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Abstract: The need for optimal inventory control strategies for perishable items is of the
utmost importance to reduce the large share of food products that expire before consumption
and to achieve responsible food stocking policies. Our study allows for a multi-item setting
with substitution between similar goods, deterministic deterioration, delivery lead times and
seasonality. Namely, we model demand by a linear discrete choice model to represent a vertical
differentiation between products. The verticality assumption is further applied in a novel way
within product categories. Specifically, the same product typology is vertically decomposed
according to the age of the single stock-keeping unit in a quality-based manner. We compare
two different policies to select the daily size of the orders for each product. On the one hand, we
apply one of the most classical approaches in inventory management, relying on the Order-Up-
To policy, modified to deal with the seasonality. On the other hand, we operate a state-of-the-art
actor-critic technique: Soft Actor-Critic (SAC). Although similar in terms of performance, the
two policies show diverse replenishment patterns, handling products differently.

Keywords: Multi-item inventory systems, Perishable products, Inventory control,
Reinforcement learning, Discrete choice models

1. INTRODUCTION AND PAPER POSITIONING

The management of the inventories is a well-known prob-
lem in production economics, where many of the available
studies allow the substitution of different products when
there is no deterioration (Shin et al., 2015). Although the
practical benefits of a control strategy on substitutable
products are renowned (Fisher and Raman, 2010), when
dealing with perishability, the literature is quite scarce
(Janssen et al., 2016), even if the response of the consumers
to shelf out-of-stocks of perishable products is actually
more favourable (Van Woensel et al., 2007). The literature
on inventory systems for perishable products is commonly
labelled according to the classification proposed by (Goyal
and Giri, 2001) and then adopted by (Janssen et al., 2016).
Specifically, they discriminate between Obsolescence and
Deterioration. In brief, when there is obsolescence, the
item may lose value due to technological or market com-
petition reasons, causing a drastic reduction in the price
of the good. Conversely, deterioration refers to the loss
of value of the item due to ageing and many other pos-
sible reasons related to the internal characteristics of the
product itself. We include this work in this last family,
precisely among products with a maximum deterministic
lifetime (e.g., vegetables and blood), thus further exclud-
ing circumstances where the value decays due to other
reasons (e.g., gasoline vaporization), usually modelled by

a stochastic lifetime. Our work assumes a multi-item set-
ting with substitution between similar goods, entailing
inventory and assortment planning problems. They can
be characterized (Shin et al., 2015) by the substitution
mechanism, the actor in charge of the substitution, and the
substitution direction (one-way/two-way). When the per-
ishable products are blood platelets (Haijema et al., 2005),
it may be natural to model a supplier-driven substitution
that exploits the compatibility of different blood groups.
On the contrary, we presume a supermarket oriented ap-
plication, where the substitution is consumer-driven and
happens due to a stock-out of the first consumer’s choice,
thence the consumer decides on his own when to substitute
a product. One possible way to model the stock-out sub-
stitution employs an exogenous pre-defined share of the
consumers (Hendrix et al., 2019; Buismann et al., 2020)
wishing to replace their preference when facing a stock-
out, enforcing an implicit simplification of the phenomena.
A more flexible approach relies on the Discrete Choice
Methods that generate endogenous utility-based substitu-
tion rates (Transchel, 2017; Transchel et al., 2021) at the
cost of increased model complexity.
Among many discrete choice methods, one way to decide
which one fits the problem best is to distinguish between
horizontally and vertically differentiated products. The
former concerns idiosyncratic preferences that are not
purely based on a quality-price ranking (Transchel et al.,
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labelled according to the classification proposed by (Goyal
and Giri, 2001) and then adopted by (Janssen et al., 2016).
Specifically, they discriminate between Obsolescence and
Deterioration. In brief, when there is obsolescence, the
item may lose value due to technological or market com-
petition reasons, causing a drastic reduction in the price
of the good. Conversely, deterioration refers to the loss
of value of the item due to ageing and many other pos-
sible reasons related to the internal characteristics of the
product itself. We include this work in this last family,
precisely among products with a maximum deterministic
lifetime (e.g., vegetables and blood), thus further exclud-
ing circumstances where the value decays due to other
reasons (e.g., gasoline vaporization), usually modelled by

