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Abstract

This thesis presents the theory and development of a novel approach for the automated
design of metasurface antennas. The introduced method is fully numerical and can
be applied to the design of 3D metasurfaces, allowing the transformation of a given
incident field into a radiated field that satisfies mask-type amplitude constraints.

The design of metasurfaces is challenging due to their intrinsic multi-scale
features, as they are composed by many subwavelength scattering elements. The
process is made possible by the introduction of macroscopic models that describe
the behaviour of the metasurface in terms of an equivalent impedance boundary
condition (IBC), which defines the relationship between the tangential electric and
magnetic fields on either side of the metasurface. To be implemented in practice, the
obtained impedance must be realizable, i.e., it must be passive and lossless, with
reactance values within practical manufacturing limits.

In this work the focus is on the macroscopic design of metasurfaces, i.e., the design
of the surface impedance profile that leads to the desired radiated field. Common
techniques for the macroscopic design of metasurface antennas rely on analytical
approximations for the incident and scattered fields, as well as for the impedance
profile. This limits their application to simple geometries, and the ability to deal
with arbitrary specifications is minimal. To overcome these limitations, recently
new approaches have been proposed which frame the design as an inverse source
problem, allowing more generality in the definition of the incident and scattered
fields. However, they are formulated as an input-output field transformation on the
two sides of a metasurface, preventing their application to cases where the incident
field is on the surface (e.g., surface wave based metasurface antennas).

The method introduced in this work is based on a formulation of the scattering
problems as an integral equation, where the unknown is the equivalent electric current
only. The process involves the synthesis of this current, constrained to correspond to a



v

realizable impedance, and to radiate a field obeying the requirements. The impedance
is obtained from the synthesized current only at the end of the process. This method
requires no a-priori information or heuristics on the impedance distribution.

The current-based design avoids the solution of the forward problem at each
iteration, greatly reducing the computational burden, and the formulation is such
that all relevant operations in the iterative process can be evaluated with O(N logN)

complexity, where N is the number of unknowns for the current. Another benefit
is the ability to enforce mask-type (inequality) constraints, as opposed to pattern
matching techniques adopted by previous methods, allowing to incorporate all
relevant figures of merit (gain, side-lobe levels, polarization ratio, etc.) directly into
the design instance.

To demonstrate the validity of the proposed method, it has been applied to
the design of metasurface antennas of practical relevance. Application examples
concentrate on the case of on-surface incident field and far-field pattern specifications
in terms of realized gain. The obtained results confirm the feasibility of the
macroscopic design for medium- and large-size circular metasurfaces, with pencil-
and shaped-beam patterns, and for both linear and circular polarization. Design
examples for different geometries, i.e., elliptical and symmetric strip, are also included
to demonstrate the flexibility of the approach.



Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Aim of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Analysis of Metasurface Antennas 7

2.1 Impedance Boundary Condition . . . . . . . . . . . . . . . . . . . 7

2.1.1 Passivity and losslessness condition . . . . . . . . . . . . . 8

2.2 Surface Integral Equation formulation . . . . . . . . . . . . . . . . 9

2.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Fast algorithms . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Conditioning of the EFIE-IBC linear system . . . . . . . . . 14

3 Automated Design of Metasurface Antennas 15

3.1 Geometry and source field . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Constraint definition . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Realizability . . . . . . . . . . . . . . . . . . . . . . . . . 18



Contents vii

3.2.2 Field specifications . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Alternate Projection Algorithm . . . . . . . . . . . . . . . . . . . . 22

3.4 Current-based Optimization Algorithm . . . . . . . . . . . . . . . . 24

3.4.1 Enforcement of realizability constraints . . . . . . . . . . . 27

3.4.2 Enforcement of field specifications . . . . . . . . . . . . . . 31

3.4.3 Gradient computation . . . . . . . . . . . . . . . . . . . . . 33

3.4.4 Line search . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.5 Complexity analysis . . . . . . . . . . . . . . . . . . . . . 41

3.5 Impedance computation . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Impedance regularization . . . . . . . . . . . . . . . . . . . 46

4 Numerical results 48

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Circular Metasurface . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Pencil beam, circular polarization . . . . . . . . . . . . . . 54

4.2.2 Pencil beam, linear polarization . . . . . . . . . . . . . . . 57

4.2.3 Squinted beam, linear polarization . . . . . . . . . . . . . . 59

4.2.4 Square flat-top, linear polarization . . . . . . . . . . . . . . 60

4.3 Elliptical Metasurface . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Symmetric Strip Antenna . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusions 68

Appendix A Power balance for metasurface antennas 70

A.1 Power density absorbed by a surface . . . . . . . . . . . . . . . . . 70

A.2 Power balance for radiation scattered by a surface . . . . . . . . . . 71

A.3 Single-layer Metasurface . . . . . . . . . . . . . . . . . . . . . . . 76



viii Contents

A.4 Surface wave incident power . . . . . . . . . . . . . . . . . . . . . 78

Appendix B Passivity and losslessness condition for tensor impedance 80

Appendix C Far-field computation for single-layer metasurface 83

Appendix D Complex gradient 88

Publications 93

References 94



List of Figures

1.1 Different technologies for the realization of spatially-variable meta-
surfaces: (a) printed circular patches with variable radius, (b) slotted
circular patches, (c) metallic pillars with variable heights, and (d)
grounded dielectric slab with variable thickness. . . . . . . . . . . . 2

2.1 Representation of equivalent currents for the application of the
Equivalence Theorem to the case of a metasurface. . . . . . . . . . 10

2.2 Condition number of the matrix (Z − L) as a function of the aver-
age reactance ImZavg. The interval of numerical instability (high
condition number) is highlighted. . . . . . . . . . . . . . . . . . . . 14

3.1 Flowchart of the complete design procedure . . . . . . . . . . . . . 16

3.2 Example of geometry for the considered metasurface antenna layout:
(a) 3D view, for the case in which the source of the incident field is
on-surface, (b) cross section with the equivalent currents J . . . . . . 16

3.3 Example of mesh employed in the design. Only the impedance surface
is discretized, and the effect of the grounded substrate (background
medium) is taken into account by the multilayer Green’s function. . 17

3.4 Example of far-field specifications: objective level M0, reference
level Fref , main lobe co-pol masksM co

L ,M co
U (green), cross-pol mask

M cx
U (red) and side lobes mask M tot

U (blue). Vertical arrows indicate
relative levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Squared ramp function r2(x) = max(x, 0)2. . . . . . . . . . . . . . 28



x List of Figures

3.6 Example of a piecewise fourth-order polynomial function f(x). It
is the sum of two terms: a(x) is the square of a second-order
polynomial, while b(x) is obtained by applying the squared ramp
to a second-order polynomial. Vertical lines identify the intervals
where the function has a fixed polynomial behaviour. . . . . . . . . 40

4.1 Example of a pattern mask with ΩML (red) and ΩSL (blue): (a) sample
on a regular u-v grid represented on the upper half hemisphere, (b)
mask levels for the same samples. . . . . . . . . . . . . . . . . . . 50

4.2 Flowchart of the design and validation process. . . . . . . . . . . . 51

4.3 Surface mesh for the circular metasurface antenna: (a) medium-sized
antenna with D = 6λ0; (b) large antenna with D = 10λ0. The two
figures are drawn to scale. . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Initial current for the design of circular metasurfaces. Arrows
represent the direction of the current. . . . . . . . . . . . . . . . . . 53

4.5 Pencil beam with circular polarization: optimized surface current
magnitude for (a) D = 6λ0 (b) D = 10λ0. . . . . . . . . . . . . . . 54

4.6 Pencil beam with circular polarization: resulting surface reactance
for (a) D = 6λ0 (b) D = 10λ0. . . . . . . . . . . . . . . . . . . . . 55

4.7 Pencil beam pattern with circular polarization, antenna withD = 6λ0:
(a)mask requirements and realized gain in the plane cut φ = 90°, (b)
realized gain in the u-v plane. . . . . . . . . . . . . . . . . . . . . . 55

4.8 Pencil beam pattern with circular polarization, antenna with for
D = 10λ0: (a) mask requirements and realized gain in the plane cut
φ = 90°, (b) realized gain in the u-v plane. . . . . . . . . . . . . . . 56

4.9 Pencil beam with linear polarization: optimized surface current
magnitude for (a) antenna with D = 6λ0, (b) antenna with D = 10λ0. 57

4.10 Pencil beam with linear polarization: resulting surface reactance for
(a) antenna with D = 6λ0, (b) antenna with D = 10λ0. . . . . . . . 58

4.11 Pencil beam pattern with linear polarization, antenna with D = 6λ0:
(a) mask requirements and realized gain in the plane cut φ = 90°,
(b) realized gain in the u-v plane. . . . . . . . . . . . . . . . . . . . 58



List of Figures xi

4.12 Pencil beam pattern with linear polarization, antenna withD = 10λ0:
(a) mask requirements and realized gain in the plane cut φ = 90°,
(b) realized gain in the u-v plane. . . . . . . . . . . . . . . . . . . . 59

