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Abstract: The energy crisis and the adaptation of the global energy structure promote the devel-
opment of renewable energies, in particular solar energy, also for syngas production. In this work,
attention was focused on solar devices, necessary to provide high-temperature heat for the reduction
reaction of metal oxides involved in the chemical looping driven by solar energy. Thermochemical
processes for synthetic-gas production and CO2 sequestration were investigated using a concentrating
solar thermal system. This paper proposes a useful forecasting model of the receiver temperature
to make a realistic estimate of the system’s producibility for the different periods of the year. The
model proposed was validated in the winter season, and the predicted temperature varied below 5%
considering the real experimental data (442–472 ◦C). The validated model was used to evaluate the
temperature receiver in spring and in summer, when the thermal level is reliable for thermochemical
processes. From the spring season until the completion of the summer season, optimum conditions
inside the receiver were reached (above 1000 ◦C). These preliminary findings could be used for the
development of large-scale production systems.

Keywords: solar fuels; thermochemical cycles; carbon-dioxide splitting; solar reactors; concentrated
solar energy

1. Introduction

Conventional fuels have enabled the development achieved in our society. However,
their continued use is a problem for our future development. In this transition phase, it
would be unfair to abandon the advantages achieved using fossil fuels. One of the main
advantages is the exploitation of existing infrastructure. These infrastructures guarantee the
global distribution of fuels. For these reasons, the direct use of synthetic fuels of “non-fossil”
origin is an attractive and feasible alternative in the transition phase to totally green fuels.
Currently, the term “synthetic fuel (synfuel)” refers to a liquid or gaseous fuel produced on
a commercial scale from low-heating-value carbonaceous sources, such as coal, natural gas
and other biomass, which are enhanced at the expense of additional energy [1]. Currently,
the main production processes still involve fossil fuels. In the Gas-To-Liquid (GTL) process,
methane-rich gases are converted into synthetic liquid fuels either via the direct conversion
of methane into methanol in one step or using syngas as an intermediate [2–4]. Exothermic
conversion processes, mainly the Fischer–Tropsch process, for hydrocarbon production
are growing in terms of importance and have been commercially exploited for a long
time [2,5,6].

Syngas production using thermochemical processes could be more sustainable when
combined with a renewable energy source, such as solar energy, instead of being driven by
fossil fuels [7–9]. Three methods for syngas production using solar energy can be found
in the literature [1]: photochemical/photobiological, thermochemical and electrochemical
methods [10–12]. The photochemical procedure is carried out at a low temperature and
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directly uses the energy contained in photons [13,14]. The thermochemical path uses the
high-temperature solar heat provided by concentrating systems (CSs) to perform multiple
thermochemical reactions able to directly produce syngas from the transformation of fossil
and non-fossil fuels [15–17]. Among the various thermochemical cycles, chemical looping,
tested in combination with CSs, is directly adapted to the combined splitting of CO2/H2O
to produce syngas [1]. The electrochemical synthesis method can be used as an alternative
to photovoltaics to provide electricity for the high-temperature electrolysis process of steam
or vapor/CO2 mixtures [18,19]. Current research studies are involved in the building
of industrial-size plants where solar dishes (>400 kWth) feed the reforming reactor for
synthetic-gas production [9]. The main gap is related to the lack of funding to reduce syn-
gas production costs compared with fossil-fuel systems. Other research topics include the
geometry of the solar disc [20–23], the heat-transfer medium (solid particles, molten salts,
sodium vapors, air, etc.) [24–26] and the receiver material [21,22,27–29], in addition to the
development of structured systems with improved thermal performance, such as the use of
fins, etc. [30–33]. The other two methods, the photochemical and electrochemical methods,
require investment to demonstrate feasibility on large-scale plants. The production costs
of these synthetic gases are even higher than those for the thermochemical method. Fang
et al. showed how a CP-PV system can be exploited using highly energetic photons [14]. In
future studies, they suggested to carry out a tradeoff between PV efficiency (values still
low) and electrical efficiency [14]. In a revision work proposed by Yaashikaa et al., detailed
reports on photochemical and electrochemical CO2 transformation were highlighted, and
the advantages and disadvantages of the methods proposed were also highlighted [34].
The catalytic aspects are stringent, and research is focused on cost abatement with the
increase in the efficiency of conversion. Current limitations of low- and high-temperature
electrochemical processes were investigated in the work proposed by Severin et al. [35].
The most significant limitations were those associated with degradation phenomena that
occur during operation under realistic conditions, i.e., in transient mode or with the use
of processes containing trace contaminants. Advances in the fundamental understanding
of degradation mechanisms and the development of stable, high-performance materials
are essential for the advancement of this technology. Another study proposed by Hernan-
dez et al. [36] emphasized the fundamental thermodynamic, kinetic and mass-transport
aspects required to ensure the good production of CO- and H2-rich syngas. A competitive
approach between the electrochemical reduction of CO2 and the combination with H2
was shown. The points highlighted for future development were energy yields and cat-
alytic performance under real conditions. Experimental results in pilot plants showed that
conversion yields were higher when considering the thermochemical process rather than
the other proposed methods, although scientific research is still needed. A more realistic
approach was reported for the thermochemical process using non-stoichiometric cerium
oxide. This chemical compound has established itself as a reference redox material for
the realization of two-step thermochemical cycles and the generation of sustainable fuels,
such as a gas mixture of CO and H2 [12,15,16,37–39]. The energy sources used to produce
syngas play a fundamental role. The thermochemical splitting of CO2 and H2O takes
advantage of the entire spectrum of solar radiation to produce CO and H2 [27,40–42], even
if the temperature level and thermal energy requirements are fundamental. These aspects,
especially in real case studies, which are far from the ideal conditions of the laboratory,
require strong research work.