a stochastic lifetime. Our work assumes a multi-item set-
ting with substitution between similar goods, entailing
inventory and assortment planning problems. They can
be characterized (Shin et al., 2015) by the substitution
mechanism, the actor in charge of the substitution, and the
substitution direction (one-way/two-way). When the per-
ishable products are blood platelets (Haijema et al., 2005),
it may be natural to model a supplier-driven substitution
that exploits the compatibility of different blood groups.
On the contrary, we presume a supermarket oriented ap-
plication, where the substitution is consumer-driven and
happens due to a stock-out of the first consumer’s choice,
thence the consumer decides on his own when to substitute
a product. One possible way to model the stock-out sub-
stitution employs an exogenous pre-defined share of the
consumers (Hendrix et al., 2019; Buismann et al., 2020)
wishing to replace their preference when facing a stock-
out, enforcing an implicit simplification of the phenomena.
A more flexible approach relies on the Discrete Choice
Methods that generate endogenous utility-based substitu-
tion rates (Transchel, 2017; Transchel et al., 2021) at the
cost of increased model complexity.
Among many discrete choice methods, one way to decide
which one fits the problem best is to distinguish between
horizontally and vertically differentiated products. The
former concerns idiosyncratic preferences that are not
purely based on a quality-price ranking (Transchel et al.,
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1. INTRODUCTION AND PAPER POSITIONING

The management of the inventories is a well-known prob-
lem in production economics, where many of the available
studies allow the substitution of different products when
there is no deterioration (Shin et al., 2015). Although the
practical benefits of a control strategy on substitutable
products are renowned (Fisher and Raman, 2010), when
dealing with perishability, the literature is quite scarce
(Janssen et al., 2016), even if the response of the consumers
to shelf out-of-stocks of perishable products is actually
more favourable (Van Woensel et al., 2007). The literature
on inventory systems for perishable products is commonly
labelled according to the classification proposed by (Goyal
and Giri, 2001) and then adopted by (Janssen et al., 2016).
Specifically, they discriminate between Obsolescence and
Deterioration. In brief, when there is obsolescence, the
item may lose value due to technological or market com-
petition reasons, causing a drastic reduction in the price
of the good. Conversely, deterioration refers to the loss
of value of the item due to ageing and many other pos-
sible reasons related to the internal characteristics of the
product itself. We include this work in this last family,
precisely among products with a maximum deterministic
lifetime (e.g., vegetables and blood), thus further exclud-
ing circumstances where the value decays due to other
reasons (e.g., gasoline vaporization), usually modelled by

a stochastic lifetime. Our work assumes a multi-item set-
ting with substitution between similar goods, entailing
inventory and assortment planning problems. They can
be characterized (Shin et al., 2015) by the substitution
mechanism, the actor in charge of the substitution, and the
substitution direction (one-way/two-way). When the per-
ishable products are blood platelets (Haijema et al., 2005),
it may be natural to model a supplier-driven substitution
that exploits the compatibility of different blood groups.
On the contrary, we presume a supermarket oriented ap-
plication, where the substitution is consumer-driven and
happens due to a stock-out of the first consumer’s choice,
thence the consumer decides on his own when to substitute
a product. One possible way to model the stock-out sub-
stitution employs an exogenous pre-defined share of the
consumers (Hendrix et al., 2019; Buismann et al., 2020)
wishing to replace their preference when facing a stock-
out, enforcing an implicit simplification of the phenomena.
A more flexible approach relies on the Discrete Choice
Methods that generate endogenous utility-based substitu-
tion rates (Transchel, 2017; Transchel et al., 2021) at the
cost of increased model complexity.
Among many discrete choice methods, one way to decide
which one fits the problem best is to distinguish between
horizontally and vertically differentiated products. The
former concerns idiosyncratic preferences that are not
purely based on a quality-price ranking (Transchel et al.,
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2021), whereas the latter considers cases where the choice
would be driven only by the quality if the price of the
products were the same. Our work looks at grocery appli-
cations, where private labels and famous brands typically
coexist, thus leading to a vertical differentiation of very
similar products that we model by means of a Linear dis-
crete choice method, widely employed to tackle verticality
between goods. However, notice that we do not seek an
optimal pricing as (Transchel, 2017) and we consider the
price of the products as exogenously determined.
The model complexity usually constrains the proposed
solution methods. Analytical approaches on substitution
(Transchel et al., 2021) struggle to manage multiple time
periods inventories, especially when a positive lead time
and a fixed shelf life is associated with the products.
To deal with sequential decisions in multiple time peri-
ods, a more general and flexible alternative is dynamic
programming (Hendrix et al., 2019), but exact solutions
provided by this strategy may suffer from the curse of di-
mensionality when value and policy functions are explicitly
represented by lookup tables (Brandimarte, 2021; Powell,
2021), requiring the use of approximated methods. The
classical heuristic approach applied to the discrete-time
inventory problems with periodic-reviews considers Order-
Up-To (OuT) rules. Several examples in the perishable
literature handle both scenarios with no substitution (Hai-
jema and Minner, 2019) and multi-item ones (Buismann
et al., 2020), where products are subject to replacement.
Those procedures allow a larger model flexibility and solve
the problem by a direct policy function approximation.
In the following work, we present and test our novel de-
signed multi-item perishable environment that, overcom-
ing the various limitations of the above-mentioned ap-
proaches, allows for fixed lead times, shelf lives, seasonality
and vertical substitution between products all at once. We
execute the well-known OuT policy as benchmark to find
an optimal replenishment policy, further applying a state-
of-the-art reinforcement learning technique, Soft Actor-
Critic (SAC) (Haarnoja et al., 2018). This latter flexible
methodology approximates both value and policy func-
tions using artificial neural networks and we eventually
show its greater stability due to a smoother policy shape.

