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Abstract

Steady laminar free convection from a pair of vertical arrays of equally-spaced, horizontal isothermal cylinders set in free air, is stud-
ied numerically. A specifically developed computer-code based on the SIMPLE-C algorithm is used for the solution of the mass, momen-
tum and energy transfer governing equations. Simulations are performed for pairs of tube-arrays consisting of 1–4 circular cylinders, for
center-to-center horizontal and vertical spacings from 1.4 to 24 cylinder-diameters, and from 2 to 12 cylinder-diameters, respectively, and
for values of the Rayleigh number based on the cylinder-diameter in the range between 102 and 104. It is found that any cylinder may
exhibit either enhanced or reduced Nusselt numbers with respect to the case of single tube-array, depending on its location in the array,
on the geometry of the array, as well as on the Rayleigh number. Heat transfer dimensionless correlating equations are also proposed.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Free convection heat transfer from arrays of horizontal
cylinders set in free space has a considerable relevance to
several engineering applications, as, e.g., heat exchangers,
storage devices, and electronic components. In fact, in
many situations, heat transfer designers prefer to avoid
the use of mechanical fans or other active equipment for
the fluid circulation, due to power consumption, excessive
noise, or reliability concerns. Of course, a full understand-
ing of how the buoyant flow fields induced by the individ-
ual elements of the array interact, is crucial to evaluate the
limits of free convection, which must always be kept in
mind.

Despite its practical interest, the investigations con-
ducted on this subject are not so many as might be
expected. In addition, most of the papers in this field are
substantially oriented toward the study of the thermal per-

formance of the basic configuration represented by the sin-
gle vertical array of horizontal cylinders [1–7]. A detailed
review of these studies is reported in a recent paper by
Corcione [8], who performed a numerical investigation of
laminar free convection from flat vertical arrays of 2–6
equally-spaced, horizontal isothermal cylinders, for cen-
ter-to-center separation distances from 2 up to more than
50 cylinder-diameters, and for values of the Rayleigh num-
ber based on the cylinder-diameter in the range between
5 � 102 and 5 � 105, with the basic aim to derive heat
transfer dimensionless correlating equations for any indi-
vidual cylinder in the array, and for the whole tube-array.

The first well-documented work on free convection from
multiple tube-arrays set in open space was made by Till-
man [9], who carried out an experimental study on both
square and staggered arrays of electrically-heated cylinders,
1.27 cm in diameter and 10.16 cm long, with same center-
to-center horizontal and vertical spacings in the range
between 1.43 cm and 3.81 cm, for average cylinder-to-
ambient temperature differences in the range between
69 �C and 292 �C. The square arrays consisted of 16
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cylinders, whilst 14 cylinders were used for the staggered
arrays. The tube spacing was found to have a stronger
influence on the heat transfer rate than the arrangement
of the array, i.e., square or staggered.

Numerical simulations were successively performed by
Farouk and Guceri [10], who conducted a study of laminar
and turbulent free convection from single and double, both
in-line and staggered, horizontal rows of isothermal cylin-
ders. For a single row of cylinders, solutions were obtained
for the Rayleigh number range of 103–105 whilst the cen-
ter-to-center horizontal spacing was varied from 2 to 6
cylinder-diameters; moreover, for the closest-spacing con-
figuration, predictions were extended up to Ra = 109. An
optimum spacing for maximum heat transfer rate was
found to decrease with increasing the Rayleigh number.
For the double rows of cylinders, both the horizontal and
the vertical spacings were kept equal to 4 cylinder-diame-
ters, and the solutions were obtained for Rayleigh numbers
in the range between 103 and 105. For the in-line arrange-
ment, the mean Nusselt number for the bottom cylinders
was found to be about the same as that for the single row
of cylinders, whilst the mean Nusselt number for the top
cylinders was found to be higher. In contrast, for the
staggered arrangement, the mean Nusselt number for the
bottom cylinders was found to have increased compared

to the case of a single row of cylinders, whilst the mean
Nusselt number for the top cylinders was found to decrease.

Leaving aside the studies related to pin-fin dissipators,
which have a bearing on this subject only by a purely
qualitative viewpoint, no other significant study expressly
dedicated to free convection from unconfined multiple
tube-arrays was uncovered by the author in the open
literature.

In this framework, the aim of the present paper is to
carry out an in-depth investigation on both the nature
and the effects of the free convective interactions which
occur between a pair of flat vertical arrays of horizontal
isothermal cylinders set parallel to each other in free space.
The study is performed numerically under the assumption
of steady laminar flow, for pairs of tube-arrays consisting
of 1–4 circular cylinders, for center-to-center horizontal
and vertical spacings from 1.4 to 24 cylinder-diameters,
and from 2 to 12 cylinder-diameters, respectively, and for
values of the Rayleigh number based on the cylinder-diam-
eter in the range between 102 and 104.