4.13 Squinted beam pattern with linear polarization, antenna with D =

6λ0: (a) optimized surface current magnitude, (b) resulting surface
reactance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.14 Squinted beam pattern with linear polarization, antenna with D =

6λ0: (a) mask requirements and realized gain in the plane cut φ = 0°,
(b) top view of the pattern in the u-v plane. . . . . . . . . . . . . . 61

4.15 Flat-top pattern with linear polarization, antenna withD = 10λ0: (a)
optimized surface current magnitude, (b) resulting surface reactance. 61

4.16 Flat-top pattern with linear polarization, antenna with D = 10λ0:
(a) mask requirements and realized gain in the plane cut φ = 90°,
(b) top view of the pattern in the u-v plane. . . . . . . . . . . . . . 62

4.17 Elliptical antenna with circular polarization: (a) optimized surface
current magnitude, (b) resulting surface reactance. . . . . . . . . . . 63

4.18 Elliptical antenna with circular polarization: (a) mask requirements
and realized gain in the plane cut φ = 0°, (b) 3D of the pattern in
the u-v plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.19 Mesh for the symmetric strip antenna. The source is placed in the
gap between the two strips. . . . . . . . . . . . . . . . . . . . . . . 64

4.20 Symmetric strip antenna: (a) optimized surface current, (b) resulting
surface reactance, (c) cut view of the impedance profile along the x
axis (vertical lines represent the surface bounds). . . . . . . . . . . 65

4.21 Symmetric strip antenna: (a) mask requirements and realized gain in
the plane cut φ = 0°, (b) top view of the pattern in the u-v plane. . . 66

A.1 Depiction of the scattering problem for the computation of the power
balance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.2 Illustration of the surfaces involved in the formulation of Poynting’s
theorem for a single-layer metasurface. . . . . . . . . . . . . . . . . 76



xii List of Figures

C.1 Equivalent transmission line for a grounded dielectric substrate.
Sources are confined at z = z0. . . . . . . . . . . . . . . . . . . . . 86

C.2 Simplified circuit for finding the transmission line transfer function. 87



List of Tables

3.1 Choice of unit vectors for the most common polarization types. . . . 20

3.2 Summary of the matrix-vector operations needed for each iteration,
with their respective complexity and total number of occurrences.
All operations are considered in complex format, and a ∈ CN is a
generic array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Summary of all possible cases in the reconstruction of impedance
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Weights for the components of the objective function. . . . . . . . . 51

5.1 Common notations . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Common acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Chapter 1

Introduction

In the last decade, the use of metasurfaces for the manipulation of electromagnetic
fields has been a topic of continuously expanding relevance [1]. They find application
in several areas, from antennas to microwave components, and over a wide range
of frequencies, from microwaves to optical ones. Examples include low-profile
antennas, lenses, polarizers and radomes; reflectarrays and transmitarrays have
also seen realization with metasurfaces. Recently, the concept of reconfigurable
intelligent surfaces (RIS) [2] has been proposed for 5G and beyond-5G environments.
In all these applications, the metasurface interacts with an incident, assigned field,
generating the radiated field; the metasurface is engineered so that this radiated field
has the desired properties.

From the structural point of view, metasurfaces are a class of artificial surfaces
that represent the two-dimensional version of metamaterials, as they are formed by
the arrangement (usually periodic) of sub-wavelength scattering elements on a thin
supporting layer. By varying the size and shape of these individual elements, it is
possible to tailor the electromagnetic behaviour of the surface, achieving properties
that cannot be commonly found in nature. They can be realized with a variety of
technologies: currently, the most popular ones are the use of printed conductive
elements (e.g., patches, slotted patches, meanders, etc.) and all-metal pillars (Fig.
1.1). Within printed-type structures, the main difference between the various classes
is in terms of the number of layers: low-profile antennas are usually single-layer,
while trasmit-type structures require more than one layer to ensure functionality and
absence of reflection. Another difference is in the nature of the incident (source) field:
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(a) (b)

(c) (d)

Fig. 1.1 Different technologies for the realization of spatially-variable metasurfaces: (a)
printed circular patches with variable radius, (b) slotted circular patches, (c) metallic pillars
with variable heights, and (d) grounded dielectric slab with variable thickness.

in low-profile antennas it is usually generated by a feed embedded in the surface (e.g.,
through a pin), which launches a guided surface wave in the grounded dielectric; in
all other cases, the feed is external and illuminates the metasurface.

The full-wave analysis of metasurface antennas is challenging due to their
multiscale features: many sub-wavelength unit cells are combined to form surfaces
that can have a large size in terms of wavelengths. However, their macroscopic
behaviour can be effectively modelled in terms of constitutive surface parameters,
that determine the appropriate boundary conditions [3]; these parameters are derived
through homogenization techniques that depend on the size of the unit cells and the
operating frequency.

The representation in terms of a continuous distribution of equivalent surface
impedance has not only enhanced the electromagnetic analysis of large metasurface
antennas, but it has also enabled their design, by allowing the process to be carried
out in two distinct phases. The design aims at finding the spatial distribution of a
surface impedance; after that, the final layout is achieved by choosing suitable unit
cells and finding their parameters so that they produce the previously determined
impedance profile. The unit cell analysis is usually done with the assumption of local
periodicity, which is the approach followed by virtually all published works (see [4]
for an application of this approximation). The choice of the unit cells is not part of
this work and can be realized with a variety of existing approaches, e.g., [5, 6].
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The conception and systematic design of spatially varying metasurfaces has been
initially based on wave physics and analytical considerations, e.g., [7, 8], [6, 9].
However, analytically-based approaches cannot accommodate for arbitrary design
specifications, which has prompted for research into automated design algorithms
based on numerical techniques. Ideally, the process would be totally automatic,
starting from the specifications and ending with the metasurface layout, requiring no
extra information or user intervention. The demand for such methods motivated the
research presented in this work.

1.1 State of the Art

The state of the art for the design of metasurface antennas can be conceptually
divided into two main categories: “2D” and “3D” methods. The cases in which
one spatial coordinate is considered invariant or periodic in the design – and thus
ignorable – are termed “2D”, while this restriction is not present for “3D” methods.
Another important distinction is between two different types of field specifications:
pattern-matching and mask-type inequalities. In pattern-matching the objective is to
obtain a given field, i.e. minimizing the “error” from this given pattern. Mask-type
specifications, on the other hand, are more general (and more useful in practice): an
“ideal” pattern is not known, and instead the field amplitude is required to satisfy
inequalities, i.e., to lie within an upper and lower bound; the spatial variations of the
bounds are called “masks”. A practically relevant sub-class of this problem is the
one in which one seeks to maximize the main beam gain in the prescribed direction.
Consistent with the scope of this work, only those approaches that aim at the fully
numerical design of the metasurface will be reviewed.

2D methods The approach in [10] employs a dual optimization, considering
equivalent currents and impedance at the same time, with an alternating type of
optimization; this requires a solution of the forward problem at each step. A method
based on optimizing the currents only would dispense from the solution of the
forward problem during the iterations: an important step in this direction is in
[11, 12] where reactivity is enforced directly; the resulting (non-convex) optimization
instance is tackled with a global optimization algorithm, but this approach was
further improved in [13], employing a gradient-based optimization. Consistent with
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previous works, also [14] explicitly considers a transmission-reflection problem
through the (stacked) metasurface layers, i.e., for an exciting field not generated
on-surface. For this problem, fields are represented in terms of traveling waves in
each (sub-wavelength) unit cell: this allows to formulate the problem directly in
terms of circuit elements, with the currents expressed through them; as a result,
the circuit elements are the direct unknowns of the inverse problem, with passivity
and absence of losses intrinsically enforced. These important works address the
problem of (phaseless) pattern matching —as opposed to mask-type (inequality) field
specifications. A scattering approach to synthesis is also presented in [15]. In [16]
a multi-layer, dual-band method is presented for a transmission-type metasurface
with pattern-matching requirements; the method builds upon the work in [17]. The
design is done in two steps: in the first step, equivalent currents are synthesized
without passivity requirements and complex impedance values are obtained from
these; in the second step, reactance values are optimized to match the field produced
by the complex impedance. Finally, [18] addresses the electromagnetically consistent
optimization of the surface impedance in RIS at a design and system level.

