

Cone beam computed tomography (CBCT) 1 in pediatric dentistry 2 3 Authors: 4 Theys S DDS^{1,*}, 5 Olszewski R DDS, MD, PhD, DrSc, Prof^{2, 3}. 6 7 Affiliations: 8 ¹ Department of Dentistry, Nîmes University Hospital Center - Carémeau, Nîmes, 9 10 France 11 ² Department of oral and maxillofacial surgery, Cliniques universitaires Saint-Luc, 12 UCLouvain, Brussels, Belgium ³ Oral and maxillofacial surgery research Lab, NMSK, IREC, SSS, UCLouvain, 13 14 Brussels, Belgium *Corresponding author: Theys S, Department of Dentistry, Nîmes University Hos-15 16 pital Center - Carémeau, Nîmes, France. Stephanie. THEYS@chu-nimes.fr. ORCID iD: https://orcid.org/0000-0003-4657-8046 17 18 Disclaimer: the views expressed in the submitted article are our own and not an official position of the institution or funder. 19

20 Abstract

Objective: The aims of this systematic review of the literature were to investigate
 the uses of cone beam computed tomography (CBCT) in pediatric dentistry and, if
 possible, identify the indications.

Material and methods: A literature search was conducted using the PubMed and Scopus electronic databases and the keywords "CBCT and pediatric dentistry". This search provided us with 1518 references. The selected publications were all clinical articles written in French or English and referring to a pediatric population. After screening, 461 eligible full text articles remained.

Results: In total, there were 169 references that met the inclusion criteria.
 Different topics, mainly relating to orthodontics, anatomy, and cleft lips and palate,
 were discussed. There was large variability in the information concerning the
 technical parameters. The radiographic protocols that we analyzed showed a large
 heterogeneity.

37 Conclusions: The level of evidence provided by our work is limited because only
38 two randomized double-blind controlled studies are included. Two indications can
39 be distinguished: for orthodontics and for the rehabilitation of cleft lips and palate.
40 There are a multitude of radiographic protocols. More research is needed to identify
41 other potential clinical indications as well as to determine a standard CBCT protocol
42 for children and adolescents.

43

24 25

26

27

28

29

30

36

Keywords: CBCT, pediatric dentistry, cleft palate, systematic review

46 Introduction

47 Cone beam computed tomography (CBCT) is a medical imaging technique that started being used in the 1990s [1]. Compared to traditional two-dimensional 48 radiographs, CBCT is characterized by its three-dimensional visualization of larger 49 50 anatomical regions and the use of higher energy and radiation intensities [2]. The 51 dose of radiation generated by the CBCT is therefore greater than that of traditional 52 dental X-rays. However, this dose is lower than that generated by multiple slices 53 computed tomography (MSCT) [1]. The type of device used, and the selected 54 acquisition parameters influence this dose [2].

Since the advent of this technique, equipment has continued to evolve. Currently, a
multitude of devices are available, all with their own characteristics and properties
[2]. The uses of CBCT imaging have also developed over time, and this technology
has become increasingly important in dentomaxillofacial imaging. Despite this fact,
we need to keep in mind the three basic principles of radiation protection:

justification, limitation, and optimization. Practitioners need to be even more
attentive when radiation is used in a pediatric population (patients up to the age of
18 years old) [3].

63 The risk posed by ionizing radiation depends on the population exposed, while the 64 damage caused depends on the age and sex of the patient. There is a multiplication 65 factor for risk according to the age of the patients, with the risk being higher for 66 young people (x3 below 10 years, for a coefficient of 1 to 30 years) and lower for 67 the elderly (negligible risk above 80 years for a coefficient of 1 to 30 years).

Regarding sex, women are more sensitive to the development of damages than men,
and this at all age. The main risks of radiation are the development of cancer and
hereditable effects [4].

The constant evolution of this technology and of its uses necessitates the creation
and the continuous updating of guidelines, recommendations of good practice and
justifications for radiographic applications [5]. Several academies of professionals
have issued recommendations or basic principles for the use of CBCT, such as the
European Academy of Dental and Maxillofacial Radiology in 2009 [6], the

- American Academy of Oral and MaxillofacialRadiology in 2013 [7], and the
 American Association of Endodontists / American Academy of Oral and
- 78 Maxillofacial Radiology in 2015 [8]. The European Commission has also proposed 79 evidence-based guidelines for the use of CBCT in 2012 [4]. The issue of pediatric 80 dentistry is poorly addressed in these recommendations. According to Aps, CBCT 81 indications in pediatric dentistry are not yet well established and must be justified on 82 an individual basis by assessing the benefit-risk ratio [3]. It is also important to bear 83 in mind that even if these European recommendations exist, there is not a common 84 legislation for all European countries. Each one has his own legislation, regulation and even guidelines for radioprotection and imaging technique in the medical and 85 86 dental field.
- 87 In this context, the purposes of this systematic review of the literature are to
 88 investigate the uses of CBCT in pediatric dentistry, and if possible, identify the
 89 indications.

90 Materials and methods

91 Inclusion and exclusion criteria

92 The inclusion and exclusion criteria mainly concerned the language and the 93 category of the papers.

94 Inclusion criteria

4

Only articles written in French and English were included in this research. All
clinical articles were considered if their title, abstract, or full text scrupulously
referenced the study population, mentioning either age or an associated term such as
child, adolescent, or pediatric. Case reports of five cases or more were also included
in this review.

100 Exclusion criteria

Articles in all other languages than French and English were excluded because
 they could not be read and understood by all observers. Experimental articles and
 articles concerning animals were excluded because the objective was to determine
 the clinical uses of CBCT in pediatric dentistry and then to identify recommendation
 concerning the indication of this kind of imaging in children.

Search equation

107 108 109

110

111

112

113 114

115

106

A literature search was conducted on the electronic databases PubMed (https://www.ncbi.nlm.nih.gov/pubmed) and Scopus (https://www.scopus.com/). These databases were searched using the keywords "CBCT and pediatric dentistry". Two different spellings of the word were used pediatric and paediatric. This search was carried out a first time on August 7, 2017 and for a second time on February 23, 2020. All references published until February 2020 were considered without any other date restrictions set (i.e., from 1948 to the present).

116The search equation used on PubMed was CBCT [All Fields] AND ("paediatric den-117tistry" [OR] "pediatric dentistry" OR ("pediatric" [All Fields] AND "dentistry" [All118Fields]) OR "pediatric dentistry" [All Fields]). This search led to 228 references.

119The search equation used on Scopus was cbct AND pediatric AND dentistry AND120(EXCLUDE (PUBYEAR, 2017)). The immediate result of this search consisted of1211492 references.

- 122 The analysis of all titles and abstracts was performed by two independent observers.
- 123 124
- 125
- 126
- 127

129 Data collection

128

130

For each article included in the literature review, various data were collected
concerning the characteristics of the population studied (age, sex, group of interest),
the technical information regarding CBCT, the reason CBCT was used and how
CBCT was used, depending on the topic.

135 Results

A total of 169 articles were included in this systematic review after the screeningof 1720 records.

Of the 228 references found on PubMed, the following exclusions were done: 1 138 139 duplicate, 130 abstracts and 56 full texts with reasons (16 concerned adults, 6 did 140 not mention neither the age of the sample population nor an associated term, 3 141 reported an insufficient number of cases, 23 did not distinguish between children 142 and adults, 7 were not clinical articles and 1 did not distinguish between CT scans 143 and CBCT). Finally, 41 articles from PubMed were included in our systematic 144 review. 145 Of the 1492 references from Scopus, the following exclusions were done: 202 146 duplicates, 68 sources other than articles (notes, books, and book chapters), 858 abstracts and 236 full texts with reasons (63 concerned adults, 36 did not mention 147 148 the age of the study population or an associated term, 8 reported an insufficient 149 number of cases, 82 did not distinguish between children and adults, 18 did not refer to CBCT, 5 were out of the scope of this study, 23 were not clinical articles and one 150 151 did not distinguish between CT scans and CBCT). Finally, 128 articles from Scopus were included in our systematic review. 152

Out of our original 1720 references, 461 articles were read in full, and 169 articles
were selected for the inclusion in the review.

The PRISMA flow diagram of this systematic review of the literature process ispresented below in Figure 1.

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed10000097

157

Fig. 1. Prisma flow of the review of the literature on CBCT and pediatricdentistry.

These articles covered different topics, such as orthodontics, anatomy, and growth,
allowing us to establish a classification by subject (Table 1). The classification is
used below in the presentation of the results. All 169 papers concerned pedia tric
patients up to the age of 18 years old.

164 165

Table 1. Classification according to the subject of articles included.

Topics	Number of references
Orthodontics	75
Anatomy	44
Cleft lips and palate	20
Growth	7
Characteristics of patients referred for CBCT	7
Various	18

Orthodontics 166

167	A little less than half of the articles (75/169) included in this review related to
168	orthodontics with most concerning maxillary expansion. Thus, this topic is
169	addressed separately.
170	Most studies (14/32) evaluated the skeletal and dental effects of various
171	orthodontic appliances [9-29]. Other studies analyzed the effects of these treatments
172	on the maxillary sinuses (1/32) [30], on the temporomandibular joint (4/32) [27, 31-
173	33], and on the upper airways (9/32) [21-23, 26, 34-38]. In these situations, CBCT
174	scans were performed before and after treatment to observe and measure changes
175	following orthodontic treatment.
176	Two papers compared the use of two-dimensional (2D) and three-dimensional (3D)
177	imaging for establishing orthodontic treatment plans [39,40]. The advantages of the
178	3D information are that it seems to be more accurate, and that it more closely re-
179	sembles reality, and thus, its use reduces the risk of practitioner-dependent errors
180	[40].
181	The last six articles included in this review concern the detection of tonsillar
182	hypertrophies by orthodontists [41], the detection of mandibular asymmetry in
183	patients presenting a unilateral versus a bilateral posterior crossbite [42], the
184	evaluation of the influence of the maturational stage of the zygoma ticomaxillary
185	suture on the response to maxillary protraction [20], the effect of traction discontin-
186	uation on maxillary central incisor sulcal depth and alveolar bone ridge level [18],
187	the analyzis of the development and the stability of the roots and the alveolar bone
188	in orthodontically treated labial inversely impacted maxillary incisors [29], and the
189	comparison of the palatal total support tissue and bone support tissue between mouth
190	breathers with a high narrow palate and a nose breathers with normal palate in the
191	case of orthodontic mini-implant implantation [24].

192

Maxillary expansion

193 Maxillary expansion was treated in 43 of the 75 articles concerning orthodontics. 194 All but five, discussed the effects of various maxillary expansion treatments at the skeletal [43-54], dentoalveolar [43, 49, 51, 52, 54-60], soft tissue [61], roots [62-64] 195 and upper airway [59, 65-78] levels. One article evaluated the short- and long-term 196 effect of the use of a particular treatment protocol for Class III patients [79]. Two 197 198 articles compared two types of treatment used in particular situations [80, 81]. The 199 last three articles of this category concerned various topics: the determination of the 200 reliability and the predicting performance of a classification and a methodology [82], the detection of age-related morphological changes in the median and 201 202 transverse palatal suture that could affect the outcome of the treatment [83], and the 203 evaluation of the validity of the use of a software for segmenting and measuring the 204 upper airway [84]. CBCT was systematically performed before and after the maxillary expansion treatment to measure the impact of the treatment on the 205 206 anatomical structures of interest. Three articles described limitations in the use of CBCT when measuring the volume 207 208 of the upper airways [68, 72, 73]. The volume of the upper airways is influenced by 209 many factors, including the position of the head, the position of the tongue, and the

breathing, and swallowing movements at the time of image acquisition. The lack of
a standardized position when taking CBCT scans calls into questions the reliability,
and the reproducibility of CBCT for the measurement of the upper airways.

Anatomy

The anatomical structures studied by 44 articles included in this work are shown in Table 2. Approximatively one-third of the studies were carried out in Turkey [85-96], including five studies conducted by the same team [85, 86, 89-91]. The populations studied were not sufficiently representative to generalize the observations to the general population. However, all studies confirmed the reliability and accuracy of the use of CBCT images in detecting and describing the anatomical structures observed.

Table 2. Anatomical structures observed on pediatric CBCT.

