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Abstract. Some basic questions of the flight mechanics of aerospace vehicles at very high altitudes are investigated 
and in some cases reviewed. In particular those tracts of the spacecraft trajectories are considered along which the 
aerodynamic actions take place in a range of the Knudsen number between transition and free molecular flow. A 
recent physico-mathematical model is adopted in the evaluation of the aerodynamic and heat transfer coefficients. 
The stability characteristics are discussed of two reference vehicle configurations for which the time histories are 
also calculated relative to significant equilibrium conditions. In the final section of the paper the initial step of an 
aeroassisted orbit transfer is considered in order to evaluate the constraints due to the aerodynamic heating on this 
manoeuvre. 

Sommario. Si studiano alcune questioni fondamentali della meccanica del volo di veicoli aerospaziali a quote 
molto elevate. Si considerano, in particolare, quei tratti delle traiettorie lungo i quali le azioni aerodinamiche si 
esplicano in un campo di numeri di Knudsen tra la transizione ed i flussi di molecole libere. Si adotta un recente 
modello fisico-matematico per calcolare i coefficienti aerodinamici e di scambio termico. Dopo aver discusso le 
caratteristiche di stabilit~ per due configurazioni di velivoli di riferimento, se ne calcolano le leggi orarie a partire 
da condizioni di equilibrio significafive. I1 lavoro termina con lo studio di un trasferimento orbitale aeroassistito al 
fine di valutare i limiti a questa manovra dovuti al riscaldamento aerodinamico. 
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1. Introduction 

Flight at very high altitudes, in the region which is usually thought of as the border of the 
atmosphere, presents some peculiar aspects. Here the density of the air has decreased to 
the point that the length of the molecular free path, l, becomes more and more comparable 
with a characteristic linear dimension, g, of a manned vehicle. The speed of a body has, of 
course, to be very high in order to determine sizeable lifting effects and the aerodynamics 
of the vehicle is then governed by the laws of rarefied gasdynamics and the assumption of 
hypersonic conditions is very likely to be verified. 

A great variety of either realized or proposed aerospace objects moves in the atmospheric 
layer where the Knudsen number, Kn = l/g, falls in the interval (0.01-oo). This interval 
corresponds to regimes from the slip flow through the transition to the free molecular flow. One 
can deal with the slip flow field practically by the same techniques adopted for the continuous 
flow regime, facing the same difficulties, provided that the proper boundary conditions are 
taken into account in the differential problem. On the other extreme of the interval, free 
molecular flows have been thoroughly investigated and a great deal of applicable results 
are available for the study of the aerodynamic actions on lifting bodies. The wide range of 
transitional flows, say between Kn = 0.05 and Kn = 1, still presents extreme difficulties to be 
surmounted either theoretically and experimentally before really satisfactory computational 
procedures are available. In this respect, from the engineering point of view, promising results 
have been shown by the main versions and modifications of the Monte Carlo Simulation 
Numerical Methods (MCDS) [1, 2], although their implementation is in any case burdensome 
for complicated geometries. 

As for the vehicles, the performances of which take place in the transitional regime, we 
cite only the shuttle-type spacecraft (STS), the Hermes project, the personnel launch vehicles 
(PLV), the manoeuvrable re-entry research vehicles (MRRV), the aeroassisted orbital transfer 
vehicles (AOTV), the downward deployed tethered satellite where it is aerodynamically 
controlled and the space transport modules, etc. [3]. 

In this paper we will consider two of the main areas of the flight dynamics of lifting vehicles 
in the upper atmosphere, namely the stability of the equilibrium and the flight performances 
in a typical mission. Considerable research from the 1950s has been in the first area and its 
familiar background formulation is reported in a renown textbook by Etkin [4]. The second 
one has been investigated more recently with additions changing from time to time according 
to the specific mission profiles of the vehicles. Our contribution is essentially founded on the 
adoption of a new, accurate model for the aerodynamic interaction and heat transfer between 
a transitional rarefied gas flow and a solid wall [5]. This model is simple enough to be applied 
with ease and enables the problem of stability to be reviewed, thus reaching much more 
realistic conclusions with respect to the rough first approximation. This is particularly true if 
one considers that the aerodynamic behaviour of a lifting body is usually non-linear. Because 
of this, it seemed appropriate to substantiate the results of a linear stability procedure with 
those of the solution to the full set of governing equations. The second step is then to take 
advantage of the capabilities of the model in evaluating and discussing the performances of 
lifting spacecraft at very high altitudes. 