The purpose of the experimental campaign carried out at Energy Center Lab at Polito
is to evaluate the feasibility of a chemical looping process with the consequent production
of synthetic gas using a concentrating solar thermal dish. In this paper, the calculation
of the temperature in the receiver, placed in the focal plane of the parabolic dish, was
accomplished. The approach was used to cover the main heat-transfer processes to evaluate
the thermal losses. Conductive, convective and radiation losses were considered. These
preliminary results were used for the material selection and the technical feasibility of the
reduction reaction in a real solar dish concentrator for syngas production.



Processes 2022, 10, 1698 3 of 20

2. Material and Methods
2.1. Modeling Tools and Mathematical Description of the System

A parabolic mirror focuses the incident solar radiation onto a receiver, thus generating
a very high local heat flux, usually exploited to produce steam, which acts as a working
heat-transfer fluid in a turbine linked to a generator. In some applications, solar heat can be
an excellent alternative to produce syngas through the solar thermal gasification of chemical
compounds under supercritical conditions. The synthetic gas produced can be directly used
as a fuel source. As mentioned above, the idea behind a parabolic dish is to concentrate
the reflected solar radiation, see Figure 1. The rays converge towards an extremely small
area onto the focal plane, where a receiver of a different shape is placed according to the
needs (Figure 2). The flux uniformity on the receiver surface has a significant impact on
both the success and efficiency of the thermochemical reactions to produce syngas. For
this reason, as detailed in the following sections, the three-dimensional modeling of the
parabolic collector and the receiver were developed, so that the surface distributions of
thermal power and temperature in the focal plane could be derived. Numerical modeling
was carried out with Comsol Multiphysics, software based on BEM-FEM hybrid technology
that allows one to operate with the finite element method, discretizing the continuum with
a set of finite-sized partitions, interconnected with each other at predefined points (nodes).
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The simulation tool adopted to analyze the system from an optical point of view was
the Ray Optics Module, which provides specific modeling instruments for the propagation
of electromagnetic waves with an optical geometry technique (ray tracing) based on the
rays tracked after the interaction with the surfaces and on the consequent evaluation of
the path followed by light. The probabilistic approach adopted for the simulation was
based on the Monte Carlo method, since as detailed below, the generation of sun rays
purely occurs in an aleatoric manner, and the physical perturbations due to the surface
roughness of the mirror and the darkening phenomenon at the edge of the solar disk are
randomly sampled from probability distribution functions [43]. The propagated waves are
treated as rays that can be reflected, refracted or absorbed into the geometric contours of
the model. Although introducing approximations, since the geometry is large with respect
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to the wavelength of electromagnetic radiation, the optical beam module is the ideal tool
for the realistic visualization of the reflected-ray trajectory.