Anatomical structure	Country	Field of view	Number of	Number of
			articles	patients
Tonsils	Canada [145, 148]	12 inches	2	10, 39
	Couth Koroo [1.40]	40	4	20
and canines	South Korea [149]	40 mm	1	38
 Temporary mandibular second molar 	China [150]	60 mm	1	283
 Permanent central maxillary incisor 	Brazil [78]	?	1	26
 Permanent maxillary canines 	Sweden [151]	?	1	20
 Second premolar 	Brazil [147]	?	1	31
 First permanent mandibulary molar 	India [172]	60 mm	1	30
 Third molar 	Canada [163]	?	1	179
 Included supernumerary teeth 	Turkey [87]	4 cm	1	22
– Mesiodens	South Korea [146]	?	1	293
 Root resorptions 	Sweden [175]	4 cm x 4 cm	1	63
		6 cm x 6 cm		
		8 cm x 8 cm		
 Interproximal contact 	India [171]	80 mm x 80 mm	1	28
Mandible				
– Condyle	Belgium [152]	?	1	20
	South Korea [153]	24 cm x 19 cm	1	282
	USA [166]	17 mm x 23 mm	1	60
	Italy [168]	16 cm x 8 cm	1	71
		16 cm x 11 cm		
 Condyle and coronoid process 	Brazil [167]	Full	1	39
– Temporomandibularjoint	South Korea [165]	?	1	356
	Canada–Denmark			
	Germany-Norway	18 cm x 16 cm	1	66
	[170]	19 cm x 24 cm	1	28
 Accessory mental foramen 	Turkey [92]	? - 9 inch	2	14 and 63
– Lingula	Turkey [85, 88]	?	1	269
-	Turkey [91]	13 cm x 16 cm	1	280
– All the mandible via five land-	Australia–USA [159]	?	1	100
marks	Turkey [86]			

Maxilla				
– Naso-palatal canal	Turkey [89]	8 cm x 8 cm	1	368
·		12 cm x 8 cm		
		15 cm x 12 cm		
		18 cm x 16 cm		
 Mid-palatal suture 	Brazil-Italy-USA [154]	Min 11 cm	1	140
	Iran [160]	6 cm x 8 cm	1	144
	Iran [169]	4 inch	1	167
		9 inch		
 Zygomaticomaxillary suture 	Brazil-Italy-USA [161]	16 cm x 22 cm	1	74
	Iran [169]	4 inch	1	167
		9 inch		
 Anterior neurovascular 	Turkey [90]	?	1	368
variation				
 Maxillary sinus 	Turkey [93]	?	1	50
Cranial base				
– Skull base foramen	Turkey [94]	?	1	350
 – Posterior cranial base 	Canada–USA [162]	9 inch x 12 inch	1	60
Sella turcica	Turkey [95]	?	1	177
Hyoid bone	Japan [158]	?	1	60
	China [164]	?	1	60
Upperairway	Brazil [155]	13 cm x 16 cm	1	50
	USA [156]	?	1	387
	Saudi Arabia-USA	13 cm x 16 cm	1	81
	[157]	?	1	60
	China [164]	?	1	200
	Turkey [96]	?	1	62
	Japan [173]			

249

250

Clefts lips and palate

251	Cleft lips and palate are facial malformations that occur relatively frequently. They
252	were discussed in 23 articles, 5 of which were included in our results concerning
253	orthodontics [17, 28, 52, 75, 81].
254	The CBCT was obtained for various reasons such as orthodontic treatment,
255	orthognathic surgery, pathology of the temporomandibular joint, supernumerary or
256	impacted teeth, airway assessment, etc) other than for the completion of the
257	submitted study in all but three articles [97-99] in which imaging was an element
258	used in the preparation for and the follow-up after the alveolar graft surgery.
259	The images from the CBCT were used a second time to evaluate different aspects
260	either related or not related to the presence of cleft lips and palate, such as the

261	maxillary [100] or the sphenoid sinus [101], the mandibular condula, and the glanoid
201	maximary [100] of the sphenoid sinds [101], the mandibular condyle, and the glenoid
262	fossa [102], the sella turcica [103], dehiscences and fenestrations of teeth [104, 105],
263	the development of permanent maxillary central incisors [106], teeth in the
264	premaxilla [107], the alveolar support of the teeth adjacent to the cleft [108], the
265	cortical bone thickness of the infrazygomatic crest area [109], and the upper airways
266	[110-112]. One article established a method for the classification of clefts based on
267	CBCT images to facilitate a better understanding of this malformation [113].
268	Another article categorized and quantified the incidental findings from patients with
269	cleft lips and palate [114].
270	Three dimensional imaging allows a better evaluation of the bone volume than

- Three-dimensional imaging allows a better evaluation of the bone volume than
 does 2D imaging does, but its limitation is its inability to evaluate the quality of the
 bone [97].
- 273 Growth

274 Six articles discussed various methods for evaluating the growth of skeletal structures [115-120]. Each of them compared a new method to a recognized method, 275 276 such as the maturation of cervical vertebrae, to determine any possible correlation, 277 and to evaluate the reliability of the innovative method. The last article included in 278 this category focused on the relationship between the chronological age and the 279 surface area of the developing mandibular third molar apices [121]. CBCT scans 280 were not performed for this work but have previously been obtained for orthodontic 281 reasons or as part of the institution's database.

282 Characteristics of patients referred for CBCT

Six articles were included in this category [1, 122-126]. These articles analyzed the reasons for prescribing a CBCT examination. Two of them [123, 125] also analyzed the technical setting, and one study observed its influence on the treatment planning [124].

These articles [1, 122-126] insisted on several recommendations for good practice,
such as the need for the analysis of the patient's medical history and a prior clinical
examination, the consideration of the "as low as reasonably achievable" (ALARA)
principle and the choice of an adequate field of view (FOV) according to the

indication. The selection of the FOV is more important in children because the FOV
affects the optimal dose. In addition, an adequate FOV makes it easier to analyze the
images obtained, and to limit incidental findings.

294 Various other topics

Eighteen articles covered a variety of topics. Each of the following subjects was dealt within a single article: direct pulp capping using three different materials [127], root fracture [128], the relation between the size of gonial angle and the inclination of the epiglottis in children with disordered sleep breathing [129], the minimum FOV needed to locate the maxillary impacted canine [130], the

300	craniofacial and vertebral anomalies and asymmetries in patients with Goldenhar
301	syndrome [131], the volume of the maxillary sinus and the dimension of the
302	maxillae in patients with cleidocranial dysostosis [132], the impact of metallic
303	artifacts and movements on the ability to answer the question asked [133], factors
304	affecting patient movement and re-exposure [134], the comparison of three available
305	3D CBCT superimposition methods [135], and the need for X-ray examinations in
306	people with disabilities (mentally handicapped dental patients) [136].
307	One article studied the incidental findings in the maxillary sinus of 74 children
308	[137], and one studied the prevalence of incidental discoveries of types of sinus
309	pathology in 201 patients [138]. Two other articles discussed the use of CBCT pre-
310	operatively and intraoperatively during autotransplantation [139, 140]. Regenerative
311	endodontic was dealt with in two articles [141, 142]. Finally, two studies concerned
312	the upper airway [143, 144].

CBCT characteristics and radiographic protocol

314Table 3 shows the different types of CBCT and the technical parameters of the315radiographic protocol (intensity, voltage, FOV, exposure time and voxels) used by316the studies included in this review of the literature. Fifteen articles did not mention317the type of equipment used [11, 17, 28, 57, 75, 98, 107, 115, 118, 124, 129, 140,318145-147].

CBCT equipment	Number of	Intensity	Voltage	FOV	Exposure	Voxel
(Manufacturer)	studies	(mA/s)	(kV)	(D x h, cm)	time (s)	(mm³)
3D Accuitomo (J Morita Mfg Corp, Kyoto, Japan) 3D Accuitomo FPD 3D Accuitomo 170 3D Accuitomo F80 FPD Veraviewepocs 3DR100 Veraviewepocs 3DR100/F40 Veraviewepocs X550 EX1	11	1-10 mA 59.1-59.9 mAs	60-90	4 x 4 4 x 4 4 x 6 6 x 4 6 x 5 6 x 6 6 x 8 8 x 4 8 x 5 8 x 8 10 x 5 10 x 10 14 x 5 14 x 10 14 x 14 17 x 5 17 x 12 17 x 17	10–17.5	0.1-0.25
Alphard (Asahi Roentgen Ind Co Ltd, Kyoto, Japan) 3030 VEGA CB Mercu Ray	5	2 mA	80	20 x 17.9 panoramic	17	0.39
(Hitachi Medical Corporation, Tokyo, Japan)	4	2-15 mA	100 120	implant dental 12-inch	9.6	0.3-0.38
Galileos CBCT Scanner (Sirona, Bensheim, Germany)	3	7	85	16 x 22	14-20	0.49-0.5

Table 3. Types of CBCT and the technical parameters of the radiographic protocol.

344

I-Cat (Imaging				8 x 8		
Sciences				16 x 4		
International,				16 x 6		
Hatfield, PA, USA)				16 x 8		
				16 x 10		
				16 x 11		
				16 x 13		
				16 x 13.3		
				16 x 22		
Classic system	70	3-36. 9mA	65-120	16 x 23	3.7-40	0.1-30
FLX		6 19-23 87		13 x 17		
Next Generation		mAs		21 x 17		
New Generation				23 x 17		
Model 17-19				9 x 12 inch		
				12-inch		
				40 mm		
				40 mm		
				11cm		
				13 cm		
Illuma Cone Beam						
CT Scapper (3M				10×24		
	4	3.8 mA	120	13×24	20	0.29
				21.1 X 14		
V(x, U(x))						
tol CmbH						
Diamarakring	7	5 mAs	120		4.8–20	0.025-0.4
Bismarckring,		3.8-8 mA				
Germany)						
Kodak (Carestream						
Health, Rochester,				5 x 3.75		
NY, USA)				5 x 5		
	5	2-15 mA	70	17 x 11	6.15–10.8	0.2-50
9000			80-90	17 x 13.5		
9300						
CS 9300						

New Tom (Quantitative Radiology, Verona, Italy) 3G 5G DVT 9000 VG	32	1–20 mA 6.19-140.69 mAs	110-120	8 x 8 12 x 8 15 x 12 15 x 15 18 x 13 18 x 16 13 cm 4-inch 6-inch 9-inch 12-inch	3.6-77	0.125-0.4
Vatech (Vatech, Kihung, Korea)	2	5-6 mA	120 kVp	24 x 19	24	0.3
Planmeca Promax® 3D Max (Planmeca Oy, Helsinki, Finland)	8	9-14 mA 109-244mAs	90–94	4 x 5 5 x 5.5 6 x 6 8 x 5 8 x 8 10 x 13 10 x 5.5 10 x 9 12 x 9 13 x 5.5 13 x 9 19 x 15 20 x 6 20 x 10 20 x 17	12–27	0.1–0.4
Scanora 3D (Soredex, Tuusula, Finland)	6	8 mA	85-90	6 x 6 7.5 x 10 7.5 x 14,5 14.5 x 13 23 x 17 6 cm	3.7–40	0.1-0.35
Cranex 3D (Soredex, Tuusula, Finland)	1	6 mA	89 kVp	6 x 8		0.2

352 The acquisition protocol used was not the same for all studies and was very 353 heterogeneous. It was also observed that the FOV was not always presented in the 354 same way: sometimes only one dimension was given, the units were not always the 355 same across studies, and information was sometimes missing. Regarding the notion 356 of time, not all studies differentiated exposure time and scanning time. 357 It should also be noted that the amount of information provided concerning the 358 technical parameters of the protocol varied across articles (Table 4). Only 40 359 articles, or 24% of the total number of articles, included all the parameters of interest 360 (intensity, voltage, FOV, exposure time and voxels).

361**Table 4.** Amount of information provided concerning the technical362parameters (intensity, voltage, FOV, exposure time and voxel) of the363protocol.

Amount of technical information provided (Intensity, voltage, FOV, exposure time and voxel)	Number of articles
5	40 (24%)
4	34 (20%)
3	31 (18%)
2	22 (13%)
1	13 (8%)
0	29 (17%)

364 Discussion

The results of this review provided us with several considerations and/or questions
that need to be addressed considering the background offered by the current
literature. The issue of pediatric dentistry is poorly addressed. We all agree that
CBCT indications must be justified on an individual basis by assessing the benefitrisk ratio. The optimization of our protocol must be a priority.
The only review found about CBCT in pediatric dentistry is the work by Aps et al.

[3] but it is an overview of the literature and not a systematic review. Methodologies
are not comparable. Aps brings a lot of information about doses, biological effects
of ionization, radioprotection measure [3]. In this work, we did not focus on these
specific topics. For clinical aspects, both works are in agreement.