2. Mathematical formulation

Two vertical tube-arrays, each consisting of N equally-
spaced, horizontal circular cylinders of diameter D, are

Nomenclature

D diameter of the cylinders
g gravity vector
g gravitational acceleration
Gr Grashof number based on the cylinder-diame-

ter = gb(tw � r1)D3/m2

H overall height of the array
k thermal conductivity of the fluid
N number of cylinders in any tube-array
Ni ordinal number of the ith cylinder in the single

tube-array
Nu average Nusselt number of the double tube-

array
Nu0 average Nusselt number of the single tube-array
Nui average Nusselt number of the ith cylinder in the

array
(Nui)0 average Nusselt number of the ith cylinder in the

single tube-array
Nus average Nusselt number of the single cylinder
Nui(h) local Nusselt number of the ith cylinder in the

array
p dimensionless pressure
Pr Prandtl number = m/a
Q heat transfer rate
q heat flux
r dimensionless radial coordinate
Ra Rayleigh number based on the cylinder-diame-

ter = gb(tw � t1)D3/am

Sh horizontal center-to-center separation distance
Sv vertical center-to-center separation distance
T dimensionless temperature
t temperature
U dimensionless vertical or radial velocity compo-

nent
V dimensionless velocity vector
V dimensionless horizontal or tangential velocity

component
X dimensionless vertical coordinate
Y dimensionless horizontal coordinate

Greek symbols

a thermal diffusivity of the fluid
b coefficient of volumetric thermal expansion of

the fluid
m kinematic viscosity of the fluid
h dimensionless polar coordinate
q density of the fluid

Subscripts

opt optimum value
w referred to the cylinder surface
1 referred to the bottom cylinder in the array
1 referred to the undisturbed fluid
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considered, as sketched in Fig. 1. Both the horizontal and
the vertical center-to-center separation distances Sh and
Sv are assigned. Free convection heat transfer occurs
between the cylinder surfaces, kept at uniform temperature
tw, and the surrounding undisturbed fluid reservoir,
assumed at uniform temperature t1.

The buoyancy-induced flow is considered to be steady
and laminar. The cylinders are assumed to be much longer
than their diameter, which implies that the end effects can
reasonably be neglected and the temperature and velocity
fields can be considered two-dimensional. The fluid is
assumed to be incompressible, with constant physical prop-
erties and negligible viscous dissipation and pressure work.
The buoyancy effects on momentum transfer are taken into
account through the Boussinesq approximation.

Once the above assumptions are employed in the conser-
vation equations of mass, momentum, and energy, the
following set of dimensionless governing equations is
obtained:

r � V ¼ 0 ð1Þ

ðV � rÞV ¼ �rp þr2V� Ra
Pr

T
g

g
ð2Þ

ðV � rÞT ¼ 1

Pr
r2T ð3Þ

where V is the velocity vector having dimensionless veloc-
ity components U and V normalized with m/D; T is the
dimensionless temperature excess over the uniform tem-
perature of the surrounding undisturbed fluid normalized
with the temperature difference (tw � t1); p is the dimen-
sionless pressure normalized with q1m2/D2; g is the gravity
vector; Ra = gb(tw � t1)D3/ma is the Rayleigh number
based on the cylinder-diameter; and Pr = m/a is the Prandtl
number.

The related boundary conditions are T = 1 and V = 0 at
the cylinder surfaces, and T = 0 and V = 0 at very large
distance from both tube-arrays.

3. Discretization grid system

The finite-difference solution of the governing equations
(1)–(3) with the proper boundary conditions requires that a
discretization grid system is established across the whole
integration domain.

Since the flow is symmetric about the vertical plane
located midway the tube-arrays, the two-dimensional inte-
gration domain is taken as a rectangle which includes only
one of the two tube-arrays, i.e., the right tube-array, and
extends from the vertical symmetry midline up to a
pseudo-boundary line set sufficiently far away from the
array. According to the geometry of the system, a cylindri-
cal polar grid is employed in the proximity of each cylinder,
whilst a Cartesian grid is used to fill the remainder of the
integration domain, as sketched in the left panel of Fig. 2,
where the coordinate systems adopted are also represented.
The r and h coordinates of the polar systems are measured
from the center of the cylinders, and anti-clockwise from
downwards, respectively. In the polar systems, U is the
radial velocity component, and V is the tangential velocity
component. As concerns the Cartesian system, whose origin
is taken at the center of the bottom cylinder, the X-axis is
vertical and pointing upwards in the direction opposite to
the gravity vector, whereas the Y-axis is horizontal. In this
system, U is the vertical velocity component, and V is the
horizontal velocity component. According to the discretiza-
tion scheme originally developed by Launder and Massey
[11], the cylindrical polar grids and the Cartesian grid,
which are entirely independent of one another, overlap with
no attempt of node-matching. Their connection is provided
by a row of false nodes, one for each neighboring grid,
located beyond their intersection, as depicted in the middle
panel of Fig. 2.

4. Boundary conditions

The boundary conditions required for the numerical
solution of the governing equations (1)–(3) have to be
specified at each of the boundary lines which enclose the
two-dimensional integration domain defined above. As
regards the outer pseudo-boundary line, once this is placed
sufficiently far away from the cylinders, the fluid may
reasonably be assumed to enter or leave the integration
flow-domain in the direction normal to the boundary line.
The entering fluid is assumed at the ambient temperature.
For the leaving fluid, whose temperature is not known a
priori, a zero temperature gradient normal to the boundary
line is assumed, thus implying that the local heat transfer is
dominated by convection rather than by conduction, pro-
vided that the outflow velocity is sufficiently large.

