
2022 TheoLogica

An International Journal for Philosophy of Religion and Philosophical Theology

Published Online First: September 05, 2022

DOI: https://doi.org/10.14428/thl.v6i2.65223

1

Computational Theology:

A Metaobject-Based Implementation of Models

of Generalised Trinitarian Logic

TIM LETHEN

University of Helsinki

tim.lethen@gmx.de

Abstract: This paper analyses an amazingly close analogy between models

of generalised trinitarian logics on the one hand side and class hierarchies in

the field of object-oriented programming on the other, thus linking

philosophy of religion and computer science. In order to bring out this

analogy as clear and precise as possible, we utilise a metaobject protocol for

the actual implementation of the theological models. These formal

implementations lead to the insight that the analogy can be pushed even

further, and we lay bare and analyse the close relation between the

theological notion of subordination of divine persons and precedence in

structures of multiple inheritance. The implementation of theoretical

godheads finally leads to new metaobject programming techniques, thus

underlining the cross-fertilisation between theology and computer science.

Keywords: Trinitarian logic, Metaobject protocol, Subordination,

Precedence, Common Lisp, CLOS

1. Introduction

It probably will not happen too often that theology and computer science benefit

from each other in some kind of cross-fertilisation. In the direction ’from right to

left,’ logicians and computer scientists have largely concentrated on computer

assisted analyses of ontological arguments for the existence of God. Some earlier

examples of this ongoing work can be seen in Oppenheimer & Zalta (2011),

Benzmüller & Woltzenlogel Paleo (2014), and Rushby (2018). These examples

strongly rely on logical formalisations of the ontological argument and, thus, can

be regarded as a computational branch of what has been called “logical philosophy

of religion” (cf. Silvester et al., 2020b). Another ’right to left’ example can be found

https://doi.org/10.14428/thl.v6i2.65223
mailto:tim.lethen@gmx.de

TIM LETHEN

2

in the AI-based implementations of dynamic models simulating a Talmudic theory

of mixtures, see David et al. (2020) and Lethen (2021). And finally, many computer-

assisted analyses of biblical texts also fall into the category of a computational

theology.1

In the opposite direction, one searches in vain for examples, and it might indeed

be hard to imagine how computer science may benefit from theological

considerations.2 This paper now tries to fill this gap by analysing a close

correspondence between set-theoretical models of generalised trinitarian logics on

the one hand side, and object-oriented class hierarchies on the other. Inspired by

the strong analogy between (divine) persons and (object-oriented) classes, as well as

between godheads (taken as a collection of divine persons) and classes (regarded as a

collection of their attribute descriptions), we utilise a metaobject protocol in order

to underline the similarity between these theological and computational structures.

Metaobject protocols have been designed in order to enable the programmer to

customise a programming language and adjust it to her personal needs and

preferences. The just mentioned analogies now lead to the insight that the

metaobject protocols may also serve as a framework which facilitates an elegant

and lean implementation of ‘constellations’ which mirror an object-oriented

language design and which comprise a functionality which closely resembles

object-oriented mechanisms. In this respect, the analogy investigated in this paper

leads to new programming techniques which are based on the use of the

metaobject protocol.

One of the just mentioned object-oriented mechanisms is the computation of

precedence lists of classes which may be part of a complex multiple-inheritance

structure. This situation pushes the analogy even further, relating the phenomenon

of object-oriented precedence to the theological question of subordination. The

implementation of divine structures in a programming language thus enables us,

and at the same time forces us, to specify the formal meaning of a divine

precedence. As this example shows, programming languages—as well as the field

of algorithmics in general—should be added the spectrum of formal languages

which can be fruitfully used in analytic philosophy and theology.

In this paper, we proceed as follows. Section 2 introduces the system of

trinitarian logic 𝛩3, which has been defined in Lethen (2022). The section also

1 An informative example of such an analysis can be seen in van Peusen & Talstra (2007).
2 As a remarkable exception, one can consider the ongoing Talmudic Logic Project, see Gabbay et

al. (2019) and the literature mentioned therein.

COMPUTATIONAL THEOLOGY

3

discusses possible generalisations along with their set-theoretical models. Section 3

then describes the concept of the metaobject and briefly introduces some of the

main features of the COMMON LISP metaobject protocol. Section 4 uses these

features in order to implement divine persons as instances of a metaclass person,

thus bringing out the analogy between persons and object-oriented classes. This

analogy is taken up again in Section 5, where the concept of the preceding list is

carried over from classes to persons. As we shall see, topological sorting will play a

central role in this connection. Before we conclude, the final Section 6 shows how

to define godheads as classes, again heavily relying on mechanisms which are

predefined in the COMMON LISP metaobject protocol.

2. Models of Generalised Trinitarian Logic

The “trinitarian” logic 𝛩3 has been introduced in Lethen (2022) and comprises the

logical interpretation of seven Catholic de fide dogmas concerning Trinity. Note the

inclusion of Gödel’s modality □𝐷 which is interpreted as ‘It is a dogma, that . . .’3

Following the order given in Ott (1957), the dogmas are:

DOGMA (D1): In God there are Three Persons, the Father, the Son and the Holy Ghost.

Each of the Three Persons possesses the one (numerical) Divine Essence. (De fide.)4
□ (𝐷 person(𝛼) ∧ person(𝛽) ∧ person(𝛾) ∧ 𝛼 ≠ 𝛽 ∧ 𝛼 ≠ 𝛾 ∧ 𝛽 ≠ 𝛾

∧ ∀𝑥. (person(𝑥) ⊃ (𝑥 = 𝛼 ∨ 𝑥 = 𝛽 ∨ 𝑥 = 𝛾)))

DOGMA (D2): In God there are two Internal Divine Processions. (De fide.)

□ ∃𝐷 𝑃, 𝑄. (Proc(𝑃) ∧ Proc(𝑄) ∧ 𝑃 ≠ 𝑄 ∧ ∀𝑅. (Proc(𝑅) ⊃ (𝑅 = 𝑃 ∨ 𝑅 = 𝑄)))

DOGMA (D3): The Divine Persons, not the Divine Nature, are the subject of the Internal

Divine processions (in the active and in the passive sense). (De fide.)

