6.15 Kg/m, ξ = 0.44 %, H = 32.000 N andb = 0.09 m. The
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Figure 3. Linearized motion at criticality: (a) critical modes, (b) resultant motion, (c) time-history.

nonlinear aerodynamic coefficients are obtained from the available experimental data [14] by
using natural cubic splines. The critical detuning1 is equal to 0.0878. For this string a double
Hopf bifurcation arises for critical wind velocity. In Figure 3(a) the first and second critical modes
are shown in the configuration space. The two modes are complex with the same spatial shape
described clockwise in the first mode, and counterclockwise in the second mode, with slightly
different frequencies. Therefore, the resultant linearized motion is quasi-periodic (Figures 3(b),
3(c)) and possible bi-modal galloping takes place.

A nonlinear analysis is performed using both nearly-resonant and non-resonant solutions in
the neighborhood of the bifurcation point (i.e. for small values of the control parameterν). At
the critical velocityµc (V = 11.2 m/s), fixed point branches with a typical galloping shape
(e.g. see [5]) bifurcate from the trivial path (Figure 4). The stability of these branches has been
verified by using standard methods (i.e. by analyzing eigenvalues of the Jacobian matrix). The
non-resonant solution gives origin to three different branches (Figure 4(a)), two mono-modals
and one bi-modal; the mono-modal solutions (solid lines, branches A and B) are always stable
in the analyzed velocity field, whereas the bi-modal solution (dashed line, branch C) is always
unstable. Figure 4(b) shows branches deriving from the nearly-resonant solution: branches A
and B are practically identical to the previous ones, but with a very small coupled component;
on the contrary, the bi-modal branch C is not found, according to the asymptotic behavior of
equations (24–26) discussed in Section 4.

The previous results are corroborated by the analysis of transient motions, which are studied
through direct numerical integration of the non-resonant (27) and nearly-resonant (24–26) am-
plitude equations. By considering the bifurcation as non-resonant, phase curves in the amplitude
plane(a1, a2), originating from different initial conditions, are represented in Figure 5(a). Two
stable mono-modal solutions (A, B) are found together with an unstable bi-modal solution (C,
saddle point). Therefore, when the transient is exhausted, the cable oscillates in one mode only,
similarly to a simple Hopf bifurcation. However, the initial conditions now determine which of
them is the regime solution. In Figure 5(b) the problem is solved by using the nearly-resonant
solution; the same initial conditions as in Figure 5(a) are imposed. A comparison between the
two solutions reveals that the projection of the nearly-resonant phase curves(a1, a2, γ ) on the
modal amplitude plane(a1, a2) is wrapped around the non-resonant solution, with very small
changes in the fixed point values. However, point C marked in Figure 5b is not a fixed point,
as it has been discussed in Section 4. In fact, around point C, while the amplitudesa1 anda2



Postcritical Behavior of Cables239

branch A, a2

branch B, a1

branch C,  a1,  a2

0 0.04 0.08 0.12 0.16 0.2
ν

0

2E-4

4E-4

6E-4

8E-4

1E-3

ai

(a)

     
0 0.04 0.08 0.12 0.16 0.2

(b)

branch A, a2

branch B, a1

ν

branch A, a1

branch B, a2

Figure 4. (a) Non-resonant and (b) nearly-resonant steady-state amplitude solution vs. adimensional wind
velocity for the basic example.

a1

a2

B

C
A

(a)

ν=0.1
V=12.3 m/s

0 2E-4 4E-4 6E-4 8E-4
0

2E-4

4E-4

6E-4

8E-4

      

C

B

A

(b)

a1

0 2E-4 4E-4 6E-4 8E-4

Figure 5. (a) Non-resonant and (b) nearly-resonant phase curves for the basic example.

remain nearly constant over an interval of time, the phase differenceγ grows linearly in time.
After that, the motion evolves toward a ‘true’ fixed point, A or B.

In conclusion, the system analyzed has to be considered as non-resonant. This implies that
the resonant layer around the parabola of Figure 1 is very narrow.

In order to study the transition to the resonance, the basic example has been modified by
progressively increasing the lift coefficient, therefore by reducing detCa and leaving trCa

unchanged. In this way a class of systems has been obtained, represented on the invariant plane
(Figure 1) by points increasingly closer to the critical parabola. Correspondingly the following
qualitative behavior of the fixed points on the amplitude plane has been observed. The unstable
point C moves towards the stable point A until they coalesce and a bifurcation takes place.
From this bifurcation a new unstable bi-modal point D arises. Meanwhile, simultaneously to
the coalescence, point B moves away from the horizontal axis, remaining stable. It represents
now a bi-modal galloping in which the in-plane and out-of-plane modal amplitudes are of the



240 Angelo Luongo et al.

a1

a2

B

ν=0.1
V=12.3 m/s

(a)