3D methods Regarding “3D” methods, the work in [19–21] employs equivalent
currents only, expressed in terms of entire-domain basis functions for circular and
elliptical domains; the method requires to formulate the problem as an amplitude and
phase field matching. In [22] equivalent currents are first found from radiated field
mask-type requirements, and a 3D realizable metasurface is subsequently obtained
via optimization (involving machine learning) and exploiting the degrees of freedom
of non-radiating currents (similar to [23]). The work in [24] lies between 2D and 3D
methods. It performs the automated design of a 2D metamaterial with cylindrical
symmetry, using a 2D FEM forward problem with a constrained gradient-based
method. A similar approach is adopted in [25], where the forward problem is dealt
with in terms of a 2D circuit network solver, using reduced-order models of the unit
cells to reduce the computational load. Finally, the works in [26] and [27] employ a
global optimization. At each iteration, a solution to the forward problem is required;
to reduce its cost, [26] exploited the body-of-revolution (BOR) symmetry, while [27]
specialized entire-domain basis functions [28]. Finally, global optimization of unit
cell and limited size binary metasurfaces have also been reported in the literature,
e.g., in [29].
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1.2 Aim of this work

The present work introduces an automatic 3D method for the design of metasurface
antennas. The procedure aims to find a passive and lossless impedance profile
(as required for the physical implementation), with constraints on the values of the
surface reactance (imposed by technological limits), and allowing arbitrary mask-type
specifications on the radiated field. The dissertation focuses on the design of scalar
impedance profiles, although the requirements of passivity and absence of losses are
formally derived for the general case of tensorial impedance.

The goal is reached by a formulation of the electromagnetic scattering problem
as a Surface Integral Equation (SIE), and involves the gradient-based optimization of
only the surface equivalent electric current derived from it. This allows to leverage
readily available numerical methods for the solution of integral equations. The
numerical challenges arising from a 3D problem and the size of the structure are
addressed by a formulation that is computationally efficient, requiring a minimal
number of matrix-vector products per iteration. The objective function and its
gradient can be computed with almost-linear, O(N logN) complexity (N is the
number of unknowns for the current) via the so-called fast formulation of the forward
problem. Finally, the line search procedure is computed in a fast, iterative way with
consecutive approximation of the objective function with fourth-order polynomials
that are minimized analytically.

The incident field is arbitrary, although this work mainly deals with the case
where the source is embedded on the surface, as necessary in low-profile metasurface
antennas. This represents one of the most challenging design scenarios, as the
coupling between the source and the metasurface is much stronger than in externally-
fed antennas (e.g., reflectarrays). Hence, controlling the reflected power becomes
crucial.

1.3 Thesis outline

The thesis is composed of four main chapters, which are organized as follows:

• Chapter 1 introduces the concept of metasurface antennas and their design.
The state of the art is reviewed and the aim of the thesis is stated.
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• Chapter 2 presents the analytical and numerical formulation needed for the
analysis of metasurface antennas. The concept of impedance boundary
condition is introduced, and the requirement for passivity and losslessness are
derived for scalar and tensorial impedances. The SIE formulation is defined,
along with the numerical methods adopted for its solution. These concepts
form the basis for the design approach presented in the next chapter.

• In Chapter 3, the proposed approach for the automatic design of metasurface
antennas is described, both from the conceptual and the algorithmic point of
view. The constraints are formally defined, and the current-based optimization
algorithm is outlined. Lastly, the resulting numerical complexity is analyzed.

• Chapter 4 collects a series of numerical results for a variety of geometries
and target pattern configurations. The method is applied to design circular
metasurfaces of different electrical size, as well as elliptical ones and strip
antennas. Both linear and circular polarizations are considered, with pencil
beam and shaped beam patterns. The effectiveness of the proposed approach
is validated by the solution of the forward EFIE-IBC system with the obtained
impedance profile.

• In Chapter 5, a brief summary of the presented material is given, along with
possible future developments and improvements.



Chapter 2

Analysis of Metasurface Antennas

In this chapter, the framework for the analysis of metasurface antennas is introduced.
Starting from the impedance boundary condition needed for the modelling of the
metasurface, the integral equation formulation is derived. Lastly, the numerical
methods commonly used to solve these electromagnetic problems are presented.

2.1 Impedance Boundary Condition

The metasurface is modelled as an Impedance Boundary Condition (IBC) [3], which
relates the tangential electric field to the jump of the tangential magnetic field:

Etan = Z ·
[
n̂×(H+ −H−)

]
, (2.1)

where Z(r) is the space-varying value of the impedance parameter, which in general
is of tensorial nature. Superscripts + and − refer to the two sides of the surface (n̂
points toward the + side), and Etan =

(
I − n̂n̂

)
·E is the electric field tangential

to the surface. The term “impedance” comes from the fact that a discontinuity
of the tangential magnetic field is due to an equivalent surface electric current
J = n̂×(H+ −H−), and the IBC can be equivalently written as

Etan = Z · J . (2.2)

The value of the Z is derived from the geometry of the unit cell, through homoge-
nization techniques that differ depending on the application (see, e.g., [6]). As this
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work deals only with the reconstruction of the impedance profile, these techniques
will not be discussed further.

A tensor impedance is modelled by choosing a local orthonormal basis (û, v̂),
and introducing four basis dyadics as follows [30]:

I = ûû+ v̂v̂, (2.3)

N = v̂û− ûv̂ = n̂×I, (2.4)

K = ûû− v̂v̂, (2.5)

L = v̂û+ ûv̂. (2.6)

Other basis can be used (e.g., ûû, ûv̂, v̂û and v̂v̂), but this choice offers some
advantages in the analysis of passive and lossless metasurfaces, as will be made clear
in the next section. The general form of a tensor impedance takes the form

Z = ZI I + ZN N + ZK K + ZL L. (2.7)

The four dyadic basis can be divided into two groups. I and N do not depend on
the direction (i.e., the choice of unit vectors, as long as they are orthonormal), and
are therefore isotropic. An impedance boundary is termed isotropic if its impedance
dyadic can be completely expressed in terms of two-dimensional isotropic dyadics.
On the contrary, an impedance boundary that has non-zero K and/or L components
is termed anisotropic. An anisotropic impedance means that its response depends
on the direction of the applied electric field. This provides more flexibility in the
manipulation of the fields, in particular for the control of polarization.

2.1.1 Passivity and losslessness condition

In all practical cases, the impedance must be passive and lossless. This ensures that
it can be physically implemented with printed conductive patches with negligible
losses, and without the need for active elements. The meaning of these conditions
from an energetic point of view can be investigated starting from the expression for
the surface complex power density absorbed by a surface (see App. A.1),

p̃ = Etan ·
[
n̂×(H+ −H−)

]∗
= Etan · J∗. (2.8)
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This general formula is valid whenever the surface introduces a discontinuity in the
magnetic field. The passivity and losslessness (PL) condition requires Re p̃ = 0

everywhere on the impedance surface. If the considered impedance is scalar, i.e.,
Z = Z I , the PL condition reads

0 = Re (Etan · J∗)

= Re (ZJ · J∗)

= ReZ |J |2 ,
(2.9)

which is true only if the impedance is purely reactive, i.e.,

ReZ = 0. (2.10)

The derivation of the PL condition for a general tensor impedance is much more
involved, and is reported in App. B. It requires

ReZI = ImZN = ReZK = ReZL = 0. (2.11)

In view of this, the general form of a passive and lossless impedance tensor is

Z = jXII +RNN + jXKK + jXLL. (2.12)

The term RN implies an instantaneous transfer of energy from one polarization to
the other. This is tipically achieved by resonant unit cells that exhibit a bianisotropic
behaviour (e.g., split ring or omega particle). However, the use of these geometries
complicates the layout design and is outside the scope of this work. Consequently,
only unit cells with RN = 0 will be considered.

2.2 Surface Integral Equation formulation

Electromagnetic problems involving metasurfaces can be analyzed with different
formulations. In particular, for single-layer metasurfaces, the choice is between the
opaque and transparent impedance formulation. The opaque formulation assumes
that the impedance surface is impenetrable, and that fields are only on one side
of it, which in turn implies that equivalent currents flow only on that side and
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M−
eq

M+
eq

J−
eq

J+
eq

n̂
SIBC

Fig. 2.1 Representation of equivalent currents for the application of the Equivalence Theorem
to the case of a metasurface.

the background medium is usually homogeneous. On the contrary, a transparent
impedance allows the fields to exist on both sides of the metasurface, with a multilayer
background medium. For reasons that will become clear later, the latter formulation
is employed in this work. It relies on the Surface Equivalence Theorem [31, p. 653],
which states that the solution of an electromagnetic problem external to a volume V ,
containing the sources, remains unchanged if one removes all sources and materials
inside the volume and places equivalent sources on the boundary ∂V , defined as

Jeq = n̂×H , (2.13)

Meq = −n̂×E. (2.14)

Consider a volume that bounds a metasurface SIBC (Fig. 2.1). If the volume collapses
to the surface from both sides, the total equivalent currents are given by the sum of
the equivalent currents on each side,

Jeq = J+
eq + J−

eq = n̂×
(
H+ −H−), (2.15)

Meq = M+
eq +M−

eq = −n̂×
(
E+ −E−), (2.16)

where the normal unit vector n̂ points toward the + side. A simplifying assumption
is that the metasurface introduces discontinuities in the magnetic field only, which
is practically the case for metasurfaces realized with printed conducting patches,
ensuring Meq = 0. With (2.15), (2.1) can be equivalently written as

Etan = Z · Jeq. (2.17)

The tangential electric field can be expressed as the sum of the incident field Einc,
radiated by the source in the absence of the metasurface, and of the scattered
field Esc = LJeq, radiated by the equivalent currents. This allows to express the
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electromagnetic problem as an Electric Field Integral Equation (EFIE-IBC):

[Einc(r) + LJeq(r)]tan = Z(r)Jeq(r), ∀r ∈ SIBC, (2.18)

where the unknown is the equivalent electric current Jeq; L is the Electric Field
Integral Operator (EFIO) defined as

LJ(r) =
¨

SIBC

GEJ(r, r′) · J(r′) dS(r′), (2.19)

where GEJ is the multilayer dyadic Green’s function for the background medium [32].
It is noted that here the problem is formulated in terms of a transparent IBC, which
requires the Green’s function of the layered background medium. This approach
has been shown to be significantly more stable than the one involving the opaque
version of the IBC [33], which would not need the more complex mentioned Green’s
function. This approach also allows for a better description of spatial dispersion
(the dielectric medium effect is fully described), and eases the passage from the
impedance profile Z(r) to the design of the individual unit cells (which will not be
discussed in this work).