□ ∀𝐷 𝑃. ∀𝑥, 𝑦. [(Proc(𝑃) ∧ 𝑃(𝑥, 𝑦)) ⊃ (person(𝑥) ∧ person(𝑦))]

3 For the purpose of our present analysis, we could readily exclude the modal operator from all

the dogmas. If it is included, the considered set-theoretical models have to be assumed for every

accessible world.
4 As we are mainly interested in the Divine Persons and their relationships, we only translate the

first part of this dogma.

TIM LETHEN

4

DOGMA (D4): The Second Divine Person proceeds from the First Divine Person by

Generation, and therefore is related to Him as Son to a Father. (De fide.)5

□ [gen(𝛼, 𝛽) ∧ Proc(gen) ∧ FS(gen)]𝐷

DOGMA (D5): The Holy Ghost proceeds from the Father and from the Son as from a Single

Principle through a Single Spiration. (De fide.)

□ [spir(𝛼, 𝛾) ∧ spir(𝛽, 𝛾) ∧ Proc(spir)]𝐷

DOGMA (D6): The Holy Ghost does not proceed through generation but through spiration.

(De fide.)
□ [¬∃𝑥.gen(𝑥, 𝛾) ∧ ∃𝑥.spir(𝑥, 𝛾)]𝐷

DOGMA (D7): In God all is one except for the opposition of relations. (De fide.)

□ ∀𝐷 𝑥, 𝑦. [(person(𝑥) ∧ person(𝑦))

⊃ (¬∃𝑃. [Proc(𝑃) ∧ (𝑃(𝑥, 𝑦) ∨ 𝑃(𝑦, 𝑥))] ⊃ 𝑥 = 𝑦)]

As Kurt Gödel repeatedly stressed, studies in theoretical theology should now

allow for the alteration of the dogmatic (i.e. axiomatic) basis according to

individual preferences and views. These alterations then immediately lead to a

great variety of what we call generalised trinitarian logics. Alterations of 𝛩3 may

include:

• The exclusion of entire dogmas or parts of dogmas. As an example, the

exclusion of (D7) would enable two different persons to coexist without

proceeding from each other.

• The alteration of a dogma. Altering (D1), for example, would allow for

models with more or less than three persons.

• The addition of a dogma. Through the inclusion of additional dogmas,

specific stipulations can be imposed on a theological model.

Figure 1 shows four different set-theoretical models of (generalised) trinitarian

logics. Whereas 𝑎, 𝑏, and 𝑐 represent the Father, the Son, and the Holy Spirit, solid

5 The second-order predicate FS (father-son) testifies that a first-order binary predicate follows

the rule expressing that a child can have at most one father. It is defined as ∀𝑃. [FS(𝑃) ≡

∀𝑥, 𝑦, 𝑧. ((𝑃(𝑥, 𝑧) ∧ 𝑃(𝑦, 𝑧)) ⊃ 𝑥 = 𝑦)].

COMPUTATIONAL THEOLOGY

5

and dashed arrows indicate generation and spiration, respectively. Model (a)

constitutes the traditional Roman Catholic view according to which the Holy Spirit

was spirated by the Father and the Son. It thus is a model of the unmodified logic

𝛩3. Excluding the middle conjunct of dogma (D5), spir(𝛽, 𝛾), from 𝛩3 leads us to

model (b) in which the Son is spirated by the Holy Spirit. It is this very conjunct

which represents the famous filioque clause, the inclusion of which is said to have

lead to the Great Schism of 1054 between the (Latin) Roman Catholic Church and

the (Greek) Eastern Orthodox Church. The exclusion of dogma (D7), known as

Anselm of Canterbury’s basic trinitarian law, allows or the coexistence of persons

without being connected by some kind of procession. Model (c) follows exactly this

path. Finally, model (d) depictures the situation, in which the Holy Spirit has been

spirated by the Father through the Son.

Of course, one may wonder how far one is allowed to deviate from the original

system 𝛩3 and still call it a system of generalised trinitarian logic.

Figure 1: Four models of different generalised trinitarian logics. a, b, and c represent the

Father, the Son, and the Holy Spirit. Solid and dashed arrows indicate generation and

spiration, respectively.

And in fact, the only constraint which will be central for our present purpose, is the

existence of a finite number of divine persons, paired with the possibility to

connect these persons by a predefined finite number of processions.6 As an

example, Figure 2 depicts a theoretical godhead comprising six divine persons, a

situation which already hints at the necessity to have a closer look at the concept of

precedence and subordination.

6 In this connection, the reader may want to reconsider the roles of the single dogmas of 𝛩3.

Whereas (D1) and (D2) fix the number of persons and processions, respectively, (D3) makes sure

that a procession is a relation on the set of persons. Dogmas (D4)–(D7) then describe the more

detailed facts about these relations.

(a) (b) (c) (d)

(a) (b) (c) (d)

TIM LETHEN

6

Figure 2: A model of generalised trinitarian logic comprising six divine persons

3. Metaobject Protocols

In this section, we briefly introduce the COMMON LISP metaobject protocol (MOP),

which has been developed in Kiczales et al. (1991). In order to be able to do so, we

first give a very short introduction to the language CLOS, which is an object-

oriented extension7 of the programming language COMMON LISP. Detailed and

comprehensive introductions to CLOS can, for example, be found in DeMichiel

(1993) and Keene (1989).8

As most other object-oriented languages, CLOS enables the programmer to

define classes as the main building blocks of their programs. A class may be

regarded as an abstract description of objects which in turn serve as the actors of

the program. The objects are often called instances of the class, while the class also

serves as the type of its instances. As an example, we define a class city and store

an instance of this class in the variable city1.9

(defclass city ()

 ((name :initarg :name

 :reader name)

 (population :initarg :population

 :initform 0

7 Although CLOS can be seen as an extension to the COMMON LISP language, it is part of the

COMMON LISP ANSI standard X3.226. It was also included in Steele (1990), which is often regarded

as the COMMON LISP de facto standard.
8 COMMON LISP is the language of choice for our investigations as it incorporates a very flexible,

powerful, and well documented metaobject protocol (cf. Kiczales et al. 1991), which allows for the

adjustment of many of the underlying object-oriented mechanisms.
9 Here and in the following code snippets, the symbol >>> symbolises interactive user code. The

immediately following line always represents the system’s answer.