375 Technical aspects

Special attention was given to the radiographic protocol with respect to the
principles of justification, optimization (ALARA), and limitations. The last principle
in particular must be followed since the population studied comprises children and
adolescents aged 18 or younger. It has been found that young people under the age
of ten are three times more sensitive to the effects of ionizing radiation [1]. In some
studies, included in this review of the literature, there was a lack of information

382 concerning the doses of radiation administered and the means used for establishing 383 radioprotection. 384 Large heterogeneity was also observed in the radiographic protocols. Each research 385 team followed their protocol of choice. There was no standard pediatric radiographic 386 protocol. The comparison of studies with different protocols is thus complex. 387 Moreover, not all the protocols referred to the same information of interest 388 (intensity, voltage, FOV, exposure time and voxels). Another challenge that existed 389 was the heterogeneous presentation of technical information, such as the use of 390 different units and the FOV given with one or two dimensions. This heterogeneity 391 also made it difficult to perform comparisons between studies. 392 Regarding the notion of time, not all studies differentiated exposure time and 393 scanning time. The times mentioned were therefore very heterogeneous and their 394 distinction was complex. 395 FOV is a key factor in pediatrics. It is recommended to optimize the selection of the 396 FOV according to the indication for CBCT [1]. An optimal FOV selection 397 contributes to the selection of an optimal radiation dose, adherence to the ALARA 398 principle [1, 122], and a faster analysis of the scan [122]. The use of CBCT images 399 from existing databases appears to be an excellent way to avoid the repeating 400 exposure to ionizing radiation. However, this process may lead to an inadequacy bias in the FOV because the FOV is not directly related to the research presented but 401 is instead related to the initial indication for CBCT. 402 403 The CBCT equipment also influences the selection of the FOV because not all 404 devices allow a selection of the size (small, medium or large) of the FOV to be 405 selected. Ideally, CBCT equipment that will be used on pediatric patients, should 406 have adjustable FOV, in order to be able to adhere to the ALARA principle [86]. 407 The reliability and accuracy of the CBCT images are not questioned in the detection 408 and in the description of anatomical structures. The FOVs used in this field are 409 highly variable depending on the anatomical structure being studied. However, 410 within the 44 studies included in this category [78, 85-96, 145-147, 148-173], 19 did 411 not mention these data [78, 86, 90, 91, 93-96, 146, 147, 151, 152, 156, 158, 163-412 165, 173]. Studies using Alphard-3030 [47, 69, 158, 165, 173], Illuma [31, 33, 34, 413 92] and Vatech [18, 153] CBCT equipment chose to use large FOV that largely encompassed the children's heads. Large FOV should be avoided as much as 414 415 possible in pediatric dentistry. However, their use may be justified in some 416 indications, such as orthodontic analysis or the analysis of the upper airways. It 417 should be noted that in children, a field of view of 8 x 8 cm is sufficient to obtain all 418 the information useful for cephalometric analysis. It is also important to bear in 419 mind that the prescribing practitioner must be able to interpret all the information 420 shown in the images. The practitioner is responsible for the diagnosis of lesions, not 421 only dental lesions. Moreover, special attention is focused mainly on clinical aspects 422 such as the indications of CBCT in pediatric dentistry. 423 The radiation dose of a CBCT scan is significantly lower than that of a medical 424 computed tomography scan (CT scan) [91]. SEDENTEXT offers selection criteria

424 computed tomography scan (CT scan) [91]. SEDENTEXT offers selection criteria
425 related to clinical indications for the realization of CBCT [4]. CBCT should only be
426 used when the clinical issue cannot be resolved by conventional radiography, and
427 the FOV should be defined according to the region of interest [4, 86, 91].

428 Overall, the widely recognized advantages of CBCT widely recognized include X429 ray beam limitation, image accuracy, rapid scan time, display mode unique to
430 maxillofacial imaging, reduced image artefacts and dose reduction. The effective
431 dose of CBCT can be affected by up to an order of magnitude by the factors of
432 patient size, FOV, region of interest and resolution [112].

According to Khan Asif et al, a small FOV, higher voxel resolution, rapid scan time,
 and beam limitation are features of CBCT technology that make it suitable for use in

435 clinical and research studies [121].

436 Orthodontics

437 The information necessary to establish a treatment plan will be more accurate 438 when it is obtained from 3D images than when it is obtained from conventional 2D 439 techniques [40]. However, no statistically significant difference was observed between treatment plans using conventional 2D and 3D information [39]. The use of 440 441 3D scans to obtain a 2D result raises questions regarding the ALARA principle. Conventional radiographs are subject to projection error as well as landmark 442 443 identification and measurement problems. In contrast, 3D volumetric imaging 444 technique such as CBCT provide a better geometric precision, and spatial resolution, 445 and produce measurements that are not significantly affected by variation in skull 446 orientation or head position. Furthermore, the SEDENTEXT guidelines stated that in 447 the generalized application of CBCT for the developing dentition, studies on 448 measurement accuracy are highly relevant in orthodontics diagnosis and treatment planning, and advocate that CBCT can produce a precise depiction of tooth 449 450 interrelationship and associated bony anatomy [174]. 451 CBCT is more suitable than classical helical CT scan for the evaluation of 452 craniofacial structures because it allows a reduction in the dose of radiation, it is the 453 least expensive method, it allows the use of a variety of FOV, it has a submillimetric 454

454 spatial resolution, and it has increased accessibility [33].
455 Overall, the use of CBCT in orthodontics is considered acceptable when there is a
456 clinical benefit and when rational doses are used [52].

Maxillary expansion

457

458 CBCT have proven to be an accurate and a distortion-free method of the 459 visualization of the palatal area [83]. Moreover, this technology enables a 3D 460 visualization of the whole craniofacial complex with the precise and reliable 461 measurement of the change caused by maxillary expansion [53], even those that 462 occur at a distance from the activation zone [48], including the effect on 463 nasopharyngeal dimensions [84]. After activation, there may be an expansion that 464 includes not only the maxilla but also the lateral bones of the nose and the zygom at-465 ic muscles. Asymmetric expansion can also occur [48]. It is important to bear in 466 mind that the position of the head and tongue during the acquisition of CBCT scans, 467 breathing movements, swallowing movements and repositioning of the tongue and 468 of the mandible after maxillary expansion treatment are factors that influence the 469 measurement of respiratory routes [68]. The positions of the tongue and soft tissues

470	are important anatomical factors that influence the shape and size of the orophary nx
471	airway volumes [73]. Differences in appliance design, airway measurement tech-
472	niques and use of decongestants render comparisons between studies difficult [59].
473	CBCT is an effective technique for the evaluation of the degree of ossification and
474	for the developmental stage of the midpalatal suture. It happens irrespectively of age
475	due to the multiple viewpoints CBCT provides and its low radiation dose. Using
476	CBCT facilitates decisions regarding the use of rapid maxillary expansion or more
477	aggressive surgically assisted rapid maxillary expansion in young patients [160].
478	These parameters can be reliable in clinical decision-making between conventional
479	rapid maxillary expansion and surgical-assisted rapid maxillary expansion in
480	adolescents and in young adults [154]. The use of CBCT to determine the degree of
481	ossification and morphology of the midpalatal suture is necessary in all patients
482	[160].
483	CBCT images allowed to overcome the limitations of conventional postero-anterior
484	cephalometric radiographic in transverse width measurement including the inability
485	to reproduce reference landmarks and intercanine-, interpremolar- and intermolar
486	width due to the superimposition of posterior segment [58].
487	Fast and slow maxillary expansion in patients with bilateral cleft lips and palate
488	were compared in another study [52]. The rehabilitation of cleft lips and palate is
489	one of the recognized indications for the use of CBCT by the evidence-based
490	guidelines of the European Commission [4] and the clinical recommendations of the
491	American Academy of Oral and Maxillofacial Radiology [7]. Either slow maxillary
492	expansion or rapid maxillary expansion may be indicated to correct the constriction
493	of the maxillary arch in patients with bilateral cleft lips and palate because the
494	changes generated are similar between the two methods [81].

495 Radiological anatomy

Regardless of the imaging technique used, the identification of anatomical 496 497 landmarks in children depends on multiple factors, such as image density, image 498 sharpness, anatomical complexity, the superposition of hard tissue and soft tissue, definitions of landmarks, and the level of training of the observer [86]. CBCT offers 499 500 an imaging solution that avoids projection and overlay errors that are present in the 501 images created by traditional panoramic X-rays. CBCT is an excellent tool for 502 assisting in accurate diagnoses, predictable treatment plans, condition management 503 and effective patient education [86]. Its advantages include its lower radiation dose, lower cost, and similar image quality at a reduced dose of absorbed radiation, which 504 is particularly important for children [93]. However, CBCT images also have the 505 inherent drawbacks of soft tissue attenuation, patient movement artefacts, etc. This 506 variation may affect the accuracy of measurements [162]. 507 CBCT scanners can and will play an important role in the diagnosis of hard tissue 508 structures in the dentomaxillofacial region [175], which includes the morphologic 509 assessment of the bony structure of the temporomandibular joint [152, 166], but 510 511 CBCT cannot image the soft tissue structures [166]. CBCT is a good technique for canal detection for both the accessory canal foramina 512

513 [88], and other bone canals located in the anterior maxillary region that can enclose

514	neurovascular content [90], such as the nasopalatine canal, which has been shown to
515	present multiple morphological and dimensional variations [89].
516	The visualization of the intraosseous pathway of neurovascular structures is limited
517	in conventional X-rays. The detection of accessory mental foramen by means of a
518	3D reconstruction from a CBCT reduces the risk of paresthesia and postoperative
519	pain in this area [85]. Understanding peri-mandibular neurovascularization is
520	important for avoiding complications during anesthesia and during surgical
521	procedures. Localization knowledge of the lingula (landmark of the mandibular
522	nerve block) is also important to achieve effective anesthesia during dental care [91].
523	However, despite these advantages, CBCT should not be used for this purpose in
524	children and in adolescents [88].
525	CBCT also allows the visualization of the upper airways as well as measurements of
526	their volume and surfaces [151] with a good reliability and accuracy [164]. It is an
527	accepted diagnostic tool for this purpose [155]. Three-dimensional airway analysis
528	using CBCT requires a large FOV. This exposes the patient to more radiation
529	compared to the more conventional 2D airway analysis using cephalometric images
530	[157]. The use of low radiation exposure, multiple display mode in combination
531	with accurate images, thin slice thickness, real size analysis, and minimal
532	superimposition makes CBCT ideal for the evaluation of the nasal cavity [96].
533	Although CBCT is a good tool for studying the root and canal morphology of
534	temporary teeth, it cannot be used routinely for nonsurgical endodontic treatment
535	because there is a risk of overexposure to ionizing radiation. Until additional
536	evidence is available, CBCT should be considered only when the information
537	provided by conventional X-rays is limited and other data are necessary for
538	diagnosis and/or treatment planning, while ensuring that the patient's exposure to
539	radiation is as low as possible [150, 172]. As radiation exposure in children and
540	young people is associated with greater risk of stochastic effect, appropriate use in
541	pediatric dentistry is essential [171].
542	The presence of an ectopic canine seems to be a good indication for CBCT, as there
543	are a large number of reported cases of root resorptions found on adjacent teeth.
544	This technique allows the examination of small volumes and produces high-quality
545	images [175].
546	CBCT is an effective diagnostic tool for the assessment of mesiodens. It can provide
547	important data with regard to the position and direction of impaction, morphology,
548	and the condition of adjacent teeth. Therefore, CBCT is also a useful tool for plan-
549	ning the further course of action after the diagnosis of mesiodens [146]. These 3D
550	assessments may be able to reproduce teeth measurement with a high accuracy due
551	to their 1:1 ratio image relationship [176].

552 Clefts lips and palates

553CBCT, with its advancements, is becoming increasingly important in the diagnosis554and treatment of craniofacial abnormalities. Through its use, a large amount of555information has been made available. For patients with craniofacial anomalies, 3D556images provide a better understanding of the real dimensions of defects and thus557their extent and complexity [113]. In patients with cleft lips and palate, incidental558findings from CBCT exams were present in the majority of cases; therefore

559 clinicians caring for patient with cleft lips and palate should be aware of incidental 560 findings, which may warrant further investigation and/or treatment [114].

561 In individuals with a cleft lips and palate, the identification of the bone defect prior 562 to orthodontic management is extremely helpful. CBCT allows a better assessment 563 of the bone structure than can be gained through 2D imaging does. CBCT also 564 makes it possible to visualize the presence of recession and/or fenestration [104] and 565 to evaluate the position of the canine in relation to the root of the incisor and the 566 crest of the alveolar bone [113].

CBCT has become the gold standard for analyzing the anterior part of the skull base 567 [101]. The use of CBCT and analysis is an effective strategy for the 3D assessment 568 of the pharyngeal airway. An adequate diagnosis using CBCT could contribute to 569 cleft patients receiving more effective treatment in cooperation at an early stage 570 571 [111]. CBCT must be indicated with caution and should always be performed with 572 low dose protocols to obtain images of an adequate quality. Combining CBCT 573 information with a 3D impressions and digital photographs allows practitioners to 574 obtain the most complete 3D patient data [113].

575 Other indications

Other applications (evaluation of pulp capping, root fracture, incidental findings in
the maxillary sinus or of sinus pathology, before and after autotransplantation, X-ray
for patients with special needs, etc.) of CBCT have been mentioned in some
publications [127-132, 135-144]. These studies are heterogeneous, and more
research is needed to identify additional indications.

581 Limitations

582 The first limitation of this study is the small number of databases consulted. The 583 use of more databases, including Cochrane and Embase, may provide a more 584 complete picture and perhaps a better level of evidence. The latter is limited in our 585 work because only two randomized double-blind controlled studies were included. 586 Another limitation is the heterogeneity of the protocols established in the studies, 587 making comparisons difficult to perform and preventing conclusions from being 588 drawn. More research is needed to determine a standard CBCT protocol for use in 589 children and adolescents.

