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Abstract

In the present paper, we propose a method of practical utility for calculating the aggregate claims distribution in a dis-
crete framework.

It is an approximated method but unlike the other approximated methods proposed in the literature:

• the approximation concerns both the counting distribution and the convolution of the severity distributions;

• the approximation does not consist in truncating the original distribution up to a given number of terms nor in replac-
ing it with another distribution or a more general function (but simply in considering only the significant numerical
realizations and in neglecting the others);

• the resulting approximation of the aggregate claims distribution is lower than a prefixed maximum error (10�6 in our
applications). In particular, the probability distribution and also the first three moments are exact with the prefixed
maximum error.

The proposed method does not require special assumptions on the counting distribution nor the identical distribution of
the severity random variables and it does not incur in underflow and overflow computational problems.

It proves to be more flexible, easier and cheaper than the (exact and approximated) methods using recursion and Fast
Fourier Transform.

We show some applications using both a Poisson distribution and a Generalized Pareto mixture of Poisson distribu-
tions as counting distribution.

In addition to the specific application proposed in this paper, the method can be applied in many other (life and non-
life) actuarial fields where the sum of discrete random variables and the calculation of compound distributions are
involved. Besides, it can be extended in multivariate cases.
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1. Introduction

In the present paper, we propose a method of practical utility for calculating the aggregate claims distribu-
tion in a discrete framework.

For any non-negative integer s, let Ps denote the class of all discrete probability densities f on the non-neg-
ative integers such that f(s) > 0 and f(x) = 0 for all x < s and let P s ¼

S1
j¼sP j.

Let N denote the counting variable, i.e. the non-negative, integer-valued random variable counting the
number of claims occurring in an insurance portfolio within a given period of time.

Let p 2 P 0 be the discrete density of N.
Further, let Ui (i = 1, . . ., N) denote the severity random variables, i.e. the random variables representing

the individual claim amount. We assume that they are discrete (say random integers multiples of some mon-
etary unit), strictly positive, mutually independent (but not necessarily identically distributed) and indepen-
dent of the counting variable N.

Let fi 2 P 1 be the discrete density of Ui (i = 1, . . ., N).
Notice that in practical applications we can always determine a finite maximum number of possible claims

and, for each claim, a finite maximum amount. This immediately follows by considering that when using a
P.C. the precision of the very small probabilities is ensured only up to a given number of digits (up to the eigh-
teenth digit with a high speed execution language like C++). The papers by Sundt [21] and Dhaene and Sundt
[7] can be useful to derive the error bounds for the resulting aggregate claims distribution.

Then, let mn be the maximum number of occurring claims and, for each claim i (i = 1, . . ., mn), let mxi be
the maximum amount. Besides, let mxðnÞ ¼

Pn
i¼1mxi and let mx = mx(mn).

Then, the aggregate claims amount is given by the following random variable:
X ¼
PN
i¼1

U i if N P 1;

0 if N ¼ 0

8<
:

with discrete probability density,
gðxÞ ¼
Xmn

n¼0

pðnÞð�n
i¼1fiÞðxÞ for x ¼ 0; 1; . . . ;mx; ð1Þ
where ð�n
i¼1fiÞ denote the convolution of the first n discrete densities fi. Obviously, we have g(0) = p(0) and thus

g 2 P 0.
In the present paper, we identify a probability distribution on the integers by its discrete density. We there-

fore usually mean its discrete density when talking about a distribution. In particular, we mean the evaluation
of Eq. (1) when referring to the problem of calculating the aggregate claims distribution.

Eq. (1) involves the calculation of the products pðnÞð�n
i¼1fiÞðxÞ for all n and x. We can perform this calcu-

lation in two different ways:

1. sequentially for each x, that is by letting n vary for each fixed x; or
2. simultaneously for all x, that is by letting x vary for each fixed n.

In the former case, an obvious simplification of Eq. (1) is
gðxÞ ¼
Xx

n¼0

pðnÞð�n
i¼1fiÞðxÞ for x ¼ 0; 1; 2; . . . ;mx ð2Þ
since the convolution ð�n
i¼1fiÞðxÞ and hence the product pðnÞð�n

i¼1fiÞðxÞ are certainly null for all n > x.
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In the latter case, a natural reduction of Eq. (1) is instead
gðxÞ ¼
X

n:pðnÞ>0

pðnÞð�n
i¼1fiÞðxÞ for x ¼ 0; 1; 2; . . . ;mx. ð3Þ
Despite the above-mentioned simplifications, in most of the practical applications we cannot compute Eq.
(1) in a direct way.

As a consequence, various methods have been proposed in the literature for evaluating it. In Section 2, we
make a brief reference to Sundt�s generalization of Panjer�s recursion and to the recursive methods based on
De Pril Transform while in Section 3, we discuss the methods actively used in practice based on Fast Fourier
Transform (FFT).

However, by putting together the ideas underlying Eqs. (2) and (3), we can furtherly simplify Eq. (1) and
then be able to compute it directly.

Virtually, we have to determine those n : p(n) > 0 and, for each n, those x : ð�n
i¼1fiÞðxÞ > 0. In this way, we

can reduce the number of operations to be done since the products pðnÞð�n
i¼1fiÞðxÞ are certainly null otherwise.

In Section 4, we propose a general and flexible method to do this.
It is an approximated method but unlike the other approximated methods proposed in the literature ([2, pp.

385–392,9, pp. 55–65,18]; in the continuous case, also [1]):

• the approximation concerns both the counting distribution and the convolution of the severity
distributions;

• the approximation does not consist in truncating the original distribution up to a given number of terms
nor in replacing it with another distribution or a more general function;

• the resulting approximation of the aggregate claims distribution can be as accurate as we desire.

According to this method, we consider non-null the probabilities not lower than a suitably determined
value.

For the counting distribution, this value is the maximum number not greater than 10�21 such that the sum
of the probabilities not lower than it is equal to one with a given maximum error and simultaneously the first
three moments of the aggregate claims distribution obtained by neglecting the others are exact with the same
maximum error (lower than 10�10 in our applications).