0 4E-4 8E-4 1.2E-3
0

2E-4

4E-4

6E-4

8E-4

D

   

Initial conditions:
a1=1.2 E-03
a2=0.8 E-03

q2

q1

(b)

-1.4E-3 -7E-4 0 7E-4 1.4E-3
-1.4E-3

-7E-4

0

7E-4

1.4E-3

Stable orbit

Figure 6. (a) Phase curves and (b) transient motion at the mid-span for the modified example.

same order. Therefore, the transition to the resonance is identified by the coalescence of fixed
points C and A. The phase in which points C and A approach each other is well described by the
non-resonant equations (27). These supply an estimate of the critical value of detuning which
turns out to be independent ofν.

The modified example presented in Figure 6 is obtained by increasing the lift coefficient by
about 15 %, corresponding to a detuning1 = 0.0145. By projecting the phases on the modal
amplitude plane the phase portrait of Figure 6(a) follows. By perturbing the trivial equilibrium
position along the vertical axis, the trajectory is first attracted by the unstable node D around
which it remains for an interval of time; successively, the motion evolves towards the stable node
B where a steady-state two-component oscillation takes place. The motion is periodic since in a
nearly-resonant case, nonlinearities adjust the frequencies to match each other. Figure 6(b)
presents the transient motion of the string mid-point for a second-orderε2 approximation.
The internal ellipse represents the stable bi-modal configuration (B), reached after transient
oscillations (dot lines) of larger amplitude than those of the regime.

6. Conclusions and Remarks

Concerning taut strings subject to galloping, a complete classification of different critical condi-
tions is given. By using the multiple scale perturbation method, nearly-resonant and non-resonant
amplitude equations are drawn. The asymptotic behavior of the nearly-resonant equations when
the detuning is large has been discussed and the transition between resonant and non-resonant
solutions has been studied. When the system is non-resonant, two stable steady-state mono-
modal solutions and one unstable bi-modal solution exist. When the system is nearly-resonant,
two bi-modal solutions, one stable and the other unstable, appear. Hence, in both cases, when
the transient is exhausted, the motion in the postcritical range is periodic. Therefore, linear
quasi-periodic solutions, like those commented in [6], are disrupted by nonlinearities. Com-
parison of nearly-resonant and non-resonant solutions shows that the resonant region is very
narrow. However, the magnitude of nonlinearities influence the resonant region. In the case
treated here the thickness of the resonant layer strongly depends on the magnitude of nonlinear
aerodynamic terms; the resonant region is wider when nonlinear aerodynamic terms are smaller
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than those considered here. Therefore, it seems very important to possess reliable aerodynamic
experimental data in order to obtain a correct estimation of the resonant region thickness.

Appendix A

The aerodynamicbi and mechanicalci coefficients of the discrete model (equations (4) and (5))
are:
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√
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whereξi are the modal damping coefficients;c′
j , c′′

j , c′′′
j (j = d, l) are the first, second and

third derivatives of drag (d) and lift (l) coefficients, with respect to the fluctuating angle of
attack [5];χ = mgL/H andη = ρbL/m are non-dimensional factors;ρ is the air density;b
is the characteristic dimension of the cylinder cross-section (i.e. the cable diameter);ri are the
following modal terms:
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whereφ1(s) andφ2(s) are the linear vibration mode shapes [4]. In particular, the first linear
symmetric modes for the string(β = 0) areφ1(s) = φ2(s) = sin(πs).
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Appendix B

Coefficients appearing in solvability conditions (21) and (22) are defined as follows:

Cj1 = vH
j F0

xνu1, Cj2 = 1
8vH

j [F0
xx(2u1z11̄ + z11ū1) + F0

xxxu2
1ū1]

Cj3 = 1
4vH

j [F0
xx(u1z22̄ + u2z12̄ + z12ū2) + F0

xxxu1u2ū2]

Cj4 = vH
j F0

xνu2, Cj5 = 1
8vH

j [F0
xx(2u2z22̄ + z22ū2) + F0

xxxu2
2ū2]

Cj6 = 1
4vH

j [F0
xx(u2z11̄ + u1z1̄2 + z12ū1) + F0

xxxu1ū1u2]

Cj7 = 1
8vH

j [F0
xx(2u1z12̄ + ū2z11) + F0

xxxu2
1ū2]

Cj8 = 1
8vH

j [F0
xx(2u2z1̄2 + ū1z22) + F0

xxxu2
2ū1],

where ( )H denotes the transpose conjugate andvj (j = 1, 2) is the left eigenvector of the
Jacobian matrixF0

x associated with the critical eigenvalueωj0. Right and left eigenvectors are
assumed to be orthonormal in equations (21) and (22), i.e.vH

i uj = δij whereδij is the Kronecker
symbol.
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