2. THE MODEL

The model we propose considers a simulation of a per-
ishable items retailer that has to decide about the order
quantity of J vertically differentiated products. The char-
acteristics of each product category j are:

• LTj : The time necessary to receive the goods after
placing the order (expressed in days), identified as
Lead-Time.

• SLj : The residual life of the product at the delivery
time, expressed as Shelf-Life.

• The selling price pj and the cost cj per unit.
• The perceived quality qj of the item, summarized by

a single value.
Each simulation step takes into account a day, following
the structure provided in Fig 1. Specifically, at the be-
ginning of day t, we deliver the awaited orders and the
inventory is updated accordingly. We then sample the

Table 1. Weekly seasonality pattern employed.

Weekday Mon Tue Wed Thr Fri Sat Sun
k 0 1 2 3 4 5 6

Seasonality
Factor (ηk) 0.68 0.76 0.76 0.76 0.99 1.52 1.52

number of consumers employing a Poisson(λt) distribution
that contemplates a weekly seasonality scaling factor in its
parameter

λt = ηkλ, k = tmod7.

The adopted seasonality factors pattern is shown in Ta-
ble 1, but it represents just one of the infinite possibilities.
A further assumption associate to each consumer no more
than one stock-keeping unit, thus there is a one-to-one
proportion between the product demand and the number
of consumers.
Once we know the number of consumers, we iterate for
each of them by making use of a linear discrete choice
model, either to select which product to buy among the
available ones or to purchase nothing. When there are no
more consumers, the retailer discards all the expired items,
and observes the state of the system (St). The adopted
policy suggests the action xt (the new order quantity) at
the end of the day and the request is placed consistently,
returning the daily profit Ct.

2.1 The discrete choice method

When we process a consumer, we assume a discrete choice
method to calculate a utility function that allow for hetero-
geneous agents with a individual quantitative evaluation
of the price-quality ratio of the available products. The
discrete choice linear model computes, for each consumer
n and product j

Unj = θnqj − pj , (1)
where θn is a stochastic representation of the consumer’s
valuation, sampled by a beta distribution. The trade-off
between the price pj and the quality qj is evaluated with
regard to each product j in a linear way. The purchase
happens when the utility of at least one item is greater
than zero, by selecting the one with the highest positive
value. Analytically, the consumer n picks:

argmax {Unj , j = 0, . . . , J},
where we introduce a null utility Un0 for the no purchase
option, interpreted as an additional dummy product with
no price and zero quality.
We modify the model to deal with perishability by increas-
ing the initial number of products J to

J̄ =

J∑
j=1

SLj , (2)

simulating the quality reduction due to the ageing pro-
cess by an additional vertical differentiation of the items
within their product category, according to their Residual
Life. Practically speaking, we disaggregate the product
categories by assigning each item to a group j based on
the residual life (i.e., generalizing the quality definition),
thus expanding the initial set of choices J to J̄ ones
from the consumer’s point of view. However, the retailer
will continue to select the orders quantity only for the J
original products.
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Fig. 1. Framework of the simulation and interaction with the policy.