For each convolution, instead the above-mentioned value is the maximum number not greater than 10�21

such that the sum of the probabilities not lower than it is equal to one with a given maximum error and simul-
taneously the first three moments of the distribution obtained by neglecting the others are exact with the same
maximum error (lower than 10�6 in our applications).

We show that the resulting aggregate claims distribution and its first three moments are exact with a max-
imum error equal to the greater among those chosen in the approximation to the counting distribution and to
the convolutions (say, an error lower than 10�6 in our applications).

This method can be applied in any practical circumstances since it does not require special assumptions on
the counting distribution nor the identical distribution of the severity random variables and it does not incur in
underflow and overflow computational problems.

It therefore proves to be more flexible, easier and cheaper than the (exact and approximated) methods using
recursion and FFT.

In Section 5, we show some applications of the proposed method using both a Poisson distribution
and a Generalized Pareto mixture of Poisson distributions as counting distribution. In the former case, we
also compare the obtained results with those of the other methods existing in literature quoted in the
paper.

It may be useful to notice that the main purpose of the paper is to illustrate a new calculation methodology
and not the specific software elaborated for implementing it (even though it is important especially for reduc-
ing the execution time). This methodology can also be applied in many other (life and non-life) actuarial fields
where the sum of discrete random variables (with integer or referable to integer – positive, negative and also
null – numerical realizations) and the calculation of compound distributions are involved and it can be
extended in multivariate cases.
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2. Recursive methods

In this section, we make a brief reference to some recursive methods existing in the literature useful for eval-
uating the aggregate claims distribution. We can group them into two general classes: methods based on Pan-
jer�s formula and its generalizations and methods based on De Pril Transform.

The methods of the former class assume that the severity random variables are identically distributed with
common probability density h 2 P 1.

In this case, by also considering (2), Eq. (1) becomes
gðxÞ ¼
Xx

n¼0

pðnÞh�nðxÞ for x ¼ 0; 1; 2; . . . ;mx; ð4Þ
with g(0) = p(0), where h*n denote the n-fold convolution of the severity distribution.
They also assume that the counting distribution has a positive probability in zero.
On the contrary, the methods using De Pril Transform can also be applied when the severity random vari-

ables are not identically distributed and p 2 P 0.
Unfortunately, these methods as well as the previous ones may be rather time-consuming. Thus, they can be

applied only in some practical circumstances or in an approximated way.
Besides, as well as all recursive methods, they incur in underflow problems which are not always easy to

overcome and which therefore furtherly restrict their concrete applicability.

2.1. Sundt’s generalization of Panjer’s formula

Sundt [22] studied the class of counting distributions p 2 P0 satisfying:
pðnÞ ¼
Xk

j¼1

aj þ
bj

n

� �
pðn� jÞ for n ¼ xþ 1;xþ 2; . . . ; ð5Þ
for some integer k 61 and constants aj, bj (j = 1, . . ., k).
He derived the following recursion for the corresponding compound distribution with h 2 P 1:
gðxÞ ¼
Xx

y¼1

Xk

j¼1

aj þ
bj

j
y
x

� �
h�jðyÞgðx� yÞ þ

Xx

n¼1

pðnÞ �
Xk

j¼1

aj þ
bj

n

� �
pðn� jÞ

" #
h�nðxÞ

for x ¼ 1; 2; . . . ; ð6Þ
with g(0) = p(0).
He also proved that every discrete density p 2 P0 on the range {0, 1, . . ., k} with k 61 satisfies Eq. (5)

with:
aj ¼ �
pðjÞ
pð0Þ ; bj ¼ 2j

pðjÞ
pð0Þ for j ¼ 1; . . . ; k
and x = 0.
Then, on a theoretical level, when p 2 P0 we can always evaluate Eq. (4) recursively by (6).
Not every discrete distribution, however, can fit into (5) with a finite number of parameters.
When k = 1 and x = 0, Eq. (6) reduces to the well-known Panjer�s formula [13] and only Poisson, Negative

Binomial and Binomial counting distributions satisfy Eq. (5). According to Panjer and Wang [15], various
counting distributions satisfying (5) can also be found for k 6 2 and x P 1 but many others can fit into (5)
with an infinite k only. The authors mentioned for instance the Poisson–Inverse Gaussian distribution and
the Generalized Poisson.

In this case and more generally for large k and x, Eq. (6) may be difficult to use because of the high order of
convolutions involved, that is for the same reason which had motivated recursive evaluation of Eq. (4).

Another difficult aspect of Eq. (6) is the underflow in which it can incur when practically applied. This prob-
lem has been discussed by several authors when k = 1 [16,14,27] but it has not been solved for any k and x.
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2.2. Methods based on De Pril Transform

According to Sundt [24], the De Pril Transform of a distribution f 2 Ps for any non-negative integer s is
defined by the following recursion:
uf ðxÞ ¼
1

f ðsÞ xf ðxþ sÞ �
Xx�1

y¼1

uf ðyÞf ðxþ s� yÞ
" #

for x ¼ 1; 2; . . . ð7Þ
with uf(0) = s.
Further, a distribution f 2 Ps is uniquely determined by its De Pril Transform. This was already proved by

Sundt [23] in the special case of distributions in P0.
In particular, by solving Eq. (7) with respect to f(x) we obtain
f ðxÞ ¼ 1

x� s

Xx�s

y¼1

uf ðyÞf ðx� yÞ for x ¼ sþ 1; sþ 2; . . . ð8Þ
Conversely, we obtain Eq. (7) by solving (8) with respect to uf(x).
As for the evaluation of the aggregate claims distribution, we can use De Pril Transforms for calculating the

convolutions involved in Eq. (1).
According to Sundt [24], the convolution of a finite number of distributions (not necessarily identical) in P 0

is a distribution in P 0 and its De Pril Transform is the sum of the De Pril Transforms of these distributions.
This is also proved by Dhaene and Sundt [8] in the special case of distributions in P0.