590 Conclusion

591 Despite its low level of evidence, this systematic review of the literature allows us 592 to distinguish two indications of CBCT in pediatric dentistry: for orthodontics and 593 for the rehabilitation of cleft lips and palate. There are likely to be other indications 594 whose identification requires more research. This work also shows that there exists 595 heterogeneity in the acquisition protocol used. More research is needed to determine 596 a standard CBCT protocol for children and adolescents.

598		
599	٠	Acknowledgements: none
600	•	Funding sources statement: This study was not supported by any fundings.
601	•	Competing interests: Prof. R. Olszewski declares competing interests as
602		Editor-in-Chief of Nemesis. S. Theys declares no conflict of interest.
603	•	interest.
604	•	Ethical approval: This article does not contain any studies with human
605		participants or animals performed by any of the authors. There was thus no need
606		for ethical committee approval for this study.
607	•	Informed consent: For this type of study, formal consent is not required.

608 Authors contribution:

Author	Contributor role
Stephanie Theys	Data collection, Investigation, Validation, Writing original draft preparation, Writing review and editing.
Raphael Olszewski	Conceptualization, Methodology, Validation, Supervision, Writing review and editing.

609 **References**

610 611	1. Van Acker JW, Martens LC, Aps JK. Cone-beam computed tomography in pediatric dentistry, a retrospective observational study. Clin Oral Investig
612	2016;20:1003-1010. <u>https://doi.org/10.1007/s00784-015-1592-3</u> .
613	
614	2. Conseil Supérieur de la Santé. «Avis du conseil supérieur de la santé n°8705
615	Dental Cone Beam Computed Tomography » Bruxelles, Belgium: Conseil
616	Supérieur de la Santé 2011.
617	https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_fil
618	e/19068321/Dental%20cone%20beam%20computed%20tomography%20%28f%C3
619	%A9vrier%202011%29%20%28CSS%208705%29.pdf
620	
621	3. Aps J. Cone beam computed tomography in paediatric dentistry: overview of
622	recent literature. Eur Arch Paediatr Dent 2013;14:131-140.
623	https://doi.org/10.1007/s40368013-0029-4.
624	
625	
626	

627	4. Sedentext. Radiation Protection n°172: Cone beam CT for dental and
628	maxillofacial radiology. Evidence based Guidelines. European Commission;2012.
629	http://www.sedentexct.eu/file/radiation protection 172.pdf Accessed 22 september
630	2019.
631	
632	5. Vandenberghe B, Jacobs R, Bosmans H. Modern dentalimaging: a review of the
633	current technology and clinical applications in dental practice. Eur Radiol
634	2010;20:2637-2655. http://doi.org/10.1007/s00330-010-1836-1.
635	
636	6. Horner K, Islam M, Flygare L, Tsiklakis K, Whaites E. Basic principles for use of
637	dental cone beam computed tomography: consensus guideline of the European
638	Academy of Dental and Maxillofacial Radiology. Dentomaxillofac Radiol
639	2009;38:187-195.http://doi.org/10.1259/dmfr/74941012.
640	
641	7. Evans CA, Scarfe WC, Ahmad M, Cevidanes LHS, Ludlow JB, Martin Palomo J,
642	Simmons KE, White SC. Clinical recommendations regarding use of cone beam
643	computed tomography in orthodontics. Position statement by the American
644	Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol
645	Oral Radiol 2013;116:238-257. http://doi.org/10.1016/j.0000.2013.06.002.
646	
647	8. Fayad MI, Nair M, Levin MD, Benavides E, Rubinstein RA, Barghan S,
648	Hirschberg CS, Ruprecht A. AAE and AAOMR Joint position statement: use of
649	cone beam computed tomography in endodontic 2015 Update. Oral Surg Oral Med
650	Oral Pathol Oral Radiol 2015;120:508-512.
651	http://doi.org/ <u>10.1016/j.0000.2015.07.033.</u>
652	
653	9. Baccetti T, De Clerck HJ, Cevidanes LH, Franchi L. Morphometric analysis of
654	treatment effects of bone-anchored maxillary protraction in growing Class III
655	patients. Eur J Orthod 2011;33:121-125. <u>http://doi.org/10.1093/ejo/cjq170</u> .
656	
657	10. De Clerck H, Cevidanes L, Baccetti T. Dentofacial effects of bone-anchored
658	maxillary protraction: A controlled study of consecutively treated Class III patients.
659	Am J Orthod DentofacialOrthop 2010;138:577-581.
660	https://doi.org/10.1016/j.ajodo.2009.10.037.
661	
662	11. Deberardinis M, Stretesky T, Sinha P, Nanda RS. An evaluation of the skeletal
663	and dental effects of a modified vertical holding appliance. Am J Orthod Dentofacial
664	Orthop 2000;117:700-705.
665	
666	
667	
668	

669	12. Nguyen T, Cevidanes L, Paniagua B, Zhu H, Koerich L, De Clerck H. Use of
670	shape correspondence analysis to quantify skeletal changes associated with bone
671	anchored Class III correction. Angle Orthod 2014;84:329-336.
672	http://doi.org/ <u>10.2319/041513-288.1.</u>
673	
674	13. Nguyen T, De Clerck H, Wilson M, Golden B. Effect of Class III bone anchor
675	treatment on airway. Angle Orthod 2015;85:591-596.
676	http://doi.org/10.2319/041614-282.1.
677	
678	14. Tai K, Park JH, Mishima K, Shin JW. 3-Dimensional cone-beam computed
679	tomography analysis of transverse changes with Schwarz appliances on both jaws.
680	Angle Orthod 2011;81:670-677. http://doi.org/10.2319/110910-655.1.
681	
682	15. Tai K, Park JH. Dental and skeletal changes in the upper and lower jaws after
683	treatment with schwarz appliances using cone-beam computed tomography. J Clin
684	Pediatr Dent 2010;35:111-120.
685	http://doi.org/10.17796/jcpd.35.1.b21t44rj34027603.
686	
687	16. Taylor KL, Evangelista K, Muniz L, de Oliveira Ruellas AC, Valladares-Neto J,
688	McNamara Jr J, Franchi L, Kim-Berman H, Soares Cevidanes LH. Three
689	dimensional comparison of the skeletal and dentoalveolar effects of the Herbst and
690	Pendulum appliances followed by fixed appliances: A CBCT study. Orthod
691	Craniofac Res 2020;23:72-81. http://doi.org/10.1111/ocr.12345.
692	
693	17. Faco R, Yatabe M, Cevidanes LH, Timmerman H, De Clerck HJ, Garib D. Bone
694	anchored maxillary protraction in unilateral cleft lip and palate: a cephalometric
695	appraisal. Eur J Orthod 2019;41:537-543. <u>http://doi.org/10.1093/ejo/cjz005</u> .
696	
697	18. Sfeir E, Gholmieh M, Skaf Z, Mourad A. Alveolar Bone and epithelial
698	attachment status following two different closed-eruption surgical techniques for
699	impacted maxillary central incisors. Int J Clin Pediatr Dent 2018;11:317-322.
700	http://doi.org/10.5005/jp-journals-10005-1532.
701	
702	19. Gazzani F, de Oliveira Ruellas AC, Faltin K, Franchi L, Cozza P, Bigliazzi R,
703	Soares Cevidanes LH, Lione R. 3D comparison of mandibular response to
704	functional appliances: Balters bionator versus Sander bite jumping. Biomed Res Int
705	2018;2018:2568235. <u>http://doi.org/10.1155/2018/2568235</u> .
706	
707	
708	
709	

710	20. Angelieri F, Ruellas AC, Yatabe MS, Cevidanes LHS, Franchi L, Toyama-Hino
711	C, De Clerck HJ, Nguyen T, McNamara Jr JA. Zygomaticomaxillary suture
712	maturation: Part II-The influence of sutural maturation on the response to maxillary
713	protraction. Orthod Carniofac Res 2017;20:152-163.
714	http://doi.org/10.1111/ocr.12191.
715	
716	21. Moreira Oliveira P, Loureiro Cheib-Vilefort P, de Parsia Gontijo H, Aquino
717	Melgaço C, Franchi L, Mcnamara Jr JA, Quiroga Souki B. Three-dimensional
718	changes of the upper airway in patients with Class II malocclusion treated with the
719	Herbst appliance: A cone-beam computed tomography study. Am J Orthod
720	DentofacialOrthop 2020;157:205-211. http://doi.org/10.1016/j.ajodo.2019.03.021
721	
722	22. Thereza-Bussolaro C. Oh HS. Lagravère M. Flores-Mir C. Pharyngeal
723	dimensional changes in class II malocclusion treatment when using Forsus® or
724	intermaxillary elastics – An exploratory study Modifications des dimensions du
725	pharvnx dans le traitement des malocclusions de classe II lors de l'utilisation
726	d'élastiques Forsus® ou intermaxillaires – étude exploratoire]. Int Orthod
727	2019;17:667-677. http://doi.org/10.1016/j.ortho.2019.08.023.
728	
729	23. Alhammadi MS, Elfeky HY, Fayed MS, Ishaq RAR, Halboub E, Al-Mashraqi
730	AA. Three-dimensional skeletal and pharyngeal airway changes following therapy
731	with functional appliances in growing skeletal Class II malocclusion patients: A
732	controlled clinical trial. J Orofac Orthop 2019;80:254-265.
733	http://doi.org/10.1007/s00056-019-00185-7
734	
735	24. Kang Q, Cha C, Huang D, Zuo S, Yan X. Evaluation of palatal support tissues
736	for placement of orthodontic mini-implants in mouth breathers with high-narrow
737	palates versus nose breathers with normal palates: a retrospective study. Clin Oral
738	Invest 2020;24:1259-1267. http://doi.org/10.1007/s00784-019-03004-w.
739	
740	25. Sayure Okano K, Soares Cevidanes LH, Loureiro Cheib P, de Oliveira Ruellas
741	AC, Yatabe M, Nguyen T, Franchi L, Mcnamara Jr JA, Quiroga Souki B. Three
742	dimensional assessment of the middle cranial fossa and central skull base following
743	Herbst appliance treatment. Angle Orthod 2018;88:757-764.
744	http://doi.org/10.2319/101517-694.1.
745	
746	26. Isidor S, Di Carlo G, Cornelis MA, Isidor F, Cattaneo PM. Three-dimensional
747	evaluation of changes in upper airway volume in growing skeletal Class II patients
748	following mandibular advancement treatment with functional orthopedic appliances.
749	Angle Ortho. 2018;88:552-559. http://doi.org/10.2319/083117-587.1.
750	-

751	27. Elfeky HY, Fayed MS, Alhammadi MS, Soliman SAZ, El Boghdadi DM. Three
752	dimensional skeletal, dentoalveolar and temporomandibular joint changes produced
753	by Twin Block functional appliance [Dreidimensionale skelettale, dentoalveoläre
754	und temporomandibuläre Gelenkveränderungen nach Behandlung mit der Twin
755	Block-Apparatur]. J Orofac Orthop 2018;79:245-258.
756	<u>http://doi.org/10.1007/s00056-018-0137-1</u> .
757	
758	28. Yatabe M, Garib D, Faco R, De Clerck H, Souki B, Janson G, Nguyen T,
759	Cevidanes L, Ruellas A. Mandibular and glenoid fossa changes after bone-anchored
760	maxillary protraction therapy in patients with UCLP: A 3-D preliminary assessment.
761	Angle Orthod 2017;87:423-431. http://doi.org/10.2319/052516-419.1.
762	
763	29. Hu H, Hu R, Jiang H, Cao Z, Sun H, Jin Ch, Sun Ch, Fang Y. Survival of labial
764	inversely impacted maxillary central incisors: A retrospective cone-beam computed
765	tomography 2-year follow-up. Am J Orthod Dentofacial Orthop 2017;151:860-868.
766	<u>http://doi.org/10.1016/j.ajodo.2016.10.029</u> .
767	
768	30. Tikku T, Khanna R, Sachan K, Srivastava K, Munjal N. Dimensional changes in
769	maxillary sinus of mouth breathers. J Oral Biol Craniofac Res 2013;3:9-14.
770	http://doi.org/10.1016/j.jobcr.2012.11.005.
771	
772	31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular
772 773	31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in
772 773 774	31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod
772 773 774 775	31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121.
772 773 774 775 776	31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121.
772 773 774 775 776 777	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of
772 773 774 775 776 777 778	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction
772 773 774 775 776 777 778 779	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853.
772 773 774 775 776 777 778 779 780	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1.
772 773 774 775 776 777 778 779 780 781	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1.
772 773 774 775 776 777 778 779 780 781 782	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129.http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with
772 773 774 775 776 777 778 779 780 781 782 783	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod
772 773 774 775 776 777 778 779 780 781 782 783 784	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporom andibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129.http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod 2014;84:1018-1025. http://doi.org/10.2319/112713-869.1.
772 773 774 775 776 777 778 779 780 781 782 783 784 785	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod 2014;84:1018-1025. http://doi.org/10.2319/112713-869.1.
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporom andibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129.http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod 2014;84:1018-1025. http://doi.org/10.2319/112713-869.1. 34. Erbas B, Kocadereli I. Upper airway changes after Xbow appliance therapy
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporom andibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129.http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod 2014;84:1018-1025. http://doi.org/10.2319/112713-869.1. 34. Erbas B, Kocadereli I. Upper airway changes after Xbow appliance therapy evaluated with cone beam computed tomography. Angle Orthod 2014;84:693-
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod 2014;84:1018-1025. http://doi.org/10.2319/112713-869.1. 34. Erbas B, Kocadereli I. Upper airway changes after Xbow appliance therapy evaluated with cone beam computed tomography. Angle Orthod 2014;84:693-700. http://doi.org/10.2319/072213-533.1.
772 773 774 775 776 777 778 779 780 781 782 783 784 783 784 785 786 787 788 789	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod 2014;84:1018-1025. http://doi.org/10.2319/112713-869.1. 34. Erbas B, Kocadereli I. Upper airway changes after Xbow appliance therapy evaluated with cone beam computed tomography. Angle Orthod 2014;84:693-700. http://doi.org/10.2319/072213-533.1.
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 785 786 787 788 789 790	 31. Coskuner HG, Ciger S. Three-dimensional assessment of the temporomandibular joint and mandibular dimensions after early correction of the maxillary arch form in patients with Class II division 1 or division 2 malocclusion. Korean J Orthod 2015;45:121-129. http://doi.org/10.4041/kjod.2015.45.3.121. 32. González MF, Pedersen TK, Dalstra M, Herlin T, Verna C. 3D evaluation of mandibular skeletal changes in juvenile arthritis patients treated with a distraction splint: A retrospective follow-up. Angle Orthod 2016;86:846-853. http://doi.org/10.2319/081715-549.1. 33. Yildirim E, Karacay S, Erkan M. Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography. Angle Orthod 2014;84:1018-1025. http://doi.org/10.2319/112713-869.1. 34. Erbas B, Kocadereli I. Upper airway changes after Xbow appliance therapy evaluated with cone beam computed tomography. Angle Orthod 2014;84:693-700. http://doi.org/10.2319/072213-533.1.