It is also of interest to look at the computation of the field radiated by equivalent
currents, as it is usually this field that is the target of the optimization process. If the
radiated field specifications are not in the the Fraunhofer (far field) region, radiation
is obtained via application of the EFIO, LJ . When the field specifications are in the
far field (FF), the radiation operator R is given by

RJ(r̂) = jk0
2π

GFF(r̂) ·
¨

SIBC

J(r′) e jk0r̂·r′
dS(r′), (2.20)

where the multilayer FF tensor is defined as

GFF(r̂) = −gTM(r̂) θ̂ρ̂− cos θ gTE(r̂) φ̂φ̂. (2.21)

Here, r̂, θ̂ and φ̂ are the unit vectors for a spherical coordinate system, and

ρ̂ = cosϕ x̂+ sinϕ ŷ, (2.22)
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with gTM and gTE being the longitudinal transmission line transfer functions for the
TE and TM components [34, p. 1182] and θ and ϕ being the polar and azimuthal
angles describing the direction of radiation. Note that in the above the radiated far
field has been normalized to exp(−jk0r)/r. A detailed derivation of the far field
computation, for the relevant case of single-layer metasurfaces, is reported in App.
C.

2.3 Numerical methods

The framework in which the electromagnetic problem has been formulated requires
the adoption of numerical methods for its solution. In particular, the discretization
follows the usual Method of Moments approach [35]: the surface SIBC is represented
as a triangular mesh, and the sought currentJ is approximated as a linear combination
of Rao-Wilton-Glisson (RWG) basis functions Λn [36], defined on the N internal
mesh edges,

J(r) =
N∑

n=1

InΛn(r). (2.23)

The linear system corresponding to the discretized problem is obtained by testing the
integral equation (2.18) with the same set of basis functions (Galerkin’s method),
where testing is carried out by means of the bilinear form

⟨a , b ⟩ =
¨

SIBC

a · b dS. (2.24)

With this discretization, the integral equation (2.18) transforms into the linear system

Vinc + LI = ZI, (2.25)

where the array I collects the RWG basis coefficients In, and

(L)mn = ⟨Λm ,LΛn ⟩, (2.26)

(Z)mn = ⟨Λm , ZΛn ⟩, (2.27)

(Vinc)m = ⟨Λm ,Einc ⟩. (2.28)
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In presence of an impedance surface, the problem of finding the equivalent electric
current coefficients I requires the solution of the linear system(

Z− L
)
I = Vinc. (2.29)

Enforcement of radiated field specifications involves sampling the field at a
discrete set of points; for the case of specifications in the FF region, the sampling
points r̂j are on the unit sphere, and defined by the spherical coordinates (θj, ϕj).
There are two tangential polarizations per sampling point. The radiated field samples
at r̂j, j = 1, . . . , Nf are assembled in column vectors Eθ,Eφ ∈ CNf and, considering
the discretization of the current in (2.23), they may be expressed as:

Eθ = E0
θ + RθI, (2.30)

Eφ = E0
φ + RφI, (2.31)

where the fields E0
θ and E0

φ are those due to the incident field (present in the absence of
the metasurface), and the radiation matrices Rθ,Rφ ∈ CNf×N are defined as follows:

(Rθ)jn = θ̂j · RΛn(r̂j), (2.32)

(Rφ)jn = φ̂j · RΛn(r̂j). (2.33)

2.3.1 Fast algorithms

In the design of electrically large antennas, it is necessary to exploit fast numerical
algorithms for feasibility reasons. The optimization strategy must take this into
account, as will be detailed later. Fast factorizations (e.g., [37]) are related to
iterative solutions of the forward problem (2.25); they allow to store only near-field
interactions of the EFIO matrix L (i.e., with O(N) storage requirement) and to
perform matrix-vector products LI in O(N logN) complexity (i.e., with O(N logN)

operations per product). Fast factorizations are also required in the computation of
the radiated fields in (2.30), (2.31) to avoid computation and storage of the radiation
matrices.

In this work, the matrix-vector products involving the EFIO operator are performed
by means of a GIFFT algorithm [38, 39]. The computation of the far-field radiation
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is done by an upward pass of the multilevel fast multipole algorithm (MLFMA) with
FFT interpolation on a regular grid of far-field points in the u-v space [37, Sec. 3.5.5].

2.3.2 Conditioning of the EFIE-IBC linear system

The solution of (2.29) requires the use of iterative methods when dealing with
electrically large antennas. The convergence properties of these methods strongly
depend on the condition number of the matrix representing the linear system.
Algebraic preconditioning techniques are available to improve the conditioning of
the EFIE-IBC system, but they do not constitute the focus of the present work and
will not be discussed further.

For the EFIE-IBC, the average surface impedance Zavg is linked to the condition
number of the matrix (Z− L), as discussed in [33]. In this regard, it is helpful to
analyze the behaviour of the condition number as a function of the imaginary part
of the average impedance. The results, shown in Fig. 2.2, have been obtained for a
square plate of side 4λ0, with a mesh size of λ0/10.

-1,500 -1,000 -500 0 500 1,000 1,500 2,000 2,500 3,000

10-1

1

101

102

103

ImZavg

co
n
d
(Z
−
L
)

Fig. 2.2 Condition number of the matrix (Z − L) as a function of the average reactance
ImZavg. The interval of numerical instability (high condition number) is highlighted.

As it is clear, there is a well defined interval of reactance values for which the
condition number grows to very large values. This fact must be taken into account
when establishing the admissible range for the reactance, in such a way that the
resulting average falls outside of the problematic interval.



Chapter 3

Automated Design of Metasurface
Antennas

In this chapter, the automated design procedure is described. Starting from the
geometry and the source field, the constraints are defined. The design begins with
a current-based optimization, which results in an equivalent current distribution
satisfying the requirements, followed by the computation of the actual impedance
profile. The complete design procedure is outlined in Fig. 3.1. The work presented
in this chapter has been submitted for publication and is available as a preprint (see
Publications section).

3.1 Geometry and source field

The geometry of the antenna and of the background medium is the starting point of
the design. This choice, together with the feed specification, dictates the achievable
performances (maximum gain, etc.); therefore, the user should carefully consider
these points. The focus will be on the design of planar, single-layer metasurfaces on
a dielectric substrate, excited by a surface wave (Fig. 3.2).

The proposed procedure is numerical and as such requires the discretization of
the solution domain; owing to the surface integral formulation presented in Sec. 2.2,
only the impedance surface SIBC needs to be meshed. This is done by considering
a tessellation composed of Nc triangular cells Si (see Fig. 3.3 for an example).
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• Geometry + Mesh
• Source field

(Sec. 3.1)

• Reactance bounds
• Pattern mask

(Sec. 3.2)

Current-based optimization
(Sec. 3.4)

Impedance computation
(Sec. 3.5)

Fig. 3.1 Flowchart of the complete design procedure

(a)

εr

SIBC

h

J
Einc

(b)

Fig. 3.2 Example of geometry for the considered metasurface antenna layout: (a) 3D view,
for the case in which the source of the incident field is on-surface, (b) cross section with the
equivalent currents J .
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Fig. 3.3 Example of mesh employed in the design. Only the impedance surface is discretized,
and the effect of the grounded substrate (background medium) is taken into account by the
multilayer Green’s function.

The current is approximated as a linear combination of N RWG basis functions (as
detailed in Sec. 2.3).

The source field defines how the antenna is excited. The feed can be on the
surface level, exciting a guided surface wave in the dielectric substrate, or external,
illuminating the aperture from a distance. The case of an on-surface feed is more
susceptible to the reflection of power at the input, a problem which must be addressed
in the design procedure. In all cases, one needs to estimate the input power of the
source field, as needed in the definition of the optimization instance (the calculations
for the particular case of a vertical pin exciting a surface wave are reported in App.
A.4).

