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Abstract—The aim of this study is to present a fully 
automatic deep learning algorithm to segment liver 
Colorectal cancer metastases (LmCRC) on CT images, 
based on a U-Net structure, comparing net with an without 
the transfer learning approach. This is a bi-centric study, 
enrolling patients who underwent CT exam before 
(baseline) and after first-line therapy (TP1). Patients were 
divided into training (using a portion of baseline sequences 
from both centers), to train the DL model, and two 
validation sets: one with baseline (valB), and one with TP1 
(valTP1) sequences. The reference standard for the 
automatic segmentations was defined by the manual 
segmentations performed by an experienced radiologist on 
the portal phase of the baseline and TP1 CT exam. The best 
performing model obtained Dice Similarity Coefficient 
(DSC) of 0.68±0.24, Precision (Pr) of 0.74±0.27, Recall (Re) 
of 0.73±0.26, Detection Rate (DR) of 93% on the valB, and 
DSC of 0.61±0.28, Pr of 0.68±0.31, Re of 0.65±0.29 and DR 
of 88% on the valTP1. These encouraging results, if 
confirmed on larger dataset, might provide a reliable and 
robust tool that can be used as first step of future radiomics 
analyses aimed at predicting response to therapy, improving 
the management of LmCRC patients. 

Keywords — liver metastases, U-Net, automatic 
segmentation, CT imaging, Colorectal cancer, multicentric 
study  

I. INTRODUCTION 

Colorectal cancer (CRC) is a malignant tumor arising 
from the inner wall of the colon and/or the rectum [1]. 
Despite improvements in screening methodologies, 
approximately 20% of patients are diagnosed with 
metastatic CRC (mCRC), which carries a 14% 5-year 
survival rate [2]. Due to the rich portal venous and 
arterial blood supply, the liver is the most frequent site of 
mCRC, in fact up to 30–50% of patients develop hepatic 
mCRC (lmCRC) during their disease course [3], [4]. The 

recommended treatment for lmCRC is liver resection, 
characterized by a 5-year survival of 20–50% of cases 
[3]. For patients with unresectable lmCRC, median 
survival has significantly increased up to 30 months due 
to advances in targeted therapy management in the first-
line treatment [2]. Unfortunately, only 60% of patients 
achieve partial or complete response with first-line 
therapy [5].  

In the last few years, Artificial Intelligence (AI) has 
shown promising results in the development of radiomics 
models, since they have recently drawn considerable 
interest as a potential predictive tool for treatment 
outcomes, allowing more personalized therapies [5]–[10]. 
The translation of these approaches into clinical practice 
is still limited since most of the studies rely on manual or 
semi-automatic segmentation methods, which are: time-
consuming and lead to high inter-reader variability [11] . 
More and more efforts have been made toward the 
development of Deep Learning (DL) segmentation 
models, since they have shown significant improvement 
in image classification prediction and recognition tasks 
[12], especially with the introduction of Fully 
Convolutional Networks (FCNs), specifically the U-Net 
[12]–[16]. Moreover, the Transfer Learning (TL), an 
innovative training approach where a DL model 
developed for a specific task is used as the starting point 
for a DL model on a new task [17], has gained more 
interest thanks to its remarkable results. 

To the best of our knowledge, only a few studies have 
presented DL-based segmentation methods of the liver 
lesions [18]–[22]. Most of them are developed on 
publicly available datasets of liver cancers, which 
pathologically differ from lmCRC.  

The aim of this study was the development of a U-
Net-based method for the automatic segmentation of the 



lmCRC on Computer Tomography (CT) images before 
(Baseline) and after first-line treatment (TP1), acquired 
by two different centers. As a secondary aim, we 
compared different training approaches (with and without 
TL), and we analyzed the validation performances on 
both Baseline and TP1 CT sequences. 