792	35. Jiang YY. Correlation between hyoid bone position and airway dimensions in
793	Chinese adolescents by cone beam computed tomography analysis. Int J Oral
794	Maxillofac Surg 2016;45:914-921. http://doi.org/10.1016/j.ijom.2016.02.005.
795	
796	36. Li L, Liu H, Cheng H, Han Y, Wang Ch, Chen Y, Song J, Liu D. CBCT
797	evaluation of the upper airway morphological changes in growing patients of class II
798	division 1 malocclusion with mandibular retrusion using twin block appliance: a
799	comparative research. PLoS One 2014;9:e94378.
800	http://doi.org/10.1371/journal.pone.0094378.
801	
802	37. Li L, Wu W, Yan G, Liu L, Liu H, Li G, Liu D. Analogue simulation of
803	pharyngeal airflow response to Twin Block treatment in growing patients with Class
804	II(1) and mandibular retrognathia. Sci Rep 2016;18:26012.
805	http://doi.org/10.1038/srep26012.
806	
807	38. Rizk S, Kulbersh VP, Al-Qawasmi R. Changes in the oropharyngeal airway of
808	Class II patients treated with the mandibular anterior repositioning appliance. Angle
809	Orthod 2016;86:955-961. http://doi.org/10.2319/042915-295.1.
810	
811	39. Alqerban A, Willems G, Bernaerts C, Vangastel J, Politis C, Jacobs R.
812	Orthodontic treatment planning for impacted maxillary canines using conventional
813	records versus 3D CBCT. Eur J Orthod 2014;36:698-707.
814	http://doi.org/10.1093/ejo/cjt100.
815	
816	40. Farronato G, Salvadori S, Nolet F, Zoia A, Farronato D. Assessment of inter-
817	and intra-operator cephalometric tracings on cone beam CT radiographs:
818	comparison of the precision of the cone beam CT versus the latero-lateral radiograph
819	tracing. Prog Orthod 2014;15:1. http://doi.org/10.1186/2196-1042-15-1.
820	
821	41. Pachêco-Pereira C, Alsufyani NA, Major M, Heo G, Flores-Mir C. Accuracy
822	and reliability of orthodontists using cone-beam computerized tomography for
823	assessment of adenoid hypertrophy. Am J Orthod Dentofacial Orthop.
824	2016;150:782-788.http://doi.org/ <u>10.1016/j.ajodo.2016.03.030</u> .
825	
826	42. Veli I, Uysal T, Ozer T, Ucar FI, Eruz M. Mandibular asymmetry in unilateral
827	and bilateral posterior crossbite patients using cone-beam computed tomography.
828	Angle Orthod 2011;81:966-974. http://doi.org/10.2319/022011-122.1.
829	
830	43. Akin M, Akgul YE, Ileri Z, Basciftci FA. Three-dimensional evaluation of
831	hybrid expander appliances: A pilot study. Angle Orthod 2016;86:81-86.
832	http//doi.org/ <u>10.2319/121214-902.1.</u>

833	
834	44. Aziz T, Wheatley FC, Ansari K, Lagravere M, Major M, Flores-Mir C. Nasal
835	septum changes in adolescent patients treated with rapid maxillary expansion.
836	Dental Press J Orthod 2016;21:47-53.
837	http://doi.org/10.1590/21776709.21.1.047053.oar.
838	
839	45. Baysal A, Veli I, Ucar FI, Eruz M, Ozer T, Uysal T. Changes in mandibular
840	transversal arch dimensions after rapid maxillary expansion procedure assessed
841	through cone-beam computed tomography. Korean J Orthod 2011;41:200-210.
842	http://doi.org/10.4041/kjod.2011.41.3.200.
843	
844	46. Christie KF, Boucher N, Chung CH. Effects of bonded rapid palatal expansion
845	on the transverse dimensions of the maxilla: A cone-beam computed tomography
846	study. Am J Orthop DentofacialOrthop 2010;137:S79-S85.
847	http://doi.org/10.1016/j.ajodo.2008.11.024.
848	
849	47. Kanomi R, Deguchi T, Kakuno E, Takano-Yamamoto T, Roberts WE. CBCT of
850	skeletal changes following rapid maxillary expansion to increase arch-length with a
851	development-dependent bonded or banded appliance. Angle Orthod 2013;83:851-
852	857. http://doi.org/ <u>10.2319/082012-669.1.</u>
853	
854	48. Ong SC, Khambay BS, McDonald JP, Cross DL, Brocklebank LM, Ju X. The
855	novel use of three-dimensional surface models to quantify and visualise the
856	immediate changes of the mid-facial skeleton following rapid maxillary expansion.
857	Surgeon 2015;13:132-138. http://doi.org/10.1016/j.surge.2013.10.012.
858	
859	49. Oh H, Park J, Lagravere-Vich MO Comparison of traditional RPE with two
860	types of micro-implant assisted RPE: CBCT study. Semin Orthod 2019;25:60-68.
861	http://doi.org/10.1053/j.sodo.2019.02.007
862	
863	50. Digregorio MV, Fastuca R, Zecca PA, Caprioglio A, Lagravere MO. Buccal
864	bone plate thickness after rapid maxillary expansion in mixed and permanent
865	dentitions. Am J Orthod DentofacialOrthop 2019;155:198-206.
866	http://doi.org/10.1016/j.ajodo.2018.03.020.
867	
868	51. Ribeiro GLU, Jacob HB, Brunetto M, da Silva Pereira J, Tanaka OM, Buschang
869	PH. A preliminary 3-D comparison of rapid and slow maxillary expansion in
870	children: A randomized clinical trial. Int J Paediatr Dent 2020;30:349-359.
871	http://doi.org/10.1111/ipd.12597.
872	
873	

874	52. Malagodi de Almeida A, Ozawa TO, de Medeiros Alves AC, Janson G, Pereira
875	Lauris JR, Yatabe Ishida MS, Gamba Garis D. Slow versus rapid maxillary
876	expansion in bilateral cleft lip and palate: a CBCT randomized clinical trial. Clin
877	Oral Invest 2017;21:1789-1799. http://doi.org/10.1007/s00784-016-1943-8.
878	
879	53. Bigliazzi R, de Oliveira Silva Magalhaes A, Magalhaes PE, de Magalhaes
880	Bertoz AP, Faltin K, Arita ES, Bertoz FA. Cone-beam computed tomography
881	evaluation of bone density of midpalatal suture before, after, and during retention of
882	rapid maxillary expansion in growing patients. J World Fed Orthod 2017;6:15-19.
883	http://doi.org/10.1016/j.ejwf.2017.01.001.
884	
885	54. Abdul-Aziz AI, Refai WM. Three-dimensional prospective evaluation of
886	piezocision-assisted and conventional rapid maxillary expansion: A controlled
887	clinical trial. Open Access Maced J Med Sci 2019;7:127-133.
888	http://doi.org/10.3889/oamjms.2019.021.
889	
890	55. Corbridge JK, Campbell PM, Taylor R, Ceen RF, Buschang PH. Transverse
891	dentoalveolar changes after slow maxillary expansion. Am J Orthod Dentofacial
892	Orthop 2011;140:317-325. http://doi.org/10.1016/j.ajodo.2010.06.025.
893	
894	56. Rosa M, Lucchi P, Manti G, Caprioglio A. Rapid Palatal Expansion in the
895	absence of posterior cross-bite to intercept maxillary incisor crowding in the mixed
896	dentition: a CBCT evaluation of spontaneous changes of untouched permanent
897	molars. Eur J Paediatr Dent 2016;17:286-294.
898	
899	57. Fischer B, Masucci C, Ruellas A, Cevidanes L, Giuniti V, Nieri M, Nardi C,
900	Franchi L, McNamara Jr JA, Defraia E. Three-dimensional evaluation of the
901	maxillary effects of two orthopaedic protocols for the treatment of Class III
902	malocclusion: A prospective study. Orthod Craniofac Res 2018;21:248-257.
903	<u>http://doi.org/10.1111/ocr.12247</u> .
904	
905	58. Milad SAA, Hussein FA, Mohammed AD, Hashem MI. Three-dimensional
906	assessment of transverse dentoskeletal mandibular dimensions after utilizing two
907	designs of fixed mandibular expansion appliance: A prospective clinical
908	investigation. SaudiJ Biol Sci 2020;27:727-735.
909	http://doi.org/10.1016/j.sjbs.2019.12.008.
910	
911	59. Kavand G, Lagrève M, Kula K, Stewart K, Ghoneima A. Retrospective CBCT
912	analysis of airway volume changes after bone-borne vs tooth-borne rapid maxillary
913	expansion. Angle Orthod 2019;89:566-574. http://doi.org/10.2319/070818-507.1.
914	

915	60. Gregorio L, de Medeiros Alves AC, de Almeida AM, Naveda R, Janson G,
916	Garib D. Cephalometric evaluation of rapid and slow maxillary expansion in
917	patients with BCLP: Secondary data analysis from a randomized clinical trial. Angle
918	Orthod 2019;89:583-589. http://doi.org/10.2319/081018-589.1.
919	
920	61. Altorkat Y, Khambay BS, McDonald JP, Cross DL, Brocklebank LM, Ju X.
921	Immediate effects of rapid maxillary expansion on the naso-maxillary facial soft
922	tissue using 3D stereophotogrammetry. Surgeon 2016;14:63-68.
923	http://doi.org/10.1016/j.surge.2014.04.005.
924	
925	62. Baysal A, Karadede I, Hekimoglu S, Ucar F, Ozer T, Veli I, Uysal T. Evaluation
926	of root resorption following rapid maxillary expansion using cone-beam computed
927	tomography. Angle Orthod 2012;82:488-494. <u>http://doi.org/10.2319/060411-367.1</u> .
928	
929	63. Dindaroğlu F, Doğan S. Evaluation and comparison of root resorption between
930	tooth-borne and tooth-tissue borne rapid maxillary expansion appliances: ACBCT
931	study. Angle Orthod 2016;86:46-52. http://doi.org/10.2319/010515-007.1.
932	
933	64. Cardinal L, da Rosa Zimermann G, Mendes FM, Andrade I Jr, Oliveira DD,
934	Dominguez GC. The impact of rapid maxillary expansion on maxillary first molar
935	root morphology of cleft subjects. Clin Oral Investig 2018;22:369-376.
936	http://doi.org/10.1007/s00784-017-2121-3.
937	
938	65. Chang Y, Koenig LJ, Pruszynski JE, Bradley TG, Bosio JA, Liu D. Dimensional
939	changes of upper airway after rapid maxillary expansion: A prospective cone-beam
940	computed tomography study. Am J Orthod DentofacialOrthop 2013;143(4):462-
941	470. <u>http://doi.org/10.1016/j.ajodo.2012.11.019</u> .
942	
943	66. Chen X, Liu D, Liu J, Liu J, Wu Z, Xie Y, Li L, Liu H, Guo T, Chen Ch, Zhang
944	S. Three-dimensional evaluation of the upper airway morphological changes in
945	growing patients with skeletal class III malocclusion treated by Protraction
946	Headgear and rapid palatal expansion: A comparative research. PLoS One
947	2015;10:e0135273. <u>http://doi.org/10.1371/journal.pone.0135273</u> .
948	
949	67. Fastuca R, Perinetti G, Zecca PA, Nucera R, Caprioglio A. Airway
950	compartments volume and oxygen saturation changes after rapid maxillary
951	expansion: a longitudinal correlation study. Angle Orthod 2015;85:955-961.
952	http://doi.org/10.2319/072014-504.1
953	
954	
955	