COMPUTATIONAL THEOLOGY

7

 :accessor population)))

 >>> (setf city1 (make-instance 'city :name "Paris"

 :population 2161000))

#<CITY 200E939F>

As one can see, the objects of the class city comprise two attributes,10 namely name

and population. The according slot definitions use the keyword :initarg to

introduce another keyword (:name, :population) to be used with the constructor

make-instance. Other possible keywords are :initform, which introduces a default

initial value for the slot, and :reader and :accessor, which define methods for

read-only and read/write access to the object’s slots, respectively. Access to the

slots can be demonstrated by the following user code.

>>> (name city1)

"Paris"

Next to the classes, methods form the second most important building block in

CLOS. As we have just seen, the definition of a class triggers the existence of certain

access methods. But, of course, the user may define her own methods as well, as

the following example demonstrates.

(defmethod inc-population ((c city) n)

 (incf (population c) n))

 >>> (inc-population city1 500)

 2161500

Note that the method inc-population is applied to the two parameters 𝑐 and 𝑛, the

first one being accompanied by the type city. Thus, the method is strictly tied to

the class city and only works for instances of this very class.

Finally, we turn to the concept of inheritance, which is demonstrated by the

following definition of the class capital. As a capital always is a city, it inherits the

attributes name and population from the class city and adds a further slot country.

The following example also demonstrates that, because capital is now a subtype

10 In COMMON LISP, attributes are usually called slots.

TIM LETHEN

8

of city, methods defined for objects of the class city may also work on objects of

the class capital.

(defclass capital (city)

 ((country :initarg :country

 :reader country)))

 >>> (setf city2 (make-instance 'capital :name "Helsinki"

 :country "Finland"

 :population 648000))

 #<CAPITAL 200F8F5F>

 >>> (inc-population city2 1)

 648001

We conclude our short introduction to the language CLOS and proceed with a

brief explanation of the CLOS metaobject protocol, which was first published in

Kiczales et al. (1991), and which carries the concept of object-orientation to the

meta-level. One of the central ideas has to be seen in the slogan ‘everything is an

object.’ Following this slogan, the class of an object has to be an object itself. But

this in turn means that there has to exist a metaclass, i.e. a class the instances of

which are again classes. The following code demonstrates this phenomenon.

>>> (class-of city2)

#<STANDARD-CLASS CAPITAL 21E3500B>

>>> (class-of (class-of city2))

#<STANDARD-CLASS STANDARD-CLASS 20B0ABF3>

As we can see, capital is the class of the object city2 and standard-class is the

(meta-)class of the class capital, now regarded as an ordinary object.

This example hints at the very fact that the language CLOS has itself been

designed as an object-oriented system, which has again been written in CLOS. Thus,

methods of the metaclass standard-class are now responsible for the behaviour of

user-level classes like city and capital: How their instances are constructed and

stored, how their methods are invoked, and how inheritance is organised. As an

example, we demonstrate the use of the method class-precedence-list which is

COMPUTATIONAL THEOLOGY

9

defined for instances (i.e. user-level classes) of the metaclass standard-class. Note

the inclusion of the two predefined classes standard-object and t in every

precedence list.11

>>> (clos:class-precedence-list (find-class 'capital))

(#<STANDARD-CLASS CAPITAL 21E3500B> #<STANDARD-CLASS CITY 200DBBBF>

#<STANDARD-CLASS STANDARD-OBJECT 2012575B> #<BUILT-IN-CLASS T 202E6C53>)

The design of the language CLOS as an object-oriented system now leads to the

enormously powerful possibility to adjust the language to one’s personal needs

and preferences through the definition of new metaclasses which inherit all their

standard behaviour from, say, the metaclass standard-class, while certain aspects

can be specialised. In their introduction to Kiczales et al. (1991), the authors write:

The metaobject protocol approach, in contrast, is based on the idea that one can and

should “open languages up,” allowing users to adjust the design and implementation

to suit their particular needs. In other words, users are encouraged to participate in

the language design process.

Comprehensive introductions to the CLOS MOP and its design can be found in

Kiczales et al. (1991) and Paepke (1993b).

4. Defining Persons

Being able to “adjust the design and implementation” of the language CLOS has

always been regarded as the main aim of the metaobject protocol MOP. Regarding

the motivation for the invention of the MOP, Gregor Kiczales writes in the article

“Metaobject Protocols – Why We Want Them and What else They Can Do”:

The second [desire] was to satisfy what seemed to be a large number of user

demands, including: compatibility with previous languages, performance

comparable to (or better than) previous implementations and extensibility to allow

further experimentation with object-oriented concepts [...]. The goal in developing the

11 The prefix clos: shows that most of the MOP-specific methods are not part of the COMMON

LISP language standard but are separated into a special package. The prefix may be implementation

dependent. The function find-class maps a symbol to the class named by that symbol.

TIM LETHEN

10

MOP was to allow a simple language to be extensible enough that all these demands

could be met. (Kiczales et al. 1993)

Concerning the question “why we want them and what else they can do,” it has

to be stressed though, that the possibility of shifting and relocating the language

within a design space has, up to now, always been regarded as the only goal of the

MOP. In this paper, we now propose a completely new approach to—and use of—

the concept of the MOP, which has been inspired by the close analogy between

object-oriented classes on the one hand side and divine persons on the other. In a

first step, this analogy concentrates on the fact that the structure built by classes

and inheritance between classes strongly resembles the structure built by the

persons and the divine processions, i.e. generation and spiration, enhenced by the

close relationship between the terms ‘inheritance’ and ‘procession.’ We therefore

start with the definition of a metaclass person, which ensures that its instances

have access to the lists of persons they have been generated or spirated by.

(defclass person (standard-class)

 ((generated-by :initarg :generated-by

 :accessor generated-by)

 (spirated-by :initarg :spirated-by

 :accessor spirated-by))

 (:documentation "The PERSON metaclass."))

In order to define a new person, one could now simply invoke the macro defclass,

which would have to explicitly include the information that this newly defined

person is an instance of the metaclass person. However, we prefer to introduce

some ‘syntactic suggar’ for this very purpose and define the new macro defperson

as follows:

(defmacro defperson (name gens spirs &optional doc)

 "Defines a person with NAME,

 given two lists of persons it was generated/spirated by.”