II. MATERIALS AND METHODS 

A. Dataset  

The dataset consists of CT images of the abdomen 
from two centers:  Candiolo Cancer Institute FPO-IRCCS 
(center A) and ASST Grande Ospedale Metropolitano 
Niguarda hospital (center B) of Milan. All patients have a 
a stage IV CRC having at least one measurable lmCRC as 
defined by the RECIST 1.1 Criteria (greater diameter ≥ 
10 mm) and underwent a CT exam with contrast injection 
within 2 weeks from the start of the first-line therapy 
(baseline), and a CT exam after 3 months (TP1). A total 
of 86 baseline images (Center A=26 and Center B=60) 
and 79 TP1 images (Cener A=24, Center B=55) were 
collected. 

 We excluded from the analysis LmCRC that either 
were confluent or subdiaphragmatic or contained large 
vessels or were difficult to measure in the subsequent 
exams. Once all mts were segmented, their longest 
diameter was measured at baseline and TP1.  

Patients were divided into training (using a portion of 
baseline sequences from both centers), to train the DL 
model, and two validation sets: one with baseline (valB), 
and one with TP1 (valTP1) sequences. 

The study was approved by the institutional review 
boards (IRBs) in each institution; signed informed 
consent to use and analyze imaging data was obtained 
from all participants before entering the study. 

B. Liver Segmentation 

We internally developed an automatic DL-based 
segmentation method of the liver, to highlight the area of 
interest for the subsequent analysis. For the development, 
we selected 40 CT sequences, chosen randomly (20 per 
center). In particular, 32 patients were included in the 
training set, the remaining 8 in the validation set.   

C. Reference Standard 

For the liver segmentation model, an expert 
radiologist, with 5 years of experience in reading CT 
images, segmented the 40 liver volumes  and these masks 
have been used as reference standard.   For the lmCRC 
segmentation system, the same radiologist segmented  
lmCRC’s volumes on the portal phase of the baseline and 
TP1 CT exam, and as before, these masks were used as 
reference standard. For each patient, a maximum number 
of 10 lmCRC were segmented. All manual segmentation 
were carried on using theITK-Snap software. 

D. PreProcessing  

The pre-processing phase consists of three steps: the 
resize of the images, the liver segmentation, and the 
image standardization. 

First, all CT sequences were resized from the original 
dimension (512x512 pixels), thus obtaining 256x256 
images, to reduce the computational complexity and time. 

For the second step, the DL automatic method segmented 
the liver volumes. Once obtained the liver mask, the CT 
sequences were normalized to account the variabilities 
due to the different acquisition protocols of the centers. 
In particular, all sequences underwent the z-score 
standardization:  

 , (1) 

where µ is the mean and  is the standard deviation of the 
whole liver volume of the patient, respectively. 

E. U-Net 

 The U-Net is characterized by two components: the 
encoder, which extracts the features from the input image, 
and the decoder, which localizes the information related to 
the features, allowing to obtain a probability score map, 
classifying each pixel instead of the whole image [23]. 
The output of the model was binarized using the Otsu’s 
Thresholding, obtaining the final prediction mask of 
LmCRC.  

In this study we followed two training approaches:  

 NO-TL 

With this approach, all neurons’ weights are initialized 
randomly from a normal distribution. More specifically, 
the U-Net structure is characterized by the encore’s 
structure follows the typical Convolutional Neural 
Network (CNN) architecture with three Convolutional 
blocks, each characterized by two subsequent 
convolutional layers, which are all characterized by a 3x3 
kernel and the Rectified Linear Unit (ReLU) activation 
function [24], followed by the max pooling layer. And the 
decoder is symmetrical to the contracting one. So, each 
convolutional block is characterized by two convolutional 
layers followed by the up-sampling layer, all of them with 
a 3x3 kernel and ReLU activation. The only exception is 
the output convolution layer, characterized by a 1x1 
kernel and the sigmoid activation function [24]. The loss 
function used for the training is the Binary Crossentropy 
(2):  

(2) 

 TL 

With this approach, the U-Net’s encoder is a known 
CNN called Residual neural network (ResNet) [25]. The 
ResNet-18 is an 18-layer deep CNN made up of several 
residual blocks. The residual blocks are characterized by 
the presence of skip connections that link the original 
input to the output of each convolutional block. For our 
purpose, we used the ResNet-18 with pre-trained weights 
on the ImageNet database [26].  The decoder is similar to 
the No-TL structure. For the training of the network, we 
used a custom loss function described by a previous study 
[14]. 

