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Abstract— in this paper, we proposed a method for near range 
path navigation for a mobile robot by using a pair of biologically 
inspired visual neural network – lobula giant movement detector 
(LGMD). In the proposed binocular style visual system, each 
LGMD processes images covering a part of the wide field of view 
and extracts relevant visual cues as its output. The outputs from 
the two LGMDs are compared and translated into executable 
motor commands to control the wheels of the robot in real time. 
Stronger signal from the LGMD in one side pushes the robot 
away from this side step by step; therefore, the robot can navigate 
in a visual environment naturally with the proposed vision 
system. Our experiments showed that this bio-inspired system 
worked well in different scenarios. 
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I.  INTRODUCTION 
Autonomous mobile robots have long been expected to 

possess the ability to explore their paths in a dynamic 
environment and interact with dynamic moving objects 
effectively and free of collisions. However, it is still difficult 
for a mobile robot to run autonomously without collision in 
complex environments using vision only (Wichert 1999, 
Indiveri and Douglas 2000, DeSouza and Kak 2002, Buxton 
2003). Even with several kinds of sensors - including visual, 
ultrasound, infra-red, laser, and mini-radar to provide more 
environmental information, a robot may still encounter 
difficulties in interpret the plenty of data collected in real 
time with limited computing power (e.g., Everett 1995, 
Olson et. al. 2003, Manduchi et. al. 2005), especially in a 
human centred urban environment (e.g., Gandhi and Trivedi 
2007, Urban Challenge 2007). Effectively and cheaply 
extract relevant visual cues from the visual field and turn 
these cues into executable motor commands are critical for a 
robot exploring its local environment or interact with 
dynamic objects free of collision. However, both are difficult 
tasks because of the visual complexity. 

Animals often possess incredible visual systems to detect 
and react to the changes of their environment appropriately. 
Mechanisms revealed in animal visual systems provide 
unique and robust solutions for robotic problems such as 
navigation, collision avoidance, landing and source target 
tracing etc. (e.g., Blenchard & Rind 1999 and 2000, Huber 
et. al. 1999, Harrison & Koch 2000, Webb & Reeve 2003, 
Iida 2003, Nishio et. al. 2004, Franceschini 2004, Yue & 
Rind 2006, 2007, 2008a and 2008b). In locusts, it is believed 

that the LGMDs, and their postsynaptic partners, the 
descending contralateral movement detectors (DCMDs) 
(Schlotterer, 1977, Rind and Simmons, 1992, 1999, Gabbiani 
et.al. 2004, 2006, Santer et al., 2005, 2006) may play an 
important role for collision avoidance (Rind 2000, Rind et. 
al. 2003), as demonstrated with simulated models either in 
single to trigger collision avoidance (Blanchard et. al 1999, 
2000, Rind and Bramwell 1996, Santer et. al. 2004, Yue and 
Rind 2005, 2006, Stafford et.al. 2007) or in pair to control 
escape directions (Yue et.al. 2007).  As a visual neural 
network, LGMD is ideal for extracting collision visual cues 
from dynamic scenes. These extracted cues can then be 
interpreted into executable motor commands directly to drive 
a mobile robot. Inspired by the binocular vision of many 
animal species, we propose a LGMD based vision system 
that works in a binocular style to generate near range path 
navigation behavior.  

 
 

 
 

Figure 1.  The schematic illustration of the vision system for a mobile 
robot with a pair of LGMDs to process images covering overlapped fields 

of view parallelly. 

 
In this paper, we build a system with a pair of LGMDs 

and a simple motor system. We feed the pair of LGMDs with 
input images from a panoramic visual camera and integrate 
the vision system with the real time control system of a 
mobile robot through a motor system. We test the navigation 
ability of the robot equipped with presented system by 
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carrying out several experiments in a robotic laboratory. We 
expect the system enables a mobile robot moving within a 
visual environment efficiently while creating a reasonable 
path without collision.  

In the following parts, the proposed system is described 
in detail in section 2.  Experiments and results are related in 
section 3. Discussion is presented in section 4 and conclusion 
is drawn in section 5. 