956	68. Fastuca R, Zecca PA, Caprioglio A. Role of mandibular displacement and
957	airway size in improving breathing after rapid maxillary expansion. Prog Orthod
958	2014;15:40. <u>http://doi.org/10.1186/s40510-014-0040-2</u> .
959	
960	69. Iwasaki T, Takemoto Y, Inada E, Sato H, Suga H, Saitoh I, Kakuno E, Kanomi
961	R, Yamasaki Y. The effect of rapid maxillary expansion on pharyngeal airway
962	pressure during inspiration evaluated using computational fluid dynamics. Int J
963	Pediatr Otorhinolaryngol 2014;78:1258-1264.
964	http://doi.org/10.1016/j.ijporl.2014.05.004.
965	
966	70. Izuka EN, Feres MF, Pignatari SS. Immediate impact of rapid maxillary
967	expansion on upper airway dimensions and on the quality of life of mouth breathers.
968	Dental Press J Orthod 2015;20:43-49.
969	http://di.org/10.1590/2176-9451.20.3.043049.oar.
970	
971	71. Kabalan O, Gordon J, Heo G, Lagravère MO. Nasal airway changes in bone
972	borne and tooth-borne rapid maxillary expansion treatments. Int Orthod 2015;13:1-
973	15. http://doi.org/10.1016/j.ortho.2014.12.011.
974	
975	72. Ribeiro AN, de Paiva JB, Rino-Neto J, Illipronti-Filho E, Trivino T, Fantini SM.
976	Upper airway expansion after rapid maxillary expansion evaluated with cone beam
977	computed tomography. Angle Orthod 2012;82:458-463.
978	http://doi.org/10.2319/030411-157.1.
979	
980	73. Zhao Y, Nguyen M, Gohl E, Mah JK, Sameshima G, Enciso R. Oropharyngeal
981	airway changes after rapid palatal expansion evaluated with cone-beam computed
982	tomography. Am J Orthod DentofacialOrthop 2010;137:S71-S78.
983	http://doi.org/10.1016/j.ajodo.2008.08.026.
984	
985	74. Maspero C, Galbiati G, Del Rosso E, Farranato M, Giannini L. RME: Effects on
986	the nasal septum. A CBCT evaluation. Eur J Paediatr Dent 2019;20:123-126.
987	http://doi.org/10.23804/ejpd.2019.20.02.08.
988	
989	75. Iwasaki T, Yanagisawa-Minami A, Suga H, Shirazawa Y, Tsujii T, Yamamoto
990	Y, Ban Y, Sato-Hashiguchi M, sato H, Kanomi R, Yamasaki Y. Rapid maxillary
991	expansion effects of nasal airway in children with cleft lip and palate using
992	computational fluid dynamics. Orthod Craniofac Res 2019;22:201-207.
993	http://doi.org/10.1111/ocr.12311.
994	· · ·
995	
996	

997	76. Abdalla Y, Brown L, Sonnesen L. Effects of rapid maxillary expansion on upper
998	airway volume: A three-dimensional cone-beam computed tomography study. Angle
999	Orthod 2019;89:917-923. http://doi.org/10.2319/101218-738.1.
1000	
1001	77. Almuzian M, Ju X, Almukhtar A, Ayoub A, Al-Muzian L, McDonald JP. Does
1002	rapid maxillary expansion affect nasopharyngeal airway? A prospective cone beam
1003	computerised tomography (CBCT) based study. Surgeon 2018;16:1-11.
1004	http://doi.org/10.1016/j.surge.2015.12.006.
1005	
1006	78. Lo Giudice A, Fastuca R, Portelli M, et al. Effects of rapid vs slow maxillary
1007	expansion on nasal cavity dimensions in growing subjects: A methodological and
1008	reproducibility study. Eur J Paediatr Dent 2017;18:299-304.
1009	http://doi.org/10.23804/ejpd.2017.18.04.07.
1010	
1011	79. Papadopoulou AK, Dalci O, Petocz P, Darendeliler MA. Effects of hybrid
1012	Hyrax, Alt-RAMEC and miniscrew reinforced heavy Class III elastics in growing
1013	maxillary retrusive patients. A four-year follow-up pilot study. Aust Orthod J
1014	2017;33:199-211. http://doi.org/10.21307/aoj-2020-099.
1015	
1016	80. Cevidanes L, Baccetti T, Franchi L, McNamara JA Jr, De Clerck H. Comparison
1017	of two protocols for maxillary protraction: Bone anchors versus face mask with
1018	rapid maxillary expansion. Angle Orthod 2010;80:799-806.
1019	http://doi.org/ <u>10.2319/111709-651.1.</u>
1020	
1021	81. Malagodi de Almeida A, Ozawa TO, de Medeiros Alves AC, Janson G, Pereira
1022	Lauris JR, Yatabe Ioshida MS, Gamba Garib D. Slow versus rapid maxillary
1023	expansion in bilateral cleft lip and palate: a CBCT randomized clinical trial. Clin
1024	Oral Investig 2017;21:1789-1799. http://doi.org/10.1007/s00784-016-1943-8.
1025	
1026	82. Isfeld D, Flores-Mir C, Leon-Salazar V, Lagravère M. Evaluation of a novel
1027	palatal suture maturation classification as assessed by cone-beam computed
1028	tomography imaging of a pre- and postexpansion treatment cohort. Angle Orthod
1029	2019;89:252-261. http://doi.org/10.2319/040518-258.1.
1030	
1031	83. Strzecki A, Osiewacz S, Jablonska-Zrobek J, Sczepanska J, Pawlowska E. The
1032	qualitative assessment of median and transverse palatal sutures in various age
1033	groups -a CBCT analysis. Aust Orthod J 2018;34:171-178.
1034	http://doi.org/10.21307/AOJ-2020-068.
1035	
1036	

1037	84. Almuzian M, Al Ghatam HM, Al-Muzian L. Assessing the validity of ITK-
1038	SNAP software package in measuring the volume of upper airway spaces secondary
1039	to rapid maxillary expansion. J Orthod Sci 2018;7:7.
1040	http://doi.org/10.4103/jos.JOS 93 17.
1041	
1042	85. Cantekin K, Şekerci A. Evaluation of the accessory mental foramen in a
1043	pediatric population using cone-beam computed tomography. JClin Pediatr Dent
1044	2014;39:85-89. http://doi.org/10.17796/jcpd.39.1.rxtrn82463716907.
1045	
1046	86. Cantekin K, Sekerci AE, Miloglu O, Buyuk SK. Identification of the mandibular
1047	landmarks in a pediatric population. Med Oral Patol Oral Cir Bucal
1048	2014;19:e136-e141.http://doi.org/ <u>10.4317/medoral.18980.</u>
1049	
1050	87. Demiriz L, Hazar Bodrumlu E, İçen M, Durmuşlar MC. Evaluation of the
1051	accuracy of cone beam computed tomography on measuring impacted
1052	supernumerary teeth. Scanning 2016;38:579-584.
1053	http://doi.org/doi:10.1002/sca.21303.
1054	
1055	88. Orhan AI, Orhan K, Aksoy S, Ozgul O, Horasan S, Arslan A, Kocyigit D.
1056	Evaluation of perimandibular neurovascularization with accessory mental foramina
1057	using cone-beam computed tomography in children. J Craniofac Surg 2013;24:e365-
1058	e369. http://doi.org/10.1097/SCS.0b013e3182902f49.
1059	
1060	89. Sekerci AE, Buyuk SK, Cantekin K. Cone-beam computed tomographic analysis
1061	of the morphological characterization of the nasopalatine canal in a pediatric
1062	population. Surg Radiol Anat 2014;36:925-932.
1063	http://doi.org/ <u>10.1007/s00276-014-1271-0.</u>
1064	
1065	90. Sekerci AE, Cantekin K, Aydinbelge M. Cone beam computed tomographic
1066	analysis of neurovascular anatomical variations other than the nasopalatine canal in
1067	the anterior maxilla in a pediatric population. Surg Radiol Anat 2015;37:181-186.
1068	http://doi.org/10.1007/s00276-014-1303-9.
1069	
1070	91. Sekerci AE, Cantekin K, Aydinbelge M. Cone beam computed tomographic
1071	analysis of the shape, height, and location of the mandibular lingula in a population
1072	of children. Biomed Res Int 2013;2013:825453.
1073	http://doi.org/10.1155/2013/825453.
1074	
1075	
1076	
1077	

	34 [Nemesis] CBCT in pediatric dentistry: A systematic review
1078	92. Gorucu-Coskuper H. Ciger S. Computed tomography assessment of
1079	temporomandibular joint position and dimensions in patients with class II division 1
1080	and division 2 malocclusions. J Clin Exp Dent 2017:9:e417-e423.
1081	http://doi.org/10.4317/iced.53524.
1082	
1083	93. Koparal M, Yalcin ED, Aksov O, Oczan-Kucuk A. Evaluation of maxillary
1084	sinus volume and surface area in children with β -thalassaemia using cone beam
1085	computed tomography. Int J Pediatr Otorhinolaryngol 2019;125:59-65.
1086	http://doi.org/10.1016/j.ijporl.2019.06.022.
1087	
1088	94. Kaplan FA, Bayrakdar IS, Bilgir E. Incidence of anomalous canals in the base of
1089	the skull: a retrospective radio-anatomical study using cone-beam computed
1090	tomography. Surg Radiol Anat 2020;42:171-177.
1091	http://doi.org/10.1007/s00276-019-02307-7.
1092	
1093	95. Yasa Y, Bayrakdar IS, Duman SB, Gumussoy I. Morphometric analysis of sella
1094	turcica using cone beam computed tomography. J Craniofac Surg 2017;28:e70-e74.
1095	http://doi/org/ <u>10.1097/SCS.00000000003223.</u>
1096	
1097	96. Turhan B, Kervancioglu P, Yalcin ED. The radiological evaluation of the nasal
1098	cavity, conchae and nasal septum volumes by stereological method: A retrospective
1099	cone-beam computed tomography study. Adv. Clin Exp Med 2019;28:1021-
1100	1026. <u>http://doi.org/10.17219/acem/98960</u> .
1101	
1102	97. van Bilsen MWT, Schreurs R, Meulstee JW, Kuijpers MAR, Meijer GJ, Bortslap
1103	WA, Bergé SJ, Maal TJJ. Evaluation of the anterior mandibular donor site one year
1104	after secondary reconstruction of an alveolar cleft: 3 dimensional analysis using
1105	cone-beam computed tomography. Br J Oral Maxillofac Surg 2015;53:719-724.
1106	<u>http://doi.org/10.1016/j.bjoms.2015.04.023</u> .
1107	
1108	98. Grailon N, Degardin N, Foletti JM, Seiler M, Alessandrini M, Gallucci A.
1109	Bioactive glass 4555 ceramic for alveolar cieft reconstruction, about 58 cases. J
1110	Craniomaxillofac Surg 2018;46:1772-1776.
1111	http://doi.org/ <u>10.1016/j.jcms.2018.0/.016.</u>
1112	
1113	99. Alves Garcia M, Yatabe M, Fuzer IU, Calvo AM, Irindade-Suedam IK. Ideal
1114	versus late secondary alveolar bone graft surgery: A bone-thickness cone-beam
6111	computed tomographic assessment. Cieft Palate Craniofac J 2018;55:369-3/4.
1110	<u>nup://doi.org/10.11///105500501//58401</u> .
1117	
1110	