The networks learning was performed based on the 
training set. To avoid overfitting, the algorithm stopped 
the training if the loss value did not show improvement 
after 10 epochs. Moreover, to avoid learning stagnation, 
we reduced the learning rate by a factor of 2-10, if no 
improvement is seen for 5 epochs.  



All models have been implemented on Python using 
the Tensorflow library, with the Adam optimizer [27] and 
a learning rate of 0.001, β1 of 0.9 and β2 of 0.999. 

F. Validation  

The two developed networks were validated on both 
valB and valTP1 sets. We also evaluated the performances 
of the best performing network related to the lmCRC 
dimensions, dividing between small (diameter < 20mm) 
and big (diameter > 20mm). We divided the valTP1 into 
two subgroups: one characterized by the training set 
patients (TP1tr), the other with the remaining cases 
(TP1tst). We evaluated if there were differences in the 
networks’ performances between TP1tr and TP1tst. The 
aim was to assess how the presence of the baseline in the 
training affected the result on the two TP1 validation 
subgroups. 

G. Statistical Analysis 

Dice Similarity Coefficient (DSC), Precision (Pr) and 
Recall (Re) were used to evaluate the performance of the 
algorithm on LmCRC segmentation. The Dice similarity 
coefficient (3) relates the elements in common between 
two groups with respect to the total number of elements. 
Precision (4) is the portion of elements indicated as 
positive by the model that are truly positive. Recall (5) is 
the portion of the truly positive elements that have been 
correctly identified by the model. 

 ,  (3) 

 

 , (4) 

 

 , (5) 

where TP, FP and FN are the number of true positives, 
false positives, and false negatives, respectively. We also 
evaluated the Detection Rate (DR), defined as the 
percentage of correctly detected LmCRC (DSC>0.2) over 
the total amount of LmCRC. To statistically compare the 
differences between baseline and TP1 validation sets, we 
perfomed the chi-squared (comparison of proportions) 
analysis.  

III. RESULTS 

A. Dataset  

For the development of the liver segmentation method, 
the training set included 40 patients (20 per center), while 
the validation set by 8 patients, as shown in fig. 1.a. For 
the development of the lmCRC segmentation method, the 
training set was characterized by 18 patients from center 

A and 22 from center B, valB by the remaining 8 and 38 
baseline from center A and B, respectively. The valTP1 is 
composed of 24 patients from center A and 55 from center 
B (fig. 1.b). Overall, there were 134, 271 and 331 
LmCRCs in training, valB and valTP1 sets, respectively.  

B. Liver segmentation 

The performances of the DL model on the training set 
were DSC=0.94±0.02, Pr=0.92±0.01, Re=0.97±0.03, and 
DSC=0.94±0.01, Pr=0.90±0.01, Re=0.96±0.02 for the 
validation set.  

C. U-Net implementation and validation 

Table I.a shows the results of the two developed U-
Nets on the training set. Both networks show comparable 
performances, in particular DSC=0.80±0.19 (NoTL) vs 
0.80±.024 (TL) (p-value > 0.05). 

On valB set (Table I.b) the No-TL model reaches 
slightly higher performances. DSC=0.68±0.24 vs 
0.64±0.25 (TL), Re=0.73±0.26 vs 0.64±0.27 (TL) and 
DR=93% vs 90% (TL), while the Pr is lower (0.74±0.27 
No-TL vs 0.78±0.26 TL). 18/271 lmCRC were not 
detected by the No-TL model, and 27/271 by the TL one 
(p-value < 0.05). Both models did not detect the same 8 
lesions, probably due to their small dimensions (average 
diameter of 16mm). 