Then, for calculating the convolution of the first n severity distributions:

• first of all, we can find the De Pril Transforms of the severity random variables by using Eq. (7);
• then, we can find the De Pril�s Transform of their convolution by summing their De Pril Transforms;
• finally, we can derive the discrete density of the convolution recursively by (8).

Unfortunately, this procedure may be rather time-consuming for evaluating the aggregate claims distribu-
tion since we have to repeat it for all n.

According to Sundt [24], we can simplify this procedure by approximating the De Pril Transforms of the
severity distributions with the De Pril Transforms of more general functions (not necessarily probability dis-
tributions themselves). Such approximations are also discussed by Dhaene and Sundt [8] and Sundt [25] in the
special case of distributions in P0.

When applying such approximations, however, it is not easy to deduce the error bounds for the resulting
approximation to Eq. (1).

An alternative procedure using De Pril�s Transforms can be applied for evaluating the aggregate distribu-
tions when the severity random variables are identically distributed.

According to Sundt [24], the De Pril Transform of a compound distribution g with p 2 P 0 and h 2 P 1

satisfies
ugðxÞ ¼ upð0ÞuhðxÞ þ x
Xx

j¼1

upðjÞ
j

h�jðxÞ for x ¼ 0; 1; . . . ð9Þ
Then, we can evaluate Eq. (4) in the following way:

• first of all, as we know the counting distribution and the severity distribution, we can find their De Pril
Transform by using Eq. (7);

• then, we can find the De Pril Transform of g by using (9);
• finally, we can obtain g recursively by (8).

This procedure, however, does not simplify the evaluation of the aggregate claims distribution since Eq. (9)
involves the same order of convolutions than the original equation (4).
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A critical aspect of both the above-mentioned procedures concerns the application of Eq. (8). As a matter
of fact, we have to preliminarily calculate f(s), i.e. the first value of f not null, but in many practical applica-
tions this value may be so small as to cause underflow problems.

3. Methods using FFT

Buhlmann [6] discussed the application of FFT for evaluating a compound Poisson distribution. In this
case and generally speaking when the Continuous Fourier Transform (CFT) is known, the aggregate claims
distribution can be evaluated by sampling the CFT (in probability theory also called characteristic function)
and by inverting it. Obviously, this implies a discretization error.

In this section, we discuss the application of FFT in the more general case in which the CFT is not known.
In this case, no special assumption on the counting distribution nor the identical distribution of the severity
random variables are needed but stability and overflow problems are possible.

FFT is considered a valid alternative to the original method of Heckman and Meyers [10] for evaluating the
aggregate claims distribution by inversion of its characteristic function. As such, it has been included in the
recent version 2.2 of the program CrimCalc [12] used in actuarial practice.

3.1. Formalization

We can start by defining the Discrete Fourier Transform (DFT) of the aggregate claims distribution. From
Eq. (1), we obtain
/gðyÞ ¼
Xmx

x¼0

gðxÞ exp iy
2p

mxþ 1
x

� �
ð10Þ

¼
Xmn

n¼0

pðnÞ
Xmx

x¼0

ð�n
i¼1fiÞðxÞ exp iy

2p
mxþ 1

x
� � !

ð11Þ

¼
Xmn

n¼0

pðnÞ/ð�n
i¼1

fiÞðyÞ ð12Þ

for y ¼ 0; 1; . . . ;mx
with /ð�0
i¼1

fiÞðyÞ ¼ 0 8y. For the independence of the severity random variables, we also obtain for
n = 1, . . ., mn:
/ð�n
i¼1

fiÞðyÞ ¼
Yn

i¼1

/fi
ðyÞ ¼ /ð�n�1

i¼1
fiÞðyÞ/fn

ðyÞ; ð13Þ
where
/fi
ðyÞ ¼

Xmx

x¼0

fiðxÞ exp iy
2p

mxþ 1
x

� �
.

It is easily seen that g is the Inverse Fourier Transform (IDFT) of Eq. (10) and, for each n, ð�n
i¼1fiÞ is the IDFT

of Eq. (13).
Then, for evaluating Eq. (1), we can proceed in two different ways:

(a) We first compute Eq. (12) and then we perform its inverse by
gðxÞ ¼ 1

mxþ 1

Xmx

y¼0

/gðyÞ exp �ix
2p

mxþ 1
y

� �
for x ¼ 0; 1; . . . ;mx. ð14Þ
(b) We directly apply Eq. (1) after computing the convolutions for each n (n = 1, . . ., mn) by Eq. (13) and by
ð�n
i¼1fiÞðxÞ ¼

1

mxþ 1

Xmx

y¼0

/ð�n
i¼1

fiÞðyÞ exp �ix
2p

mxþ 1
y

� �
for x ¼ 0; 1; . . . ;mx. ð15Þ
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With respect to the former, the latter procedure requires the computation of a greater number of transforms
but each transform has a lower dimension. As a matter of fact, for each n, the values of x greater than mx(n)

have a null probability, thus we do not have to consider them when calculating Eqs. (13) and (15).
This makes the two procedures virtually equivalent in the applications.
In both cases, we can apply FFT for speeding up the computations. This method consists in computing

DFTs and IDFTs stepwise thus reducing the number of complex multiplications.
For a detailed description of FFT, we refer to the extensive literature on the subject [3,4,19,20,26,28].
We remind however that for each transform with (mx(n) + 1) data points, the FFT requires 2cncn=2 complex

multiplications, where
cn ¼ INT log2mxðnÞ
� �

þ 1. ð16Þ
This condition allows for the fact that FFT is usually applied for transforms with a length equal to a power of
2. As a matter of fact, there exist algorithms with a different base but the time saving resulting from the lower
number of multiplications does not balance the waste due to other complications [19, pp. 509–510].