It must be stressed that the setup of the design procedure is not restricted to planar,
single-layer geometries in a multilayer environment, but can be applied in general
to arbitrarily shaped surfaces in heterogeneous background media. However, as the
algorithm requires the formulation of a surface integral equation, the computation of
the required matrices and of the incident field can become cumbersome. Moreover,
the availability of fast methods for the computation of matrix-vector products is
limited in the case of arbitrary geometries.

3.2 Constraint definition

The aim of the design procedure is to obtain an impedance profile that is physically
and technologically realizable, and that radiates a field pattern obeying the field
specifications when it interacts with the source field. Therefore, it is important to
examine what these constraints mean and how they can be enforced.
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3.2.1 Realizability

To obtain a physically realizable impedance, the metasurface must be locally passive
and lossless, meaning that for each point on the surface, the active power should
neither be dissipated, nor provided. This translates in the following condition for the
impedance:

ReZ(r) = 0, ∀r ∈ SIBC. (3.1)

Moreover, the range of realizable reactance (imaginary part of the impedance)
values depends on the chosen unit cell type, employed technology and practical (e.g.,
size) limits; these bounds must be taken into account in the design process, i.e.,

XL ≤ ImZ(r) ≤ XU, ∀r ∈ SIBC. (3.2)

These two requirements ensure that the metasurface can be implemented by means
of the chosen unit cells. Numerical considerations can also influence the range of
acceptable reactance values, as analyzed in Sec. 2.3.2, since the full design cycle
includes a validation process in which the optimized impedance profile is used in the
solution of the forward problem. In fact, if the resulting linear system (2.29) is badly
conditioned, noise in the solution can prevent convergence of the iterative solver,
even if the physical design is satisfactory.

3.2.2 Field specifications

The radiated field specifications may be both in the far field region or closer; in this
work, the focus is on far field specifications, as these are the most common ones in
the design of antennas. They are expressed in terms of the field amplitude (power
density); both the total (“t”) amplitude and the co- (“co”) and cross-polarized (“x”)
components are considered:

F co(r̂, I) = |E(r̂, I) · p̂∗(r̂)|2 , (3.3)

F cx(r̂, I) = |E(r̂, I) · q̂∗(r̂)|2 , (3.4)

F tot(r̂, I) = |E(r̂, I)|2 . (3.5)
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where p̂ and q̂ = r̂× p̂∗ are the co- and cross-polarization unit vectors, respectively.
Tab. 3.1 lists the choice of unit vectors for the most common types of polarization.
The definitions for linear polarization are taken from [40].

Field specifications are of the mask type, i.e., defined in general via inequalities
of the kind

ML(r̂, I) ≤ F (r̂, I) ≤MU(r̂, I), (3.6)

for each considered far field direction r̂. The mask values must typically be defined
in terms of directivity or gain. Observe that pattern-matching, i.e., fitting a specific
(amplitude) field pattern, is a special case of the above, i.e.,

F (r̂, I) =M(r̂, I) −→ M(r̂, I) ≤ F (r̂, I) ≤M(r̂, I), (3.7)

with ML =MU =M , that is easier to address as it does not require inequalities.

Specification of an absolute lower bound to the main lobe (co-polarization) may
be a requirement in some designs; on the other hand, sidelobe and cross-polarization
levels have to be defined relative to the actual level in the main beam. This way, the
relative levels comply with the specifications even when the main lobe requirement is
not met by the solution. This can be made specific as follows. Let r̂0 be the specified
beam pointing direction; the reference main-lobe level Fref is defined as the average
over a small angular region Ω0 around the maximum radiation direction r̂0,

Fref(I) =
1

Ω0

¨

Ω0

F co(r̂, I) dΩ(r̂). (3.8)

The above is an extension of the amplitude in the specified beam direction, F co(r̂0),
to which it reduces in a trivial manner; use of this averaged level typically makes
the optimization instance more robust especially in shaped-beam design instances
(e.g. flat-top). Given a lower bound M0 for the reference level, the only absolute
requirement will thus be

Fref(I) ≥M0, (3.9)

with all others becoming relative to Fref .

It is convenient to break down the specifications in the main lobe (ML) region
ΩML and in the side-lobe (SL) region ΩSL, as they are functionally different. Overall,
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this results in the following set of specifications:

M co
L (r̂, I) ≤ F co(r̂, I) ≤M co

U (r̂, I), r̂ ∈ ΩML, (3.10)

where

M co
L (r̂, I) = µco

L (r̂)Fref(I), (3.11)

M co
U (r̂, I) = µco

U (r̂)Fref(I), (3.12)

with the upper requirement being absent in pencil-beam type specifications. The
parameters µco

L and µco
U represent the lower and upper relative levels for the co-

polarization component in the main beam. For the cross-polarization and total
magnitude, the masks take the form

F cx(r̂, I) ≤M cx
U (r̂, I), r̂ ∈ ΩML, (3.13)

F tot(r̂, I) ≤M tot
U (r̂, I), r̂ ∈ ΩSL, (3.14)

where

M cx
U (r̂, I) = σcx(r̂)Fref(I), (3.15)

M tot
U (r̂, I) = σSL(r̂)Fref(I). (3.16)

angle

fie
ld

am
pl

itu
de

(d
B

) Fref

M0

σSL
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U
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L

σcx

F cx

F co

Fig. 3.4 Example of far-field specifications: objective level M0, reference level Fref , main
lobe co-pol masks M co

L , M co
U (green), cross-pol mask M cx

U (red) and side lobes mask M tot
U

(blue). Vertical arrows indicate relative levels.
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The parameter σcx defines the cross-polarization ratio in the main lobe, while σSL

represents the desired relative level for the side lobes. An example of mask-type
constraints, with all the parameters, is depicted in Fig. 3.4.

3.3 Alternate Projection Algorithm

In the search for an effective algorithm for the design of metasurfaces obeying
the realizability constraints and the field specifications, the initial focus was on
an Alternate Projection Algorithm, inspired by well-known algorithms for pattern
synthesis [41–43], and adapted to include the constraints on the impedance. This
attempt resulted in the algorithm listed in Algorithm 1 [44]. Starting from the
reactance bounds and the field specifications, it tries to find a current that radiates
a field obeying the requirements, as well as being consistent with the EFIE-IBC
equation for a feasible choice of the impedance. It does that by alternatively projecting
the current on the set corresponding to feasible impedances, and on that of currents
radiating a feasible field, hence its name.

The impedance on each cell is computed as the ratio of the local power to the
magnitude squared of the current (averaged over the cell surface),

Z =

˜
S E · J∗ dS˜
S |J |

2 dS
, (3.17)

as will be detailed in Sec. 3.5, and is easily projected in the feasible set by setting
the real part to zero and clipping the imaginary part if it goes out of bounds. The
impedance projection operator is defined as

PZ(Z) =


j ImZ, if XL ≤ ImZ ≤ XU

jXL, if ImZ < XL

jXU, if ImZ > XU

(3.18)

Then, a new current is obtained from the solution of the EFIE-IBC (2.29), and
the radiated field is computed. The radiated field is then projected inside the mask
specifications by clipping the values that are out bounds, by means of the field
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projection operator,

PE(E) =



E, if ML ≤ |E|2 ≤MU

E

√
ML

|E|2
, if |E|2 < ML

E

√
MU

|E|2
, if |E|2 > MU

(3.19)

The next iterate for the current is obtained by finding the one that radiates a field
that best approximates the projected one (least-squares inversion), i.e.,

Ik+1 = argmin
I∈CN

∥E− RI∥2 . (3.20)

Finally, the relative variation of the current is computed,

εI =
∥Ik+1 − Ik∥

(∥Ik+1∥+ ∥Ik∥)/2
, (3.21)

and its value is compared with the threshold τ that defines the minimum variation
allowed. If the relative variation is less than τ , it means that the two currents are
equal within the tolerance, which in turn implies that the current complies with all
the requirements and the process has reached convergence.

Algorithm 1 Alternate Projection Algorithm for the design of Metasurface Antennas.
Input: reactance bounds, field specs
Output: Z

while k = 0, . . . , Kmax − 1 and εI < τ do
Compute Z with (3.128)
Project Z with (3.18)
Solve (Z− L)Ik = Vinc

Compute radiated field E = RIk
Project radiated field with (3.19)
Compute Ik+1 with (3.20)
Compute εI with (3.21)
k ← k + 1

end while

This algorithm guarantees that the impedance and the current are always consistent
with the EFIE-IBC. However, this is obtained at the expense of solving the resulting



24 Automated Design of Metasurface Antennas

linear system (2.29), and the inverse-source problem (3.20) at each iteration. As
a result, the computational complexity becomes prohibitively large already for
medium-sized antennas, even if fast algorithms are used. Note that this complexity is
comparable to that of analogous approaches, e.g., [10]; however, keeping in mind that
the target was the 3D design of large surfaces, the alternate projection approach was
not pursued further. The focus has then shifted on a different formulation, presented
in the next section, which overcomes this drawback.

