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Finite-Element Analysis of Temperature Increase in Vascularized
Biological Tissues Exposed to RF Sources
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A new model of numerical dosimetry is proposed for RF exposure. First, the specific absorption rate (SAR) is computed. Then, the
heat transfer governed by the bio-heat equation with convection term is numerically solved by a finite-element method (FEM) proce-
dure considering the discrete vascular model of the perfused tissue. By some manipulations of the FEM equations and by generating an
adequate FEM mesh, it is possible to solve the thermal convection in the blood vessels considering a one-dimensional domain embedded
in the fully three-dimensional domain where only the thermal diffusion is analyzed.

Index Terms—Bio-heat equation, discrete vascular model, finite-element method (FEM), numerical dosimetry.

I. INTRODUCTION

ECENTLY, the wide use of wireless applications with
R the obvious consequence of electromagnetic field (EMF)
human exposure, and the possibility to use EMF in medical ap-
plications for therapy and diagnostics, have given a pulse to
the research in the electrothermal interaction between the afore-
mentioned fields and biological tissues. The relevant part of this
topic is addressed to the study of the numerical dosimetry [1],
which consists mostly in the evaluation of the temperature in-
crease in tissues exposed to high-frequency EM fields.

Mainly, the models of heat transfer in perfused tissues can be
divided into two classes: continuum models and discrete vas-
cular models. The continuum models are the most popular and
easy to implement, but they are unable to predict the significant
thermal effects of vessels on the local tissue temperature [2].
To overcome this inconvenience, some models of discrete vas-
culature have been recently proposed to take into account the
presence of veins and arteries by finite difference procedures
(31, [4].

To improve the actual models of discrete vasculature, a new
method, based on the finite-element method (FEM) solution of
the electrothermal problem considering diffusion and convec-
tion in a 3-D domain, is proposed.

II. MATHEMATICAL FORMULATION

The transient convection-diffusion problem is described by
the linear operator L(T")

L(T):pc(a—T+'u-VT> — V-kEVT —pSAR-A4=0

ot
(1

where 7' is the unknown temperature, p the mass density, c the
specific heat, & the thermal conductivity, v the velocity field, A
the metabolic rate, and SAR the specific absorption rate due to
electromagnetic sources. It should be noted that the SAR must
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Fig. 1. Vascular structure embedded in a tissue.

be known before solution of (1). It can be calculated by solving
the electromagnetic field problem of the RF exposure [1].

The solution of the convection-diffusion problem (1) in a
bounded domain (2 delimited by the boundary I" requires the
boundary conditions

T—TDZO OHPD
oT
ka—-f—q—l—h(T—TN):O onI'y
n

(2a)
(2b)

where I'p and 'y denote Dirichlet and Neumann boundaries,
andI' = I'p + I'n, ¢ is a known heat flow, h is the heat transfer
coefficient, Tp and Ty are known temperatures on I'p and 'y,
respectively.

Equations (1) with (2) could be solved by any numerical
method based on partial differential equation (PDE) solution,
but the standard FEM solution of a highly vascularized domain
requires the fine discretization of vessels into 3-D elements,
leading to a huge number of unknowns and therefore making
the numerical solution quite impracticable. In order to reduce
the degrees of freedom (DoF), a new model is proposed.

The computational domain €2 related to a vascularized tissue
is divided into two subregions (2 = Qv +1): Qy is the region
of the vascular system where the blood flows, and 2t is the
tissue region where the vascular system is embedded, as shown

in Fig. 1.
Applying the standard Galerkin method it yields
/ N, L(T)dQY = N, L(T)dQ + N,L(T)dQ =0
Jo Jor Joy
3)

where N; is the weighting function.
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The Galerkin form of the linear operator L(T') in 1, where
there is no blood flow and therefore v = 0, is given by

N, L(T)d2
Jor

:/ N; <pca—T—V-kVT—pSAR—A> dQ =0
o ot
4

and in Qv by

N;L(T)dQ
JQy
orT
— Ni [ VT | —
/QV |:pbcb<at +’UV>
V- kyVT — ppSAR — A] dQ =0 5)

where py, ¢, and k;, are the specific constants of blood.