Table I.c shows the results on valTP1 set. The No-TL 
model is confirmed to be the one with the highest 
performances with respect to the TL one. In particular, 
DSC=0.61±0.28 vs 0.55±0.29 (TL), and DR=88% vs 
82% (TL), while the Pr is slightly lower. 40/331 LmCRC 
were not detected by the No-TL model, and 60/331 by 
the TL one (p-value < 0.05). We noticed that the 31 
common errors were characterized by  small dimensions 
(average diameter of 17mm) and different intensity 
values on the CT, which heavely affect the pixel 
intensity. After all these analyses, the best performing net 
is the No-TL U-Net model. 

 

 
Figure 1: Datasets used for the development of the liver segmentation 
system (a), and the lmCRC segmentation networks (b).  



TABLE I.  PERFORMANCES OF THE NETS 

U-Net 

a) Training set  

DSC 
(mean±std) 

Pr 
(mean±std) 

Re 
(mean±std) 

DR 
(%) 

No-TL 0.80±0.19 0.81±0.20 0.85±0.16 97 
(130/134) 

TL 0.80±0.24 0.81±0.25 0.82±0.23 94 
(126/134) 

 b) ValB set 

No-TL 0.68±0.24 0.74±0.27 0.73±0.26 93 
(253/271) 

TL 0.64±0.25 0.78±0.26 0.64±0.27 90 
(244/271) 

 c) ValTP1 set 

No-TL 0.61±0.28 0.68±0.31 0.65±0.29 88 
(291/331) 

TL 0.55±0.29 0.69±0.33 0.53±0.31 82 
(270/331) 

No-TL: U-Net trained without Transfer Learning, TL: U-Net trained with Transfer Learning 
 

Table II shows that the big lesions were more easily 
segmented in both valB and valTP1: the DSC values were 
comparable between the validation sets (DSC=0.73±0.19 
and 0.72±0.24). Considering the small lmCRC, the NoTL 
model reached higher performances on valB than valTP1 
(DSC=0.71±0.30 vs 0.64±0.30). 

TABLE II.  RESULTS RELATED TO LMCRC DIMENSIONS 

NoTL ValB 

 
DSC 

(mean±std) 
Pr 

(mean±std) 
Re 

(mean±std) 
DR 
(%) 

small 0.71±0.30 0.83±0.33 0.72±0.32 84 
(75/89) 

big 0.73±0.19 0.78±0.24 0.80±0.19 98 
(178/182) 

 ValTP1 

small 0.64±0.30 0.80±0.35 0.67±0.33 81 
(116/143) 

big 0.72±0.24 0.77±0.28 0.78±0.22 93 
(175/188) 

No-TL: U-Net trained without Transfer Learning, TL: U-Net trained with Transfer Learning 

 

 No statistically significant differences have been 
evaluated between the model’s performances on valB and 
valTP1. 

For the analysis related to how the baseline affects the 
TP1 results, the TP1tr is characterized by 35 patients (102 
LmCRC), while TP1tst by 44 (229 LmCRC). Figure 2 
shows the p-values analysis related to both TL and NoTL, 
comparing TP1tr (in blue) and TP1tst (in orange). In 
particular, there are no statistically significant differences 
between the two subgroups, considering both models. 
This means that the baseline is not helpful for the model 
to correctly segment the lmCRC on the TP1 sequence, 
considering the same group of patients. An example of 
morphological variability between baseline and TP1 is 
shown in figure 3. The first-line therapy affected the 
dimensions and shapes of two lmCRC (purple and 
yellow), and the internal textures of the third (orange), i.e. 

presence of white areas.  