In many previous works it is quite customary to assume that beyond a limit of, say, 100 
or 110 km above the Ear-th, aerodynamic actions are vanishingly small [6]. Apart from the 
fact that this statement is not true in all circumstances, problems which involve the stability 
of equilibrium can indeed be strongly affected by the aerodynamic forces and moments. 
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Furthermore the choice of the model for the gas-surface interaction can play a great role. As 
an example we recall that, in most cases, at high Kn, the lift and drag coefficients, namely CL 
and CD, can be adequately predicted within a free molecular flow approximation. However, 
the heat transfer coefficient CH cannot. On the other hand, for finite although great values of 
Kn, CL and CD depend on the thermal exchanges at the walls. Therefore, even in the case of 
small values of CL and CD in some tracts of a mission, the value of CH can be sufficient to 
change the thermal conditions of the vehicle and influence future parts of its trajectory. This 
leads to the second phase of this research where we carry out an investigation of a significant 
mission which begins from an initial orbit of equilibrium and proceeds towards denser layers 
of the atmosphere while limitations due to the aerodynamic heating intervene in the decision of 
the proper course. Attention is also paid to previously adopted physico-mathematical models 
of the gas-surface interactions. 

In short, we will show that an appropriate consideration of the aerodynamic forces and 
moments and of the heat transfer in those regions where they are either neglected or incorrectly 
evaluated can result in a more advanced analysis of the possible performances and stability of 
spacecraft. 

A note before ending this introduction. From the aerodynamic point of view of the load- 
evaluation, response to controls and convective heat transfer, there is still the open question 
of how to manage the density potholes in the sky adequately. These are regions where the 
number of particles per unit volume can change at random of even one order of magnitude 
from time to time. In this respect a better approach to the problem may be found in a stochastic 
simulation of the physical characteristics of the atmosphere [7]. Here we will stay on the much 
more usual deterministic foundations, while keeping in mind how cautious the investigator 
should be when presenting his or her results connected with the atmospheric actions at high 
altitudes. As a further hypothesis we will assume that the low density plasma effects of the 
ionospheric regions can be neglected. 

2. Aero-Thermodynamic Coefficients 

In a recent work a physico-mathematical model was presented which is able to correctly 
predict functional relations for the momentum and energy transfer between a rarefied gas 
stream and a solid surface [5]. The model is based on a boundary layer assumption which is 
adopted for the approximate description of the distribution function f in a Knudsen layer. We 
will not go too deeply into details in this paper and will limit the presentation to a summary 
of the main aspects of the model. 

After expressing the Boltzmann equation in non-dimensional form, the space derivatives 
of f in a direction tangent to the layer are neglected with respect to the normal derivative. 
The resulting boundary layer simplification of the Boltzmann equation can subsequently be 
analytically integrated under some further hypotheses on the molecular collision frequency 
distribution in the layer and upon the law of reflection from the wall. This leads to relations 
of the kind which follows for the area element at an incidence 5 

Cn(5, TW, Knoo) = [Cp~MF(5, TW)]¢l(Knoo, (~) 

Kn ) = (1) 



Dynamics of Aerospace Vehicles 65 

where the expressions in free molecular flow (FMF) of the normal and tangential aerodynamic 
forces and of the heat transfer coefficient are 

enFMF = 2 sin o~(sin ~ + fir/) / 

c~.a~ F = 2 sin ct cos c~ / (2) 