Table 2. Product A and B characteristics.
Price (p) Quality (q) Cost (c) SL LT

A 6 24 3 4 3
B 4 20 2 2 2

Closed-form optimal assortment and inventory replenish-
ment results are computable in a single-period scenario,
when no shelf-life and lead-time are present. In facts,
these additions make the problem complex to investigate
analytically and open up the way to approximated ap-
proach. Several works (Pan and Honhon, 2012; Transchel,
2017; Transchel et al., 2021), furnish a deep understanding
of the behaviour of the model when employed in non-
perishable retail settings, analyzing the optimal assort-
ment, inventory and pricing. One of the principal traits
of the linear approach analyzed in these works is the quick
identification of structural properties that characterize the
optimal assortment of products. Furthermore, dominated
products (i.e., items that the consumers would never buy if
others are available) can be analytically recognized. These
results come from the quality, the price and the margin
of the available options. However, in our setting, the lead-
time length and a higher shelf-life may guide the policy
of the inventory as well. Unfortunately, those potential
advantages are not easily measurable.

2.2 Case study: model for two perishable products

To better explain how the consumer choice model is
modified to deal with our perishable products oriented
system, let us consider two vertically differentiated items,
A and B, featuring the price and quality reported in
Table 2. Assuming a beta(2,3) distribution for θ in Eq (1)
and, initially, no quality depreciation due to the ageing, we
can graphically represent their utility in Fig 2a by means
of the two lines θqA−pA in red and θqB −pB in blue. The
share of the captured demand by each product is visually
suggested by the area of the distribution where the lines
are dominant. Furthermore, we can identify:

• θ1 = pB

qB
= 1

5 , where the consumers have sufficient
utility to purchase something,

• θ2 = pA−pB

qA−qB
= 1

2 , where the highest utility switch
from B to A.

Following this setting, when A is preferred, but we have a
stock-out, consumers have enough utility on B to substi-

tute the item. Whereas, if the stock-out concerns B, the
substitution happens only if θ > pA

qA
= 1

4 .

Ageing process When the stored goods get old, it is
reasonable to assume a quality reduction. Pointing out the
Residual Life of an item by a superscript qRLj , we expect:

qSLj ≥ · · · ≥ q0j , ∀j.
This effect leads to the Last-In-First-Out (LIFO) con-
sumers’ behaviour illustrated in Fig 2b, where we only
examine product B, applying an age decomposition such
that we divide the original utility-line with respect to its
age. Since we consider the price as an exogenous variable,
the dashed-line θq1B − pB shall always lie under θq2B − pB
in blue, intersecting in θ = 0, thence all the consumers
will prefer the newest item in blue until it will eventually
run out, then they will pick the older one. Although we
consider an exogenous price, the retailer may apply a
discounted price to modify the LIFO behaviour into a
(First-In-First-Out) FIFO/LIFO mixture. This strategy
is way different from a dynamic pricing approach because
it fixes a pre-determined discount on expiring products,
moving upward the line of the age-decoupled items. How-
ever, a future challenge might be to optimize the pricing
of expiring products to maximize the revenue. In Fig 2c,
we examine both A and B, but we assume that only B is
affected by ageing, applying a discounted price adjustment
such that:

q2B = 20 → q1B = 18, p2B = 4 → p1B = 3.3. (3)
The selected parameters halve the preferences of B, caus-
ing half of the people to act FIFO and the rest LIFO. The
estimation of the perceived quality factor is not easy, but
the model we presented shows great flexibility to build
personalized FIFO/LIFO mixtures in a simulation envi-
ronment. Furthermore, the applied strategy takes natu-
rally into account the ageing process thanks to the vertical
differentiation assumption of the method and can be tuned
by decomposing according to age batches.

Details of the employed model In the remainder of this
work, we analyze two scenarios concerning products A
and B of Table 2. We first consider the entire shelf-life
of products A and B without any discount strategy, we
decompose A as we did with B in Fig 2b, transforming
the two lines of Fig 2a in SLB + SLA ones, as illustrated
in Fig 2d. Nevertheless, since we have no historical data
to train the simulation model, it is not obvious how set
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ment, inventory and pricing. One of the principal traits
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identification of structural properties that characterize the
optimal assortment of products. Furthermore, dominated
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results come from the quality, the price and the margin
of the available options. However, in our setting, the lead-
time length and a higher shelf-life may guide the policy
of the inventory as well. Unfortunately, those potential
advantages are not easily measurable.