Figure 4 shows three examples of correctly and 
wrongly detected LmCRC by the two models. In 
particular, fig. 4.a presents a valB patient, C1007, 
characterized by 9 LmCRC correclty segmented by both 
models (all DSC>0.2). Fig 4.b shows an example of TP1 
validation patient, C2003, where three out of four 
LmCRC were correctly detected (DSC>0.2), while the 
remaining one was missed (DSC<0.2) by both models. 
The last example, fig. 4.c shows an example where the TL 
U-Net missed all four LmCRC, while the No-TL was able 

 
Figure 3: Comparison of the baseline (left) and TP1(right) of the C1005 patient. The three circles delimit the LmCRC. It is possible to notice that 
the pink and yellow ones present different shapes and dimension, while the orange is characterized by different internal texture (presence of 
white  areas).  

 
Figure 2: Comparison of TL and NoTL performances related to the 
DSC on TP1tr (in blue) and TP1tst (in orange). In both cases there 
are no statistical differences, since the p-values > 0.05.  



to correclty segment 2 of them.  

IV. DISCUSSION 

In this study, a U-Net-based algorithm was 
implemented for the automatic LmCRC segmentation, 
with promising results: precision of 0.74±0.27, and 
Detection Rate of 93% on the baseline validation set, and 
Pr=0.68±0.31, and DR=88% on the TP1 validation set. 
This model is characterized by a simple U-Net structure 
with three descending levels trained without the Transfer 
Learning approach. The computational efficiency, related 
to both structural complexity and timing, is one of the 
advantages.  

Despite the success of Transfer Learning, in this work, 
the network trained with the TL approach did not reach 
adequate results (DSC=0.55±0.29, Pr=0.69±0.33, 
Re=0.53±0.31, DR=82%), probably due to the unsuitable 
pre-trained weights chosen.  

As far as we know, there are few studies related to the 
automatic segmentation of liver metastases. Indeed, most 
of them are focused on liver and lesion segmentation, 
thanks to the publicly available multicentric database 
[20]–[22]. All of them present DL models with innovative 
structures for the segmentation of the liver, obtaining high 
performances. In particular, Khan et al. [21] and Li et al. 
[22]reached DSC of 97% and 96% for the liver 
segmentation, respectively. While Christ et al. [20] 
reached a DSC of 94% combining liver and lesion 
segmentation. All these performances are analogous with 

the DL system internally developed, reaching a DSC of 
94% for the liver segmentation on the validation set. 

 Concerning our previous study [18], we improved the 
system performances thanks to: the increment of patients 
enrolled, the number of segmented LmCRC included, and 
the semplified net structure, which proved to be more 
suitable for the aim. Indeed, the No-TL U-Net reached a 
DSC of 0.61, while the previous net of 0.54. 

In literature, the only comparable study on this topic is 
the one presented by Vorontsov et al. [19]. They presented 
a Fully Convolution Network for liver lesion detection 
and segmentation on CT examinations in patients with 
LmCRC, reaching DSC of 0.53 and 0.68 for small and big 
lesions, respectively. Our results using the No_TL net 
achieved higher DSC: 0.64 and 0.72 for small and big 
lesions on the validation set, respectively. Moreover, our 
model, validated on TP1, was able to generalize on 
morphologically different lmCRC, with respect to those 
used for the training.  

Our study has also some limitations. First, the sample 
size is quite small in term of number of patients, however, 
the number of lmCRC is comparable with other studies. 
Moreover, the validation set is composed of patients 
acquired in the same centers that were used to train the 
network. We are planning to  overcome this limitations by 
adding a larger number of patients from at least an 
additional center.  

In conclusion, this work is one of the first to present a 
fully automatic segmentation algorithm of LmCRC, using 

 
Figure 4: Examples of baseline (a) and TP1 validation (b-c) segmented by No-TL and TL U-Net models. a) shows an example of patient with 9 
LmCRC correclty segmented by both models (all DSC>0.2). b) shows an example of a LmCRC missing segmentation (DSC<0.2) by both models. 
c) shows an example where the TL U-Net missed all 4 LmCRC, while the No-TL was able to correclty segment 2 of them. The white arrow point 
the missed LmCRC. 



both baseline and TP1 scans. It can be an innovative 
starting point providing clinical support in the detection 
and segmentation of liver metastases, useful for future 
radiomics analysis aimed at personalizing treatments. 
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