3.4 Current-based Optimization Algorithm

In this section, the proposed approach for the design of metasurface antennas is
detailed. The outcome of the design process must be the spatial distribution of
the surface impedance; however, the optimization is formulated in such a way that
it involves only the equivalent current—not the impedance. On exit, the process
yields the optimized current, from which a corresponding impedance is obtained (as
described in Sec. 3.5). This current-based design process avoids the solution of the
forward problem (2.25) at each step, with obvious advantages in terms of numerical
complexity. Of course, this is possible only if the current being sought-for can be
constrained to correspond to a passive and lossless surface, in addition to radiating a
field that satisfies the related requirements. Moreover, the reactance associated to the
current must be bounded by practical realizability limits—again, without computing
this reactance explicitly during the process.

The “optimal” current is obtained as the solution of an unconstrained optimization
problem, where the fitness is expressed in terms of cost functionals to be minimized:

I⋆ = argmin
I∈CN

f(I), (3.22)

where the overall functional f is composed of a term frlz that expresses the compliance
with realizability constraints, and a term frad that quantifies the fitness of the radiated
field,

f(I) = frlz(I) + frad(I). (3.23)

As explained above, it is crucial to express these terms as functions of the current
only; this point will be addressed in Secs. 3.4.1 and 3.4.2.
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An important observation is that requirements involving inequalities, like those
of field masks in (3.6) or reactance bounds (3.2), are conveniently expressed as
quantities to be minimized by means of the ramp function

r(x) = max(x, 0), (3.24)

with which a condition of the type a ≤ b becomes r(a− b) = 0.

For the class of constraints of relevance here, the associated minimization instance
is non-convex. Hence, strategies to overcome the non-convexity shortcomings, and in
particular local trappings, are very important. Inspired by [12], the choice is to resort
to functionals that are of polynomial type in the current coefficients, in particular
fourth-degree polynomials, with added rectification (via the ramp function) where
needed. The most general expression for the functional takes the form

f(I) =
∑
d

qd(I) sd(I) +
∑
d

r2(td(I))

=
(
q(I)

)T
s(I) + r

(
t(I)

)T
r
(
t(I)

)
,

(3.25)

with

q(I) = [· · · qd(I) · · · ]T, (3.26)

s(I) = [· · · sd(I) · · · ]T, (3.27)

t(I) = [· · · td(I) · · · ]T. (3.28)

The function r2(x) = max(x, 0)2 is continuous with continuous first derivative,
while qd, sd and td are multivariable quadratic functions of the current coefficients,
i.e., of the form

qd(I) = Φ
(
IHAdI+ IHbd + cd

)
, Φ = Re or Im, (3.29)

where Ad ∈ CN×N are positive definite matrices, bd ∈ CN are column vectors and
cd ∈ C are constants. The advantage of this choice is apparent: for even-degree
polynomials, the functional is bounded below, and goes to +∞ as ∥I∥ −→ +∞.
Moreover, a polynomial of degree four limits the number of possible local minima,
while still allowing enough flexibility in the definition of the functional. Finally, in the
adopted formulation the matrices Ad are chosen in such a way that the computation
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of each term of (3.25) can be accelerated (either Ad is sparse or the matrix-vector
product AdI can be computed with fast algorithms).

For the minimization of (3.22), a non-linear conjugate gradient algorithm [45,
p. 121] is employed (Algorithm 2). Given the large size of the problem, the numerical
cost of computing the functional and its gradient at each iteration is an issue of
paramount importance. In particular, all operations corresponding to computing
the near- or far field of a given current can be performed with the so-called “fast
factorizations” mentioned in Sec. 2.3.1, with O(N) memory requirements and
O(N logN) complexity. The proposed approach, as will be seen in Sec. 3.4.3, is
able to fully exploit these methods for the computation of the functional and of its
gradient.

Algorithm 2 Non-linear conjugate gradient algorithm.
Input: I0
Output: I⋆

Compute∇f(I0)
p0 ← −∇f(I0)
for k = 0, . . . , Kmax − 1 do

Compute αk by minimizing f(Ik + αkpk)
Ik+1 ← Ik + αkpk
Compute∇f(Ik+1)
Compute βk
pk+1 ← −∇f(Ik+1) + βkpk

end for
I⋆ ← IKmax

The other relevant step is the line search that must be carried out at each step
of the iterative process. This is a deceivingly simple task, as it involves only a
one-dimensional minimization along the search direction, which in principle can
be performed with a variety of standard approaches. However, as well known in
the literature, the difficult part is in finding the interval in which this search must
be carried out. The devised polynomial approach will allow to perform this in an
analytical (possibly iterative), definite manner (Sec. 3.4.4).

Finally, it is possible to enforce a smoothing of the resulting current prior to
the impedance computation; this can be done with a variety of standard approaches
(see, e.g., [14]). However, the choice has been to avoid this step, in order to check
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the intrinsic degree of regularity of the solution, without introducing additional
parameters in the process.

3.4.1 Enforcement of realizability constraints

As discussed, realizability requires local passivity and absence of losses, as well as
bounds on the impedance values. Passivity and losslessness can be expressed directly
in terms of the (local) active power density; the magnitude of the reactance, instead,
can be expressed in terms of (local) stored energy density. Hence, all realizability
constraints can be cast in terms of power densities; this allows to express them
as functions of the current only, and also to satisfy the requirement of being of
polynomial nature.

The discussion starts with the definition of the power density absorbed by a
surface (see App. A.1),

p̃(r) = E · J∗, (3.30)

that is related to the local impedance, via the IBC (2.1), as

p̃(r) = Z |J |2 = ReZ |J |2 + j ImZ |J |2 . (3.31)

The requirement for passivity and losslessness imposes that P = 0, i.e.,

Re (E · J∗) = 0. (3.32)

It is important to note that, in order to preserve global passivity, one needs to enforce
(3.32) locally in an explicit manner [12] (otherwise, one could have zero global
dissipated power but with active terms with P < 0 compensating losses). This will
be achieved by minimizing the square of the local power density, P 2, thus preserving
the polynomial nature of its definition.

The requirement (3.2) is closely related to the stored (reactive) energy density. In
fact, looking at the imaginary part of (3.31), the bounds in (3.2) imply

XL |J |2 ≤ Im (E · J∗) ≤ XU |J |2 . (3.33)

It is important to recall that inequality conditions like (3.33) can be expressed in
terms of the ramp function; however, this function does not have a continuous
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Fig. 3.5 Squared ramp function r2(x) = max(x, 0)2.

derivative. This problem can be overcome by using the squared ramp function
r2(x) = max(x, 0)2, which is a continuous function with continuous derivative
(Fig. 3.5). This allows the use of inequalities in the functional gradients at the only
expense of having piecewise polynomial functions, but everywhere continuous and
differentiable.

As a final remark, since the impedance does not appear in the conditions above,
there is no guarantee that the obtained current is such as to correspond to a scalar
impedance; if required by the design constraints, this condition must be enforced
explicitly. In presence of a scalar impedance, the current and the electric field have
the same direction (in the complex sense). From Schwarz’s inequality, it follows that
the (complex) inner product of two parallel vectors is equal to the product of their
magnitudes, giving the scalarity condition

|E · J∗| = |E| |J | . (3.34)

All the above conditions must hold locally everywhere on the surface; in
accordance with the cell-based spatial discretization scheme, they will be enforced in
the average sense over each triangular cell. In particular, the local power (3.30) for
each cell is defined as the integral of the power density over the domain of the cell,

p̃i = ⟨E , ISi
J∗ ⟩ =

¨

Si

E · J∗ dS, (3.35)
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where

ID(r) =

1, if r ∈ D
0, elsewhere

(3.36)

is the indicator function of domain D.

With the above stipulations, the conditions of passivity and losslessness (“act”),
of the reactance bounds (“rct”), and of scalarity (“scal”) result in a cost function that
is the sum of three contribution over the total number of triangular cells Nc:

frlz(I) = wact

Nc∑
i=1

ρacti (I) + wrct

Nc∑
i=1

ρrcti (I) + wscal

Nc∑
i=1

ρscali (I). (3.37)

The weights wact, wrct and wscal have to be assigned a priori, like in all optimization
problems of multi-objective nature. The cell-wise terms are defined as follows:

ρacti (I) = Pi
2(I), (3.38)

ρrcti (I) = r2
(
XLJi(I)−Qi(I)

)
+ r2

(
Qi(I)−XUJi(I)

)
, (3.39)

ρscali (I) = Ei(I)Ji(I)−
(
Pi

2(I) +Qi
2(I)

)
, (3.40)

where the individual terms are conveniently written in the form (3.29):

Pi(I) = Re

¨

Si

E · J∗ dS = Re (IHΓiV)

= Re
(
IH(ΓiK)I+ IH(ΓiV

′
inc)

)
,

(3.41)

Qi(I) = Im

¨

Si

E · J∗ dS = Im (IHΓiV)

= Im
(
IH(ΓiK)I+ IH(ΓiV

′
inc)

)
,

(3.42)

Ji(I) =

¨

Si

|J |2 dS = IHΓiI, (3.43)

Ei(I) =
¨

Si

|E|2 dS = VHΓiV

= Re
(
IH(KHΓiK)I+ 2IH(KHΓiV

′
inc) + V′H

incΓiV
′
inc

)
.