2.2 Case study: model for two perishable products

To better explain how the consumer choice model is
modified to deal with our perishable products oriented
system, let us consider two vertically differentiated items,
A and B, featuring the price and quality reported in
Table 2. Assuming a beta(2,3) distribution for θ in Eq (1)
and, initially, no quality depreciation due to the ageing, we
can graphically represent their utility in Fig 2a by means
of the two lines θqA−pA in red and θqB −pB in blue. The
share of the captured demand by each product is visually
suggested by the area of the distribution where the lines
are dominant. Furthermore, we can identify:

• θ1 = pB
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from B to A.

Following this setting, when A is preferred, but we have a
stock-out, consumers have enough utility on B to substi-

tute the item. Whereas, if the stock-out concerns B, the
substitution happens only if θ > pA
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Ageing process When the stored goods get old, it is
reasonable to assume a quality reduction. Pointing out the
Residual Life of an item by a superscript qRLj , we expect:

qSLj ≥ · · · ≥ q0j , ∀j.
This effect leads to the Last-In-First-Out (LIFO) con-
sumers’ behaviour illustrated in Fig 2b, where we only
examine product B, applying an age decomposition such
that we divide the original utility-line with respect to its
age. Since we consider the price as an exogenous variable,
the dashed-line θq1B − pB shall always lie under θq2B − pB
in blue, intersecting in θ = 0, thence all the consumers
will prefer the newest item in blue until it will eventually
run out, then they will pick the older one. Although we
consider an exogenous price, the retailer may apply a
discounted price to modify the LIFO behaviour into a
(First-In-First-Out) FIFO/LIFO mixture. This strategy
is way different from a dynamic pricing approach because
it fixes a pre-determined discount on expiring products,
moving upward the line of the age-decoupled items. How-
ever, a future challenge might be to optimize the pricing
of expiring products to maximize the revenue. In Fig 2c,
we examine both A and B, but we assume that only B is
affected by ageing, applying a discounted price adjustment
such that:

q2B = 20 → q1B = 18, p2B = 4 → p1B = 3.3. (3)
The selected parameters halve the preferences of B, caus-
ing half of the people to act FIFO and the rest LIFO. The
estimation of the perceived quality factor is not easy, but
the model we presented shows great flexibility to build
personalized FIFO/LIFO mixtures in a simulation envi-
ronment. Furthermore, the applied strategy takes natu-
rally into account the ageing process thanks to the vertical
differentiation assumption of the method and can be tuned
by decomposing according to age batches.

Details of the employed model In the remainder of this
work, we analyze two scenarios concerning products A
and B of Table 2. We first consider the entire shelf-life
of products A and B without any discount strategy, we
decompose A as we did with B in Fig 2b, transforming
the two lines of Fig 2a in SLB + SLA ones, as illustrated
in Fig 2d. Nevertheless, since we have no historical data
to train the simulation model, it is not obvious how set
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the quality depreciation when items get older. To provide
a reliable approximation of the system dynamics when
the price is fixed, we thus consider the linear model on
products A and B of Fig 2a to select a category, then we
assume that consumers follow a LIFO behaviour, purchas-
ing the newest item available per chosen article kind. What
changes from an exact decomposed simulation is a further
implicit assumption. Specifically, we say that any con-
sumer who favours A will not switch to B simply because
of the freshness. This generates an approximation depicted
in green in Fig 2d, where the age-based substitution would
have happened, depending on the relative quality depreci-
ation of the different articles. Additionally, notice that the
positive utility of aged goods crosses the purchase line of
Fig 2d with a slightly higher value. Even so, assuming a
small daily depreciation and a shelf-life of a few days, we
consider the effect negligible. The assumptions we made
are easy to remove when precise data are available and,
thanks to discounted prices, more complex substitution
patterns are achievable. Nonetheless, if the approximation
zone is dense of intersections, the required precision to
exactly model the crossing points where the freshness
substitution happens may boils down to an approximation
anyway.
The second scenario will employ the discount policy of
Eq (3), tested by maintaining the approximate LIFO
policy on product A, whereas applying the values in Eq (3)
on B, forcing a FIFO behaviour on half of the consumers
who prefer B.

3. DYNAMICS OF THE POLICIES

Seeking an optimal replenishment policy for the two items
produces a sequential optimization problem that can be
tackled by numberless strategies (Powell, 2021). Regard-
less of the method employed, we firstly define the state,
the actions and the reward of the problem.