2.2. Experimental Description

The solar paraboloid used for research was built knowing the focal length and using
the section incorporated in the Comsol library relating to the Ray Optics Module. Once
the focal length was known, other important parameters that were to be subsequently
used in the modeling could be derived. The real temperature data were obtained using
a solar concentrator (Elma.net srl, Riva del Garda (TN), Italy) [44] installed on the roof of
the Energy Center (Turin, Italy). A graph describing the geometry of the model adopted to
create the parabolic reflector is shown below. The simplified structure was characterized
by a negligible thickness, while the diameter was calculated according to the geometric
parameters (focal length and rim angle):

Ddish = 4· f ·(csc(ψ)− cot(ψ)) (1)

The geometry also included a horizontal cylindrical receiver (sintered Alumina 99.7%;
Almath crucibles, Newmarket, UK), with the focal plane being in the central section. A
dimensioned drawing of the receiver with the corresponding lateral thermocouples is
represented below (Figure 3), including a B-type thermocouple (0.5 mm; Tersid, Milan,
Italy) with a ceramic sheathing of 8 mm. This thermocouple was in the middle of the
receiver, while two K-type thermocouples were at the tube ends (3 mm diameter; Tersid,
Milan, Italy) (A1 near the reactor on the left, A3 on the right).
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By entering the appropriate dimensions in the software used, the complete geometric
model of the system (dish and receiver) was created (see Figure 4). The entire domain was
uniformly discretized into infinitesimal-dimensioned elements to generate an extremely
dense mesh to calculate the distributions of the main parameters on the reflective surfaces
of the paraboloid and the absorbing ones of the receiver.
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3. Results and Discussions

In this study, the main goal was to forecast the temperature trend of the focal point
inside and outside the receiver placed in a solar dish concentrator. The approach used had
to consider the main heat-transfer processes; conductive, convective and radiation losses
were considered.

3.1. Monte Carlo Ray-Tracing Simulation

Geometric optics is the foundation behind the design of an optical system. Solar
radiation can be subject to two different phenomena:

• Refraction: When radiation is refracted, to understand its behavior, it is necessary
to refer to Snell’s law [45] (see Figure 4). It is possible to distinguish the angle of
incidence and the angle of refraction. The possible behaviors are also reported when
the refraction angle changes:

n1·sen θ1 = n2·sen θ2 →
n1

n2
=

sen θ2

sen θ1
(2)

• Reflection: When radiation is reflected by a smooth surface, it obeys the reflection law,
according to which the incident and reflected rays form identical angles with respect
to the normal to the surface (Figure 5). An important part of the design and analysis
steps of solar concentrators concerns ray tracing, which deals with the study of the
paths followed by solar rays in systems with reflective and refractive surfaces. For
the study of reflected or refracted radiation, it is necessary to follow the procedure
shown below.
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To quantify the thermal flux distribution in the focal plane of the Energy Center’s
concentration system, it was necessary to adopt a numerical calculation strategy. Thanks
to the Ray Optics Module, a possible evaluation of the solar radiation directly reflected
from the parabola surface could be obtained using the “Illuminated Surface” function. The
intensity of the reflected radiation strongly depended on the curvature of the paraboloid
and thus on the specific trajectory assumed by the beam rays. The direction followed by the
released rays depended on the path of the incoming beam vector and the surface normal.
A fixed power (intensity of the incident ray) was also assigned to each beam released, the
value of which depended on the total power of the source set for the illuminated wall
function. When the rays reached the focal plane surface, they were stopped by the “Wall”
function, whose function was to simulate the absorptive behavior of the receiver surface
(see Figure 6). Here, the ray trajectories were described in terms of power from the dish to
the receiver. Figure 6 shows that the maximum power hitting the receiver came from the
central part of the dish.

Theoretically, an ideal parabolic reflector could concentrate the rays in one point.
However, many perturbations prevent this idealized behavior from happening, even in
the context of geometric optics in which diffraction is neglected. Concerning a parabolic
reflector, among the several reasons for the system to have a limited focusing capacity, the
following phenomena occur:

• Absorption: A significant fraction of the incident radiation is absorbed by the mirrors
in a newly installed dish as well as in a parabola whose performance has degraded
over time. This means the efficiency tends to decrease;

• Surface roughness: In a real parabolic mirror characterized by a non-perfectly smooth
surface, there is always a deviation of the reflected rays different from the ideal
case that refers to the surface’s normal direction. This causes solar radiation to be
imperfectly concentrated, spreading the flux over a wider region of the focal plane;

• Sun’s shape: The term refers to the effects of the finite dimensions of the solar disk.
If the Sun were an extremely small radiation source, all incident solar rays would be
almost parallel. However, this is not the case. Even at a distance of about 150 mil-
lion kilometers, the Sun is still large enough to allow rays from different parts of the
solar disk to create significant angles. The correction included due to the finite size of
the Sun implies that incident rays on Earth are sampled to form a very narrow cone
(Figure 7) with an opening half-angle equal to θs = 4.65 mrad [43].
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Radiation is also emitted from the circumsolar region, i.e., the luminous area sur-
rounding the solar disk, but in the present model, the circumsolar radiation was neglected,
assuming CSR = 0.