Assuming a vessel with small cross section dimension re-
spect to the other physical dimensions, the 3-D domain €2y can
be modeled by the thin vessel approximation assuming df2 =
Sy d¢é with € the one-dimensional curvilinear coordinate of the
vessel (see Fig. 1), and Sy its cross section area. By this as-
sumption (5) becomes

N;L(T)dQ
Qv
oT
= s N; | pp i VT ) -
/KESV [p;cb(at +v-V )
V- VT — ppSAR — A] d¢ =0 (6)

where /¢ is the vessel length. Equation (6) can be simplified by
the following assumptions:

—the vessel cross section Sy, is constant inside the dis-
cretized vessel segment;

— the direction of the velocity v is always tangent to the
vessel abscissa &;

— the temperature in the vessel cross section is constant, and
therefore the conduction coefficient of the blood, k;, is
nonzero only in the direction of the flow;

— the SAR and the metabolic rate A are negligible due to the
thin vessel approximation.

Equation (6) is then reduced to

N,L(T)dQ
Qv
oT oT o 0T
~ Sy /ﬂs N; [Pbcb <E +va—£> - a_gk”a_g} d§
=0 @)

where the blood velocity v is assumed to be a scalar quantity.

Both (4) and (7) can be solved by the finite-element method
adopting a suitable mesh, and the two solution systems are
assembled together as described in details in the following
sections.
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A. 3-D Finite-Element Solution of Conduction Equation

The solution of the diffusion equation (4) is straightforward
by applying the standard Galerkin finite-element procedure [5],
[6]. The local equation in a 3-D finite-element 27 ) is given by

oT
/ peN; —dQ) — / N;V - kENTdQ
ol ot o)

- /( (Ni(pSAR + 4)d2 = 0. (®)
Qr

By applying first Green’s theorem, the second integral in (8)
becomes

or
/ pecN; —dQ) + / kEVN; -VTdQ
Jao@ ot Ql®)
T T
oT
- EN;—dI' — Ni(pSAR+ A)d2 =0 (9)
T on Ja
where FEFO ) is the element boundary of Q(TC ) and s the direction

normal to the boundary. Note that in the assembling process the
boundary terms for adjacent elements simplifies, so their contri-
bution is nonzero only on the computational domain boundaries
[5].

The temperature 7' is approximated at any point inside the
finite-element Q(TP ) by the nodal based FEM expansions as

m

T($7y7'z> = ZNj($7y,Z)Tj

=1

(10)

where m is the number of element nodes, T; are the temperature
nodal values, N;(z, y, z) is the 3-D nodal interpolating function
associated to the jth node and equal to the weighting function
(51, [6].
Equation (9) can be rewritten in compact form as
[T

[Myp]—— + [Kr][T] = [Fr]

ot an

where [T] = [I1T»...T,]" is the vector containing the
temperature of the element nodes, and the -coefficients
(i,j = 1,2,...,m) of the FEM local matrices in tissues
are given by

My, = / , PeNiN;d (12a)
J QLS

T

Ky, = / EVN; - VN;dQ + / hN;N;dl  (12b)
L) (o)

Fr, = /(  Ni(pSAR + A)d — /( | Ni(a — hTy)dr.
Jale Iy

(12¢)

B. I-D Finite-Element Solution of Convection-Diffusion
Equation

The temperature in a 1-D linear element between nodes ¢ and

J having length A;; is approximated by

T(&) = Ni(&)T; + N; ()T = [N]'[T] (13)
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where [N]' = [N;(&) N;(€)] is the vector of the 1-D linear
shape functions, and [T] = [T; T}]*. The Galerkin local form of
(7) in matrix form is given via (13) by

O[T
TR

O[NY
¢

sy /A v 1—kﬁgv]t (T)dg = 0

Sv /A prcalN]INV]

iJ

+USV/ PoCy|N]

A

[Td¢

(14)

assuming v to be constant inside the element A,;.
By applying Green’s theorem to the last integral in (14) we
obtain

sv [, eI A g
+USV/ prb[N]a[aAg]t [T]df
I[N] IIN]'
+Sv/ Ky 9 OE [T)d¢
_ Sy /F(e) k] [(;Z]t[T]dF:O. (15)

The above equation can be written in local compact form as

T
ey e+ M = 1] (e
where the local matrix coefficients are given by
MVi] = Sv/ prbNidef (1721)
Ay
ON;
CVi- = ’l)Sv/ PbeNi—jdf (17b)
! Ny o€
ON; ON
Ky = J N:N.dl
Vis Sv/ kbaf 8£d£+/( hN;N;d
(17¢)
FVZ- = /( ) Ni(hTN - q)dF (17d)
vy

