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Editorial on the Research Topic

Interaction between macroscopic quantum systems and gravity

The study of quantum macroscopic systems is an highly developed field in physics,

with a huge potential for integration across different disciplines and research areas. One of

the most intriguing potentiality is the analysis of the possible mutual interaction between

macroscopic, coherent matter states (like superconductors and superfluids) and the local

gravitational field. This fully interdisciplinary research field has witnessed a conspicuous

progress in the last decades [1, 4, 8, 10, 11, 13, 15, 22, 25], and yet several questions are still

completely open.

This Research Topic brings together contributions analysing the interaction between

gravity and materials in the superconducting state, investigating possible observable

effects not explained in terms of classical physics. A deeper understanding of this

unconventional interplay would lead to a noteworthy development in theoretical

physics, as well as opening remarkable perspectives for future direct applications.

In the research articleMeasurement of Anomalous Forces from a Cooper-Pair Current

in High-Tc Superconductors with Nano-Newton Precision, Tajmar et al. report the results

of precision measurements performed with a new custom-built double pendulum thrust

balance, able to detect forces down to a level of 25–100 nN. Their aim is to test whether a

superconductor carrying a supercurrent is subject to anomalous forces called “frame-

dragging” forces or recoil forces, as observed in earlier experiments [20, 21]. The main

virtue of the experimental setup, besides its precision, is that the entire apparatus

(superconductor, cooling devices, power source) is mounted on a platform, whose

motion is accurately monitored through laser interferometers. Special care has been

devoted to the elimination of magnetic artifacts. The currents tested have intensity up to

15 A and are stationary, except for sharp gradients at switch-on/off. The obtained results

rule out the occurrence of anomalous forces above a ratio of approximately 5 · 10–9 N/A.
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In the perspective article On Gravitational Fields in

Superconductors Papini reviews DeWitt’s seminal work [8] on

the effects of the gravitational field on superconductors in the

non-relativistic limit. The starting point is the Klein-Gordon

equation for an ensemble of charged spinless bosons (Cooper

pairs), flowing against a positively charged lattice background.

The author then exploits the correspondent solutions to re-

obtain the DeWitt results following the lines of [17], in a

formalism where gravity is present in the wavefunction of a

quantum system as a classical external field [5]. The proposed

analysis gives some insights into the symmetry violations of the

vacuum of the considered system. The latter violation, in

particular, can lead to boson condensation phenomena, and

can be used to describe some type-II superconductors in the

presence of a weak gravitational field.

The research article Effect of Medium on Fundamental

Interactions in Gravity and Condensed Matter exploits a

mathematical analogy between the exponential cutoff in the

gravitational potential at large cosmological scales (traced back

to the interaction with the background matter [9]) and the

behavior of the magnetic field induced by a thin solenoid

placed in a superconductor [12]. The proposed background

could be connected with the influence of the medium on

fundamental interactions. As a result of the analogy, the

authors find that the induced magnetic field in the

supercondensate undergoes exponential screening at distances

exceeding the magnetic field penetration length.

The review article Interaction Between Macroscopic

Quantum Systems and Gravity collects experimental results

about gravity-supercondensates unconventional interaction,

as well as theoretical models to describe the proposed

interplay. Starting from the pioneering Podkletnov setup

[20], the authors describe different experimental evidences

about interaction between quantum macrosystems and

gravity, ranging from gravity-induced quantum

interference [2, 7, 14] to the generation of generalized

fields and potentials in (super)conductors [24, 27, 30, 31].

The authors also describe the use of superfluids as

gravitational antennas [3, 16, 19], exploiting the effects of

gravitational perturbations on supercondensates and

supercurrents dynamics. Finally, they deal with the more

subtle superfluid back-reaction acting on the surrounding

gravitational field [11, 13, 25]; in particular,

Ginzburg–Landau formalism is used to characterize the

unconventional coupling between the local gravitational

field and the macroscopic wavefunction describing Cooper

pairs dynamics in superconductors [26, 28, 29].

In the research article Superconductor Meissner effects for

gravito-electromagnetic fields in harmonic coordinates due to

non-relativistic gravitational sources, Inan addresses some

issues arising from DeWitt’s approach to the gravito-magnetic

Meissner effect [8] and draws physical consequences from these

corrections. First, he modifies the general DeWitt Hamiltonian

introducing a “space + time” Lagrangian, in order to obtain a

canonical three-momentum and an Hamiltonian valid to all

orders in the metric. Then, the author shows that the weak

field, low velocity limit of the DeWitt Hamiltonian is missing

some terms that are of comparable magnitude as those included.

The missing terms have consequences for the associated London

equations and therefore for assessing the penetration depths of

the magnetic and the gravito-magnetic field. It turns out that the

gravito-magnetic field is expelled if a magnetic field is also

present, but otherwise the superconductor exhibits the

analogue of a paramagnetic effect. Some of the conclusions

obtained are compared to the existing results of other authors

[6, 18, 23].
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