In addition to influencing the spatial and directional distribution of the rays, another
aspect related to the Sun’s shape is the relative intensity of radiation coming from different
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parts of the solar disk. Radiation from the center of the solar disk is generally brighter than
that emitted from outside the disk. This phenomenon, also known as limb darkening, is
responsible for the decrease in light intensity coming from the Sun near the perimeter of
the visible disc [44].

Among the various computational models available to simulate the propagation
of reflected rays, ray tracking using the Monte Carlo method allows one to take into
consideration the diameter of the finished source, limb darkening, surface roughness and
the absorption of the mirror. The model proposed was based on two studies, each of which
corresponded to a different characterization of the “Illuminated surface” function. For each
study, sampled rays were released from 100,000 distinct points. At each point, the direction
of the incident ray was then changed by a random angle; the probability density of these
angular variations was uniform within a cone of angle ψs.

For the first study, no limb-darkening model was used, and the surface was assumed
to be perfectly smooth and reflective (the absorption coefficient was set to 0, which meant
that 100% of the incoming radiation was reflected). The rays sampled were under the
conical distribution, and they considered the maximum opening angle of the solar disk
θs. The intensity considered for the incident rays was equal to 800 W/m2, while the total
power of the source was determined as Psource = A0 I0.

The implementation of a simplified model is useful to have as a reference of the
most idealistic solution, in which the finite dimensions of the Sun are considered, but all
other factors are neglected. If the paraboloid were a smooth reflector and the sun’s rays
propagated as plane wavefronts emitted by an infinitely distant point source, then all the
incoming radiation would be focused in a very limited area of the collector, located right
in the center of the paraboloid (Figure 8). The ideal focusing system would consist of a
flawless dish able to concentrate the collimated solar radiation into an infinitely small point
on the focal plane. Figure 9 shows the spatial distribution of the deposited power of the
rays intercepted by the reflecting surface of an ideal reflector. A well-defined power value
Ith was assigned to each beam released; therefore, the innermost area was the one on which
most of the rays collided, depositing the highest power contribution. It was observed that
the more the radial distance decreased, the more the density of the incident radiation, and
consequently the absorbed power, increased.
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Figure 9. Trajectories of rays reflected by ideal reflector and focused onto receiver in terms of
power density.

The peripheral areas of the paraboloid, while contributing to the reflection of rays,
were those that focus radiation to a lesser extent on the focal plane. In the ideal model,
there was considerable precision in the reflection of rays by the reflector; therefore, the
concentration of radiation was the best possible, i.e., the dispersion of rays reaching the
focal plane and not perfectly absorbed was limited. It could be observed that the two beams
in Figure 9, due to the non-perfect incidence in the center of the receiver, tended to reflect
again on the circular walls of the horizontal cylinder. Almost every beam was stopped by
the receiver, with only an extremely small number of beams visibly propagating beyond
the focal plane.

The reflection coefficient, as in the ideal case, was set based on the absorption coeffi-
cient of the mirror, which in this case corresponded to the value declared by the manufac-
turer of the solar disk [44], i.e., α = 0.2; therefore, 80% of the radiation was reflected. The
ray sampling remained unchanged, following the conical distribution, as did the intensity
of incident rays, equal to 800 W/m2, and the total power of the source, Psource = A0 I0. The
spatial distribution of the rays captured by the surface of a reflector in the real case, in terms
of power deposited, was much more heterogeneous (Figure 10) as a consequence of the
darkening phenomenon at the edge of the solar disk. The rays affected the entire surface of
the paraboloid in a purely random way, without defining an area characterized by greater
power density. The central and peripheral areas of the paraboloid, which contributed to
the reflection of rays in the same way, focused the radiation on the focal plane. The ray
trajectories resulting from the second study are shown in Figure 11. Compared with Fig-
ure 9, a considerable number of beams did not perfectly affect the target and continued to
propagate, reducing the efficiency of the receiver. These results were comparable with those
achieved by Lee, in whose paper, the surface slope error was investigated in detail [46], and
the limb-darkening attenuation for the energy distribution of the solar disk was evaluated
according to Buie et al. [47].
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3.2. FEM Simulation Results with Ideal Solar Irradiance

To clarify the logical flow followed to create the numerical modeling of the concen-
trator/receiver system in Comsol Multiphysics, a summary list of the main instructions is
provided in the table below.