(3.44)
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For convenience of notation, the following quantities have been introduced:

V′
inc = G−1Vinc, (3.45)

K = G−1L, (3.46)

V = G−1(Vinc + LI) = V′
inc +KI. (3.47)

Here, G ∈ RN×N is the Gram matrix of the RWG basis functions,

(G)mn =

¨

SIBC

Λm(r) ·Λn(r) dr, (3.48)

and the corresponding local Gram matrix Γi ∈ RN×N for the i-th cell is defined as

(Γi)mn =

¨

Si

Λm(r) ·Λn(r) dr. (3.49)

At most three RWG basis have their support on a single cell, therefore each matrix Γi

is extremely sparse, with O(1) non-zero entries.

The computation of the functionals above is always amenable to at most
O(N logN) complexity and O(N) storage. In fact, the product LI can be com-
puted with fast factorizations as described in Sec. 2.3.1, and terms of the kind
y = G−1x are evaluated directly as solution of the linear system G y = x; the
Gram matrix is O(N) sparse, positive-definite and with O(1) condition number, and
therefore the above system can be solved iteratively (e.g., with a conjugate gradient
algorithm) in O(1) iterations, thus resulting in O(N) total operations. Lastly, each
matrix Γi, having a constant number of non-zero terms, can be multiplied by a vector
in O(1) operations.

In conclusion, the “template” polynomial formula (3.25) encompasses all the
terms introduced above. To show this, consider the active power term (3.38), which,
using (3.41), can be expressed as

qd = Pd(I), sd = Pd(I), td = 0, d = 1, . . . , Nc (3.50)
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For the reactance term (3.39), with (3.42) and (3.43), one has

qd = 0, sd = 0, td = XLJd(I)−Qd(I), d = 1, . . . , Nc

qd = 0, sd = 0, td = Qd(I)−XUJd(I), d = Nc+1, . . . , 2Nc

while, for the scalar term (3.40),

qd = Ed(I), sd = Jd(I), td = 0, d = 1, . . . , Nc

qd = −Pd(I), sd = Pd(I), td = 0, d = Nc+1, . . . , 2Nc

qd = −Qd(I), sd = Qd(I), td = 0, d = 2Nc+1, . . . , 3Nc.

3.4.2 Enforcement of field specifications

The fact that the unknown current is associated with a given incident field (thus
with a known source power) allows to define bounds on the maximum achievable
radiated power. This is in contrast to most pattern synthesis problems, where the
source amplitude is not intrinsically bounded. In turns, this permits to transform
the maximization of the radiated power into the minimization of the difference with
respect to its theoretical maximum.

The power Pinc is associated with the (given) incident field Einc; it is then natural
and practically relevant to normalize the radiated field in terms of realized gain [46],

Gr(r̂, I) =
|E(r̂, I)|2 /η0
Pinc/4π

, (3.51)

where η0 is the free-space impedance, and E(r̂, I) is the far field radiated by a given
current, with the normalization of Sec. 2.3. This quantity takes into account the
reflection of power at the input of the antenna, as the denominator considers the
incident power, i.e., the power that the source would provide if the antenna has a
perfect input matching. Hence, the specification mask in (3.6) will be given by

M(r̂, I) =
η0
4π
PincGr(r̂, I). (3.52)

This allows to directly account for possible anomalous reflection due to bandgap
(typical in 1D leaky wave structures) in this automatic design; otherwise said, the
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present design process also indirectly optimizes reflection of the source field by the
metasurface.

The radiated field requirements in (3.10), (3.13)–(3.14) are all expressed as
inequalities; using the approach described above, they can be cast directly in terms
of functionals to be minimized employing the sampling and the expression of the
radiation operator described in Sec. 2.3. The reference level Fref in (3.8) is made
explicit as

Fref(I) =
1

Ω0

∑
j∈Ω0

F co
j (I)∆Ωj ≈

1

N0

∑
j∈Ω0

F co
j (I), (3.53)

where the shorthand notation F co
j (I) = F co(r̂j, I) is used. Maximization of the

reference level in (3.9) is obtained as a minimization of the difference between the
desired lower bound M0 and the main lobe (average) value Fref(I),

M0 − Fref(I) ≤ 0, (3.54)

and the related functional is immediately found to be

ρref = r2
(
M0 − Fref(I)

)
. (3.55)

With the above expressions the mask bounding values result in

M co
U/L,j(I) = µco

U/L(rj)Fref(I), (3.56)

M cx
j (I) = σcx(r̂j)Fref(I), (3.57)

M SL

j (I) = σSL(r̂j)Fref(I). (3.58)

With these, field constraints result in the following functional:

frad(I) = ρref(I) + wML

∑
j∈ML

(
ρcoj (I) + ρcxj (I)

)
+ wSL

∑
j∈SL

ρtotj (I), (3.59)

where

ρcoj (I) = r2
(
M co

L,j(I)− F co
j (I)

)
+ r2

(
F co
j (I)−M co

U,j(I)
)
, (3.60)

ρcxj (I) = r2
(
F cx
j (I)−M cx

U,j(I)
)
, (3.61)

ρtotj (I) = r2
(
F tot
j (I)−M tot

U,j (I)
)
, (3.62)
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with again the shorthand notation F x,t
j = F x,t(r̂j) (3.3). The field magnitude for the

different polarizations can be evaluated as

F co
j (I) =

∣∣Ej(I) · p̂∗
j

∣∣2 = ∣∣Eθ
j (I) p̂

θ∗
j + Eφ

j (I) p̂
φ∗
j

∣∣2
=

∣∣Eθ
j (I)

∣∣2 ∣∣p̂θj ∣∣2 + ∣∣Eφ
j (I)

∣∣2 ∣∣p̂φj ∣∣2 + 2Re(Eθ
j (I)E

φ∗
j (I)p̂θj p̂

φ∗
j ),

(3.63)

F cx
j (I) =

∣∣Ej(I) · q̂∗
j

∣∣2 = ∣∣Eθ
j (I) q̂

θ∗
j + Eφ

j (I) q̂
φ∗
j

∣∣2
=

∣∣Eθ
j (I)

∣∣2 ∣∣q̂θj ∣∣2 + ∣∣Eφ
j (I)

∣∣2 ∣∣q̂φj ∣∣2 + 2Re(Eθ
j (I)E

φ∗
j (I)q̂θj q̂

φ∗
j ),

(3.64)

F tot
j (I) = |Ej(I)|2 =

∣∣Eθ
j (I)

∣∣2 + ∣∣Eφ
j (I)

∣∣2 , (3.65)

where p̂j = p̂(r̂j), q̂j = q̂(r̂j), and the elements∣∣Eθ
j (I)

∣∣2 = (
Eθ(I)⊙ E∗

θ(I)
)
j
, (3.66)∣∣Eφ

j (I)
∣∣2 = (

Eφ(I)⊙ E∗
φ(I)

)
j
, (3.67)

Eθ
j (I)E

φ∗
j (I) =

(
Eθ(I)⊙ E∗

φ(I)
)
j

(3.68)

may be evaluated exploiting fast matrix-vector product routines for the computation
of Eθ and Eφ through (2.30), (2.31). In the above, ⊙ indicates the element-wise
product.

In practical applications, one often seeks to maximize the gain in the main lobe,
i.e., without the specification of an absolute lower bound for it. This is simply
obtained by setting the lower bound M0 to a theoretical maximum for the given
antenna under consideration, e.g., the one that would be obtained by a constant
current and assuming the radiated power equal to the incident one. In the design of
pencil beam antennas, the upper boundM co

U is not present, with related simplification
of the ML functional ρco. In addition, a sensible choice of the averaging ML region
Ω0 allows to use only the functional ρref .

3.4.3 Gradient computation

The proposed formulation allows to effectively make use of fast algorithms also for
the gradient computation. In particular, the quadratic form of the terms result in
linear gradients, and the sum over all terms allows to isolate the computationally
intensive parts and drastically reduce the number of matrix-vector products required.



34 Automated Design of Metasurface Antennas

Matrices and vectors introduced in the previous sections are complex. On the
other hand, optimization algorithms usually deal with real vectors; in an effort to keep
all computations in the complex domain for numerical convenience, the approach
proposed in [47] has been followed. The use of the complex gradient operator
∇̃, defined in App. D, significantly simplifies the mathematical derivation. The
introduction of this new operator is justified by the fact that, for a real-valued function
f : CN → R, ∇̃f corresponds to the direction of maximum increase of the function
and the condition ∇̃f = 0 is necessary and sufficient to determine a stationary point
for f . In App. D, the mathematical proofs of these statements are detailed.