 `(defclass ,name ,(append gens spirs)

 ()

 (:metaclass person)

 (:generated-by ,@gens)

 (:spirated-by ,@spirs)

 (:documentation ,doc)))

The example definition

COMPUTATIONAL THEOLOGY

11

>>> (defperson d (a b) (c) "test")

would thus be expanded into the following class definition, which is then

immediately evaluated:

(defclass d (a b c)

 nil

 (:metaclass person)

 (:generated-by a b)

 (:spirated-by c)

 (:documentation "test"))

Here, the empty list nil indicates that no slots are defined. Note how the persons

𝑎, 𝑏, and 𝑐 have now also been interpreted (and inserted in the right place) as

‘superpersons’ (i.e. superclasses) of the person 𝑑. The order of these will play a

central roll in the following Section.

We are now ready to define the three Divine Persons as given in Figure 1 (a).

>>> (defperson son (father) ())

#<PERSON SON 200D7177>

>>> (defperson holy-spirit () (father son))

#<PERSON HOLY-SPIRIT 200FD117>

>>> (defperson father () ())

#<PERSON FATHER 200D72F7>

Let us keep in mind that each single person now is an instance of the metaclass

person, which in turn is a subclass of the metaclass standard-class. Therefore,

every defined divine person is a class. In order to underline that we are not

allowed to make an instance of a person, one could now add the following

CLOS code, which specialises the method make-instance for parameters of type

person:

(defmethod make-instance ((pers person) &rest initargs)

 (error "It is not possible to make an instance of ~a." pers))

Already now, it becomes apparent that the definition of persons as classes leads

to the possibility to make use of large parts of the predefined

TIM LETHEN

12

CLOS MOP machinery. As an example, we mention the existence of so-called

‘forward referenced’ classes, which are automatically created whenever a class

definition names a superclass which has not been defined yet. In our example, the

person son has been defined using the (still undefined) superclass father, which

thus becomes an instance of the built-in metaclass forward-referenced-class.

Later, when father is defined as a proper class, its metaclass is internally changed

from forward-referenced-class to person without the user having to bother.12

We can now also make use of some of the built-in MOP methods, notably those

which deal with the structure of the user-defined persons. The following code

snippet shows such an example. Here, the method class-direct-subclasses

returns a list of the persons generated and spirated by the Father.

>>> (clos:class-direct-subclasses (find-class 'father))

(#<PERSON HOLY-SPIRIT 200FD117> #<PERSON SON 200D7177>)

5. Subordination, Precedence, and Topological Sorting

Concerning the equality of the Divine Persons and the resulting question of

subordination, Effingham (2018) writes:

[The filioque clause] threatens the equality of the Divine Persons. This is clearly a

problem if we think that divine physical relations are causal, since one entity being

caused by another prima facie indicates some sort of inferiority. (This argument was

advanced by Gregory of Nazianus, as well as later theologians like Meijering.) It’s

also a specific example of a broader worry that applies also to the Son: If the Father

spirates or generates another Divine Person then it seems prima facie plausible that

they must be subordinate to the Father.

Is has to be mentioned, though, that the theological issue of subordination has also

been associated with other types of relationship between the Divine Persons than

causation, “some of these types of subordination [...] affirmed by conciliar theology

whilst other are not” (Mullins 2020). Adopting the taxonomy given in Edwards

(2020), subordination is

(i) ontological when it ascribes to the Son a substance, nature or essence which

is inferior to the Father’s,

12 Note that it is possible in CLOS to change the class of an already existing object.

COMPUTATIONAL THEOLOGY

13

(ii) aetiological when it asserts the Son’s posteriority in the order of causation,

(iii) axiological when it degrades him in rank or status without denying his

equality in nature,

(iv) economic when it dates the subservience of the Son to the Father from some

point after his origin, most commonly from his voluntary assumption of

human nature.

And whereas Edwards’ type-definitions only mention the relationship between the

Father and the Son, all of these types can, without hesitation, be transferred to the

relationship (and subordination) between other Divine Persons, even in

generalised theological models.

However, these types of subordination are not able to answer some very

fundamental questions concerning an order relation amongst divine persons in

general, namely:

• How can we determine an order amongst divine persons in a model of

generalised trinitarian logic?

• Which role do the different kinds of procession, i.e. generation and

spiration, play when determining or computing this order?

As an example, let us consider the model given in Figure 2. One would probably

readily agree that person 𝑑 is inferior to both persons 𝑎 and 𝑏. But is 𝑑 also inferior

(in any of the senses of types (i) to (iv)) to the persons 𝑐 or 𝑒? Is there a reasonable

way to define such a relation and can we still call it ‘subordination’?

These considerations now push the analogy between classes and divine persons

even further: While the ability to determine a precedence amongst classes is crucial

when it comes to, for instance, the resolution of clashes between slots with

identical names in structures of multiple inheritance, subordination—and therefore

precedence—amongst divine persons in models of (generalised) trinitarian logic

plays a crucial role in theological discourse.

Thus, having mentioned the “predefined CLOS MOP machinery” at the end of

the preceding Section, the analogy may now lead directly to the question of the

internal precedence among the defined persons. And indeed, as we have noticed

earlier, there exists a method called class-precedence-list, which returns a list of

‘preceding’ superclasses, and therefore also of ‘preceding’ super-persons. (Again,

note the usual inclusion of the built-in classes standard-object and t as the top of

the hierarchy.)

TIM LETHEN

14

>>> (class-precedence-list (find-class 'son))

(#<PERSON SON 200D7177> #<PERSON FATHER 200D72F7>

#<STANDARD-CLASS STANDARD-OBJECT 2012575B> #<BUILT-IN-CLASS T 202E6C53>)

However, invoking this method on the person holy-spirit leads to a signaled

error.

>>> (clos:class-precedence-list (find-class 'holy-spirit))

Error: Error during finalization of class #<PERSON HOLY-SPIRIT 200FD117>:

Cannot compute class precedence list for class: #<PERSON HOLY-SPIRIT 200FD117>

In order to understand why this error occurs, we now have a closer look at the

CLOS MOP mechanism which computes the precedence list of a given class. A

detailed definition of this process can be found in Steele (1990, 782), where the

precedence list for a class 𝐶 is called a “total ordering on 𝐶 and its superclasses that

is consistent with the local precedence orders for 𝐶 and its superclasses.” As this

process is crucial for our investigation, we now set out to explain it in some more

detail, beginning with a definition of the precedence list of a divine person in a

model of generalised trinitarian logic.