The main operating parameters concerning the heated surface placed in the focal
area of the concentrator were evaluated based on the ideal condition of solar irradiance,
I0, following the maximum radiative flux reported on the paraboloid user manual [44]
and concerning the geometry of the system. The solar rays reaching the surface of the
focal plane were stopped by the “Wall” function, so that an estimate of the thermal flux
deposited could be carried out using the “Deposited Ray Power” function. Ansys, Comsol
and other software can be used for numerical investigation purposes [48–50].

Since solar energy was collected in a large area, much larger than the receiving surface
of the focal plane, the thermal power deposited was extremely high. The central section of
the horizontal cylindrical receiver used in this research study had the purpose to accumulate
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the heat necessary to reach the thermal conditions so that the thermochemical reactions of
interest could take place. In this regard, a comparative analysis between the temperatures
and the deposited powers in the focal plane of the receiver was carried out both for the
surface hit by the rays reflected by the idealized concentrator (Figure 9) and the real
concentrator (Figure 11). It was interesting to notice that for the ideal case (Figure 12), a
very high deposited thermal flux was observed, with a maximum value of approximately
2.41 107 W/m2 near the center of the focal plane. Bekele et al. used a similar thermal flux
deposited in the receiver [22].
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Figure 12. Distribution of thermal power deposited in the focal plane of receiver. Ideal case (above):
perfectly smooth and reflective parabolic reflector; the phenomenon of solar limb darkening was ne-
glected. Real case (below): parabolic reflector in which factors such as surface roughness, absorption
and solar limb darkening were included.

The distribution was also somewhat homogeneous and approximately circular in
shape. A different situation occurred for the real case (Figure 12); the greater dispersion of
the rays reflected by the non-idealized concentrator caused an enlargement in the concen-
tration surface, this time characterized by an elliptical shape. This further led to a lower
concentration of the thermal flow, which reached a maximum value of 1.15 × 107 W/m2.
Similar to surface roughness, the effect of the Sun’s shape tended to spread the heat flow
over a larger region of the focal plane. Similar approach and results were achieved by
Lee et al. [46]. Furthermore, when rays were released from points outside the center of the
solar disk, their initial intensity was reduced as a direct effect of the solar-edge-darkening
phenomenon (limb darkening), as supported by Buie et al. [47]. The real incident flux in
the three-dimensional focal plane, as shown in Figure 13, showed how the distribution was
much more extended and covered a larger surface than the ideal case. The explanation is
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given by the fact that the concentration of rays was not characterized by the same precision
because of all those phenomena that prevent a real system from functioning as a flawless
disk. The maximum flow was also considerably reduced, reaching a peak value of less than
half of that of the ideal case (Table 1).
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Table 1. Geometrical and physical parameters used in the study and scheme of the multiphysical model.

Modeling procedure in Comsol Multiphysics
MODEL CREATION:

Selection of the model geometry→ 3D geometry
Selection of physics→ optics > ray optics > geometrical optics (GOP).

Study definition→ ray-tracing simulation
GEOMETRICAL AND PHYSICAL PARAMETERS [44]:

Name Expression Value Description
f 0.92 (m) 0.92 m Focal length

Phi 45 (deg) 0.7854 rad Rim angle
D 4 × f × (csc(phi)-cot(phi)) 1.80 m Dish diameter
A Pi × dˆ2/4 2.544 m2 Dish projected surface area

Psim 4.65 (mrad) 0.00465 rad Maximum solar-disc angle
Sig 1.75 (mrad) 0.00175 rad Surface slope error
I0 0.8 (kW/m2) 800 W/m2 Solar irradiance

GEOMETRY AND CREATION OF THE MESH:
Receiver→ horizontal cylinder

Solar dish→ Ray Optics Module > 3D > mirrors > Paraboloidal Reflector Shell 3D
GEOMETRICAL OPTICS (GOP):

Illuminated Surface 1→ ideal reflector (α = 0)
Illuminated Surface 2→ real reflector (α = 0.2)

Wall I→ focal plane
Deposited ray power→ incident thermal flux on the focal plane (W/m2)