 

II. THE VISUAL NEURAL SYSTEM 
The vision system in the study includes two visual 

LGMD neural networks to extract relevant visual cues and a 
motor system to use the inputs from the two LGMDs to 
control the two robotic wheels. The vision system is 
integrated to a Khapera mobile robot (k-team, Lausanne, 
Switzerland) with a panoramic camera capturing live images. 
The whole system is schematically illustrated in Figure 1. 

 

A. The LGMD 
The LGMD model (Figure 1) used in this study is based 

on the neural network described in Yue & Rind (2005) with 
minor simplification. The LGMD model responds selectively 
to movement in depth or looming. The left and right LGMD 
are identical but pick up different input images. The left 
LGMD is fed with image from the left side hemisphere while 
the right LGMD takes the right side images as its input. 

The LGMD network is composed of four layers of cells - 
photoreceptor (P), excitatory (E), inhibitory (I) and summing 
(S), and a single cells LGMD. 

In the first layer of the neural network are the 
photoreceptor P cells which are arranged in a matrix to 
capture the luminance change, 
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where Pf(x,y) is the change in luminance corresponding to 
pixel (x,y) at frame f; x and y are the pixel coordinates, Lf and 
Lf-1 are the luminance, subscript f denotes the current frame 
and f-1 denotes the previous frame.  

The outputs of the P cells form the inputs to two separate 
cell types in the next layer. One type is the excitatory cells, 
through which excitation is passed directly. The second cell 
type is the lateral inhibition cells, which pass inhibition, after 
a 1 image frame delay. The strength of inhibition delivered 
to a cell in this layer is given by, 
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where If(x,y) is the inhibition corresponding to pixel (x,y) at 
the current frame f, wI(i, j) are the local inhibition weights, 
and n defines the size of the inhibited area. In the 
experiments, the local inhibition weights are set to 25% for 
the inhibition from the four direct neighbouring cells and 
12.5% for the inhibition from the diagonal neighbouring 
cells; and n was set to 1. 

Excitation from the E cells and inhibition from the I cells 
are summed by the S cells in layer 3 of the network using the 
following equation: 
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where WI is the global inhibition weight. Excitation that 
exceeds a threshold value is passed to the LGMD cell: 





<
≥

=
rf

rff
f TyxSif

TyxSifyxS
yxS

),(0
),(),(

),(~                (4) 

where Tr is the threshold. 
The excitation of the LGMD cell Uf, is the summation of 

all the excitation in the S cells as described by the following 
equation, 
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The excitation Uf is then performed a sigmoid 
transformation, 
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where ncell is the total number of the cells in the S layer. The 
sigmoid excitation uf varies within [0.5, 1] and forms the 
input of the following motion controller. 

B. The binocular style vision to motor system 
Once the cues have been extracted by the left and right 

LGMD in real time, it can be used to trigger a robot’s 
behaviour, such as escape behaviour (e.g., Blanchard et.al. 
2000, Yue and Rind 2005, 2006) via different types of motor 
neural networks (Yue et. al. 2007). In this study, we tend to 
link the extracted visual cues directly to the motor system to 
generate navigation behavior. Since the panoramic vision 
can only provide near range visual information, the 
navigation behavior can only be affected by those objects 
close to and seen by the robot.  

To react promptly to the surrounding in the wide range 
field of view, the difference between the outputs of left and 
right LGMD is used to generate motor command via the 
motor system. The difference between the left and right side 
LGMD reflects the changing local environment on both 
sides. These new generated motor commands are executed 
immediately by the left and right wheels.  

The signal interpreter can be a simple proportional, PID, 
fuzzy system, neural networks or other adaptive controller 
which translates signal to motor control command frame by 
frame. A proportional controller is selected for its simplicity. 
It translates output signal from the left and right LGMD to 
executable motor command for the robot.  

The outputs of the right and left LGMD are compared 
and written as,  
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The ideal situation is – left and right LGMD’s outputs are 
equal, i.e. e is zero. In this situation, the robot moves 
forward/backward in straight lines. We use e as the 
compensation signal fed into the controller. 