3.2. Number of real multiplications

For calculating the number of multiplications involved in the evaluation of the aggregate claims distribu-
tion by FFT, we have to consider that each forward transform yields a complex vector whereas each inverse
transform (expressing a probability) yields a real vector. Besides, each complex multiplication implies four real
ones. Therefore:

• each FFT with 2cn data points (below denoted by 2cn -FFT) requires 2cnþ1cn real multiplications;
• the point by point product of two forward transforms of dimension 2cn (below denoted by 2cn -CC) requires

2cnþ2 real multiplications;
• the point by point product of a probability and a forward transform of dimension 2cn (below denoted by

2cn -RC) requires 2cnþ1 real multiplications;
• the point by point product of a probability and an inverse transform of dimension (mx(n) + 1) (below

denoted by (mx(n) + 1)-RR) requires (mx(n) + 1) real multiplications.

3.2.1. An introductory example
In order to illustrate the problem as clearly as possible, we start with an example.
Let us assume mxi = 60 "i.
For calculating the convolution of order 2, we should consider a number of data points equal to the prod-

uct between the maximum numerical realization of the severity distributions (say 60) and the order of convo-
lution (say 2), hence 120. However, as the number of data points must be a power of 2, the same value rises to
27 = 128 (with c2 = INT(log2 120) + 1 = 7).

Besides, notice that the convolution requires:

• three transforms (one for the random variable ‘‘sum’’ resulting from the previous order convolution,
another one for the convolving random variable and a last one for calculating the inverse that is the result
of convolution);

• the product between two forward transforms.

Then, the valued number of multiplications is approximately
3 � 2 � ð2c2 � c2Þ þ 4 � 2c2 ¼ 6 � ð128 � 7Þ þ 4 � 128 ¼ 5888.
For calculating the convolution of order 3, we have to develop the calculation between the convolution of
order 2 and the third severity random variable. In this case, the maximum numerical realization is 60 Æ 3 = 180
and the maximum transforms dimension becomes 28 = 256 (with c3 = INT(log2 180) + 1 = 8).
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Then, the valued number of multiplications is about
3 � 2 � ð2c3 � c3Þ þ 4 � 2c3 ¼ 6 � ð256 � 8Þ þ 4 � 256 ¼ 13; 312
and so on with a more than proportional increasing.
Generally speaking, the number of multiplications for the convolution of order n is approximately
3 � 2 � ð2cn � cnÞ þ 4 � 2cn .
It follows that the number of multiplications for all the convolutions up to the one of maximum order mn is
about
Xmn

n¼2

3 � 2 � ð2cn � cnÞ þ 4 � 2cn½ �.
Thus, for a total of mn = 3 convolutions, 5888 + 13,312 = 19,200 real multiplications.

3.2.2. The complete count

In the previous example, we have computed only the number of real multiplications needed for developing
the convolutions according to the procedure (b) illustrated in Section 3.1. Besides, we have not accounted for
some possible simplifications of the calculation.

Below, we instead show the number of real multiplications needed for calculating the entire aggregate
claims distribution (in the general circumstances) according both to procedure (a) and to procedure (b). In
the latter case, we also consider the reductions due to the transforms reassessment.

The number of real multiplications needed for developing the procedure (a) by FFT is
MTCDFFTa ¼ 2cmn 2cmnðmnþ 1Þ þ 6mn� 4½ �.

As a matter of fact, we have to perform:

• for n = 1, one 2cmn -FFT for calculating /f1
and one 2cmn -RC for calculating pð1Þ/ð�1

i¼1
fiÞ (being /ð�1

i¼1
fiÞ ¼ /f1

);
• for n = 2, . . ., mn, one 2cmn -FFT for calculating /fn

, one 2cmn -CC for calculating /ð�n
i¼1

fiÞ (being /ð�n
i¼1

fiÞ ¼
/ð�n�1

i¼1
fiÞ/fn

) and one 2cmn -RC for calculating pðnÞ/ð�n
i¼1

fiÞ;

• finally, one 2cmn -FFT for calculating (14).

When the severity random variables are identically distributed, this number drops to
MTCDFFTa ¼ 2cmnð4cmn þ 6mn� 4Þ. ð17Þ

This is because in this case, for n = 2, . . ., mn, /fn

¼ /f1
and hence we have not to compute a new FFT at each

convolution.
Similarly, the number of real multiplications needed for carrying out the procedure (b) by FFT is in the

general case
MTCDFFTb
¼ ðmxð1Þ þ 1Þ þ

Xmn

n¼2

2cnð4cn þ 4Þ þ ðmxðnÞ þ 1Þ
� 	

þ
Xcmn

j¼c2

2jþ1j.
Actually, we have to develop:

• for n = 1, one (mx(1) + 1)-RR for calculating pð1Þð�1
i¼1fiÞ (being ð�1

i¼1fiÞ ¼ f1);
• for n = 2, . . ., mn, one 2cn -FFT for calculating /fn

, one 2cn -CC for calculating /ð�n
i¼1

fiÞ (being /ð�n
i¼1

fiÞ ¼
/ð�n�1

i¼1
fiÞ/fn

but with /ð�n�1
i¼1

fiÞ to be recalculated in the new dimension 2cn as explained below), one 2cn -FFT

for calculating Eq. (15) and one (mx(n) + 1)-RR for calculating pðnÞð�n
i¼1fiÞ;

• for j = c2, . . ., cmn, one 2j-FFT for calculating /ð�n�1
i¼1

fiÞ (according to the expression in brackets in Eq. (11)).
This follows by considering that, n being equal, /ð�n�1

i¼1
fiÞ changes when the dimension changes, thus we have

to compute it again at each reassessment. When using FFT, the reassessment does not occur at each con-
volution but only when n gives rise to a new power of 2, that is (cmn � c2 + 1) times.
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In the special case of identically distributed severity random variables, the number of real multiplications
becomes
MTCDFFTb
¼ ðmxð1Þ þ 1Þ þ

Xmn

n¼2

2cnð2cn þ 4Þ þ ðmxðnÞ þ 1Þ
� 	

þ
Xcmn

j¼c2

2jþ2j. ð18Þ
As a matter of fact in this case, for n = 2, . . ., mn and dimension being equal, /fn
¼ /f1

, thus we have to com-
pute again this transform at each reassessment only.