ChFMF = (1 -- f12r/3/2) sinc~ 

and 

chi = Ai + (1 - Ai) exp( -a i  sin c~/Knoo), i = 1, 2, 3 (3) 

where r/ = [(7 - 1)/7] 2, with 7 being the ratio of the specific heats. In the equations for 
~bi, the parameters Ai and al, which depend upon the species of gas, were identified through 
comparisons with the experimental data obtained in DVRL G6ttingen Laboratories [8]. Note 
that the aerodynamic coefficients depend on the aerodynamic local incidence ~5, on the ratio 
rw = Tw/To between the wall temperature and the stagnation temperature of the stream and 

on the Knudsen number, Knoo. Furthermore, fl = fl(rw) = [0.5vw(1 + 3')7 2/(7 - 1)311/2 
The expressions above are the result of a hypersonic approximation in the sense that they 

represent the limit, for the Mach number Moo tending to infinity, of more general relations, 
which can be found in [5], where the generic coefficient is a function of a,  vw, Kn~ and Mo~. 
This hypersonic approximation introduces negligible errors in the applications which will be 
presented, where the Mach number at infinity exceeds 1 8. 

From Equations (1) the lift, drag, moment and total heat transfer coefficients, namely 
CL, CD, CM and CH, can be easily evaluated by integration over all the vehicle surface 
with the exception of the regions in shadow. A procedure similar to the one which we have 
summarized also leads to the expressions of the aero-thermodynamic coefficients in unsteady 
situations. Here we will use the steady aerodynamic derivatives only (in particular the moment 
derivative OCM/Oee) since it can be shown that the unsteady corrections are very small in the 
cases investigated [5]. 

With respect to the results of the Newtonian theory, the hypersonic continuum theory and 
of the theory of free molecular flows, the model described covers more appropriately the range 
of Knudsen numbers which fall in the transition regime, since it assumes a diffuse reflection 
of the particles from the wall. From the experiments and from the theory of transitional flow 
the heat transfer coefficient CH vanishes as Knoo --+ 0. Therefore one knows that the heat 
transfer rate at decreasing altitudes initially increases since the density is increasing more 
rapidly than the decrease of Knoo and then decreases. This puts an altitude limit to the validity 
of the model at least as a means of predicting the heat transfer characteristics. On the other 
hand we observe that if we used the free molecular theory or the Newtonian theory, where 
the particles are specularly reflected from the wall surface, we would arrive at the prediction 
that the heat transfer rate is zero. In addition we notice that our results mismatch to an order 
of magnitude the relation which is shown in [9] for the heat transfer in continuum flow, at an 
altitude of 110 km, where the customary border of a vanishingly dense atmosphere is located. 
But we will also see that the model leads to an evaluation of the aerodynamic coefficients 
which can be extended well down to relatively low altitudes in very good agreement with the 
existing theories for low Kn. 

Here we address the reader to the next section where the aerodynamic characteristics of 
two sample spacecraft will be presented. There one will note, as an example, that the efficiency 
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Table 1. Dimensions and mass 

Length, m 8.61 
Wing span, m 4.65 
Planform area, m 2 26.6 
Mass, kg 8652 
Ix, kg m 2 10184 
I v, kg m 2 45553 
[z, kg m z 48322 

Fig. 1. A proposed personnel launch vehicle (PLV). 

E = C L / C D  changes with Knoo at fixed angle of  attack c~ and r w  in front of the constant 
value in free molecular flow (Kn~  -+ oc). 

All the calculations in this paper were carried out adopting the U.S. Standard Atmosphere 

[lO]. 

3. The Reference Vehicles 

As described, we chose two very different geometric configurations as reference vehicles with 
which to explore a wide range of  possible dynamic behaviours. Figures 1 and 2 show the 
considered geometries and Table 1 provides some further information. The total mass, the 
moments  of  inertia and the reference area are, in both cases, the same in order to demonstrate 
the influence of  the aerodynamic factors. Figure 1 presents a sketch of  a proposed PLV [11] 
and a non-conventional  aircraft shaped as a Nonweiller 's  caret  wing waverider [12, 13] is 

shown in Figure 2. 