1119	100. Demirtas O, Kalabalik F, Dane A, Murat Aktan A, Ciftci E, Tarim E. Does
1120	unilateral cleft lip and palate affect the maxillary sinus volume? Cleft Palate
1121	Craniofac J 2018;55:168-172. <u>http://doi.org/10.1177/1055665617726991</u> .
1122	
1123	101. Didem Yalcin ED. Assessment of sphenoid sinus types in patients with cleft lip
1124	and palate on cone-beam CT. Eur Arch Otorhinolaryngol 2020;277:1101-1108.
1125	http://doi.org/10.1007/s00405-020-05810-5.
1126	
1127	102. Uçar FI, Buyuk SK, Şekerci AE, Celikoglu M. Evaluation of
1128	temporomandibular fossa and mandibular condyle in adolescent patients affected by
1129	bilateral cleft lip and palate using cone beam computed tomography. Scanning
1130	2016;38:720-726. <u>http://doi.org/10.1002/sca.21320</u> .
1131	
1132	103. Yasa Y, Bayrakdar IS, Ocak A, Duman SB, Dedeoglu N. Evaluation of sella
1133	turcica shape and dimensions in cleft subjects using cone-beam computed
1134	tomography. Med Princ Pract 2017;26:280-285. <u>http://doi.org/10.1159/000453526</u> .
1135	
1136	104. Buyuk SK, Ercan E, Celikoglu M, Sekerci AE, Hatipoglu M. Evaluation of
1137	dehiscence and fenestration in adolescent patients affected by unilateral cleft lip and
1138	palate: A retrospective cone beam computed tomography study. Angle Orthod
1139	2016;86:431-436. http://doi.org/10.2319/042715-289.1.
1140	
1141	105. Celikoglu M, Buyuk SK, Hatipoglu M, Sekerci AE, Citci ME. Evaluation of
1142	dehiscence and fenestration in adolescents affected by bilateral cleft lip and palate
1143	using cone-beam computed tomography. Am J Orthod Dentofacial Orthop
1144	2017;152:458-464. http://doi.org/10.1016/j.ajodo.2017.01.024.
1145	
1146	106. Celebi AA, Ucar FI, Sekerci AE, Caglaroglu M, Tan E. Effects of cleft lip and
1147	palate on the development of permanent upper central incisors: a cone-beam
1148	computed tomography study. Eur J Orthod 2015;37:544-549.
1149	http://doi.org/10.1093/ejo/cju082.
1150	
1151	107. Elhoseiny YO, Mostafa RAB, Elkassaby MA, Abou-El-Fotouh MM. Tooth
1152	agenesis in patients with complete bilateral cleft lip and palate. Ann Maxillofac Surg
1153	2019;9:359-363. http://doi.org/ <u>10.4103/ams.ams_34_19.</u>
1154	
1155	108. Ercan E, Celikoglu M, Buyuk SK, Sekerci AE. Assessment of the alveolar bone
1156	support of patients with unilateral cleft lip and palate: a cone-beam computed
1157	tomography study. Angle Orthod 2015;85:1003-1008.
1158	http://doi.org/ <u>10.2319/092614-691.1.</u>
1159	

1160	109. Ko J, Han HJ, Hoffman W, Oberoi S. Three-dimensional analysis of cortical
1161	bone thickness in individuals with non-syndromic unilateral cleft lip and palate. J
1162	Craniofac Surg 2019;30:2094-2098.
1163	http://doi.org/10.1097/SCS.000000000005988.
1164	
1165	110. Celikoglu M, Buyuk SK, Sekerci AE, Ucar FI, Cantekin K. Three-dimensional
1166	evaluation of the pharyngeal airway volumes in patients affected by unilateral cleft
1167	lip and palate. Am J Orthod DentofacialOrthop 2014;145:780-786.
1168	http://doi.org/ <u>10.1016/j.ajodo.2014.02.008.</u>
1169	
1170	111. Takahashi M, Yamaguchi T, Lee MK, Suzuki Y, Adel M, Tomita D, Nakawaki
1171	T, Yoshida H, Hikita Y, Furuhuta M, Tsuneoka M, Nagahama R, Marazita ML,
1172	Weinberg SM, Maki K. Three-dimensional assessment of the pharyngeal airway in
1173	Japanese preschoolers with orofacial clefts. Laryngoscope 2020;130:553-540.
1174	http://doi.org/10.1002/lary.27957.
1175	
1176	112. Al-Fahdawi MA, El-Kassaby MA, Farid MM, Abou El-Fotouh M. Cone beam
1177	computed tomography analysis of oropharyngeal airway in preadolescent
1178	nonsyndromic bilateral and unilateral cleft lip and palate patients. Cleft Palate
1179	Craniofac J 2018;55:883-890. http://doi.org/10.1597/15-322.
1180	
1181	113. Barbosa GL, Emodi O, Pretti H, van Aalst JA, de Almeida SM, Tyndall DA,
1182	Pimenta LA. GAND classification and volumetric assessment of unilateral cleft lip
1183	and palate malformations using cone beam computed tomography. Int J Oral
1184	Maxillofac Surg 2016;45:1333-1340. http://doi.org/10.1016/j.ijom.2016.05.008.
1185	
1186	114. Santos G, Ickow I, Job J, Brooker JE, Dvoracek LA, Rigby E, Shah N, Chen
1187	W, Branstetter B, Schuster LA. Cone-Beam computed tomography incidental
1188	findings in individuals with cleft lip and palate. Cleft Palate Craniofac J
1189	2020;57:404-411. <u>http://doi.org/10.1177/1055665619897469</u> .
1190	
1191	115. Angelieri F, Franchi L, Cevidanes LH, McNamara JA Jr. Diagnostic
1192	performance of skeletal maturity for the assessment of midpalatal suture maturation.
1193	Am J Orthod DentofacialOrthop 2015;148:1010-1016.
1194	http://doi.org/10.1016/j.ajodo.2015.06.016.
1195	
1196	116. Cachecho C, Amberman BD, Hans MG, Palomo JM. A three-dimensional
1197	evaluation of Class II subdivision malocclusion correction using Cartesian
1198	coordinates. Semin Orthod 2014;20:287-298.
1199	http://doi.org/10.1053/j.sodo.2014.09.005.
1200	

1201	117. Lee B, Flores-Mir C, Lagravère MO. Normal orbit skeletal changes in
1202	adolescents as determined through cone-beam computed tomography. Head Face
1203	Med 2016;12:32. http://doi.org/10.1186/s13005-016-0130-0.
1204	
1205	118. de Oliveira Ruellas AC, Tonello C, Rosas Gomes L, sayako Yatabe M, Macron
1206	L, Lopint J, Goncalves JR, Gamba Garib Carreira D, Alonso N, Quiroga Souki B, da
1207	Silva Coqueiro R, Soares Cevidanes LH. Common 3-dimensional coordinate system
1208	for assessment of directional changes. Am J Orthod Dentofacial Orthop
1209	2016;149:645-656. <u>http://doi.org/10.1016/j.ajodo.2015.10.021</u> .
1210	
1211	119. Shim J, Heo G, Lagravère MO. Correlation between three-dimensional
1212	morphological changes of the hyoid bone with other skeletal maturation methods in
1213	adolescents. Oral Surg Oral Med Oral PatholOral Radiol 2013;116:511-517.
1214	http://doi.org/10.1016/j.0000.2013.06.025
1215	
1216	120. Yamanaka M, Hironaka S, Ishikawa K, Kanomi R, Mukai Y. Assessment of
1217	oropharynx using cone beam computed tomography -Change in volume during
1218	oropharynx growth. Pediatr Dent 2010;20:7-15.
1219	http://doi.org/10.1016/S0917-2394(10)70186-5.
1220	
1221	121. Asif MK, Nambiar P, Ibrahim N, Al-Amery SM, Khan IM. Three-dimensional
1222	image analysis of developing mandibular third molar apice for age estimation: a
1223	study using CBCT data enhanced with Mimics and 3-Matics software. Leg Med
1224	2019;39:9-14. http://doi.org/10.1016/j.legalmed.2019.05.003.
1225	
1226	122. Hidalgo-Rivas JA, Theodorakou C, Carmichael F, Murray B, Payne M, Horner
1227	K. Use of cone beam CT in children and young people in three United Kingdom
1228	dental hospitals. Int J Paediatr Dent 2014;24:336-348.
1229	http://doi.org/10.1111/ipd.12076.
1230	
1231	123. Hajem S, Brogardh-Roth S, Nilssonn M, Hellen-Halme K. CBCT of Swedish
1232	children and adolescents at an oral and maxillofacial radiology department. A survey
1233	of requests and indications. Acta Odontol Scand 2020;78:38-44.
1234	http://doi.org/ <u>10.1080/00016357.2019.1645879.</u>
1235	
1236	124. Mizban L, El Belihy M, Vaidyanathan M, Brown J. An audit and service
1237	evaluation of the use of cone beam computed tomography (CBCT) in a paediatric
1238	dentistry department. Dentomaxillofac Radio12019;48:20180393.
1239	http://doi.org/10.1259/dmfr.20180393.
1240	
1241	

1242 1243 1244	125. Barba B, Berrocal AL, Hidalgo A. Uses of cone-beam computed tomography in San José, Costa Rica. Imaging Sci Dent 2018;48:103-109. http://doi.org/10.5624/isd.2018.48.2.103.
1245	
1246	126. Isman O. Yilmaz HH, Aktan AM, Yilmaz B. Indications for cone beam
1247	computed tomography in children and young patients in a Turkish subpopulation. Int
1248	J Paediatr Dent 2017;27:183-190. http://doi.org/ <u>10.1111/ipd.12250.</u>
1249	
1250	127. Mathur VP, Dhillon JK, Logani A, Kalra G. Evaluation of indirect pulp
1251	capping using three different materials: A randomized control trial using cone-beam
1252	computed tomography. Indian J Dent Res 2016;27:623-629.
1253	http://doi.org/10.4103/0970-9290.199588.
1254	
1255	128. Dogan MS, Callea M, Kusdhany LS, et al. The evaluation of root fracture with
1256	cone beam computed tomography (CBCT): An epidemiological study. J. Clin Exp
1257	Dent 2018;10:e41-e48. http://doi.org/10.4317/jced.54009.
1258	
1259	129. Anderson S, Alsufyani N, Isaac A, Gazzaz M, El-Hakim H. Correlation
1260	between gonial angle and dynamic tongue collapse in children with snoring/sleep
1261	disordered breathing-an exploratory pilot study. J Otolaryngol Head Neck Surg
1262	2018;47:41. <u>http://doi.org/10.1186/s40463-018-0285-8</u> .
1263	
1264	130. Esmaeili EP, Ilo AM, Waltimo-Sirén J,Ekholm M. Minimum size and
1265	positioning of imaging field for CBCT scans of impacted maxillary canines. Clin
1266	Oral Invest 2020;24:897-905. http://doi.org/ <u>10.1007/s00784-019-02904-1.</u>
1267	
1268	131. Nardi C, De Falco L, Selvi V, Lorini C, Calistri L, Colagrande S. Role of cone
1269	beam computed tomography with a large field of view in Goldenhar syndrome. Am
1270	J Orthod DentofacialOrthop 2018;153:269-277.
1271	http://doi.org/ <u>10.1016/j.ajodo.2017.06.024.</u>
1272	
1273	132. Kulczyk T, Przystanska A, Rewekant A, Turska-Malinska R, Czajka
1274	Jakubowska A. Maxillary sinuses and midface in patients with cleidocranial
1275	dysostosis. Ann Anat 2018;215:78-82. http://doi.org/10.1016/j.aanat.2017.08.002.
1276	
1277	133. Nardi C, Borri C, Regini F, Calistri L, castellani A, Lorini C, Colagrande S.
1278	Metal and motion artifacts by cone beam computed tomography (CBCT) in dental
1279	and maxillofacial study. Radiol Med 2015;120:618-626.
1280	http://doi.org/10.1007/s11547-015-0496-2.
1281	
1282	
1283	

1284	134. Spin-Neto R, Matzen LH, Schropp L, Gotfredsen E, Wenzel A. Factors
1285	affecting patient movement and re-exposure in cone beam computed tomography
1286	examination. Oral Surg Oral Med Oral Pathol Oral Radiol2015;119:572-578.
1287	<u>http://doi.org/10.1016/j.0000.2015.01.011</u> .
1288	
1289	135. Ponce-Garcia C, de Oliveira Ruellas AC, Soares Cevidanes LH, Flores-Mir C,
1290	Carey JP,Lagravere-Vich M. Measurement error and reliability of three available 3D
1291	superimposition methods in growing patients. Head Face Med 2020;16:1.
1292	http://doi.org/10.1186/s13005-020-0215-7.
1293	
1294	136. Soylu E, Alkan A, Doğan S, Üstün Y, Yıldırım MD, Canpolat DG. Are
1295	radiological examinations necessary for mentally handicapped dental patients? J
1296	Clin Anal Med 2016;7:848-851. <u>http://doi.org/10.4328/JCAM.4666</u> .
1297	
1298	137. Aydin KC, Akgol BB, Delilbasi BC, Gurler G. Evaluation of maxillary sinus
1299	findings in children using CBCT. Gazz Med Ital Ar 2019;178:386-391.
1300	http://doi.org/10.23736/80393-3660.18.03833-0.
1301	
1302	138. Raghav M, Karjodkar FR, Sontakke S, Sansare K. Prevalence of incidental
1303	maxillary sinus pathologies in dental patients on cone-beam computed tomographic
1304	images. Contemp Clin Dent 2014;5:361-365.
1305	http://doi.org/10.4103/0976-237X.137949.
1306	
1307	139. Shahbazian M, Jacobs R, Wyatt J, Denys D, Lambricht I, Vinckier F, Willems
1308	G. Validation of the cone beam computed tomography-based stereolithographic
1309	surgical guide aiding autotransplantation of teeth: clinical case-control study. Oral
1310	Surg Oral Med Oral Pathol Oral Radiol 2013;115:667-675.
1311	http://doi.org/10.1016/j.0000.2013.01.025.
1312	
1313	140. EzEldeen M, Wyatt J, Al-Rimawi A, et al. Use of CBCT guidance for tooth
1314	autotransplantation in children. J Dent Res 2019;98:406-413.
1315	http://doi.org/10.1177/0022034519828701.
1316	
1317	141. Meschi N, EzEldeen M, Torres Garcia AE, Jacobs R, Lambrechts P. A
1318	retrospective case series in regenerative endodontics: trend analysis based on clinical
1319	evaluation and 2- and 3-dimensional radiology. J Endod 2018;44:1517-1525.
1320	http://doi.org/10.1016/j.joen.2018.06.015.
1321	
1322	142. Salzgl A, Bedi S, Hassan K, Al-Aql Z. Impact of cone beam computed
1323	tomography on measurement of bone density in periapical lesions following
1324	endodontic treatment: A clinical study. Biomed Res 2017;28:7669-7674.
1325	