In this case, the number of real multiplications needed for computing solely the convolutions is
MCONVFFTb
¼
Xmn

n¼2

2cnð2cn þ 4Þ þ
Xcmn

j¼c2

2jþ2j. ð19Þ
The number of multiplications is useful to compare the efficiency of the two different evaluation procedures
using FFT but it is purely an indication of the computational effort needed for their execution.

As a matter of fact, this number does not show the complexity due to various other additional operations
required by FFT.

Notice for instance that, for each transform, we have to define two tables (one for the real part and the
other for the imaginary part) each one of dimension up to 2cmn (or only one table with a double dimension).
The definition and management of these tables take up memory and slow down the procedures execution.

Besides, for each distribution, the numerical realizations are expressed as a function of the position of the
corresponding probability inside the tables. Then, in order to avoid to lose this connection (or in order to
re-establish it) after transforms calculation, we have to rearrange the input data (or the output data) in a
bit-reverse order. This requires a further computational effort.

For the above-mentioned reasons, the computational effort rises more than proportionally as the number of
convolutions goes up.

Further, the various complex operations usually cause approximation problems in the applications.

4. The new method proposed

In this section, we propose a new method for evaluating the aggregate claims distribution.
It requires no special assumption on the counting distribution nor the identical distribution of the severity

random variables. Besides, it develops the direct calculation of Eq. (1) without applying any transform and it
does not incur in underflow and overflow problems.

Obviously, this is an approximated method but unlike the other approximated methods (among which the
methods based on De Pril Transform):

• the approximation concerns both the counting distribution and the convolution of the severity
distributions;

• the approximation does not consist in truncating the original distribution up to a given number of terms
nor in replacing it with another distribution or a more general function (but simply in considering only
the significant numerical realizations and in neglecting the others);

• the resulting approximation of the aggregate claims distribution has a prefixed maximum error.

The method is actually composed of two logically distinct phases even if they are performed by the same
software:

1. during the former, we identify the values of the counting distribution significant for the following evalua-
tion of the aggregate claims distribution;

2. during the latter, we perform all the convolutions up to the one of maximum order by identifying after each
convolution the significant distinct numerical realizations and by neglecting the others in the calculation of
the next order convolution.
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In the first phase, we consider significant those values of n with probability not lower than a suitably deter-
mined value. This value is the maximum number not greater than 10�21 such that the sum of the probabilities
not lower than it is equal to one with a given maximum error and simultaneously the first three moments of the
aggregate claims distribution obtained by neglecting the others differ in relative terms from the corresponding
exact values with the same maximum error (lower than 10�10 in our applications).

In the second phase, we consider significant for each convolution those values of x with probability not
smaller than a suitably determined value. This value is the maximum number not greater than 10�21 such that
the distribution obtained by neglecting the realizations with probabilities smaller than it is exact with a desired
maximum error (lower than 10�6 in our applications). We say that a distribution is exact with a given error if
the sum of its probabilities is equal to one with that error and simultaneously the first three moments differ in
relative terms from the corresponding exact values with the same error.

In the end, we perform the direct calculation of Eq. (1) for only the significant values of n and x determined
in the previous phases.

The aggregate claims distribution obtained in such a way is exact in the above-mentioned sense with a max-
imum error equal to the greater between the one chosen in the approximation to the counting distribution and
the one chosen in the approximation to the convolutions (say, an error lower than 10�6 in our applications).
They are also exact at least up to the decimal point defined by this error (the sixth in our applications) the
probabilities of all the numerical realizations.

4.1. Calculation phases

Let Eð�n
i¼1

fiÞ, E2
ð�n

i¼1
fiÞ and E3

ð�n
i¼1

fiÞ be the first three exact moments of each convolution. They are automatically

calculated by the software during the reading of the severity random variables input data.
Further, let Eg, E2

g and E3
g be the first three exact moments of the aggregate claims distribution. For Eq. (1),

we have
Eg ¼
Xmn

n¼0

pðnÞEð�n
i¼1

fiÞ;

E2
g ¼

Xmn

n¼0

pðnÞE2
ð�n

i¼1
fiÞ;

E3
g ¼

Xmn

n¼0

pðnÞE3
ð�n

i¼1
fiÞ.
The first phase of the proposed method concerns the identification of the significant values of the counting
distribution.

Let X denote the set of such values. This set is given by those values n of the counting distribution with
probability not smaller than the maximum number not greater than 10�21 such that the following conditions
are simultaneously fulfilled:
1�
X
n2X

pðnÞ < 10�10; ð20Þ

1�
P

n2XpðnÞEð�n
i¼1

fiÞ

Eg
< 10�10; ð21Þ

1�
P

n2XpðnÞE2
ð�n

i¼1
fiÞ

E2
g

< 10�10; ð22Þ

1�
P

n2XpðnÞE3
ð�n

i¼1
fiÞ

E3
g

< 10�10. ð23Þ
Notice that we have chosen the value 10�10 according to the results obtained in a number of practical appli-
cations from 1996. We can however furtherly reduce this value if necessary.

The second phase concerns the calculation of the severity random variable convolutions.
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For the purpose, we use the approximated procedure proposed by Bruno et al. [5] but we extend the
approximation control to the third moment of the resulting distribution.