3.1 State, action and reward functions

State variable The state variable of the system is ob-
served at the end of each business day, after the expired
items are scrapped. To define the state variable, we in-
troduce the quantities related to the inventory and to the
awaited orders as:

• Od
t,j : Ordered products of category j ∈ {A,B}

awaited in d ∈ {0, . . . , LT− 1} days at time t. 1
• Idt,j : Observed inventory for products j ∈ {A,B} with

a residual life of d ∈ {1, . . . , SL} days at time t.
• Week-day k, as defined in Table 1.

The observed state variable at time t for product j will be:
St,j = [OLT−1

t,j , . . . , O0
t,j |ISLt,j , . . . , I1t,j ], (4)

hence, the complete state variable in our scenarios will be
St = [St,A|St,B |k].

Notice that the dimension of the state space will be∑
j((SLj − 1) + LTj) + 1, that is because when the state

is observed, the expired items with 0 residual life are
scrapped yet and the maximum lead time is reduced
through the day to LT− 1.
1 For the sake of readability we dropped the j dependence on LT
and SL.

(a)

(b)

(c)

(d)

(e)

Fig. 2. Linear discrete choice model of (a) two products;
(b) one aging product where the price is not dis-
counted according to the quality; (c) two products
where the cheapest one is discounted when expiring;
(d) 2 product with 4-fold and 2-fold decomposed lines
and the age-based substitution approximation zone.
The beta distribution is provided to show the area of
the requests per product. Figure (e) shows the legend
of the plots.

Action space The decision variable is the daily order
quantity for each product category. When the order is
placed, it is subject to the entire lead time, thus, if the
products are either A or B, the time t action can be

identified as
xt = [OLTA

t,A , OLTB

t,B ]. (5)
It follows that the policy π we want to design will be

xt = Xπ(St). (6)

Reward function We deal with a sequential optimization
problem that considers an offline learning approach, where
the single reward is myopic due to the gap between
the moment when the items are purchased and the one
where they are actually sold. In fact, the seasonality effect
introduced in Table 1 produces a quantity gap between
what is sold on a day and what it is bought to be prepared
for the next days. On average this leads to negative reward
on days before weekends and substantially favourable ones
during them. When the action is selected, the retailer
pays

∑
j cjO

LT
t,j and earns from the sold items of the day∑

j pjLt,j(St,j), where Lt,j(St,j) indicates the sold items
of category j at time t, subject to the available inventory
constraint and governed by the demand uncertainty. 2 The
consequent reward will be

C(xt, Lt) =
∑
j

(
pjLt,j(St,j)− cjO

LT
t,j

)
. (7)

Domain of the variables The domain of the variables
depends on how large we set the maximum quantity per
day. Assuming a Poisson distribution, we set as upper
bound to the number of daily consumers 4maxk(λk).
Roughly speaking, we add 3 standard deviations on the
expected value of the distribution on its higher weekly
factor. We further multiply this value by the theoretical
market share of the products, analytically computed by
the cumulative density function F of the beta distribution
and the linear utility method. Therefore,

UBj = 4max
k

λk · (F (θj+1)− F (θj)) ∀j ∈ {A,B},

where θj indicates the switch-preference point. The details
of this calculation are available in (Pan and Honhon, 2012).
The lower bound will instead be LBA = LBB = 0. These
two bounds define the action space as:

LBj ≤ xt,j ≤ UBj ∀t, ∀j ∈ {A,B}.
The code of the simulation environment is available at:
https://github.com/DanieleGioia/PerishableDCM.

3.2 Policies

Order-Up-To policy Our benchmark follows the simple
and popular Order-Up-To policy, extensively studied in
(Haijema and Minner, 2019) when employed on perishable
products, adapted to the seasonality as

XOuT
j (St) =

(
zj,k − (

∑
d

Od
t,j + Idt,j)

)
∀j ∈ {A,B},

where we order by comparing a week-day dependent
trained variable zj,k to the current inventory and to the
queue of orders, maximizing the following objective func-
tion ∑

t

C(xt, Lt) =
∑
t

C(XOuT
A (St), X

OuT
B (St), Lt),

evaluated over the whole training horizon for each zj,k. The
consequent dimension of the global optimization problems
2 The subscript j ranges from 1 to J̄ , thus considering any discount
policy on cj .

Table 3. Test results on 5 different seeds.