Fig. 2. A caret wing waverider (Nonweiller). 
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g ( deg ) 

The curves which give the aerodynamic coefficients, the efficiency and the heat transfer 
coefficient as functions of the angle of attack, of the Knudsen number and of the temperature 
ratio were calculated according to the transition flow model introduced. 

For both spacecraft we assumed a reference length in the Knudsen number evaluation equal 
to the overall length g = 8.61 m. The curve in Figure 3 which represents Knoo versus the 
altitude H,  will then be useful as a quick reference. Also shown are the conventional bounds 
of the flow regimes. 

Figures 4 and 6-9 give the basic coefficients for the vehicle shown in Figure 1. In particular 
Figure 4 shows the variations of the lift coefficient versus the aerodynamic angle of attack for 
two different values of Knoo and for q4~ = 1. From our calculations we note that the zero lift 
direction of the PLV changes of a few tenths of one degree in the entire range of Knoo and 
for 0 _< ~-w _< 1. For the caret wing the changes are even smaller, (see Figure 5). Figure 6 
reports the aerodynamic efficiency which undergoes great variations with Knoo. The moment 
coefficient versus c~ is represented in Figure 7 for two values of Kn~o at TW = 1. Similarly, 
Figure 8 shows the great variations of CH. 

The influence of the temperature ratio can be realized if one considers Figure 9 which 
shows CM and CH in two extreme situations, Tw = 0 and rw  = 1 respectively, in free 
molecular flow (Knoo = 10). Note that for the particular examples which will be dealt with, 
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conditions of practical heating limitations will always involve values of Tw which are very 
small [14]. 

When the caret wing configuration is considered the same general trends can be observed. 
It is important to consider the relatively high values of the coefficient of the moment 

around the centre of gravity and the fact that the moment derivative with respect to a can 
change sign at some oz. This last fact can determine unfavourable stability characteristics 
of the spacecraft, as we will see later. However, the current problem is: Is it possible to 
design practical spacecraft geometries for which the values OCM/Oa are negative in such an 
extended range of incidences so to cover all the possible flight conditions? In this question 
we refer to flight corridors where the Knudsen numbers change from the free molecular to 
the slip flow regimes. The answer is to be found in a still open field of investigation. In this 
respect we think that this problem should be associated with those researches concerning the 
optimization of the shape of the spv.cecraft from the point of view of drag, efficiency and heat 
transfer which are in constant development. 

We can finally compare some of our results with recently published data. Anderson et al. 
[13] used Potter's bridging formulae [15, 16] to evaluate the characteristics of their viscous 
optimized waveriders, and Powell et al. [11] adopted an Aerodynamic Preliminary Analysis 
System (APAS) [17]. Both Potter's formulae and the APAS rely on correlations of experimental 
(wind tunnel and STS) and analytical and numerical (MCDS) data. As such the results of these 
interpolated expressions only give more or less accurate approximations of the relevant global 
aerodynamic and heat transfer characteristics of complex bodies. More accurate results are 
apparently those obtained by similar procedures in the work at the TsAGI (Central Aero- 
Hydrodynamical Institute) in Moscow [18]. 
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These approximations become more and more a matter of discussion as one moves from 
continuum towards the transitional regime. Although the shape of the vehicles examined in 
[11,13] is not the shape of a Nonweiller caret configuration, we recall that in rarefied gas 
flow the most important geometric parameters of waverider spacecraft of moderate thickness 
are the planform and the angle of attack [19]. A very rough explanation of this rule is the 
fact that in rarefied gas dynamics the most effective area, as far as the aerodynamic action is 
concerned, is that of the projection of the whole spacecraft surface normal to the approaching 
stream. In this context the PLV, which is considered here, has a maximum percental thickness 
equal to 0.22. When we compare our data with those in [13] we obtain the following results 
for the maximum efficiency as a function of the altitude Emax : Emax(H): Emax = 1.75 and 
0.37 at H = 80 and 120 kin, respectively, instead of 1.71 and 0.36 at the same values of H 
as reported in [13]. We see that our model is still accurate in evaluating E at relatively low 
altitudes. 