C. Global Finite-Element Solution System

Solution of (3) can be carried out by using the
Crank—Nicholson scheme for time integration. It means that
the time derivative in (11) and (16) can be approximated at
time instant ¢ = (n + 1/2)At by

oy _ [T+ -

ot At

At this point, it is necessary that the 1-D elements of the ves-
sels must coincide with some edges of the 3-D finite elements,
so that the nodes of the 1-D structure are also nodes of the 3-D
FEM mesh, as schematically shown in Fig. 2. By this assump-
tion, it is therefore possible to assemble the local matrices of
the three-dimensional elements used to discretize the region Q1

iy (18)
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Fig. 2. 1-D vessel element embedded in the 3-D tissue domain.

with the local matrices of the 1-D elements used for the 2+ re-
gion, and the final equation system is obtained

n+1l _ n n+1 n

g 4 g
B CaGa s

where the global FEM matrices are given by

[M] = [Mv] + [M7] (20a)
[C] = [Cv] (20b)
[K] = [Kv] + [K7] (20c)
[F] = [Fv] + [Fr]. (20d)

If standard Galerkin method is applied to solve the convec-
tion-diffusion equation, the results should be affected by spu-
rious oscillation in space due to the discretization of the convec-
tion transport term. This occurs when certain parameters exceed
a critical value (i.e., element Peclet number P. = pcvA, /(2k),
with A, the finite-element size). Therefore, it can be necessary
to add to (19) some stabilization matrices applying the Charac-
teristic Galerkin (GC) method as described in [7].

III. APPLICATIONS

First, the proposed model has been validated in a very simple
test case by comparing the obtained results with those obtained
by a commercial software tool (Comsol Multi-Physics) with a
fully 3-D mesh (i.e., 3-D discretization also inside vessel). The
considered configuration is composed by a cylindrical vessel
embedded in a cylindrical tissue region as shown in Fig. 3(a).
Assuming for the tissue p = 1000 kg/m?, ¢ = 3200 J/(kg°C),
k = 0.5 W/(m°C), A = 0,SAR = 0, and for the blood

= 1060 kg/m?, ¢, = 3600 J/(kg°C), ky = 0.6 W/(m°C),
v = 0.02 m/s, the obtained temperature profiles along the vessel
axis are reported in Fig. 3(b). It should be observed that the good
agreement between the different approaches confirms the va-
lidity of the proposed method.
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Fig. 3. (a) Test case configuration and (b) numerical results.

A;j [em] r [mm] v [m/s]
I 2.0 0.5 0.02
I 1.8 0.3 0.028
11 1.8 0.3 0.028
v 1.0 0.2 0.025
v 1.0 0.2 0.025
(b)

Fig. 4. (a) Vascular structure and (b) related properties.

Then, a vessel structure with bifurcations and bends is consid-
ered as reported in Fig. 4(a). The related physical properties (i.e.,
length, radius, and velocity of the vessel segments) are shown
in Fig. 4(b). The vasculature is assumed to be embedded in a
cubic region of tissue with dimension 10 x 10 x 10 cm. On the
top and bottom facets of the cubic region, Dirichlet essential
type boundary conditions have been applied (Ip = 37 °C on
top, Tp = 33 °C on bottom); on the other facets Neumann nat-
ural boundary conditions occur.

The maps of temperature distributions, assuming SAR =
0 (i.e., normo-thermal temperature distribution) and SAR =
10 W/kg (i.e., intense exposition) are reported in Fig. 5(a) and
(b), respectively. For the sake of simplicity the SAR has been
considered spatially constant in the proposed applications, but it
can be obviously considered with a nonuniform distribution and
easily calculated [1]. From this figure it is evident the cooling/
warming effect of the large vessels on the tissue temperature
profile. In other words, the thermoregulatory mechanism of the
blood flow is well modeled.

IV. CoNCLUSION

A novel numerical model has been proposed to evaluate the
temperature increase in a RF exposed biological tissue with dis-
crete vascularization. The model has been developed using the
finite-element formulation. Using the thin vessel approxima-
tion, the arteries have been modeled by 1-D finite elements em-
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(b)

Fig. 5. (a) Normo-thermal temperature distribution (SAR = 0). (b) Temper-
ature distribution for SAR = 10 W/kg.

bedded in the tissue region that has been discretized in 3-D fi-
nite elements. By generating an adequate mesh, it is possible to
reduce dramatically the computational cost. The proposed pro-
cedure can be very useful to predict the thermal distribution in-
side human body with higher accuracy than that of the methods
based on the traditional continuum model. Therefore, possible
applications of the proposed method are related to RF thermal
dosimetry for safety standards and biomedical applications as
hyperthermia cancer treatment.
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