Policy Avg profit: Avg waste:
mean±std mean±std

No discount OuT 585.43±12.31 3.03±1.64
strategies SAC 600.59±2.14 3.17±0.82
Discount OuT 584.48±17.36 2.35±0.36

strategy on B SAC 600.52±1.00 2.51±0.62

is 7 times the number of products. We employ the PySOT
surrogate optimization environment of (Eriksson et al.,
2019), implementing a Stochastic Radial Basis Function
optimization strategy from (Regis and Shoemaker, 2007).

Soft Actor-Critic policy The Soft Actor-Critic technique
(Haarnoja et al., 2018) uses artificial neural networks to
approximate both a value function that provides the value
of each action acting greedily and a direct policy. The
term ”soft” comes from the entropy approach employed
in updating the value function and the Q-function. SAC
also maximizes the expected entropy of the policy and
the objective function, in order to explore the set of
possible actions better. The policy networks encourage
exploration, which increases the probability to escape
from local minima. In this work we employ a multilayer
perceptron (MLP) architecture of the policy and the Q
networks.

4. EXPERIMENTAL VERIFICATION

We consider two metrics to evaluate the policies perfor-
mance: the average profit per day and the average number
of scrapped items per day, selected for their managerial
and environmental value. We first learn the policies by a
simulation approach, stopped when a sufficient tolerance is
reached for both the methods. The metrics are successively
computed in an out-of-sample test of 200 weeks, repeating
the experiments with five different seeds. The parameters
assumed for the products are those presented in Table 2,
with respect to which we investigate the discount strategy
effect introduced in Sec. 2 and the performance of SAC
and OuT. In Table 3 we observe that:

• There is a decrease in the waste quantity when
discount strategies are applied, whereas the profit
remains stable.

• The SAC policy outperforms OuT in terms of aver-
age profit per day and maintains a lower variability
between simulations.

This latter point raises questions about the shape of the
two policies. We investigate this issue by inspecting the size
of the orders per product in the first month of the test. For
the sake of brevity, we report only the discounted scenario
in Fig 3, where two entirely different strategies arise. On
the one hand, SAC maintains a constant quantity of the
A product in the queue, exploiting the B product only to
fulfill the weekend peaks. So, in short, it uses the higher
shelf life of A, hedging the stock-out risk. On the other
hand, OuT follows an opposite strategy, where A is ordered
in large quantities right on time for the weekends, while
B is ordered without peaks, thus exploiting the shorter
lead time and suffering from its shelf life. Under both
approaches, doing the math of the linear discrete choice
model for the selected beta distribution, we notice that the
retailer forces the substitution of B with A. The original
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identified as
xt = [OLTA

t,A , OLTB

t,B ]. (5)
It follows that the policy π we want to design will be

xt = Xπ(St). (6)

Reward function We deal with a sequential optimization
problem that considers an offline learning approach, where
the single reward is myopic due to the gap between
the moment when the items are purchased and the one
where they are actually sold. In fact, the seasonality effect
introduced in Table 1 produces a quantity gap between
what is sold on a day and what it is bought to be prepared
for the next days. On average this leads to negative reward
on days before weekends and substantially favourable ones
during them. When the action is selected, the retailer
pays

∑
j cjO

LT
t,j and earns from the sold items of the day∑

j pjLt,j(St,j), where Lt,j(St,j) indicates the sold items
of category j at time t, subject to the available inventory
constraint and governed by the demand uncertainty. 2 The
consequent reward will be

C(xt, Lt) =
∑
j

(
pjLt,j(St,j)− cjO

LT
t,j

)
. (7)

Domain of the variables The domain of the variables
depends on how large we set the maximum quantity per
day. Assuming a Poisson distribution, we set as upper
bound to the number of daily consumers 4maxk(λk).
Roughly speaking, we add 3 standard deviations on the
expected value of the distribution on its higher weekly
factor. We further multiply this value by the theoretical
market share of the products, analytically computed by
the cumulative density function F of the beta distribution
and the linear utility method. Therefore,

UBj = 4max
k

λk · (F (θj+1)− F (θj)) ∀j ∈ {A,B},

where θj indicates the switch-preference point. The details
of this calculation are available in (Pan and Honhon, 2012).
The lower bound will instead be LBA = LBB = 0. These
two bounds define the action space as:

LBj ≤ xt,j ≤ UBj ∀t, ∀j ∈ {A,B}.
The code of the simulation environment is available at:
https://github.com/DanieleGioia/PerishableDCM.