Above the atmospheric border the only solution method in the existing literature which 
would provide satisfactory calculations of the aero-thermodynamic coefficients is that of 
MCDS. However, its application is cumbersome and computer time consuming with respect 
to our model. 

4. Fundamental Equations and Stability Analysis 

In the following we will consider, for the sake of simplicity, motions in the equatorial plane of 
the Earth. The atmosphere rotates rigidly with a spherical Earth. The fundamental governing 
equations are then [4] 

miz = - m ( q  - coE)w -- mgsinO + X + F~ 

m ~  = m ( q - w E ) u  + mgcosO + Z + Fz 

Iy(7 : Maer -[- Mg -]- Mtrim (4) 

0 = q + w  E + ( u c o s O + w s i n O ) / ~  

N = u s i n 0 -  wcos0 

where Maer and Mg are the aerodynamic and gravitational moments respectively, and Mtrim 
is the trim moment which is due to the action of thrusters. The meaning of the other symbols 
is reported in the Nomenclature. 

If we consider as the initial state of the vehicle the one corresponding to a steady circular 
orbit, then the equilibrium equations are, in stability axes, 

F ~ : - D ~  = 0 

m(q~ - wE)u~ - L~ + Fz~ + mg = 0 

q~+co N+ue /9 l~  = 0 (5) 

Mg~ --}- Maere q- Mtrim = 0 

The equilibrium solution is computed, after assuming Fz = 0, by assigning the geocentric 
radius 9% and the angle of attack of the vehicle, and determining q~, u~, Mtrim and Fx~. As 
usual, we used the inverse square law for g and the following relation for the gravitational 
moment [4] 

3 g~ (Ix - Iz)  sin20. 
M~ - 2 91e 
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Finally, the linearization procedure yields the following equations for the state x r = 
(u ~, w r, 0 I, fits, q/) in fixed control conditions 

-~ -- ( PeUeS OCD ) t Ot i~' peueSCD~ u' - % - wE + 2-----m Oa - ge 
?Ib e 

× 1 CD~ 0Kn 

~bt= (qe_wE peue_~SmCL~)u, peueS2m OCL~ w ' O a  

"p~u:SCL A (l 1 0 C L  K n o o ) + 2 g ~ ] g l ,  
2ra CLe ~ ~ fft~J + u~q' 

o , =  
fft~ 9l~ 

~( = - w I + u J  
PeuJS OCM wl ( ge l x -  Iz ) 0t (t I peu~gSCM~ u / +  -- 3 - -  cos 20~ 

-- Iv 2Iy - ~ e  91e I v 

P~u2f'SCM~A ( 1 0 C M  Kn~o) N' 
+ 2/y × 1 CM~ 0Kn 

peu2SCD~A 
2m 

(6) 

where A = (Op/091)~/p~ and the aerodynamic coefficients Co, CD and CM are defined as 
in [4], when taking into account that the reference area S is the total area of the planform of 
the spacecraft. 

When the eigenvalues of the state matrix are sought, the linear stability characteristics of 
the aerospace vehicle can be determined. Like the more or less conventional airplanes, in our 
present case we can distinguish those among the roots of the characteristic equation which can 
be referred to as the short period mode and the phugoid. Furthermore a height mode which 
corresponds to a fifth real root is present. 

As we have already observed, care must be taken when dealing with the results of the 
linearization procedure. This fact can be immediately realized by sheer observation of the 
behaviour of the aerodynamic coefficients (Figures. 4-9) and after considering that the range 
of the angles of attack which may be required along some portions of the flight path can, for 
various reasons, be very large. 

For a discussion of the equilibrium condition on a circular orbit we recall the definition of 
the speed ratio s = (% + ~%Cde)/Uor b where Uor b is the circular orbit velocity. For CL~ = 0 
one has s = 1, for CL~ > 0 the flight is at subcircular speed and s < 1, and for CL~ < 0 the 
flight is at supercircular speed and s > 1. 