Let 𝔐 be such a model and let ℳ = (𝐺, ≺) be a structure in which 𝐺 is the set of

divine persons in 𝔐. Assume that 𝑔 ≺ ℎ holds for any 𝑔, ℎ ∈ 𝐺 if and only if 𝑔 is

generated or spirated by ℎ. If 𝑔 is an element of 𝐺, let ℳ𝑔 = (𝐺𝑔, ≺𝑔) be the

structure induced by 𝑔, in which 𝐺𝑔 is the subset of 𝐺 consisting of those elements of

𝐺 which can be reached from 𝑔 via a ≺-path.13 ≺𝑔 then is the relation ≺ restricted to

the elements of 𝐺𝑔. As an example, Figure 3 depictures the structures ℳ and ℳ𝑒

belonging to the model given in Figure 2. Note that these structures could as well

represent a collection of classes, the relation ≺ representing the relation is-a-direct-

subclass-of.

13 The path may have length 0, so 𝑔 is itself a member of 𝐺𝑔.

COMPUTATIONAL THEOLOGY

15

(a) (b)

(a) (b) Figure 3: Two structures of divine persons based on the model presented in Figure 2. (a)

The structure ℳ of divine persons linked by the relation ≺. (b) The structure ℳ𝑒 induced

by person e.

A precedence list of the structure ℳ𝑔 = (𝐺𝑔, ≺𝑔) now is a sequence (𝑔0, 𝑔1, … , 𝑔𝑛)

with 𝑔𝑖 ∈ 𝐺𝑔 and 𝑔 = 𝑔0, and with 𝑖 < 𝑗 whenever 𝑔𝑖 ≺ 𝑔𝑗. That is, a person 𝑔

which is generated or spirated by person ℎ will appear earlier in the precedence

list than ℎ. In this very sense, a person 𝑔 may now be called inferior or subordinate

to person ℎ if and only if 𝑔 appears further to the left in every possible preceding

list. Returning to the example given in Figure 3, (𝑒, 𝑏, 𝑐, 𝑎) and (𝑒, 𝑐, 𝑏, 𝑎) are the

possible precedence lists of ℳ𝑒.

The algorithm which computes a precedence list for a given structure ℳ𝑔 is

known by the name of topological sorting. Details about this algorithm can, for

example, be found in Cormen et al. (2009), and it is exactly this algorithm which is

implemented in the CLOS MOP in order to compute the precedence list returned by

the method class-precedence-list. As the persons defined by defperson are

indeed classes, the superclasses of which represent the generating and spirating

persons, this method should serve exactly the desired purpose when it comes to

the concept of precedence and subordination of the defined persons. However, as

the example of the Holy-Spirit has shown, the call

>>> (clos:class-precedence-list (find-class 'holy-spirit))

leads to an error. The reason is well hidden in the actual implementation of the

method. Here, 𝑔 ≺ ℎ does not only hold if ℎ is a direct superclass of 𝑔, but also if 𝑔

appears at the left hand side of ℎ in any list of direct superclasses. Thus, the

definition

>>> (defperson holy-spirit () (father son))

TIM LETHEN

16

triggers the constraints holy-spirit ≺ father, holy-spirit ≺ son, but also

father ≺ son, the last constraint being incompatible with the constraint son ≺

father, which appears when defining the person son.

As a result, we will have to specialise the MOP method compute-class-

precedence-list for arguments of type person. This is done in the following code,

which is an implementation of a topological sorting which considers only

constraints emerging between persons and their direct super-persons.

(defun topological-sort (vertex &optional temp result)

 “Topological Sorting starting with VERTEX, using a depth-first approach.”

 (cond ((member vertex result) result)

 ((member vertex temp) (error “Cannot compute precedence.”))

 (t (cons vertex

 (reduce #'(lambda (acc x)

 (topological-sort x (cons vertex temp) acc))

 (clos:class-direct-superclasses vertex)

 :initial-value result)))))

(defmethod clos:compute-class-precedence-list ((pers person))

 “Computes the precedence-list of person PERS, using TOPOLOGICAL-SORT.”

 (topological-sort pers))

We refrain from a detailed explanation of the implementational details of the

function topological-sort and prefer to give some more general comments on the

presented approach.

1. The fact that the implementation of the language CLOS has been opened up

to the user means that we can still rely on the great bulk of the

implementation while only specialising a tiny portion, i.e. the MOP method

compute-class-precedence-list.

2. The purpose of the alteration of the method is not grounded in the need to

shift a programming language within its design space in order to

experiment with other object-oriented paradigms, but to foster an analogy

between the language architecture and a theological phenomenon.

3. Although it seems like we have not included the difference between

generation and spiration in our approach, it is worthwhile mentioning that

the implemented depth-first approach of the function topological-sort

processes the list of direct super-persons simply from left to right. But the

macro defperson, as written in Section 4, positions all the generating super-

COMPUTATIONAL THEOLOGY

17

persons in front of the spirating ones. We have thus been able to guide the

sorting in a very subtle manner. Note that, in general, the order of the given

super-persons in a defperson clause does influence the computation of the

precedence list.

Finally, we are now in the position to demonstrate that the error, which

appeared when computing the precedence-list of the Holy Spirit, has now

disappeared. As the COMMON LISP language standard does not specify the precise

moment when the inheritance of a class is finalised, we implement the additional

method precedence, which takes care of the finalisation.14 Note that this method

also cuts off the two usually included built in classes standard-object and t.

(defmethod precedence ((pers person))

 “Returns the precedence-list of person PERS.”

 (when (not (clos:class-finalized-p pers))

 (clos:finalize-inheritance pers))

 (butlast (clos:class-precedence-list pers) 2))

>>> (precedence (find-class 'holy-spirit))
(#<PERSON HOLY-SPIRIT 200FD117> #<PERSON SON 200D7177> #<PERSON FATHER 200D72F7>)

6. Defining Godheads

In this Section, we turn to the last and most complex analogy between models of

generalised trinitarian logic and a metaobject-based approach to object-oriented

programming, an analogy which leads straight to new implementation techniques.