3.2 Policies

Order-Up-To policy Our benchmark follows the simple
and popular Order-Up-To policy, extensively studied in
(Haijema and Minner, 2019) when employed on perishable
products, adapted to the seasonality as

XOuT
j (St) =

(
zj,k − (

∑
d

Od
t,j + Idt,j)

)
∀j ∈ {A,B},

where we order by comparing a week-day dependent
trained variable zj,k to the current inventory and to the
queue of orders, maximizing the following objective func-
tion ∑

t

C(xt, Lt) =
∑
t

C(XOuT
A (St), X

OuT
B (St), Lt),

evaluated over the whole training horizon for each zj,k. The
consequent dimension of the global optimization problems
2 The subscript j ranges from 1 to J̄ , thus considering any discount
policy on cj .

Table 3. Test results on 5 different seeds.

Policy Avg profit: Avg waste:
mean±std mean±std

No discount OuT 585.43±12.31 3.03±1.64
strategies SAC 600.59±2.14 3.17±0.82
Discount OuT 584.48±17.36 2.35±0.36

strategy on B SAC 600.52±1.00 2.51±0.62

is 7 times the number of products. We employ the PySOT
surrogate optimization environment of (Eriksson et al.,
2019), implementing a Stochastic Radial Basis Function
optimization strategy from (Regis and Shoemaker, 2007).

Soft Actor-Critic policy The Soft Actor-Critic technique
(Haarnoja et al., 2018) uses artificial neural networks to
approximate both a value function that provides the value
of each action acting greedily and a direct policy. The
term ”soft” comes from the entropy approach employed
in updating the value function and the Q-function. SAC
also maximizes the expected entropy of the policy and
the objective function, in order to explore the set of
possible actions better. The policy networks encourage
exploration, which increases the probability to escape
from local minima. In this work we employ a multilayer
perceptron (MLP) architecture of the policy and the Q
networks.

4. EXPERIMENTAL VERIFICATION

We consider two metrics to evaluate the policies perfor-
mance: the average profit per day and the average number
of scrapped items per day, selected for their managerial
and environmental value. We first learn the policies by a
simulation approach, stopped when a sufficient tolerance is
reached for both the methods. The metrics are successively
computed in an out-of-sample test of 200 weeks, repeating
the experiments with five different seeds. The parameters
assumed for the products are those presented in Table 2,
with respect to which we investigate the discount strategy
effect introduced in Sec. 2 and the performance of SAC
and OuT. In Table 3 we observe that:

• There is a decrease in the waste quantity when
discount strategies are applied, whereas the profit
remains stable.

• The SAC policy outperforms OuT in terms of aver-
age profit per day and maintains a lower variability
between simulations.

This latter point raises questions about the shape of the
two policies. We investigate this issue by inspecting the size
of the orders per product in the first month of the test. For
the sake of brevity, we report only the discounted scenario
in Fig 3, where two entirely different strategies arise. On
the one hand, SAC maintains a constant quantity of the
A product in the queue, exploiting the B product only to
fulfill the weekend peaks. So, in short, it uses the higher
shelf life of A, hedging the stock-out risk. On the other
hand, OuT follows an opposite strategy, where A is ordered
in large quantities right on time for the weekends, while
B is ordered without peaks, thus exploiting the shorter
lead time and suffering from its shelf life. Under both
approaches, doing the math of the linear discrete choice
model for the selected beta distribution, we notice that the
retailer forces the substitution of B with A. The original
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Fig. 3. Size of the orders on the first month of the out-of-
sample test: OuT and SAC policies. Confidence inter-
vals (.95) are provided w.r.t. 5 different simulations.

demand for B is approximately 1.5 times the A one, but
the vendor prefers A due to a higher margin and a higher
shelf life.

5. CONCLUSIONS

We apply a linear discrete choice model to an inventory
management problem in a multi-item setting where stock-
out substitution occurs, allowing for fixed deterioration,
lead times, and seasonality. We investigate two different
policies to optimize the replenishment strategy of the
inventory and, although the performances are similar, the
size of the orders is altogether different. Specifically, the
Soft Actor-Critic method achieves a more stable policy
with better average daily profit and similar waste levels.
Further investigation is required for reinforcement learning
approaches to be used as production solution, improving
the methods by exploiting the problem structure, but
either way, the results are promising. Future works will
further explore the value of the lead time and the shelf life
on the retailer’s choices and the combined effect of these
features with the other economics. Moreover, experiments
with more than two products will be researched as well.
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