It is easy to show that the angle of attack of minimum drag in equilibrium ~opt is given by 
the minimum value of 

c* : 0 /(1 + cL/2 ) (7) 

with # = m/pSgl~. Obviously, to the minimum fuel consumption corresponds Cmi n and 
s < 1, for CL > 0. 

Figure 10 shows the angles of attack of minimum drag and the corresponding efficiencies 
as functions of the altitude for the two reference vehicles. 
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Fig. 10. Angle of attack of minimum fuel consumption and corresponding efficiency versus altitude for rw = 1. 
PLV(left), caret wing configuration (right). 

In Figure 11 the root loci are represented for the PLV at three different angles of attack. 
The first case corresponds to a very small incidence, the second one to Cr~ax and the third case 
to an incidence very close to that for which the aerodynamic derivative OCM/Oc~ changes its 
sign from negative to positive. Note that in all these cases the aerodynamic angle of attack is 
changing with the altitude since the incidence of zero lift changes. 

Similar curves can be obtained for the caret wing configuration, at least as far as the 
qualitative behaviour is concerned. 

Before going into detail we point out that a comparison of our results with those obtained 
by Etkin shows many similarities and a few striking differences. The reason for this lies on 
the choice of an almost conventional plane outlined in [4, 6]. This choice obviously has a 
very great influence on the moments of inertia. Furthermore the polar curve in the previous 
examples follows a hypersonic Newtonian relationship and, most important, the aerodynamic 
moment derivative with respect to the angle of attack, OCM/Ocn is supposed to be constant 
and negative in all circumstances. This last assumption leads to a much more favourable 
although not too realistic conclusions on the stability of the spacecraft. 

When we consider Figure 11 we note that the so called height mode is always a positive 
real root, the value of which increases with the angle of attack. Depending on the sign of 
the perturbation, the spacecraft leaves from its initial orbit and steadily either increases or 
decreases its altitude, apart from the other superimposed modes of this linear approximation. 
But the phugoid is stable in the three cases and is more or less damped, the damping factor 
depending on the incidence and on the altitude. At about 120 km its frequency is practically 
undistinguishable from the orbital frequency in any case. 

The root locus of what we conventionally still call the short period mode is very interesting. 
Such a mode corresponds to a periodic not amplified motion in a finite range of H for small 
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angles of attack ag. In this range its frequency can show two crossovers of the phugoid 
frequency, the altitude at which this happens depending on ag. In particular, where ag is not 
too small, the short period mode is always periodic and not amplified. 

The presence of a cross-over frequency has been observed by Etkin in a very peculiar 
case [4]. Here we note that this is not a general rule. Above and below the limit values of H 
for a short period motion to exist we have a degeneracy of conjugate complex roots which 
yields two real roots, one of which corresponds to an unstable amplified aperiodic motion. 
The absolute values of the amplification and the damping factors are relatively great at lower 
H.  When greater angles of attack are considered the short period mode is always unstable but 
its influence on the trajectory becomes negligible at upper altitudes. 

As we said, analogous results can be obtained for the spacecraft shown in Figure 2. The 
major difference is in the fact that the CM versus a curve presents a range of positive slope 
more extended than in the case of the PLV. 

5. Time Histories 

In the preceding section we went through a linear stability analysis of the orbital equilibrium 
conditions for two extremely different aerodynamic configurations of an aerospace vehicle. We 
already recalled the limitations and the difficulties connected with the linearization procedure. 
Whenever possible, in the presence of these problems, a deeper investigation of the dynamic 
characteristics of the system should at least be associated with the computation of the time 
histories which follow significant perturbations of representative initial states. 
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Fig. 12. Time history of the PLV, rw = 1, a t  Olg(CLmax), He = 130 km, Aw = 0.1 m s -l. 