40	[Nemesis]	СВСТ	in	pediatric	dentistry:	А	systematic revi	ew
----	-----------	------	----	-----------	------------	---	-----------------	----

1326	143. Alsufyani NA, Noga ML, Witmans M, Cheng I, El-Hakim H, Major PW. Using
1327	disordered breathing symptoms and maxillary, mandibular disproportions, a aligned
1320	nilot I Otolaryngol Head Neck Surg 2017:46:31
1329	http://doi.org/10.1186/s/0/63017-020/-/
1331	<u>http://doi.org/10.1160/s+0+05017+020+-+</u> .
1332	144. de Magalhaes Bertoz AP. Souki BO. Lione R. et al. Three-dimensional airway
1333	changes after adenotonsillectomy in children with obstructive apnea: Do
1334	expectations meet reality? Am J Orthod DentofacialOrthop 2019;155:791-800.
1335	http://doi.org/ <u>10.1016/j.ajodo.2018.06.019.</u>
1336	
1337	145. Major MP, Witmans M, El-Hakim H, Major PW, Flores-Mir C. Agreement
1338	between cone-beam computed tomography and nasoendoscopy evaluations of
1339	adenoid hypertrophy. Am J Orthod Dentofacial Orthop 2014;146:451-459.
1340	http://doi.org/10.1016/j.ajodo.2014.06.013.
1341	
1342	146. Kim Y, Jeong T, Kim J, Shin J, Kim S. Effects of mesiodens on adjacent
1343	permanent teeth: a retrospective study in Korean children based on cone-beam
1344	computed tomography. Int J Pediatr Dent 2018;28:161-169.
1345	http://doi.org/10.1111/ipd.12317.
1346	
1347	147. Roennau Lemos Rinaldi M, Martinelli de Lima E, Macedo de Menezes L,
1348	Deon Rizzatto SM, Baccarin Matje PR, Vanin Pinto Ribeiro R. Eruption rates of
1349	lower second premolars at different development stages evaluated with cone-beam
1350	computed tomography. Angle Orthod 2017;87:570-575.
1351	http://doi.org/ <u>10.2319/071116-548.1.</u>
1352	
1353	148. Pachêco-Pereira C, Alsufyani NA, Major MP, Flores-Mir C. Accuracy and
1354	reliability of oral maxillofacial radiologists when evaluating cone-beam computed
1355	tomography imaging for adenoid hypertrophy screening: a comparison with
1356	nasopharyngoscopy. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;121:e168-
1357	e174. http://doi.org/10.1016/j.0000.2016.03.010.
1358	
1359	149. Jung MS, Lee SP, Kim GT, Choi SC, Park JH, Kim JW. Three-dimensional
1360	analysis of deciduous maxillary anterior teeth using cone-beam computed
1361	tomography. Clin Anat 2012;25:182-188. <u>http://doi.org/10.1002/ca.21200</u> .
1362	
1363	150. Yang R, Yang C, Liu Y, Hu Y, Zou J. Evaluate root and canal morphology of
1364	primary mandibular second molars in Chinese individuals by using cone-beam
1365	computed tomography. J Formos Med Assoc 2013;112:390-395.
1366	http://doi.org/10/1016/j.jfma.2012.10.008.
1367	

1368	151. Naoumova J, Kjellberg H, Palm R. Cone-beam computed tomography for
1369	assessment of palatal displaced canine position: a methodological study. Angle
1370	Orthod 2014;84:459-466. http://doi.org/10.2319/070913-502.1.
1371	
1372	152. Huntjens E, Kiss G, Wouters C, Carels C. Condylar asymmetry in children with
1373	juvenile idiopathic arthritis assessed by cone-beam computed tomography. Eur J
1374	Orthod 2008;30:545-551. http://doi.org/10.1093/ejo/cjn056.
1375	
1376	153. Cho BH, Jung YH. Osteoarthritic changes and condylar positioning of the
1377	temporomandibular joint in Korean children and adolescents. Imaging Sci Dent
1378	2012;42:169-174. http://doi.org/10.5624/isd.2012.42.3.169.
1379	
1380	154. Angelieri F, Cevidanes LH, Franchi L, Gonçalves JR, Benavides E, McNamara
1381	JA Jr. Midpalatal suture maturation: classification method for individual assessment
1382	before rapid maxillary expansion. Am J Orthod DentofacialOrthop 2013;144:759-
1383	769. <u>http://doi.org/10.1016/j.ajodo.2013.04.022</u> .
1384	
1385	155. Alves Jr M, Baratieri C, Nojima LI, Nojima MCG, Ruellas ACO. Three-
1386	dimensional assessment of pharyngeal airway in nasal- and mouth-breathing
1387	children. Int J Pediatr Otorhinolaryngol 2011;75:1195-1199.
1388	http://doi.org/ <u>10.1016/j.ijporl.2011.06.019</u>
1389	
1390	156. Chiang CC, Jeffres MN, Miller A, Hatcher DC. Three-dimensional airway
1391	evaluation in 387 subjects from one university orthodontic clinic using cone beam
1392	computed tomography. Angle Orthod 2012;82:985-992.
1393	http://doi.org/10.2319/122811-801.1.
1394	
1395	157. Masoud AI, Alwadei FH, Alwadai AH, Lin EY, Costa Viana MG, Kusnoto B,
1396	Evans CA. Developing pediatric three-dimensional upper airway normative values
1397	using fixed and interactive thresholds. Oral Radiol 2020;36:89-99.
1398	http://doi.org/10.1007/s11282-019-00384-3.
1399	
1400	158. Iwasaki T, Suga H, Yanagisawa-Minami A, sato H, Sato-Hashiguchi M,
1401	Shirazawa Y, Tsujii T, Yamamoto Y, Kanomi R, Yamasaki Y. Relationships among
1402	tongue volume, hyoid position, airway volume and maxillofacial form in paediatric
1403	patients with Class-I, Class-II and Class-III malocclusions. Orthod Carniofac Res
1404	2019;22:9-15.http://doi.org/10.1111/ocr.12251.
1405	
1406	159. Aps JKM, Gazdeck LY, Nelson T, Slayton RL, Scott JM. Assessment of the
1407	location of the mandibular lingula in pediatric patients using cone beam computed
1408	tomography images. J Dent Child 2018;85:58-65.

1409	
1410	160. Haghanifar S, Mahmoudi S, Foroughi R, Bejeh Mir AP, Mesgarani A, Bijani
1411	A. Assessment of midpalatal suture ossification using cone-beam computed
1412	tomography. Electron Physician 2017;9:4035-4041. http://doi.org/10.19082/4035.
1413	
1414	161. Angelieri F, Franchi L, Cevidanes LHS, Hino CT, Nguyen T, McNamara Jr JA.
1415	Zygomaticomaxillary suture maturation: A predictor of maxillary protraction? Part
1416	I-A classification method. Orthod Carniofac Res 2017;20:85-94.
1417	http://doi.org/10.1111/ocr.12143.
1418	
1419	162. Currie K, Oh H, Flores-Mir C, Lagravère M. CBCT assessment of posterior
1420	cranial base and surrounding structures in orthodontically treated adolescents. Int
1421	Orthod. 2020;18:266-275. http://doi.org/10.1016/j.ortho.2020.01.004.
1422	
1423	163. Machiori DF, Packota GV, Boughner JC. Initial third molar development is
1424	delayed in jaws with short distal space: An early impaction sign? Arch Oral Biol
1425	2019;106:104475. http://doi.org/10.1016/j.archoralbio.2019.06.010.
1426	
1427	164. Wan F, Wang M, Guan M, Wang J, Liu M, Pan X. Analysis of three
1428	dimensional oropharyngeal airway and hyoid position in retrognathic adolescent
1429	patients. Orthodontic Waves 2019;78:102-110.
1430	http://doi.org/10.1016/j.odw.2019.04.003.
1431	
1432	165. Lee YH, Hong IK, Chun YH. Prediction of painful temporomandibular joint
1433	osteoarthritis in juvenile patients using bone scintigraphy. Clin Exp Dent Res
1434	2019;5:225-235. <u>http://doi.org/10.1002/cre2.175</u> .
1435	
1436	166. Pittman L, Shipley TS, Martin CA, Xiang J, Ngan PW. CBCT evaluation of
1437	condylar changes in children with unilateral posterior crossbites and a functional
1438	shift. Semin Orthod 2019;25:36-45. http://doi.org/10.1053/j.sodo.2019.02.005.
1439	
1440	167. Cardinal L, Martins I, Gribel BF, Dominguez GC. Is there an asymmetry of the
1441	condylar and coronoid processes of the mandible in individuals with unilateral
1442	crossbite? Angle Orthod 2019;89:464-469. http://doi.org/10.2319/052518-398.1.
1443	
1444	168. Farronato M, Cavagnetto D, Abate A, Cressoni P, Fama A, Maspero C.
1445	Assessment of condylar volume and ramus height in JIA patients with unilateral and
1446	bilateral TMJ involvement: retrospective case-control study. Clin Oral Invest
1447	2020;24:2635-2643. http://doi.org/10.1007/s00784-019-03122-5.
1448	
1449	

1450	169. Kajan ZD, Nasab NK, Eghrari N. Quantitative evaluation of midpalatal suture
1451	opening and its relation with zygomaticomaxillary suture status in patients aged 7-
1452	25 years using cone beam computed tomography images: In an Iranian population.
1453	Contemp Clin Dent 2018;9:S89-S94. http://doi.org/10.4103/ccd.ccd 71 18.
1454	
1455	170. Bangsgaard Stoustrup P, Ahlefeldt-Lauvrig-Lehn N, Dahl Kristensen K,
1456	Arvidsson LZ, Twilt M, Cattaneo PM, Kuseler A, Estmann Christense A, Herli T,
1457	Klit Pederson Th. No association between types of unilateral mandibular condylar
1458	abnormalities and facial asymmetry in orthopedic-treated patients with juvenil
1459	idiopathic arthritis. Am J Orthod DentofacialOrthop 2018;153:214-223.
1460	http://doi.org/10.1016/j.ajodo.2017.05.037.
1461	
1462	171. Kirthiga M, Muthu MS, Kayalvizhi G, Krithika C. Proposed classification for
1463	interproximal contacts of primary molars using CBCT: A pilot study. Wellcome
1464	Open Res 2018;3:98. http://doi.org/ <u>10.12688/wellcomeopenres.14713.2</u>
1465	
1466	172. Krishnamurthy NH, Jacob CD, Thimmegowda U, Ramachandra JA, Arali V,
1467	Bhat PK. Anatomical configuration of roots and canal morphology of primary
1468	mandibular first molars: A CBCT study. J Clin Diagn Res 2017;11:ZC09-ZC11.
1469	http://doi.org/10.7860/JCDR/2017/32284.10838.
1470	
1471	173. Iwasaki T, Sato H, Suga H, Takemoto Y, Inada E, Kakuno K, Kanomi R,
1472	Yamasaki Y. Influence of pharyngeal airway respiration pressure on Class II
1473	mandibular retrusion in children: A computational fluid dynamics study of
1474	inspiration and expiration. Orthod Craniofac Res 2017;20:95-101.
1475	http://doi.org/10.1111/ocr.12145.
1476	
1477	174. Ghoussoub MS, Sleilaty G, Garcia R, Rifai K. Correlation between
1478	temporomandibular joints and nasal cavity width in growing patients after rapid
1479	maxillary expansion. J. Contemp Dent Pract 2019;20:686-692.
1480	
1481	175. Koye V, Gröndahl HG. Characteristics of patients referred for cone beam
1482	computed tomography (CBCT) of ectopically erupting maxillary canines. Swed
1483	Dent J 2011;35:159-165.
1484	
1485	176. Rizzatto SMD, de Menezes LM, Rabin P, Petersen RC, Mattiello FDL, de
1486	Lima EM. Crown and root lengths of impacted maxillary central incisors and
1487	contralateral teeth evaluated with cone beam computed tomography. Pesqui Bras
1488	Odontopediatria Clin Integr 2017;17:e3613.
1489	http://doi.org/10.4034/PBOCI.2017.171.58.
1490	