It is based on the observation that a possible definition of a godhead, which

comprises a collection of divine persons and their description, may have the the

same ‘shape’ as a usual class definition, which mainly consists of a collection of slot

descriptions. The implementation thus mirrors a kind of Latin Trinitarianism

according to which “the relation of the Godhead to the persons of the Trinity [is]

something like the relation between universals and their instances” (Molto 2017,

14 Kiczales et al. (1991, 156) state: “The exact point at which finalize-inheritance is called depends

on the class of the class metaobject; for standard-class it is called sometime after all the classes

superclasses are defined, but no later than when the first instance of the class is allocated.” As the

user is not allowed to construct instances of classes (i.e. persons) of the metaclass person, we

explicitly have to invoke the method finalize-inheritance.

TIM LETHEN

18

232). Also, the implementation resembles a kind of Social Trinitarianism which,

according to Richard Swinburne, “involves the claim that the Godhead is ‘a

collective.’ The persons are distinct entities, which, taken together, compose the

divine collective” (Molto 2017, 230). The following two examples illustrate the

parallel.15

>>> (defclass capital (city)

 ((country :initarg :country

 :reader country)))

#<STANDARD-CLASS CAPITAL 200AC743>

>>> (defgodhead god2 (god1)

 ((spirit :spirated-by (a b)

 :generated-by (c))))

#<GODHEAD GOD2 200DCBEB>

Here, the godhead god2 inherits all the persons of god1 just as the class capital

inherits all its slot definitions from the class city.16 In addition, it defines the new

(or altered) person spirit. As a direct consequence, one would be able to merge

two or even several already defined godheads through the mechanism of multiple

inheritance, adding and altering persons just as needed. Name clashes, precedence,

and other issues concerning (multiple) inheritance would be handled by the

underlying MOP mechanisms.

We prepare this very idea with the following definitions. First, we define the

metaclass godhead as a subclass of the metaclass standard-class, thus inheriting

the standard inheritance mechanisms. Then we introduce the macro defgodhead,

which enables the user to define her godheads as was shown in the previous

example. The macro simple translates the godhead definition into a class

definition, referring to the metaclass godhead.

(defclass godhead (standard-class)

 ()

 (:documentation “The GODHEAD metaclass.”))

15 An analysis or critique of these accounts clearly lies beyond the scope of this paper. For the

details, we refer the reader to the paper Molto (2017).
16 We do not show the definition of the godhead god1 here and simple assume that it has been

predefined.

COMPUTATIONAL THEOLOGY

19

(defmacro defgodhead (name supers person-definitions)

 “The macro defining a godhead.”

 `(defclass ,name ,supers

 ,person-definitions

 (:metaclass godhead)))

Unfortunately, the application of the macro defgodhead would now lead to an

error. The reason for this error has to been seen in the fact that a call to defclass

does not accept the keywords :generated-by and :spirated-by in its slot

decriptions, which is in turn due to the fact that invoking the defclass macro

always leads to the creation of several slot-definition objects, which themselves

belong to a metaclass slot-definition. And while these objects do have slots

called name, initarg, accessor, and the like, they do (of course) not have any slots

called generated-by and spirated-by. We therefore define a specialised subclass

person-definition of the metaclass slot-definition and additionally tell the

system to use this metaclass whenever a godhead is defined.17

(defclass person-definition (clos:standard-effective-slot-definition

 clos:standard-direct-slot-definition)

 ((generated-by :initarg :generated-by

 :initform nil

 :accessor generated-by)

 (spirated-by :initarg :spirated-by

 :initform nil

 :accessor spirated-by)

 (combiner :initarg :combiner

 :initform #'union

 :accessor combiner))

 (:documentation "The PERSON-DEFINITION metaclass."))

(defmethod clos:direct-slot-definition-class ((gh godhead) &rest initargs)

 (find-class 'person-definition))

(defmethod clos:effective-slot-definition-class ((gh godhead) &rest initargs)

 (find-class 'person-definition))

17 Actually, we make use of two metaclasses which are direct subclasses of slot-definition. For

details of this metaclass structure, see Kiczales et al. (1991, chapter 5).

TIM LETHEN

20

As the reader will have noticed, we have also introduced a new slot called

combiner. This slot describes the function used to ‘combine’ lists of generating or

spirating persons which might collide when several super-godheads of a godhead

define persons with a common name. The default value is the function #’union

which represents ordinary set-union. This means that in case of clashes of persons

with identical names the union of all their, say, generating super-persons is taken

as the new set of generating persons. In order to clarify this mechanism, we define

the following four godheads comprising the persons 𝑎, 𝑏, and 𝑐. Note that there

appears a name clash (person 𝑐) when god3 and god4 are defined. In the case of

god3, both persons 𝑎 and 𝑏 are taken as spirating super-persons, while in the case of

god4 only 𝑏 is a super-person.18 The resulting situation is depictured in Figure 4.

>>> (defgodhead god1 ()

 ((a)

 (b :generated-by (a))))

#<GODHEAD GOD1 2010BD33>

>>> (defgodhead god2 ()

 ((a)

 (c :spirated-by (a))))

#<GODHEAD GOD2 200A2A5F>

>>> (defgodhead god3 (god1 god2)

 ((c :spirated-by (b))))

#<GODHEAD GOD3 200F7087>

>>> (defgodhead god4 (god1 god2)

 ((c :spirated-by (b)

 :combiner #'override)))

#<GODHEAD GOD4 21EEC55F>

When inheritance is computed in the MOP, the method compute-effective-

slot-definition is called to combine the previously collected slot-values of the

slot-definition objects. In order to customise this method for our needs and make

sure that generating and spirating persons are combined according to the given

combiner, the following method definition has to be included.

18 The function override is simply defined as (defun override (x y) x). Thus, only the most

specific list of super-persons is adopted when name clashes appear.

COMPUTATIONAL THEOLOGY

21

Figure 4: The godheads defined using the defgodhead macro. Both god3 and god4 inherit

from god1 and god2 but use different combiners to resolve name clashes.