For this reason we show, in Figures 12-14, the time histories of our two spacecraft after 
their initial orbital motions were perturbed. In both cases a variation of the vertical speed 
component of A w = 0.1 ms-  ] from the zero equilibrium value determines the changes of the 
main state variables which are represented over a time span of a few orbit periods, 

Figure 12 shows that the linear approach to the stability analysis is still acceptable for the 
PLV in its subcircular flight at 130 km of altitude. As we said, the angle of attack, which in 
this case is kept equal to ag (CLm,x), corresponds to an aerodynamic incidence changing with 
the variations of altitude during the perturbed motion. In contrast with the usual behaviour 
of aircraft in the continuous regime, flying at CLm,x is possible since the viscous separation 
and stall are not present in rarefied gas dynamics. In this last situation one only faces the 
separation related to the existence of shadowed regions which are always present for bodies 
of finite thickness. 

When the spectral, fast Fourier transform (FFT) analysis is carried out of, say, variable q, 
then the bottom of Figure 12 gives the results in the frequency domain of the transform [Q ]. The 
two peaks are centred around the values of the phugoid and the short period modes as obtained 
in the preceding section. At the altitudes considered the lower frequency is comparable with 
the frequency of the inertial orbital motion, ~orb = 1.1 × 10 - 4  s - 1 .  

In the example of Figure 12 the time history develops in a range of aerodynamic incidences 
to which negative values of the slope of the CM curves as a function of a and Kn~ correspond. 
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In any case, note that the unstable height mode leads to a slow descent of the trajectory, since 
the initial thrust value is kept unchanged. 

If we now consider the problem of a caret wing spacecraft, we assume initial equilibrium 
conditions such that the value of the derivative OCM/Oc~ is close to zero. In particular, we 
take Hc = 120 km, c~g~ = - 1 0  °, and the same w speed variation as before. The perturbation 
determines the time history which is presented in Figure 13. In spite of the extremely low value 
of the initial perturbation the unstable equilibrium leads to results which could not be obtained 
by the linear stability analysis. The fact that this linear theory is not acceptable anymore is 
confirmed by observing the spectrum of [Q]. In the figures, for the sake of clear representation, 
the diagram of the w speed component is not reported since it practically follows the trend of 
the pitch angle variable. 

It is meaningful to consider Figure 14 where the time histories of a significant state variable 
of the two spacecraft are shown in the phase plane. The results for the caret wing configuration 
correspond to the initial situation of Figure 13 as those for the PLV with the only exception 
that, in the second case, the initial incidence is - 2  ° . Again, this last value was assumed in 
order to have a value of OCM/Oe~ at t = 0 close to zero. Both the trajectories in the phase 
plane are encircling two limit positions which slowly change with altitude and correspond to 
a vanishing value of CM. 
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6. Manoeuvre of an AOTV 

The time histories of the spacecraft in Section 5 were numerically obtained by realizing 
a simulation computer's code for solving the system of motion equations. The system is 
augmented by the equations which represent the physico-mathematical model for the gas- 
surface interactions. We will now use the same code for the solution of a problem which 
represents the second part of the research on the influence and correct evaluation of the 
atmospheric effects at very high altitudes on the spacecraft. Before proceeding any further a 
short foreword is necessary about the selected reference manoeuvre to be examined. 

The synergistic plane change of an AOTV has received ever increasing attention in recent 
times for applications to vehicles around the Earth and other planets of the Sun. We will 
not concentrate too much on the many aspects of this complicated problem [20]. We simply 
enumerate the phases through which the vehicle changes the plane of its orbit. 

As a first step the AOTV deorbits via a thrust impulse and through a parabolic or elliptic 
trajectory arrives at a new orbit at the edge of the atmosphere. The vehicle departs from this 
situation and through an aeroassisted descent mode and an aerocruise changes its heading. 
The final phases will be an aeroassisted ascent mode and the reorbit. 

Until very recently [9] the studies relative to manoeuvres similar to the ones which we are 
describing have been essentially based on a somewhat arbitrary definition of a limit altitude 
above which the aerothermodynamic effects are practically negligible. As we have already 
seen, although this position may in principle be accepted when dealing with the determination 
of the aerodynamic forces, this no longer applies when stability problems are taken into 
account since even vanishingly small aerodynamic moment perturbations can be followed 
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by sizeable effects. Similar considerations can result concerning the importance of a correct 
evaluation of the heat transfer. From this evaluation, as we said, apart from better calculations 
of the aerodynamic coefficients, we obtain the heating history of the spacecraft with its effects 
on the structures and the cooling system. 