The following boundary conditions are then applied:

(a) at the left symmetry line A–D

oU
oY

¼ 0; V ¼ 0;
oT
oY

¼ 0 ð4Þ
Fig. 1. Sketch of the double tube-array.
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(b) at the cylinder surfaces

U ¼ 0; V ¼ 0; T ¼ 1 ð5Þ
(c) at the bottom boundary line A–B

oU
oX

¼ 0; V ¼ 0; T ¼ 0 if U P 0 or

oT
oX

¼ 0 if U < 0 ð6Þ

(d) at the right boundary line B–C

U ¼ 0;
oV
oY

¼ 0; T ¼ 0 if V < 0 or

oT
oY

¼ 0 if V P 0 ð7Þ

(e) at the top boundary line C–D

oU
oX

¼ 0; V ¼ 0; T ¼ 0 if U < 0 or

oT
oX

¼ 0 if U P 0 ð8Þ

Moreover, as far as the intersections between polar and
Cartesian grids are concerned, the values of the dependent
variables at the false nodes are obtained by a linear inter-
polation of the values at the four surrounding real nodes.
With reference to the symbols denoted in the right panels
of Fig. 2, the value of the general dependent variable /
at any false Cartesian or polar node is calculated through
the following equations, respectively:

/P ¼ /1X EY S þ /2XWY S þ /3XWY N þ /4X EY N

ðXW þ X EÞðY S þ Y NÞ ð9Þ

/P ¼ /1rEhS þ /2rWhS þ /3rWhN þ /4rEhN
ðrW þ rEÞðhS þ hNÞ ð10Þ

5. Solution procedure

The set of governing equations (1)–(3) with the bound-
ary conditions (4)–(10) is solved through a control-volume

formulation of the finite-difference method. The pressure–
velocity coupling is handled by the SIMPLE-C algorithm
by Van Doormaal and Raithby [12], which is essentially a
more implicit variant of the SIMPLE algorithm by Patan-
kar and Spalding [13]. The advection fluxes across the sur-
faces of the control volumes are evaluated by the QUICK
discretization scheme by Leonard [14]. Details on the SIM-
PLE procedure may be found in Patankar [15]. Studies on
the comparative performance of different discretization
schemes for the evaluation of the interface fluxes, as well
as studies on enhanced variants of the SIMPLE algorithm,
are widely available and well referenced in the open litera-
ture (see, e.g., [16]).

Fine uniform mesh-spacings are used for the discretiza-
tion of both the polar grid regions and the Cartesian grid
region. Starting from specified first-approximation distri-
butions of the dependent variables across the integration
domain, the discretized governing equations are solved iter-
atively through a line-by-line application of the Thomas
algorithm. Under-relaxation is used to ensure the conver-
gence of the iterative procedure. The solution is considered
to be fully converged when the maximum absolute values
of both the mass source and the percent changes of the
dependent variables at any grid-node from iteration to iter-
ation are smaller than prescribed values, i.e., 10�4 and
10�6, respectively.

After convergence is attained, the local and average
Nusselt numbers Nui(h) and Nui of any ith cylinder in the
array are calculated

NuiðhÞ ¼ qD
kðtw � t1Þ ¼

oT
or

����
r¼0:5

ð11Þ

Nui ¼ Q
pkðtw � t1Þ ¼ � 1

p

Z p

0

oT
or

����
r¼0:5

dh ð12Þ

where q is the heat flux and Q is the heat transfer rate. The
temperature gradients at the cylinder surfaces are evaluated
by assuming a second-order temperature profile among
each wall-node and the next two fluid-nodes along the
radial direction. The integrals are approximated by the

Fig. 2. Sketch of the coordinate systems and of the discretization grid system.
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trapezoid rule. The average Nusselt number of the whole
array Nu is then obtained as the arithmetic mean value
of the average Nusselt numbers Nui of the individual cylin-
ders in the array:

Nu ¼ 1

N

XN
i¼1

Nui ð13Þ

Tests on the dependence of the results obtained on the
mesh-spacing of both the polar and the Cartesian discreti-
zation grids, as well as on the thickness of the polar
grid regions, and on the extent of the whole computa-
tional domain, have been performed for a wide variety of
geometrical configurations analysed, and of Rayleigh num-
bers investigated. In particular, the optimal grid-size
values, and the optimal positions of the polar/Cartesian
interfaces and of the outer pseudo-boundary line, i.e., those
used for computations, which represent a good compro-
mise between solution accuracy and computational time
required, are assumed as those over which further grid
refinements or interface and/or outer boundary-line dis-
placements do not produce noticeable modifications in
both the heat transfer rates and the predicted flow field.
Namely, when, for each cylinder in the array, the percent

changes of the local and average Nusselt numbers Nui(h)
and Nui defined above, as well as the percent change of
the maximum value of the tangential velocity component
at h = 90� are smaller than prescribed accuracy values,
i.e., 1% and 2%, respectively. Typically: (a) the number
of nodal points (r � h) of the polar discretization grids lie
in the range between 45 � 72 and 135 � 90, (b) the thick-
ness of the polar grid regions varies between one-fifth
and five times the cylinder-diameter, and (c) the extent of
the whole integration flow-domain ranges between 4 and
20 times the cylinder-diameter, depending on the Rayleigh
number, as well as on the number of cylinders in the array,
and on the horizontal and vertical center-to-center separa-
tion distances.