We refrain from discussing the details of the definition but, again, do stress the

importance of the existence of the possibility to redefine the method for our needs,

which is offered by the MOP.19

(defmethod clos:compute-effective-slot-definition :around ((gh godhead) name
 direct-slot-definitions)

 (let ((resulting-person-definition (call-next-method)))

 (setf (combiner resulting-person-definition)

 (combiner (first direct-slot-definitions)))

 (setf (generated-by resulting-person-definition)

 (reduce (combiner resulting-person-definition)

 direct-slot-definitions :key #'generated-by))

 (setf (spirated-by resulting-person-definition)

 (reduce (combiner resulting-person-definition)

 direct-slot-definitions :key #'spirated-by))

 resulting-person-definition))

7. Subordination Again

When computing a precedence amongst divine persons in Section 5, we always

reduced the structures ℳ = (𝐺, ≺) to structures ℳ𝑔 induced by a single person 𝑔.

However, one may also want to determine a linear order on the godhead as a

whole, thus also defining a precedence (or subordination) between persons which

are not linked through a ≺-path. As an example, consider the model given in

19 Details about the behaviour of this method can be found in Kiczales et al. (1991, 177).

(a) god1 (b) god2 (c) god3 (d) god4

(a) god1 (b) god2 (c) god3 (d) god4

TIM LETHEN

22

Figure 2. Should person 𝑒 be subordinated to person 𝑑 in any of the senses (i) to

(iv) named in Section 5?

As a first and somewhat naive answer we return to topological sorting again,

this time incorporating the whole model ℳ. Before we can apply the algorithm to

a godhead, we have to define the participating divine persons and convert the

godhead’s person-definitions into proper instances of the class person. To this end,

we loop through the person-definitions and create new instances of the metaclass

person by calling the MOP method ensure-class.

(defun define-persons (godhead)

 “Defines the persons as described in the GODHEAD's person-definitions.”

 (let ((gh (find-class godhead)))

 (when (not (clos:class-finalized-p gh))

 (clos:finalize-inheritance gh))

 (dolist (person-definition (clos:class-effective-slots gh) gh)

 (let ((gen (generated-by person-definition))

 (spir (spirated-by person-definition)))

 (clos:ensure-class (clos:slot-definition-name person-definition)

 :generated-by gen

 :spirated-by spir

 :direct-superclasses (append gen spir)

 :metaclass 'person)))))

We are now in the position to define a method precedence for arguments of type

godhead which returns a precedence list comprising all the persons belonging to

the godhead. Note that this list is indeed constructed using the topological-sort

function, this time applied to all those persons which do not have any direct sub-

persons.

(defmethod precedence ((gh godhead))

 (when (not (clos:class-finalized-p gh))

 (clos:finalize-inheritance gh))

 (butlast (reduce #'(lambda (acc pers) (topological-sort pers nil acc))

 (remove-if #'clos:class-direct-subclasses

 (mapcar #'(lambda (person-def)
 (find-class (slot-definition-name person-def)))

 (clos:class-effective-slots gh)))

 :initial-value nil)

 2))

COMPUTATIONAL THEOLOGY

23

When looping through the persons which do not have any direct sub-persons,

the method precedence proceeds in the order given in the definition of the

godhead, thus transferring at least some amount of influence to the system’s user.

However, while we have kind of restricted ourselves here to a minimal version,

many other aspects could have been implemented influencing the order in the

precedence list. We name just a few, which underline the necessity for further

theoretical investigations concerning the theological notion of subordination.

• Has a person been generated or spirated (or both)? And how often?

• How far is a person’s ≺-distance from a ‘top’-person, i.e. a person without

any super-persons?

• Are there multiple paths to any top-persons?

• Of how many generations/spirations do these paths consist?

• Where (i.e. how far from the person) are these generations/spirations

located?

• In how far do these considerations depend on Edwards’ types of

subordination (i)-(iv)?

In order to conclude these considerations, we exemplarily define the godhead

belonging to the model depictured in Figure 2. Afterwards, we show the

corresponding precedence list.

>>> (defgodhead god ()

 ((a)

 (b :generated-by (a))

 (c :spirated-by (a))

 (d :generated-by (b))

 (e :generated-by (c)

 :spirated-by (b))

 (f :spirated-by (c))))

#<GODHEAD GOD 2010A953>

>>> (define-persons 'god)

#<GODHEAD GOD 2010A953>

>>> (precedence (find-class 'god))

(#<PERSON F 21EB13A3> #<PERSON E 21EB1703> #<PERSON C 21EB1DFF>

 #<PERSON D 21EB1A87> #<PERSON B 21EB2207> #<PERSON A 21EB28BB>)

TIM LETHEN

24

8. Conclusion

Regarding the variety of implementations offered in this paper one may wonder

how much one could really benefit from actually running the written program on a

computer when analysing and investigating models of generalised trinitarian logic.

However, the main purpose of the developed implementations is of a quite

different character: They serve as a means to bring as much precision and clarity to

the field of philosophy of religion as possible and idealise by “representing

patterns that satisfy higher standards of rationality than what most humans live up

to” (Hansson & Hendricks 2018, 16). And while these “higher standards” are often

sought in logical and mathematical languages, computer science can offer the wide

range of programming languages as well as the field of algorithmics as further

twists to formal philosophy.

As we have been able to see, it is not only theology which benefits from these

formalisations. In the opposite direction, a new way of using metaobject protocols

has emerged: The protocol is not used in order to adjust the underlying object-

oriented language, but rather in order to utilise a huge part of the system which

reveals an amazing analogy to the considered theological models. These new

techniques may now quite easily be transfered to other complex structures in

computer science, like graphs, grammars, automata, and the like.

I finish with Mullins (2020) and “hope that my analytic reflections [...] can help

to bring further clarity and intellectual rigor to the unfinished task of Trinitarian

theorizing.”

Funding and Acknowledgements

The research for this article was conducted within the Gödeliana project led by Jan

von Plato, Helsinki, Finland. The project has received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (Grant Agreement No. 787758) and from the Academy of

Finland (Decision No. 318066).

I thank the anonymous referee for the inspiring comments which helped to

clarify some of the central points.

Bibliography

Benzmüller, C., & Woltzenlogel Paleo, B. 2014. “Automating Gödel’s ontological

proof of God’s existence with higher-order automated theorem provers.” In:

COMPUTATIONAL THEOLOGY

25

ECAI 2014, volume 263 of Frontiers in Artificial Intelligence and Applications, 93–98.

IOS Press.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. 2009. Introduction to

Algorithms (3rd ed.). Cambridge, Mass.: MIT Press and McGraw-Hill.