We recall that in the AOTV manoeuvre, as in many other cases, strict limitations apply to 
fuel consumption, load factor, flight control capability and aerodynamic heating. What we will 
deal with in the sequel is related to the very sensitive point of the energy exchange between 
vehicle and stream from the point of view of the aerodynamic heating of the body. As is well 
known, and we already saw while presenting the model for the gas-solid interaction, in the 
transition regime even the aerodynamic coefficients depend on the temperature ratio "rw. 

To the authors' knowledge, all the previous calculations of the heating limits in this and 
similar problems, like that of the atmospheric re-entry, were carried out by taking into account 
the value of the maximum heat transfer rate for an assigned reference value of the maximum 
wall temperature. In this regard the Lees formula was frequently used [21] and, more recently, 
expressions such as those adopted in [9, 15, 16] have become popular. In our case we will 
use the analytic expressions of the heat transfer coefficient which allow for the calculation of 
both the local and the global heat transfer rates. For simplicity we will not consider the full 
problem of the energy balance of a spacecraft where gains in the form of convection heat are 
dissipated by losses through a radiation process. Furthermore we will suppose that the wall 
is kept at the usual reference maximum temperature of 1.667 K during the entire flight under 
consideration [22]. 

Going back then to our problem of a synergistic plane change we will consider the first 
phase, from the deorbit down to the conventional limit of the atmosphere, through layers in 
which our transitional flow model is adequate. As a usual reference condition we will assume 
for the initial deorbit speed variation Au  the same value which should be necessary in vacuum 
for a Hohmann transfer ellipse from the HEO (high earth orbit) to the LEO (low earth orbit). 
With this in mind we assume an altitude at HEO Hrmo = 200 km and Au/uHEO = --0.0038. 
These two values for the Hohmann transfer would lead to//LZO = 105 km. 

We will not report all the results relative to the various aspects of the particular manoeuvre 
considered here but will focus our attention instead on the heat transfer. Figures 15 and 16 
show the mean heat transfer rate (h) as a function of the altitude after imposing different 
conditions on the angles of attack, and after assuming the standard maximum temperature 
limitation. For each case represented the descent is performed in such a way as to have 
minimum consumption, minimum heat transfer rate and maximum aerodynamic efficiency. 
An immediate comparison of the results for the PLV in Figure 15 with those for the caret wing 
in Figure 16 confirms that the heat transfer at the caret surfaces must be lower than in the case 
of the PLV in order not to exceed the Tw limitation, in the range of altitudes considered. The 
higher efficiency of the caret wing is paid in terms of a greater heat transfer. Moreover, in each 
case, a descent at maximum efficiency presents greater heating rates as far as the minimum 
fuel consumption is concerned. 

We also show in Figure 17 the distribution of the local heat transfer coefficient at an altitude 
of 130 km and at an incidence of minimum total heat transfer for the PLV. For completion we 
report that the value of chm,x for the two spacecraft at the same altitude H -- 130 km, when 
each is at the incidence of minimum total heating, is equal to 0.45. 
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Fig. 17. Local heat transfer coefficient distribution around the PLV during an aeroassisted manoeuvre, at minimum 
andH = 130km. 

7. Conclusion 

This paper has been devoted to an evaluation of the aero-thermodynamic effects on the flight 
of a lifting spacecraft at very high altitudes. It was shown that, even above the usually assumed 
limit of the atmosphere: (i) the aerodynamic moments play a definite role in the stability of 
the vehicle; (ii) the heat transfer rates can be sizeable and can therefore significantly influence 
the time history of aeroassisted manoeuvres. The analytical expression of the gas-surface 
interaction model in the transitional regime in connection with a numerical solver of the 
motion equations proved to be very effective in simulating the high altitude trajectories of a 
lifting vehicle. 
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