As far as the validation of both the numerical code and
the discretization grid scheme is concerned, the local and
average Nusselt numbers obtained for a single cylinder at
several Rayleigh numbers have been compared with the
corresponding benchmark numerical results by Saitoh
et al. [17], as shown in Tables 1 and 2, respectively, where
other data available in the literature are also reported,
i.e., the numerical results by Wang et al. [18], and Kuehn
and Goldstein [19], as well as the interpolations of the
experimental data by Clemes et al. [20], and the data

Table 1
Comparison of the present solutions for the local Nusselt number of a single cylinder with the benchmark solutions of Saitoh et al. and with the results of
Wang et al. and Kuehn and Goldstein

Ra Nus(h)

h = 0� 30� 60� 90� 120� 150� 180�

103 Present 3.789 3.755 3.640 3.376 2.841 1.958 1.210
Saitoh et al. [17] 3.813 3.772 3.640 3.374 2.866 1.975 1.218
Wang et al. [18] 3.860 3.820 3.700 3.450 2.930 1.980 1.200
Kuehn and Goldstein [19] 3.890 3.850 3.720 3.450 2.930 2.010 1.220

104 Present 5.986 5.931 5.756 5.406 4.716 3.293 1.532
Saitoh et al. [17] 5.995 5.935 5.750 5.410 4.764 3.308 1.534
Wang et al. [18] 6.030 5.980 5.800 5.560 4.870 3.320 1.500
Kuehn and Goldstein [19] 6.240 6.190 6.010 5.640 4.820 3.140 1.460

105 Present 9.694 9.595 9.297 8.749 7.871 5.848 1.989
Saitoh et al. [17] 9.675 9.577 9.278 8.765 7.946 5.891 1.987
Wang et al. [18] 9.800 9.690 9.480 8.900 8.000 5.800 1.940
Kuehn and Goldstein [19] 10.150 10.030 9.650 9.020 7.910 5.290 1.720

Table 2
Comparison of the present solutions for the average Nusselt number of a single cylinder with the benchmark solutions of Saitoh et al. and other data
available in the literature

Nus

Ra = 102 5 � 102 103 5 � 103 104 5 � 104 105

Present 1.961 2.634 3.023 4.127 4.819 6.807 7.886
Saitoh et al. num. data [17] – – 3.024 – 4.826 – 7.898
Wang et al. num. data [18] – – 3.060 – 4.860 – 7.970
Kuehn and Goldstein num. data [19] 2.050 – 3.090 – 4.940 – 8.000
Clemes et al. exp. data [20] 2.070 2.720 3.040 4.190 4.850 6.870 8.030
Morgan eqn. [21] 2.020 2.730 3.110 4.220 4.800 7.180 8.540
Churchill and Chu eqn. [22] 1.599 2.213 2.563 3.655 4.278 6.219 7.327
Raithby and Hollands eqn. [23] 2.100 2.760 3.140 4.300 4.970 7.090 8.330
Kuehn and Goldstein eqn. [24] 2.110 2.770 3.140 4.280 4.920 6.920 8.050
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which can be derived from the correlating equations by
Morgan [21], Churchill and Chu [22], Raithby and Hol-
lands [23], and Kuehn and Goldstein [24]. Moreover, in
order to test the reliability of the composite polar/Carte-
sian grid system at close spacing between the cylinders,
the results obtained for a two-cylinder vertical array have
been compared with the experimental data by Tokura
et al. [5] for Gr = 1.2 � 105 and Sh/D in the range
between 1.1 and 2, and those by Sparrow and Nietham-
mer [4] for Sh/D = 2 and Ra in the range between
2 � 104 and 105, as shown in Tables 3 and 4, respectively.
Additional details on the code validation are available in
Ref. [8].

6. Results and discussion

Numerical simulations are performed for Pr = 0.71,
which corresponds to air, and different values of (a) the
Rayleigh number Ra in the range between 102 and 104,
(b) the number N of cylinders of each tube-array in the
range between 1 and 4, (c) the horizontal center-to-center
dimensionless separation distance Sh/D in the range
between 1.4 and 24, and (d) the vertical center-to-center
dimensionless separation distance Sv/D in the range
between 2 and 12.

The results for pairs of individual cylinders, i.e., for
N = 1, and those for pairs of cylinder-arrays, i.e., for
N > 1, will be discussed in two separate sections. The heat
transfer results will be presented mainly in relative terms,
i.e., in terms of the ratio Nu/Nus, for the configurations
with N = 1, and of the ratios Nui/(Nui)0 and Nu/Nu0, for
the configurations with N > 1, so as to highlight in what

measure the convective interactions between the parallel
tube-arrays either enhance or degrade the heat transfer
rates from any individual cylinder and from the double
tube-array as a whole, in comparison with those typical
for the single tube-array.

In this context, before proceeding with the discussion of
the results, the heat transfer dimensionless correlating
equations previously derived in Ref. [8] for the single cylin-
der, for any individual cylinder in a single vertical tube-
array, and for a single vertical tube-array as a whole, are
reported for the reader’s convenience.

6.1. Résumé of heat transfer dimensionless correlating

equations

The average Nusselt number Nus of the single cylinder
for Rayleigh numbers in the range 102 6 Ra 6 104 is
expressed as a function of Ra by the following simple alge-
braic correlation:

Nus ¼ 0:769Ra0:198 ð14Þ

with percent standard deviation of error Esd = 0.41%, and
range of error E from �0.92% to +0.71%.

The average Nusselt number (Nui)0 of any individual ith
cylinder in a single vertical tube-array is correlated to the
Rayleigh number Ra, to the cylinder location relative to
the center of the bottom cylinder (x/D), and to the ordinal
number Ni of the cylinder, by the following two distinct
transcendental equations:

ðNuiÞ0 ¼ Ra0:25f3:364 ln½ðx=DÞ0:4=N 0:9
i � þ 0:508g;

2 6 Ni 6 6; 2ðNi � 1Þ < x=D 6 8þ Ni;

5� 102 6 Ra 6 5� 105 ð15Þ

with percent standard deviation of error Esd = 3.19%, and
range of error E from �5.07% to +7.97%;

ðNuiÞ0 ¼ Ra0:25f0:587 ln½ðx=DÞ0:33=N 0:5
i � þ 0:350g;

2 6 Ni 6 6; 8þ Ni < x=D 6 ð109=RaÞ0:333;
5� 102 6 Ra 6 5� 105 ð16Þ

with percent standard deviation of error Esd = 3.27%, and
range of error E from �5.93% to +7.96%.