The output speed u at time t (or frame f) of the controller 
can be, 

)(eKu cf =                                       (8) 
where u is the speed coefficient of the robot’s left and right 
wheels, Kc is the proportional gain of the controller. 



The motor commands from the interpreter sent to the left 
and right wheels are calculated and rounded as following 
before execution, 

)( 0 vuuroundu fll ++= κ                      (9) 

)( 0 vuuroundu frr +−= κ                   (10) 
where u0 is a constant represents the robot’s initial motion 
pattern, v represents the contribution from other sources, 
round( ) means round the value to a nearest integer. Note, the 
two motor commands ul and ur are computed at each frame 
and fed to the motor system immediately without delay. 
According to the above equations, the robot moves in a 
specific pattern defined by u0 if there is no or very little 
difference between the left and right LGMD excitation level 
and no or very little other inputs. Otherwise, the motion 
pattern should be the outcome of all the inputs.  
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Figure 2.  Example images from the panoramic camera (a); the 
transformed image fed to left side LGMD, the field of view is about 100 
degrees (b); the image fed to right side LGMD, the field of view is about 

100 degrees (c). There is 20 degrees overlapped area which covers the front 
part of the vision. 

C. Image transformation 
Panoramic images captured by the robot’s CCD camera 

(Figure 2, top) is transformed into normal images (Figure 2 
bottom) in real time before split and fed to the LGMDs. The 
transformation is done using a program written in Matlab® 
(Mathworks, USA). The transformation involves in 
rearranging pixels to a different coordination system, i.e., 
from a Polar to a Cartesian coordination system. The grey 
scale at each pixel remains unchanged after transformation. 
The size of the image fed to the left and right LGMDs are 
with 100 pixels in horizontal and 42 in vertical, covering 100 
degree field of view in each side with 20 degrees overlapping 
area. The two wide range images fed to left/right LGMD 
should allow the system responding to the changing scenes 
in the front hemisphere. 

D. Implementation  
The LGMD neural networks and the motor command 

generator were written in Matlab® (MathWorks, USA) and 

run on a PC. Inputs to the paired LGMD neural networks are 
from the panoramic CCD camera of a Khepera mobile robot. 
Communication between the PC and the robot is via a serial 
port through a RS232 cable.  

Images captured by the robot’s CCD camera (example 
shown in Figure 2, top) are transformed and fed to the 
LGMDs and processed in real time. The size of the whole 
image transformed from panoramic image is 360 pixels in 
horizontal and 42 pixels in vertical. The frame rate is about 8 
frames per second. As mentioned above, the size of the 
images fed to the left or right LGMD is 100 pixels in 
horizontal and 42 in vertical, covering about 180 degrees 
field of view to the front (Figure 2 b and c). The overlapping 
area is about 20 degrees.  

The constant u0 is set to 6, which means the robot 
moving speed is at 4.8cm/s forward for each wheel. Default 
acceleration profile is used in the experiment. The global 
inhibition weight WI is set to 0.3 and threshold Tr is set to 15 
in the experiments. The proportional gain Kc is set to 15 
unless stated differently. Each experiment lasts for about 8 
seconds. 

All the experiments are conducted in a robotic laboratory. 
Further background is not excluded. The robot may see other 
objects further away. Illumination condition was not 
deliberately controlled.  

 

III. EXPERIMENTS AND RESULTS 
To check the feasibility of the system, we put the robot at 

one end of an arena with two walls – one curved block wall 
on one side and sparse blocks on other side. The robot is 
expected to move for about 8 seconds and stop. We repeated 
the experiments several times with the robot started from 
different entrances of the arena; results are shown in Figure 
3. We found that the vision system works well providing 
relevant information for the motor system to yield reasonable 
navigation paths between the two columns of blocks, 
although the initial positions and orientations of the robot in 
the above five trials were quite different, as indicated in 
Figure 3. 