The temperature distribution in the focal plane reflected the thermal flow exactly. An
analysis of the two-dimensional and three-dimensional temperature maps for the central
section of the receiver was carried out, and is shown in Figure 14, to better understand
the thermal response of the component exposed to the beam of solar radiation reflected
by the concentrator. As for the evaluation of the deposited flow, also in this case, two
different Monte Carlo ray-tracing simulations were performed, keeping the geometry and
the radiation power intensity (equal to I0) unchanged, see Table 2. The properties related to
the parabolic mirror were instead modified. From the simulation executed considering the
ideal parabolic reflector, an extremely high peak temperature was achieved, equal to about
4500 K, and the incident rays appeared slightly scattered with respect to the center of the
focal plane, thanks to the perfect paraboloid reflectivity. The result was a homogeneous
distribution characterized by an almost circular shape.
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darkening was neglected. Real case (below): parabolic reflector in which factors such as surface
roughness, absorption and solar limb darkening were included.
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Table 2. Maximum thermal flow values deposited in focal plane of receiver and relative maximum
power in target assessed assuming area of concentration with radius equal to 1 cm.

Case Maximum Thermal Flux Deposited
in Focal Plane (W/m2)

Target Surface
(m2)

Maximum Power in Target
(kW)

Ideal 2.41 . . . 107 3.141 . . . 10−4

(r = 1 cm)
7.57

Real 1.15 . . . 107 3.61

On the contrary, it was evident that for a real concentrator, no longer perfectly reflective
and influenced by the limb-darkening phenomenon, the temperature distribution in the focal
plane was more heterogeneous and characterized by significant dispersion. The attenuation
of power due to the limb-darkening effect followed an approach similar to that studied and
investigated by Lee et al. [46] using the relations reported by Buie et al. [47]. The maximum
temperature in the center of the concentration surface approached 3600 K.

The ray-tracing simulations made it possible to evaluate the main parameters in a
very limited area of the receiver, corresponding precisely to the focal plane located in the
center section of the component. The treatment performed so far excluded many effects
that generally tend to further reduce the flux and temperature values in the focal plane. It
was, therefore, essential to implement additional modeling that focused on a more realistic
study of the thermal field in the receiver. The main goal of the manuscript was to predict
the overall temperature range of the receiver. This result could be used to assess which
materials are the most suitable to be used for cables, thermocouples and fittings (Teflon
or brass). To create a more realistic two-dimensional modeling, allowing a complete view
of the temperature distribution over the entire surface of the receiver to be obtained, the
procedure adopted followed the following steps:

(a) Evaluation of the average heat flux and the average temperature in the focal plane
starting from the 2D distributions obtained through ray-tracing simulations carried
out considering the real reflector (Figure 12/Figure 14). The data exported from
Comsol were imported into Matlab for processing;

(b) Two-dimensional geometric modeling of the receiver with a concentration surface
having a circular shape;

(c) Simulation of a stationary study by entering the following conditions:

o Initial receiver temperature: Ambient = 293.15 K;
o Imposition of the average and constant heat flux calculated in point (a) for the

entire concentration area mentioned in (b). The heat source imposed in the
focal zone of the receiver was measured as Pimposed = φAvg· A f oc ;

o Convective heat flow from the external edges of the receiver (convection with
external air).

The results thus obtained (Figure 15) provided a maximum temperature in the focal
plane, with an ideal solar radiation I0, equal to about 1800 ◦C, the same temperature de-
clared by the manufacturer for the concentrator operating under the maximum available
solar irradiation [44]. The ray-tracing simulation model created with Comsol was “ide-
alized”, which is why the temperature values obtained in Figure 14 showed high values.
Convection with outside air and the resulting heat dissipation with the surroundings
caused a significant reduction in temperature compared with the ideal case.



Processes 2022, 10, 1698 15 of 20

Processes 2022, 10, x FOR PEER REVIEW 16 of 22 
 

 

(c) Simulation of a stationary study by entering the following conditions: 
o Initial receiver temperature: Ambient = 293.15 K; 
o Imposition of the average and constant heat flux calculated in point (a) for the entire 

concentration area mentioned in (b). The heat source imposed in the focal zone of the 
receiver was measured as 𝑃 =  𝜙 ∙  𝐴  ; 

o Convective heat flow from the external edges of the receiver (convection with exter-
nal air). 
The results thus obtained (Figure 15) provided a maximum temperature in the focal 

plane, with an ideal solar radiation I0, equal to about 1800 °C, the same temperature de-
clared by the manufacturer for the concentrator operating under the maximum available 
solar irradiation [44]. The ray-tracing simulation model created with Comsol was “ideal-
ized”, which is why the temperature values obtained in Figure 14 showed high values. 
Convection with outside air and the resulting heat dissipation with the surroundings 
caused a significant reduction in temperature compared with the ideal case. 