We proceed recursively for n = 1, 2, . . ., mn. In particular, for each n, we approximate the convolution by

the distribution ð�n
i¼1fiÞðaÞ obtained by considering only the significant distinct values of ð�n�1

i¼1 fiÞðaÞ � fn, with

ð�0
i¼1fiÞðaÞ � f1 ¼ f1.
Let K(n) be the set of such values for each n. This set is given by those values x of ð�n�1

i¼1 fiÞðaÞ � fn with prob-
ability not smaller than the maximum number not greater than 10�21 such that the following conditions are
simultaneously fulfilled:
1�
X

x2KðnÞ
ð�n

i¼1fiÞðaÞðxÞ < 10�6; ð24Þ

1�
Eð�n

i¼1
fiÞðaÞ

Eð�n
i¼1

fiÞ
< 10�6; ð25Þ

1�
E2

ð�n
i¼1

fiÞðaÞ

E2
ð�n

i¼1
fiÞ

< 10�6; ð26Þ

1�
E3

ð�n
i¼1

fiÞðaÞ

E3
ð�n

i¼1
fiÞ

< 10�6; ð27Þ
where Eð�n
i¼1

fiÞðaÞ , E2

ð�n
i¼1

fiÞðaÞ
, and E3

ð�n
i¼1

fiÞðaÞ
are the first three moments of the approximated convolution.

This procedure has various advantages in the calculation of convolutions.
Notice that, thanks to the conditions (24)–(27), this procedure gives exact results at least up to the sixth

decimal point for the individual probabilities of each convolution.
Besides, it is easier and more efficient than the FFT for two main reasons:

• it enables a substantial reduction of the numerical realizations to consider (hence of the multiplications to
perform) at each convolution;

• it does not present the complications of the FFT due to complex operations, bit-reversal, and so on.

At the end of the two previous phases, we perform the direct calculation of the aggregate claims distribution
for only the identified values of n and x.

Virtually, we approximate Eq. (1) by
gðaÞðxÞ ¼
X
n2X

pðnÞð�n
i¼1fiÞðaÞðxÞ for x 2

[
n2X

KðnÞ ð28Þ
with g(a)(0) = p(0).
This drastically speeds up the computation, excludes underflow possibilities and avoids overflow problems.
We also show that the maximum approximation is lower than 10�6, that is of an order equal to the greater

between the one chosen in the approximation to the counting distribution and the one chosen in the approx-
imation to the convolutions.

4.2. Error bounds

We can easily prove that:
1�
X

x2
S

n2X
KðnÞ

gðaÞðxÞ < 10�6.
As a matter of fact, according to Eqs. (28), (24) and (20), we have
1�
X

x2
S

n2X
KðnÞ

gðaÞðxÞ ¼ 1�
X
n2X

pðnÞ
X

x2
S

n2X
KðnÞ

ð�n
i¼1fiÞðaÞðxÞ < 1� ð1� 10�10Þð1� 10�6Þ ffi 10�6.
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We can also show that for k = 1,2,3:
Table
Severit

Realiz

14
15
16
17
18
19
20
24
26
28
30
31
55
60
Otherw
1�
Ek

gðaÞ

Ek
g

< 10�6.
As a matter of fact, according to Eq. (28) and, respectively, to Eqs. (25), (21), Eqs. (26), (22) and Eqs. (27),
(23), we have
1�
Ek

gðaÞ

Ek
g

¼ 1�

P
n2X pðnÞEk

ð�n
i¼1

fiÞðaÞ

Ek
g

< 1�
P

n2XpðnÞð1� 10�6ÞEk
ð�n

i¼1
fiÞ

Ek
g

< 1�
ð1� 10�10ÞEk

gð1� 10�6Þ
Ek

g

ffi 10�6.
5. Applications

In this section, we show some applications of the proposed method.
For simplicity, we assume that the severity random variables are identically distributed with common prob-

ability density h [17, pp. 178, 229]: Table 1.
Therefore, we have mxi = 60 "i and hence mx(n) = n Æ 60.
On the other hand, we take as mn the superior extreme of the reduced set X identified during the first phase

of the proposed method.
We first show some results using a Poisson counting distribution. The method gives the same results of the

other methods quoted in the paper (at least up to the sixth decimal point) and it takes the lowest processing
time. Besides, it does not incur in underflow and overflow problems.

We also show some results using a Generalized Pareto mixture of Poisson distributions as counting
distributions.

All the calculations have been carried out using a P.C. Pentium IV 2000 MHz and algorithms written in
C++. For the FFT computation, we have used the algorithm illustrated in Press et al. [19, pp. 507–508].
1
y distribution

ations Probabilities

0.0103301
0.0307990
0.0293511
0.0103301
0.0730414
0.0111568
0.0264554
0.1002133
0.0815418
0.0252146
0.0212857
0.0254214
0.0991756
0.4556837

ise 0
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5.1. Poisson counting distribution

Here, we use a Poisson counting distribution with parameter k > 0:
Table
Extrem

k

104.8
204.8
304.8
504.8

1004.8
5004.8

a X i

Table
Numb

Numb

180
306
426
658

1217
5475
pðnÞ ¼ e�k kn

n!
.

In Table 2, for different values of k, we show some data concerning the proposed method which are useful
for a comparison with the other methods. In particular:

• in the first column, we show the different values of k;
• in the second column, we show the extremes of the reduced set X identified during the first phase of the

method. Remember that the superior extreme is the total number of convolutions mn to develop during
the second phase;

• in the third column, we show the total number of distinct numerical realizations identified during the sec-
ond phase after each convolution up to the one of order mn � 1.

The values in the last column of Table 2 multiplied the number of distinct numerical realizations of the
severity distribution (say 14, in the case under study) provides an indication of the number of real multiplica-
tions needed for calculating all the convolutions up to the one of maximum order mn.

In Table 3, we compare such number of multiplications with the one needed for calculating the same num-
ber of convolutions by FFT. In particular:

• in the first column, we show the total number of convolutions to perform derived by Table 2;
• in the second column, we show the number of real multiplications for the proposed method given by:
MCONVPM ¼ Num. distinct realizations � 14.
• in the third column, we show the number of real multiplications for FFT given by Eq. (19), with cn given by
(16);

• in the fourth column, we show the ratio between the values of the third column and those of the second
one.
2
es of the reduced set Xa and cumulative number of distinct realizations using a Poisson counting distribution with parameter k

Extremes of X Num. distinct realizations

14259 20–180 519,182
14259 77–306 1,213,573
14259 145–426 2,031,981
14259 294–658 3,959,604
14259 699–1217 10,051,481
14259 4301–5475 95,554,905

s the set of the significant values of the counting distribution considered in the calculation.