The average Nusselt number Nu0 of the whole single
vertical tube-array is correlated to the Rayleigh number
Ra, to the cylinder-spacing Sv/D, and to the number N of
cylinders in the array, by the following two distinct tran-
scendental equations:

Nu0 ¼ Ra0:235f0:292 ln½ðSv=DÞ0:4 � N�0:2� þ 0:447g;
2 6 N 6 6; Sv=D 6 10� LogðRaÞ;
5� 102 6 Ra 6 5� 105 ð17Þ

Table 3
Comparison of the present solutions for the average Nusselt number of
any individual cylinder in a 2-cylinder vertical array with the experimental
results of Tokura et al. at Gr = 1.2 � 105

2-Cylinder vertical array at
Gr = 1.2 � 105

Nu/Nus

Sv/D = 1.1 1.3 1.5 2

Bottom cylinder Present 0.908 0.965 0.996 1.008
Tokura et al. [5] 0.890 0.940 1.000 1.010

Top cylinder Present 0.614 0.661 0.726 0.853
Tokura et al. [5] 0.610 0.680 0.740 0.870

Whole array Present 0.761 0.813 0.861 0.930
Tokura et al. [5] 0.750 0.810 0.870 0.940

Table 4
Comparison of the present solutions for the average Nusselt number of the
top cylinder in a 2-cylinder vertical array with the experimental results of
Sparrow and Niethammer

Top cylinder of a 2-cylinder
vertical array

Nu/Nu (Sv/D = 2)

Ra = 2 � 104 6 � 104 105

Present 0.810 0.844 0.856
Sparrow and Niethammer [4] 0.820 0.850 0.860
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with percent standard deviation of error Esd = 2.25%, and
range of error E from �4.79% to +5.27%;

Nu0 ¼ Ra0:235f0:277 ln½ðSv=DÞ0:4 � N 0:2� þ 0:335g;
2 6 N 6 6; Sv=D > 10� LogðRaÞ;
5� 102 6 Ra 6 5� 105 ð18Þ

with percent standard deviation of error Esd = 2.72%, and
range of error E from �6.40% to +6.09%.

It is worth noticing that, according to the results obtained
from a set of numerical simulations recently performed for
single vertical tube-arrays at Rayleigh numbers 102,
2 � 102, and 3.5 � 102, the range of validity of Eqs. (15)–
(18) may be extended to 102, i.e., the range
5 � 102 6 Ra 6 5 � 105 may be replaced by 102 6 Ra 6
5 � 105, with same range of percent errors indicated above.

6.2. Heat transfer from a pair of individual cylinders set

side by side (N = 1)

The heat transfer performance of a pair of individual
cylinders set in free air side by side (N = 1) is pointed out
in Fig. 3, where the distributions of the ratio Nu/Nus vs.
the horizontal center-to-center dimensionless separation
distance Sh/D, are reported for Rayleigh numbers 102,
103, and 104.

As expected, for large cylinder-spacings the average
Nusselt number of any cylinder approaches that for a sin-
gle cylinder. As Sh/D decreases, Nu/Nus increases up to a
point, and this is due to the increased flow rate drawn
between the cylinders by the ‘‘chimney effect”, which
enhances the local heat transfer. The Sh/D value corre-
sponding to the peak of Nu/Nus is defined as the optimum
cylinder spacing (Sh/D)opt. It may be seen that the impact
of the ‘‘chimney effect” is higher at higher values of the
Rayleigh number, and the value of (Sh/D)opt decreases with
increasing Ra, which is due to the corresponding decrease
of the boundary layer thickness. As Sh/D is further

decreased below (Sh/D)opt, the joining of the two boundary
layers leads to a heat transfer decrease, which becomes very
sharp at close spacing. In fact, as the two cylinders are lit-
erally embraced by a unique boundary layer, the amount of
heat transferred to the quasi-motionless fluid located
between them reduces drastically. In addition, the flow
configuration downstream of the cylinders no longer
resembles two plumes arising from individual cylinders,
but a single plume originated by a single source. This
reflects the widening of the region of the rear stagnation
point for both cylinders, which implies a decrease in the
amount of heat exchanged at their upper surface. A
detailed close-up for Sh/D in the range between 1.4 and 3
is presented in Fig. 4, where the numerical data obtained
for Ra = 5 � 102 and 5 � 103 are also reported.

Local results are presented in Fig. 5, where equispaced
isotherm lines are plotted for the right cylinder of a pair
at, e.g., Ra = 103 and Sh/D = 1.4, 2 (at which the maximum
ofNu takes place), and 6. The corresponding polar distribu-
tions of the local Nusselt number Nu(h) are reported in
Fig. 6, where the polar distribution of Nus(h) for the single
cylinder at sameRayleigh number is also shown for compar-
ison. It may be observed that, owing to the mutual interac-
tions occurring between the cylinders, the upper and lower
stagnation points of the right (or the left) cylinder rotate
counterclockwise (or clockwise) from the vertical plane
passing through the axis of the cylinder by an angle hr which
increases as the cylinder spacing decreases. Moreover, both
the enhancement and the degradation of the amount of heat
locally transferred to the fluid flowing through the cylinders,
which occur respectively at Sh/D = 2, due to the ‘‘chimney
effect”, and at Sh/D = 1.4, due to the merging of the bound-
ary layers, may clearly be noticed.