 
Figure 15. Two-dimensional temperature map for horizontal cylindrical receiver considering the 
actual exposure of the component to external atmosphere and consequent heat dissipation via con-
vection (steady-state conditions). 

3.3. Theoretical Temperature Forecast for Future Development 
Unlike the ideal case, in which the continuous operation of the system exposed to 

maximum incident solar irradiance was hypothesized, in a real situation, it is necessary 
to analyze the behavior encountered by the system when forced to operate with variable 
irradiation both during the day and with the changing seasons. For this reason, an addi-
tional simulation concerning the real case was implemented to provide a useful forecast-
ing model that would allow us to make a realistic estimate of the producibility of the sys-
tem for the different periods of the year. Such a solution appeared reasonable given the 
perennial repetition of the seasons that, unless sudden and unpredictable changes in the 
temperature happen due to climate change, punctually and cyclically show similar global 
trends in radiation and maximum or minimum temperature depending on the location 
considered. The irradiance values were detected using a solarimeter (pyrheliometer/py-
ranometer) located in Turin (Energy Center). By comparing the same periods belonging 
to different solar years, it was clear how each month is subject to a completely random 
rate of variation in climatic conditions. 

For this reason, it is not appropriate to assess global radiation trends, both monthly 
and seasonal ones, from the overall average of solar radiation data. The most reasonable 
procedure is, therefore, to produce a comparison of global radiation trends for the differ-
ent meteorological seasons of the year. For each curve, the precise radiation values 

Figure 15. Two-dimensional temperature map for horizontal cylindrical receiver considering the
actual exposure of the component to external atmosphere and consequent heat dissipation via
convection (steady-state conditions).

3.3. Theoretical Temperature Forecast for Future Development

Unlike the ideal case, in which the continuous operation of the system exposed to
maximum incident solar irradiance was hypothesized, in a real situation, it is necessary
to analyze the behavior encountered by the system when forced to operate with variable
irradiation both during the day and with the changing seasons. For this reason, an addi-
tional simulation concerning the real case was implemented to provide a useful forecasting
model that would allow us to make a realistic estimate of the producibility of the system for
the different periods of the year. Such a solution appeared reasonable given the perennial
repetition of the seasons that, unless sudden and unpredictable changes in the temperature
happen due to climate change, punctually and cyclically show similar global trends in
radiation and maximum or minimum temperature depending on the location considered.
The irradiance values were detected using a solarimeter (pyrheliometer/pyranometer)
located in Turin (Energy Center). By comparing the same periods belonging to different
solar years, it was clear how each month is subject to a completely random rate of variation
in climatic conditions.

For this reason, it is not appropriate to assess global radiation trends, both monthly
and seasonal ones, from the overall average of solar radiation data. The most reasonable
procedure is, therefore, to produce a comparison of global radiation trends for the different
meteorological seasons of the year. For each curve, the precise radiation values correspond-
ing to the individual time instants were the result of the averaging of the values for the
central day of each month in the case of a clear, sunny day. Alternatively, we had to switch
to adjacent days until we found the data of the day that offered the best values, in terms of
limiting the random effects of cloudiness and precipitation. Once the reference days for the
various months of the year were found, the average of the three values was calculated, thus
obtaining the seasonal distributions of global radiation, as illustrated in Figure 16. As can
be seen, the outermost curves, especially the summer curve, offered considerable radiation
values over a much longer period than the other seasons. Being able to expose the solar
disc to such high values of radiative intensity would result in a higher yield in the warmer
months, due to the higher amount of energy absorbed by the concentrator, thus making the
entire analyzed technology very interesting.
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Figure 16. Trend of average global radiation during the day for different weather seasons. The time
values were obtained as averages of radiation values for the clearest and sunniest days of each month.

At this point, the corresponding temperature distribution in the vicinity of the reactor
was determined over time. Since the research study began in October, it was possible to
validate the model for the winter season, since the experimental information was measured
using the thermocouples positioned in the receiver. In the case of the summer months, on
the other hand, as only global radiation data were available for the months of 2019–2021,
the reactor temperature values were obtained mathematically using the specially designed
2D model of the dish and solar receiver. In the table below (Table 3), the list of data with
the uncertainty values is presented.