3
er of real multiplications for calculating the convolutions

er of convolutions Proposed method FFT FFT/Proposed method

7,268,548 46,565,120 6.4
16,990,022 134,055,680 7.9
28,447,734 267,749,120 9.4
55,434,456 669,878,016 12.1

140,720,734 2,325,317,376 16.5
1,337,768,670 54,466,021,120 40.7
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According to the data in Table 3, the application of FFT for calculating the convolutions requires a greater
load in terms of number of real multiplications with respect to the proposed method (results being equal at
least up to the sixth decimal point). Really, the load is even greater since for FFT we have not considered
the additional operations of bit-reversal and for the proposed method we have not allowed for the further sim-
plification obtained by eliminating the non-significant numerical realizations.

Besides, remember that the number of multiplications is only one of so many elements affecting the proce-
dures processing time.

In Table 4, for different values of k, we show the processing time in seconds for evaluating the entire aggre-
gate claims distributions using the proposed method and all the other methods quoted in the paper. In
particular:

• in the first column, we show the different values of k;
• in the second column, we show the processing time of the proposed method;
• in the third column, we show the processing time taken by applying Eq. (6) with k = 1, x = 0, a1 = 0 and

b1 = k and with mn derived from Table 2;
• in the fourth column, we show the processing time taken by applying Eq. (8) with f = g, s = 0 and

ug(x) = xkh(x);
• in the fifth column, we show the processing time taken by applying FFT according to the procedure (b)

illustrated in Section 3.1.

According to Table 4, the other methods require a higher processing time with respect to the proposed
method (conditions and results being equal). Besides, the time ratio rises (exponentially in the case of FFT)
as k rises and for large k the methods based on Panjer�s formula and De Pril Transform incur in underflow
problems.

It may be useful to notice that if we would evaluate the aggregate claims distribution using FFT according
to the procedure (a) illustrated in Section 3.1, we could perhaps obtain a time saving. However, supposed that
the time is proportional to the number of real multiplications, the possible reduction would not modify the
result of the comparison with the proposed method.
Table 4
Processing time (in seconds)a for evaluating the aggregate claims distribution using a Poisson counting distribution with parameter k

k Proposed method Panjer De Pril FFTb

104.814259 <1 2 2 2
204.814259 1 5 4 11
304.814259 2 9 10 24
504.814259 3 21 23 67

1004.814259 4 Underflow Underflow 261
5004.814259 41 Underflow Underflow 3850

a All the calculations have been carried out using a P.C. Pentium IV 2000 MHz and algorithms written in C++. For the FFT
computation, we have used the algorithm illustrated in Press et al. [19, pp. 507–508].

Table 5
Number of real multiplications for evaluating the aggregate claims distribution using a Poisson counting distribution with parameter k

k FFTa FFTb FFTb/FFTa

104.814259 18,546,688 47,542,700 2.6
204.814259 61,997,056 136,874,246 2.2
304.814259 85,590,016 273,206,606 3.2
504.814259 262,668,288 682,887,334 2.6

1004.814259 965,476,352 2,369,787,773 2.4
5004.814259 17,260,609,536 55,365,459,595 3.2
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In Table 5, we compare the number of real multiplications required for calculating the entire aggregate
claims distribution by procedure (a) and procedure (b). In particular:

• in the first column, we show the different values of k;
• in the second column, we show the number of real multiplications given by Eq. (17) with mn derived by

Table 2 and cmn given by Eq. (16);
• in the third column, we show the number of real multiplications given by Eq. (18) with cn given by (16);
• in the fourth column, we show the ratio between the data in the third column and those in the second one.

In Table 6, we show the aggregate claims distribution and the cumulative distribution obtained by applying
the proposed method for k = 504.814259. For space reasons, we show the values corresponding only to some
numerical realizations (expressed as a function of the mean value and the standard deviation of the
distribution).

The results in Table 6 (compared with those of the other methods) allow to verify that the probabilities of
the individual numerical realizations are exact at least up to the sixth decimal point. As proved in Section 4.2,
the same result holds for the first three moments of the distribution. Besides, the sum of the probabilities is
equal to one with an error lower than 10�6.

In the end, we remind that the proposed method can be applied even for values of k for which the other
methods cannot be applied.

In Table 7, we show the cumulative distribution obtained for k = 91,000 (for a total of mn = 92,832 con-
volutions). The processing time taken for the entire calculation is 1950 s.
Table 6
Aggregate claims distribution and cumulative distribution using a Poisson counting distribution with parameter k = 504.814259

Aggregate claims amounta Probabilities Cumulative distribution values

l � 5.00r ffi 16,347 0.000000 0.000000
l � 4.00r ffi 17,395 0.000000 0.000017
l � 3.00r ffi 18,443 0.000004 0.001051
l � 2.50r ffi 18,967 0.000015 0.005405
l � 2.00r ffi 19,491 0.000051 0.021317
l � 1.90r ffi 19,595 0.000062 0.027153
l � 1.80r ffi 19,700 0.000075 0.034326
l � 1.75r ffi 19,752 0.000082 0.038411
l � 1.70r ffi 19,805 0.000090 0.042970
l � 1.65r ffi 19,857 0.000098 0.047852
l � 1.60r ffi 19,910 0.000107 0.053271
l � 1.50r ffi 20,014 0.000125 0.065289
l � 1.00r ffi 20,538 0.000235 0.158591
l � 0.75r ffi 20,800 0.000292 0.227754
l � 0.50r ffi 21,062 0.000340 0.310857
l � 0.25r ffi 21,324 0.000371 0.404499
l � 0.00r ffi 21,586 0.000381 0.503536
l + 0.25r ffi 21,848 0.000367 0.601928
l + 0.50r ffi 22,110 0.000332 0.693829
l + 0.75r ffi 22,372 0.000283 0.774593
l + 1.00r ffi 22,634 0.000227 0.841425
l + 1.50r ffi 23,158 0.000122 0.931859
l + 2.00r ffi 23,681 0.000052 0.975826
l + 2.50r ffi 24,205 0.000018 0.992972
l + 3.00r ffi 24,729 0.000005 0.998325
l + 4.00r ffi 25,777 0.000000 0.999947
l + 5.00r ffi 26,824 0.000000 0.999999
l + 8.00r ffi 29,968 0.000000 1.000000

a l = 21586.462129 and r = 1047.695834. They are, respectively, the mean value and the standard deviation of the aggregate claims
distribution.