David, E., David, R. S., Gabbay, D. M., Schild, U. J. 2020. “Talmudic Norms

Approach to Mixtures with a Solution to the Paradox of the Heap: A Position

Paper.” In: Silvestre, R. S., Göcke, B. P., Béziau, J. Y., & Bilimoria, P. (eds.) 2020a.

Beyond Faith and Rationality – Essays on Logic, Religion and Philosophy. Sophia

Studies in Cross-cultural Philosophy of Traditions and Cultures, vol 34. Cham:

Springer. 173–193. https://doi.org/10.1007/978-3-030-43535-6_11.

DeMichiel, L. G. 1993. “An Introduction to CLOS.” In Object-oriented Programming:

The CLOS Perspective, edited by A. Paepke, 3–27. Cambridge, Mass.: The MIT

Press.

Edwards, M. 2020. “Is Subordinationism a Heresy?” TheoLogica: An International

Journal for Philosophy of Religion and Philosophical Theology, 4(2): 69–86.

https://doi.org/10.14428/thl.v4i2.23803.

Effingham, N. (2018). “The philosophy of filioque.” Religious Studies, 54(03): 297–

312. https://doi.org/10.1017/S0034412518000264.

Gabbay, D. M., Schild, U., David, E. 2019. “The Talmudic Logic Project, Ongoing

Since 2008.” Logica Universalis, 13: 425–442. https://doi.org/10.1007/s11787-019-

00228-y.

Hansson, S. O., Hendricks, V. F. (eds.) 2018. Introduction to Formal Philosophy.

Cham: Springer. https://doi.org/10.1007/978-3-319-77434-3.

Keene, S. E. 1989. Object-Oriented Programming in Common LISP: A Programmer’s

Guide to CLOS. Boston: Addison-Wesley.

Kiczales, G., des Rivieres, J., & Bobrow, D. G. 1991. The Art of the Metaobject Protocol.

Cambridge, Mass.: The MIT Press.

https://doi.org/10.7551/mitpress/1405.001.0001.

Kiczales, G., Ashley, J. M., Rodrigues Jr., L H., Vahdat, A., & Bobrow, D. G. 1993.

“Metaobject Protocols: Why We Want Them and What Else They Can Do.” In

Object-oriented Programming: The CLOS Perspective, edited by A. Paepke, 101–118.

Cambridge, Mass.: The MIT Press.

Lethen, T. 2021. “A Talmudic Norms Approach to many-valued Logic.” Journal of

Logic and Computation, 31(5): 1195–1205. https://doi.org/10.1093/logcom/exab027.

Lethen, T. 2022. “Gödel’s Modal Dogmatic Logic and the Filioque: A Case Study.”

Logique et Analyse (accepted manuscript).

https://doi.org/10.1007/978-3-030-43535-6_11
https://doi.org/10.14428/thl.v4i2.23803
https://doi.org/10.1017/S0034412518000264
https://doi.org/10.1007/s11787-019-00228-y
https://doi.org/10.1007/s11787-019-00228-y
https://doi.org/10.1007/978-3-319-77434-3
https://doi.org/10.7551/mitpress/1405.001.0001
https://doi.org/10.1093/logcom/exab027

TIM LETHEN

26

Molto, D. 2017. “The Logical Problem of the Trinity and the Strong Theory of

Relative Identity.” Sophia, 56(2): 227–245. https://doi.org/10.1007/s11841-017-

0612-y.

Mullins, R. T. 2020. “Trinity, Subordination, and Heresy: A Reply to Mark

Edwards.” TheoLogica: An International Journal for Philosophy of Religion and

Philosophical Theology, 4(2): 87–101. https://doi.org/10.14428/thl.v4i2.52323.

Oppenheimer, P. E., & Zalta, E. N. 2011. “A computationally-discovered

simplification of the ontological argument.” Australasian Journal of Philosophy,

89(2): 333–349. https://doi.org/10.1080/00048401003674482.

Ott, L. 1957. Fundamentals of Catholic Dogma. Cork: Mercier.

Paepke, A. (ed.) 1993a. Object-oriented Programming: The CLOS Perspective.

Cambridge, Mass.: The MIT Press.

Paepke, A. 1993b. “User-Level Language Crafting: Introducing the CLOS

Metaobject Protocol.” In Object-oriented Programming: The CLOS Perspective,

edited by A. Paepke, 65–99. Cambridge, Mass.: The MIT Press.

https://doi.org/10.7551/mitpress/5087.001.0001.

van Peursen, W., & Talstra, E. 2007. “Computer-assisted analysis of parallel texts in

the Bible. The case of 2 kings xviii-xix and its parallels in Isaiah and chronicles.”

Vetus Testamentum, 57(1): 45–72. https://doi.org/10.1163/15685337X167855.

Rushby, J. 2018. “A mechanically assisted examination of begging the question in

Anselm’s Ontological Argument.” Journal of Applied Logics – IFCoLog Journal of

Logics and their Applications, 5(7), 1473–1497.

Silvestre, R. S., Göcke, B. P., Béziau, J. Y., & Bilimoria, P. (eds.) 2020a. Beyond Faith

and Rationality – Essays on Logic, Religion and Philosophy. Sophia Studies in Cross-

cultural Philosophy of Traditions and Cultures, vol 34. Cham: Springer.

https://doi.org/10.1007/978-3-030-43535-6.

Silvestre, R. S., Göcke, B. P., Béziau, J. Y., & Bilimoria, P. 2020b. “Beyond Faith and

Rationality.” In Beyond Faith and Rationality: Essays on Logic, Religion and

Philosophy, edited by R. S. Silvestre et al., 3–15. Sophia Studies in Cross-cultural

Philosophy of Traditions and Cultures,Cham: Springer.

https://doi.org/10.1007/978-3-030-43535-6.

Steele Jr., G. L. 1990. Common Lisp: The Language (2nd ed.). Newton, Mass.: Digital

Press.

https://doi.org/10.1007/s11841-017-0612-y
https://doi.org/10.1007/s11841-017-0612-y
https://doi.org/10.14428/thl.v4i2.52323
https://doi.org/10.1080/00048401003674482
https://doi.org/10.7551/mitpress/5087.001.0001
https://doi.org/10.1163/15685337X167855
https://doi.org/10.1007/978-3-030-43535-6
https://doi.org/10.1007/978-3-030-43535-6