Table 3. Average global radiation registered at the POLITO weather station.

2019 2020 2021

2019–2021 Global Radiation
(W/m2)

Uncertainty
(W/m2)

Global Radiation
(W/m2)

Uncertainty
(W/m2)

Global Radiation
(W/m2)

Uncertainty
(W/m2)

Summer 430.0 28.1 430.1 28.2 411.7 15.1

Autumn 191.3 14.0 226.6 14.3 228.4 12.0

Winter 115.0 18.1 213.9 17.3 196.6 17.0

Spring 209.3 28.2 314.8 28.5 327.2 10.7

A structured forecast model was used to simulate the actual behavior of the system
subject to the inevitable seasonal cyclicality. The aim was to estimate the main process
parameters found in the warmest and sunniest months, during which the irradiation values
were close to ideal. In this case, a solar thermochemical reactor would operate under
optimal production conditions, guaranteeing the maximum yield of chemical compounds
according to the tested process. The receiver temperature profile is reported below. These
values were obtained using the simulation and modeling approach in spring and in summer
and were compared with actual values taken as reference on specific days in the winter
period (see Table 4).
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Table 4. Average temperature values in the middle of the receiver.

12/12—13:00 11/1—13:00 22/1—13:00

Temperature
(◦C)

Model Experimental Model Experimental Model Experimental

455 442.8 466 461.3 478 472.5

The reactor temperature was then derived from the seasonal average values of variable
irradiance, which was appropriately imported into Comsol to perform a simulation of the
entire system using the parametric sweep function for the entire year. The data correlated
with the 2D heat flux maps were subsequently exported and processed in Matlab to obtain
the average heat-flux and temperature values in the focal plane, which in turn were used
in a simplified 2D model. It should be noted that the 3D model did not consider all
those effects that further reduce the temperature in the focal plane of the receiver, such as
conduction and convection with the external environment, which were instead integrated
in the 2D model. The reactor temperatures corresponding to each average radiation value
are, therefore, shown in Figure 17. As reported in the study by Bekele et al., the importance
of irradiance intensity was shown for the receiver temperature increase [22]. A cylindrical
receiver was studied, achieving a heat flux of 32.4 MW/m2 and a temperature of 923 K.
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Figure 17. Reactor temperature during the day for different weather seasons. The time values were
obtained as a result of the 2D model developed in Comsol Multiphysics.

4. Conclusions

The work conducted aimed to address and to study the performance of a solar-
concentrator prototype. Experimental temperatures monitored inside a ceramic receiver
during the operation of a solar concentrator were used. The solar concentrator was installed
on the roof of the Energy Centre, and it was used to study the reduction and oxidation
reactions of metal oxides. The study focused on a typical year by identifying the best
times to reach temperatures above 1000 ◦C to be able to reduce metal oxides even under
methane-assisted conditions [51]. From the spring season until the end of the summer
season, optimum conditions were reached for working experimentally with iron oxides
and for carrying out thermochemical reactions, in particular the reduction reaction, which
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takes place at high temperatures. The model proposed was experimentally validated in
the winter season with the receiver temperature of the solar dish. The experimental results
differed from the modeling results in a range of less than 5%. Finally, these results were
used to trigger an experimental campaign on the reduction reaction with iron oxides. For
the remainder of the time, i.e., in the autumn and winter seasons, the solar concentration
system could be used for thermal energy storage purposes [52] or to feed a Stirling engine
for electrical-energy production [53].
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Nomenclature List

A0 Frontal area of parabolic mirror
Afoc Focal area (m2)
BEM Boundary Element Method
CDS Carbon-dioxide splitting
CS Concentrating solar system
CSP Concentrated solar power
CSR Circumsolar relationship
CTL Coal-To-Liquid (CTL)
Ddish Dish diameter (m)
f Focal length
FEM Finite element method
GTL Gas-To-Liquid (GTL)
I0 Ideal solar irradiance (800 W/m2)
It Intensity threshold of reflected rays (10−3 W/m2)
ni Refractive index of i-th material
Pimposed Power imposed (kW)
Pth Radiative power concentrated in the reaction zone (kW)
Psource Power of the source (kW)
Psim Maximum solar disc angle (mrad)
Sig Surface slope error (mrad)
WS Water splitting
α, Absorption coefficient of mirror
θi Angle between i-th incident ray and surface normal
θs Maximum opening angle of the solar disk (4.65 mrad)
φAvg Average specific thermal flux (kW/m2)
ψ Rim angle
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