 
 

  
 

Figure 3.  The navigation paths of the robot. Two trials with initial 
orientation towards one end of the arena surrounded by one curved blocks 

wall and several sparsely aligned blocks(left); three trials with initial 
orientation towards the other end of the path in the same environment as in 

the left side image (right). Images were from the first frame of two trials 
and trajectories were overlaid after being extracted from recorded video 

clips. 



Experiments were also carried out to investigate the 
impact of individual object on the VISION system. Details 
of the two trails with or without a hand in the environment 
were shown in Figure 4 and Figure 5. The robot conducted a 
quite different movement (as evidenced from its path) when 
a hand was presented on its way (Figure 4). The difference of 
excitation from left and right LGMD at the two trials were 
shown in Figure 5, together with the outputs from the 
command generator to the left and right wheels. It was found 
that the robot changed its direction to its right side at the first 
part of the journey, and turn back to its left side at the last 
half of this journey when the hand was presented (Figure 5, 
a, left) by adjusting the speed of its left and right wheels 
(Figure 5, a, right). For the trial without hand on its path, the 
speed of the wheels performed differently, especially around 
the critical time from frame 10 to 30 (Figure 5, b). 

 
 

 
Figure 4.  The movement trajectories of the robot in two different trials, 

(left) without object on its path; (right) with an object – a hand, on its way. 
Image was from the first frame of each trial and trajectories were overlaid 

after being extracted from recorded video clips. Both of the trajectories 
were overlaid to the first frame of images for easy comparison. 
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Figure 5.  Left column, the difference in excitation between the left and 
right LGMD; right column, the different output speed to left and right 

wheels. (a) The trial with the hand in the environment (Figure 4); (b) the 
trial without the hand (Figure 4). 

IV. DISCUSSIONS 
Since the camera was mounted on the mobile platform, 

the constant movements and frequent direction changes 
should result in sharp changes between successive images. 

These sharp changes may bring difficulties in image 
interpretation or may further enhance unstable direction 
changes. However, our experiments showed that it was not a 
problem for motion sensitive neural network based vision 
system. With a simple motor system, the whole system 
worked well and stable. On the other hand, our experiments 
suggests a similar way of using extracted visual cues to 
direct fly course in a biological system may also be feasible. 

The presented LGMD based vision system picked up 
differential images only and computed the excitation level to 
guide the robot’s movements. It worked well regardless the 
complexity resulted from surrounding objects’ size, shape, 
colour or other physical characteristics.  The robustness of 
these motion sensitive neural networks has been 
demonstrated in different applications (Yue and Rind, 2006, 
2007). Therefore, the proposed system is ideal to be 
implemented to mobile robotic systems to enable basic local 
path planning. 

Flies demonstrated motor planning ability mediated by 
visual information in the escape responses (Card & 
Dickinson 2008). Elementary motion detector (EMD), which 
was proposed to explain a visual processing mechanism in 
fly (Hassenstein & Reichardt 1956), has also been applied to 
robots for navigation (e.g., Francessini 2004 and Harrison 
and Koch 2000) or as speed odometer to guide fly robots’ 
(Iida 2003). However, the EMD model can be limited to 
certain range of speed. It is not clear if an EMD model still 
works when the projected retinal image speed is faster than 
predicted. The presented LGMD based visual networks are 
able to respond to image changes in a whole visual field and 
accommodate large variety of retinal image speeds. With the 
presented system, faster optical flow results in stronger 
excitation, and therefore, causes bigger turning speed and 
acute movement that enables the robot to run away from the 
faster image change.  

In the future, we are going to combine a bio-inspired 
target tracking algorithm with the vision system to enable a 
mobile robot interact with dynamic world better. 

 

V. CONCLUSION 
In the above sections, we presented a binocular style 

vision system that enables a mobile robot exploring local 
paths effectively using visual input only. The vision system 
consists of a pair of LGMD visual neural networks and a 
simple motor system. The vision system shares the 
distinctive feature of motion sensitive neural networks – 
processing visual images effectively in real time regardless 
the colour, shape, physical characteristics of surrounding 
objects. Our experiments showed that the system worked 
well in different scenarios. The system can be further 
implemented to other mobile robot platforms for local path 
exploring, motion planning and interacting. 
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