All the values obtained for the optimum cylinder spac-
ing (Sh/D)opt may be correlated to the Rayleigh number
Ra by the following linear equation, as shown in Fig. 7:

ðSh=DÞopt ¼ 2:6� 0:2LogðRaÞ for 102 6 Ra 6 104 ð19Þ

Fig. 3. Distributions of the ratio Nu/Nus vs. Sh/D for N = 1 and different
values of Ra.

Fig. 4. Close-up of the distributions of Nu/Nus vs. Sh/D for N = 1 and
different values of Ra.

M. Corcione / International Journal of Heat and Mass Transfer 50 (2007) 1061–1074 1067



with percent standard deviation of error Esd = 0.33%, and
range of error E from �0.27% to +0.31%.

As far as the heat transfer rates are concerned, the
numerical results obtained for the average Nusselt number
Nu may be correlated to the Rayleigh number Ra, and to
the cylinder spacing Sh/D, by the following two distinct
transcendental equations, as shown in Figs. 8 and 9:

Nu ¼ Ra0:235½0:236 lnðSh=DÞ þ 0:47�;
1:8� 0:1LogðRaÞ 6 Sh=D 6 ðSh=DÞopt; 102 6 Ra 6 104

ð20Þ
with percent standard deviation of error Esd = 2.85%, and
range of error E from �4.06% to +5.15%;

Fig. 5. Isotherm contour plots for the right cylinder of a pair, for Ra = 103 and different values of Sh/D.

Fig. 6. Polar distributions of Nu(h) for the right cylinder of a pair, for Ra = 103 and different values of Sh/D.

Fig. 7. Distribution of (Sh/D)opt vs. Ra for N = 1.
Fig. 8. Comparison between Eq. (20) and the numerical results.
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Nu ¼ Ra0:198f0:046 exp½�0:112ðSh=DÞ� þ 0:769g;
Sh=D P ðSh=DÞopt; 102 6 Ra 6 104 ð21Þ

with percent standard deviation of error Esd = 0.68%, and
range of error E from �1.68% to +1.00%.

6.3. Heat transfer from a pair of vertical tube-arrays set

parallel to each other (N > 1)

The geometry effects on the average heat transfer rate
from the ith of N cylinders are pointed out in Figs. 10–
14, where the distributions of the ratio Nui/(Nui)0 vs. the
horizontal dimensionless spacing Sh/D are reported for,
e.g., a pair of 3-cylinder tube-arrays (N = 3), Ra = 103,
and vertical dimensionless spacings Sv/D = 2, 3, 4, 8, and
12, respectively.

As expected, for very large horizontal spacings the aver-
age Nusselt number of any ith cylinder of the double tube-
array approaches that of the corresponding ith cylinder of a

Fig. 10. Distributions of the ratio Nui/(Nui)0 vs. Sh/D, for N = 3,
Ra = 103, and Sv/D = 2.

Fig. 11. Distributions of the ratio Nui/(Nui)0 vs. Sh/D, for N = 3,
Ra = 103, and Sv/D = 3.

Fig. 12. Distributions of the ratio Nui/(Nui)0 vs. Sh/D, for N = 3,
Ra = 103, and Sv/D = 4.

Fig. 9. Comparison between Eq. (21) and the numerical results.

Fig. 13. Distributions of the ratio Nui/(Nui)0 vs. Sh/D, for N = 3,
Ra = 103, and Sv/D = 8.
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single tube-array, whatever is the vertical spacing between
the cylinders. As Sh/D decreases, the distribution of
Nui/(Nui)0 for the bottom cylinder is the same type as that
found for a pair of individual cylinders set side by side, i.e.,
a slight increase up to a point, attributable to the ‘‘chimney
effect”, and a successive sharp decrease, due to the merging
of the boundary layers. This same general trend is typical
also for the downstream cylinders, but only at small vertical
spacings. In fact, at large vertical spacings, Nui/(Nui)0
decreases from unity with decreasing Sh/D, up to reaching
a plateau of relative minimum. As the horizontal spacing is
further decreased, the general trend discussed above is
restored, i.e., Nui/(Nui)0 increases up to a maximum, and
then decreases steeply at close horizontal spacing. It is
interesting to note that at the largest values of Sv/D inves-
tigated, the maximum for Nui/(Nui)0 may remain below
unity, which means that the relative heat transfer perfor-
mance undergoes a degradation at any value of Sh/D.

In order to explain the effects of Sv/D on Nui(Nui)0 for
the downstream cylinders, it is necessary to recall briefly
the main heat transfer features of any individual cylinder
in a single tube-array. First of all, the heat transfer rate
at the bottom cylinder is substantially identical to that
for a single cylinder, at least for Sv/DP 2. Secondly, the
heat transfer rate at any downstream cylinder may either
degrade or enhance with respect to that for a single cylin-
der, depending on the vertical spacing between the cylin-
ders. In particular, at close cylinder-spacings, degradation
is generally the rule, whilst, at large separation distances,
enhancement usually predominates. This is a strict conse-
quence of the two opposite effects which originate from
the impingement of the warm plume spawned by the pre-
ceding cylinder. In fact, the buoyant flow from the
upstream cylinder acts as a forced convection field in which
the downstream cylinder is embedded. On the other hand,
such buoyant flow causes a decrease in the temperature dif-
ference between the surface of the downstream cylinder

and the adjacent fluid. The first effect, which tends to
increase the heat transfer rate at the downstream cylinder,
prevails at large spacings. The second effect, which tends to
decrease the heat transfer rate at the downstream cylinder,
is of major importance at close spacings. A much more
detailed discussion may be found in Ref. [8].