Table 7
Aggregate claims cumulative distribution using a Poisson counting distribution with parameter k = 91,000

Aggregate claims amounta Cumulative distribution values

l � 5.00r ffi 3,820,935 0.000000
l � 4.00r ffi 3,835,002 0.000030
l � 3.00r ffi 3,849,069 0.001327
l � 2.50r ffi 3,856,102 0.006149
l � 2.00r ffi 3,863,135 0.022643
l � 1.90r ffi 3,864,542 0.028604
l � 1.80r ffi 3,865,949 0.035817
l � 1.75r ffi 3,866,652 0.039943
l � 1.70r ffi 3,867,355 0.044447
l � 1.65r ffi 3,868,059 0.049359
l � 1.60r ffi 3,868,762 0.054687
l � 1.50r ffi 3,870,169 0.066705
l � 1.00r ffi 3,877,202 0.158658
l � 0.75r ffi 3,880,718 0.226704
l � 0.50r ffi 3,884,235 0.308708
l � 0.25r ffi 3,887,752 0.401538
l � 0.00r ffi 3,891,268 0.500249
l + 0.25r ffi 3,894,785 0.598941
l + 0.50r ffi 3,898,302 0.691642
l + 0.75r ffi 3,901,818 0.773450
l + 1.00r ffi 3,905,335 0.841343
l + 1.50r ffi 3,912,368 0.933083
l + 2.00r ffi 3,919,402 0.977145
l + 2.50r ffi 3,926,435 0.993730
l + 3.00r ffi 3,933,468 0.998627
l + 4.00r ffi 3,947,535 0.999967
l + 5.00r ffi 3,961,602 1.000000
l + 8.00r ffi 4,003,802 1.000000

a l = 3891268.954300 and r = 14066.631372. They are, respectively, the mean value and the standard deviation of the aggregate claims
distribution.
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5.2. Generalized Pareto mixture of Poisson counting distributions

We show some results obtained using as counting distribution a mixture distribution of the form:
PoissonðHÞ
Ĥ

Generalized Paretoða; b; cÞ;
i.e. a mixture of Poisson distributions with parameter H, where H is a random variable with generical reali-
zation k (k > 0) and probability density:
uðkÞ ¼ abC½bþ c�
C½b�C½c�

kc�1

ðaþ kÞbþc for k > 0;
which is the density function of a Generalized Pareto distribution with parameters a > 0, b > 0, c > 0, where C
is the Gamma function.

This is a continuous mixture [11]. Thus, as well known, its probability mixed function is obtained by inte-
gration over the mixing parameter H. In other words,
pðnÞ ¼
Z 1

0

e�k kcþn�1

n!

abC½bþ c�
C½b�C½c�ðaþ kÞbþc dk for n ¼ 0; 1; 2; . . .



Table 8
Aggregate claims cumulative distribution using a Poisson-Generalized Pareto mixture counting distribution with parameters a = 3.4959,
b = 30.1234, c = 1.99321

Aggregate claims amounta Cumulative distribution values

l � 0.42r ffi 0 0.798708
l � 0.25r ffi 4 0.798708
l � 0.00r ffi 10 0.798708
l + 0.25r ffi 16 0.810615
l + 0.50r ffi 22 0.831052
l + 0.75r ffi 28 0.866018
l + 1.00r ffi 34 0.874409
l + 1.50r ffi 46 0.877189
l + 2.00r ffi 58 0.896084
l + 2.50r ffi 70 0.973562
l + 3.00r ffi 82 0.980304
l + 4.00r ffi 106 0.987965
l + 5.00r ffi 130 0.997091
l + 8.00r ffi 202 0.999813
l + 10.00r ffi 250 0.999972
l + 20.00r ffi 491 1.000000
l + 50.00r ffi 1212 1.000000

a l = 10.2310 and r = 24.0489. They are, respectively, the mean value and the standard deviation of the aggregate claims distribution.
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By solving, we obtain,
pðnÞ ¼ abC½bþ c�C½n� b�1F 1½bþ c; 1þ b� n; a�
C½b�C½c�C½1þ n�

þ anC½cþ n�C½b� n�1F 1½cþ n; 1� bþ n; a�
C½b�C½c�C½1þ n� for n ¼ 0; 1; 2; . . .
where 1F1 is the Kummer function.
In Table 8, we show the cumulative aggregate claims distribution obtained for a = 3.4959, b = 30.1234,

c = 1.99321.

6. Conclusions

In the present paper, we propose a method of practical utility for calculating the aggregate claims distribu-
tion in a discrete framework.

It is an approximated method but the resulting approximation of the aggregate claims distribution is lower
than a prefixed error (10�6 in our applications). In particular, the probability distribution and also the first
three moments are exact with the above-mentioned prefixed maximum error.

This method does not require special assumptions on the counting distribution nor the identical distribution
of the severity random variables and it does not incur in underflow and overflow computational problems.

Besides, it proves to be more flexible, easier and cheaper than the (exact and approximated) methods using
recursion and FFT. In particular, the advantages of the proposed method rise as the number of convolutions
rises.

In addition to the specific application proposed in this paper, the method can be applied in many other (life
and non-life) actuarial fields where the sum of discrete random variables (with integer or referable to integer –
positive, negative and also null – numerical realizations) and the calculation of compound distributions are
involved. Besides, it can be extended in multivariate situations.
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