When a pair of vertical tube-arrays is considered, the
‘‘chimney effect” which arises between them drives an
increased airflow rate between the two arrays, vertically
through the horizontal spacing between the bottom cylin-
ders, and horizontally through the cylinder-to-cylinder
vertical gaps. As a consequence of such horizontal air pen-
etration, the warm plume spawned by any cylinder rotates
toward the inside of the double tube-array, and no longer
impinges upon the cylinder located downstream in the
array. The increase in airflow rate tends to enhance the
amount of heat exchanged by any ith cylinder with respect
to that exchanged by the corresponding ith cylinder of a
single array, whatever is the vertical spacing. On the other
hand, the plume rotation toward the inside of the tube bun-
dle may tend to either enhance or degrade the heat transfer
performance of any downstream cylinder, depending on
the vertical spacing. Enhancement is typical of small verti-
cal spacings, at which any ith downstream cylinder of a sin-
gle array is affected unfavourably by the impingement of
the plume generated by the preceding cylinder. Degrada-
tion predominates at large vertical spacings, at which any
ith downstream cylinder of a single array is affected posi-
tively by the impingement of the plume spawned by the
upstream cylinder.

Thus, at close vertical spacings, the positive effects pro-
duced by the increased airflow rate, and by the plume rota-
tion, sum up. In contrast, as Sv/D increases, the positive
effect produced by the increased airflow rate is progres-
sively counterbalanced by the negative effect caused by
the plume rotation, up to being definitely exceeded at the
largest vertical spacings investigated. However, since at
close horizontal spacing the plume rotation toward the
inside of the tube bundle decreases considerably with
decreasing Sh/D, the simultaneously renewed effect of the
increased airflow rate gives rise to a more or less pro-
nounced peak for Nui/(Nui)0 also for array-configurations
with large values of Sv/D.

The effects of the Rayleigh number on the average
heat transfer rate from, e.g., the second cylinder (i = 2) of
a 3-cylinder configuration (N = 3), are shown in Fig. 15,
where the distributions of the ratio Nu2/(Nu2)0 vs. the Ray-
leigh number Ra are depicted for Sh/D = 3, and vertical
spacings Sv/D = 2, 3, 4, 8, and 12.

The same type of distributions represented in Figs. 10–
14 may be observed, according to the Sv/D value, which
means that the effect of the decrease of the Rayleigh num-
ber on the relative heat transfer performance is the same as
the effect of the decrease of the dimensionless horizontal
spacing. In fact, by the convective interactions viewpoint,
what essentially matters is the value of the ratio Sh/d
between the center-to-center horizontal spacing and the

Fig. 14. Distributions of the ratio Nui/(Nui)0 vs. Sh/D, for N = 3,
Ra = 103, and Sv/D = 12.
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thickness of the boundary layer, as already discussed in the
previous section of the paper for N = 1. In this context, as
Ra is decreased at constant Sh/D, the dimensionless thick-
ness of the boundary layer d/D increases, and then the ratio
Sh/d decreases, which is exactly what happens if Sh/D is
decreased at constant Ra.

Finally, the effects of the number N of cylinders on the
amount of heat transferred at the ith cylinder surface are
shown in Fig. 16, where the distributions of the ratio
Nui/Nu1, and of the ratio Nui/(Nui)0 along double tube-
arrays, each consisting of two to four cylinders, are reported
for Ra = 103, Sh/D = 2 and 3, and Sv/D = 2 and 3.

It may be noticed that when at least one of the two cyl-
inder-spacings Sh, and Sv is larger than 2 cylinder-diame-
ters, the average heat transfer rate at the ith cylinder is
practically independent of the number of downstream cyl-
inders, which permits to assume the problem as a one-way

coordinate problem. In contrast, for configurations with
Sh/D = 2 and Sv/D = 2, a slight increase in the amount
of heat transferred at the ith cylinder surface occurs when-
ever i = N, i.e., in all those cases the ith cylinder is the top
cylinder of the array. In fact, at close horizontal and verti-
cal spacings, the fresh air inflow from the outside is quite
small due to the pronounced resistance to the flow through
the gaps between the cylinders. As a consequence, the
region of the rear stagnation point of the top cylinder of
each tube-array is smaller than the corresponding region
of any other downstream cylinder, thus implying that a
larger amount of heat is transferred at its upper surface.
Moreover, it is worth observing that, for any ith down-
stream cylinder, the Nui/Nu1 value enhances, and the
Nui/(Nui)0 value degrades, as Sv/D is increased at constant
Sh/D.

The effects of the tube bundle geometry, of the Rayleigh
number, and of the number of cylinders on the average
heat transfer performance of the whole cylinder-array are
now illustrated.

The distributions of the ratio Nu/Nu0 vs. the center-to-
center horizontal dimensionless spacing Sh/D for Ra = 103

and N = 3, vs. the Rayleigh number Ra for Sh/D = 3 and
N = 3, and vs. the number N of cylinders for Sh/D = 3
and Ra = 103, are reported in Figs. 17–19, respectively,
for different values of the vertical center-to-center dimen-
sionless spacings Sv/D in the range between 2 and 12. Obvi-
ously, as both Nu and Nu0 are simple arithmetic means of
the average Nusselt numbers of the individual cylinders in
the array, the same types of functional dependencies found
for the relative heat transfer performance of any individual

Fig. 15. Distributions of the ratio Nu2/(Nu2)0 vs. Ra for the second
cylinder of a 3-cylinder double array with Sh/D = 3, for different values of
Sv/D.

Fig. 16. Distributions of the ratio Nui/Nu1 and Nui/(Nui)0 through tube-
arrays of 2–4 cylinders, for Ra = 103 and different pairs of values of Sh/D
and Sv/D.

Fig. 17. Distributions of the ratio Nu/Nu0 vs. Sh/D, for N = 3, Ra = 103,
and different values of Sv/D.
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cylinder in the array, represented and discussed in Figs. 10–
16, can be observed.

As far as the absolute thermal performance is con-
cerned, the distributions of Nu vs. Sh/D, Ra, and N, for
different values of Sv/D, are plotted in Figs. 20–22, respec-
tively. As expected, the average Nusselt number of the
whole tube-array increases with increasing the Rayleigh
number. In addition, as long as the vertical spacing is kept
relatively small, Nu increases with Sh/D, up to reaching a
peak at an optimum horizontal spacing (Sh/D)opt which
increases with increasing Sv/D. Finally, as long as the hor-
izontal spacing is kept relatively small, Nu either decreases
or increases as N increases, according as the vertical spac-
ing is small or large, respectively.

With specific reference to relatively compact configura-
tions, which are undoubtedly the most attractive by the
engineering design viewpoint, the numerical results

Fig. 18. Distributions of the ratio Nu/Nu0 vs. Ra, for N = 3, Sh/D, and
different values of Sv/D.

Fig. 19. Distributions of the ratio Nu/Nu0 vs. N for Ra = 103, Sh/D = 3,
and different values of Sv/D.

Fig. 20. Distributions of Nu vs. Sh/D, for N = 3, Ra = 103, and different
values of Sv/D.

Fig. 21. Distributions of Nu vs. Ra for N = 3, Sv/D = 3, and different
values of Sh/D.

Fig. 22. Distributions of Nu vs. N for Ra = 103, Sh/D = 3, and different
values of Sv/D.
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obtained for the average Nusselt number of the double
tube-array Nu may be correlated to the Rayleigh number
Ra, to the cylinder-spacings Sh/D and Sv/D, and to the
number N of cylinders in each vertical tube-array of the
pair, by the following algebraic relation, as shown in
Fig. 23:

Nu ¼ 0:43Ra0:235ðSh=DÞ0:14ðSv=DÞ0:2N�0:1;

2 6 N 6 4; 2:4� 0:2LogðRaÞ 6 Sh=D < 5;

2 6 Sv=D < 5; 102 6 Ra 6 104 ð22Þ
with percent standard deviation of error Esd = 2.12%, and
range of error E from �5.32% to +5.67%.

7. Conclusions

Steady laminar free convection from a pair of vertical
arrays of equally-spaced, horizontal isothermal cylinders
set in free air, has been studied numerically through a spe-
cifically developed computer-code based on the SIMPLE-C
algorithm. Simulations have been performed for pairs of
tube-arrays of 1–4 circular cylinders, for center-to-center
horizontal and vertical separation distances from 1.4 to
24 cylinder-diameters, and from 2 to 12 cylinder-diameters,
respectively, and for values of the Rayleigh number based
on the cylinder-diameter in the range between 102 and
104. Heat transfer dimensionless correlating equations with
rather acceptable standard deviations and absolute value of
the maximum relative error, have been proposed.

The main results obtained for pairs of individual cylin-
ders set side by side are:

(a) As Sh/D is decreased from very large values at which
the average Nusselt number Nu of any cylinder is the
same as that for the single cylinder Nus, a ‘‘chimney
effect” arises between the cylinders. This produces a
non negligible increase of Nu/Nus up to a peak, which
occurs at an optimum horizontal spacing (Sh/D)opt.

As Sh/D is further decreased below the optimum
value, a dramatic degradation of the heat transfer
performance takes place owing to the merging of
the two boundary layers.

(b) The degree of enhancement of the heat transfer
performance Nu/Nus increases with increasing the
Rayleigh number.

(c) The (Sh/D)opt value decreases with increasing the
Rayleigh number.

The main results obtained for pairs of vertical tube-
arrays set parallel to each other may be summarized as
follows:

(a) The distributions of Nui/(Nui)0 vs. Sh/D for the bot-
tom cylinders of the double tube-array, as well as
for any downstream cylinder at the smaller vertical
spacings, is the same type as that found for a pair
of individual cylinders set side by side.

(b) In contrast, at the largest vertical spacings, Nui/(Nui)0
decreases from unity with decreasing Sh/D, up to
reaching a plateau of relative minimum. As Sh/D is
further decreased, a peak for Nui/(Nui)0 is detected.
However, in many cases, such maximum remains
below unity.

(c) Same types of distributions described above are
detected for Nui/(Nui)0 vs. Ra, again depending on
the vertical spacing between the cylinders.

(d) The value of Nui/(Nui)0 either increases or decreases
with elevation in the array, according as the vertical
spacing is small or large.

(e) When at least one of the two cylinder-spacings Sh and
Sv, is larger than 2 cylinder-diameters, the heat trans-
fer rate at the ith cylinder is practically independent
of the number of downstream cylinders.

(f) The amount of heat exchanged by the whole double
tube-array increases with increasing Ra; in addition,
for relatively compact geometries, i.e., for Sh/D < 5
and Sv/D < 5, Nu increases as both Sh/D and Sv/D
increase, whilst decreasing with increasing N.
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