The required gradients are expressed in complex format by using the properties
reported in App. D, yielding

∇̃Pi =
1

2
(ΓiV +KHΓiI) , (3.69)

∇̃Qi =
1

2j
(ΓiV −KHΓiI) , (3.70)

∇̃Ji =
1

2
(Γi + ΓH

i ) I = ΓiI, (3.71)

∇̃Ei = KHΓiV, (3.72)

where the matrix K was defined in (3.46), and the products involving its hermitian
transpose are computed in the following way:

KHz = (G−1L)Hz = LHG−1z, (3.73)

having exploited the symmetry of G−1. An important observation is that the EFIO
matrix L is symmetric, i.e., LT = L, but not self-adjoint. Thus, matrix-vector products
involving its complex transpose are computed as

LHz = (LTz∗)∗ = (Lz∗)∗, (3.74)

which allows to leverage fast algorithms to multiply L by a vector. The total gradient
is obtained by linearity as a sum of all individual gradients. As an example, the
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gradient of the ρact functional is given by

∇̃
[∑

i P
2
i

]
= 2

∑
i Pi∇̃Pi

= 2
∑

i Pi
1
2

(
ΓiV +KHΓiI

)
=

[∑
i PiΓiV

]
+KH

[∑
i PiΓiI

]
.

(3.75)

The interchange of the summation with the operator KH is key as it allows to compute
the total gradient by requiring only one computationally intensive matrix-vector
product. The remaining products, involving extremely sparse matrices Γi, are
computed individually, as their complexity remains negligible with respect to the
total one.

The same is true for the inequality terms; in the case of ρrct, by defining
Ψi = Qi −XJi and noting that d

dx
r2(x) = 2 r(x), one has

∇̃Ψi = ∇̃Qi −X∇̃Ji

=
1

2j
(ΓiV −KHΓiI)−XΓiI

=
1

2

(
− jΓiV + (jKH − 2X)ΓiI

)
,

(3.76)

and so

∇̃
[∑

i r
2(Ψi)

]
= 2

∑
i r(Ψi)∇̃Ψi

= −j
[∑

i r(Ψi)ΓiV
]
+ (jKH − 2X)

[∑
i r(Ψi)ΓiI

]
,

(3.77)

where, again, only one matrix-vector product with KH is required. Regarding the
functional for the field specifications, the gradients of the field magnitude samples
read

∇̃F co
j =

∣∣p̂θj ∣∣2Eθ
j R

H

θej +
∣∣p̂φj ∣∣2Eφ

j RH

φej

+ p̂θj p̂
φ∗
j E

θ
j R

H

φej + p̂θ∗j p̂
φ
jE

φ
j RH

θej,
(3.78)

∇̃F cx
j =

∣∣q̂θj ∣∣2Eθ
j R

H

θej +
∣∣q̂φj ∣∣2Eφ

j RH

φej

+ q̂θj q̂
φ∗
j Eθ

j R
H

φej + q̂θ∗j q̂
φ
j E

φ
j RH

θej,
(3.79)

∇̃F tot
j = Eθ

j R
H

θej + Eφ
j RH

φej, (3.80)
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where (ej)k = δjk. The gradient for the total field term in (3.59) is found in a way
similar to what has been shown before. By defining Φj = F tot

j −M tot
U,i , the gradient

is expressed as

∇̃Φj = ∇̃F tot
j − ∇̃M tot

U,j

= ∇̃F tot
j = Eθ

j R
H

θej + Eφ
j RH

φej,
(3.81)

where the simplifying assumption of absolute masks, i.e., ∇̃M tot
U,j = 0, has been

made to avoid complicate expressions. Employing relative masks does not change
the overall complexity, as they are just linear combinations of field samples. Then

∇̃
[∑

j r
2(Φj)

]
= 2

∑
j r(Φj)∇̃Φj

= 2
∑

j r(Ψj)
[
Eθ

j R
H

θej + Eφ
j RH

φej
]

= RH

θ

[
2
∑

j r(Ψj)E
θ
j ej

]
+ RH

φ

[
2
∑

j r(Ψj)E
φ
j ej

]
.

(3.82)

Once again, by rearranging summations and products, the computationally intensive
matrix-vector products are done only once per gradient evaluation. The adjoints
of the radiation matrices, RH

θ and RH

φ, are found by considering that the radiation
operator (2.32) is symmetric, i.e.,R = RT, which leads to

(RH

θ)nj = (RT

θ)
∗
nj =

(
Λn ·

(
RTθ̂j

))∗

=
(
Λn ·

(
Rθ̂j

))∗

= Λn ·
(
Rθ̂j

)∗
.

(3.83)

In the derivation, the fact that Λ∗
n = Λn is used. The same applies to the matrix RH

φ,
upon substitution of θ̂j with φ̂j .

3.4.4 Line search

As anticipated, the minimization of the functional f(I) described in previous sections
is carried out with a non-linear conjugate gradient algorithm [45, p. 121]; this means
that the iteration update is of the type

Ik+1 = Ik + αk pk, (3.84)
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with k = 0, . . . , Kmax, where αk ∈ R is to be found so that the functional is
minimized, and pk ∈ CN is the update direction, which incorporates gradient
information,

pk =

−∇̃fk, if k = 0

−∇̃fk + βk pk−1, if k > 0
(3.85)

Different formulas have been proposed in the literature for the parameter β ∈ R. The
following are the main ones (expressed with complex gradients),

βFR

k =

∥∥∇̃fk∥∥2∥∥∇̃fk−1

∥∥2 , Fletcher-Reeves (3.86)

βPR

k =
Re

(
∇̃fH

k (∇̃fk − ∇̃fk−1)
)∥∥∇̃fk−1

∥∥2 , Polak-Ribière (3.87)

βHS

k =
Re

(
∇̃fH

k (∇̃fk − ∇̃fk−1)
)

Re
(
pH
k−1(∇̃fk − ∇̃fk−1)

) , Hestenes–Stiefel (3.88)

βCD

k = −
∥∥∇̃fk∥∥2

Re
(
pH
k−1∇̃fk−1

) , Conjugate-Descent (3.89)

βDY

k =

∥∥∇̃fk∥∥2

Re
(
pH
k−1(∇̃fk − ∇̃fk−1)

) , Dai-Yuan (3.90)

βLS

k =
Re

(
∇̃fH

k (∇̃fk − ∇̃fk−1)
)

Re
(
pH
k−1∇̃fk−1

) . Liu-Storey (3.91)

They all reduce to the classical conjugate-gradient formula when f is a quadratic
function. In practice, the choice depends on the application and may require
experimentation.

As seen above, at each step of the minimization process, one updates the solution
by looking for the optimum along the chosen direction; this step is known as line
search, and is formally indicated as the process of finding the optimum step α⋆ such
that:

α⋆ = argmin
α∈R

f(I+ α p). (3.92)

Here, and in the following, the dependence of all quantities on the iteration index k
has been dropped for clarity. This line optimization is performed at each step of the
process, thus its numerical cost is of paramount importance. Both the computation
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of the cost function evaluated along the search direction I+α p,

g(α) = f(I+ α p), (3.93)

and the optimization process are greatly expedited by the choice to employ only
polynomial functionals of the form (3.25) (see Sec. 3.4).

First of all, the polynomial structure is made explicit for each term, when evaluated
in (3.93). The procedure is outlined for the term qd only, but the same applies for sd
and td. Starting from (3.25) evaluated along the direction p, one finds

qd(I+α p) =Φ
(
(I+α p)HAd(I+α p) + (I+α p)Hbd + cd

)
= q0d + α q1d + α2q2d,

(3.94)

where Φ = Re or Im. The coefficients of the second order polynomial are given by

q0d = Φ(IHAdI+ IHbd + cd), (3.95)

q1d = Φ(IHAdp+ pHAdI+ pHbd), (3.96)

q2d = Φ(pHAdp), (3.97)

where Ad indicate the matrices appearing in the definition of the objective function
terms. By defining the arrays of coefficients

q0 = [· · · q0d · · · ]T, (3.98)

q1 = [· · · q1d · · · ]T, (3.99)

q2 = [· · · q2d · · · ]T, (3.100)

for the polynomials q and, accordingly, for s and t ones, (3.93) can be conveniently
expressed as

g(α) = (q0 + α q1 + α2q2)
T (s0 + α s1 + α2s2)

+ r(t0 + α t1 + α2t2)
T r(t0 + α t1 + α2t2).

(3.101)

This formulation allows to evaluate the objective function (3.93) for any value of
α at the cost of computing the matrix-vector products involving Ad only once, to
evaluate Adp, as terms AdI are already computed and stored during the evaluation of
the objective function.
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The polynomial expression (3.94) can be made explicit for the terms appearing
in the objective function. Consider the current magnitude term defined in (3.43);
evaluating it along a direction p results in the following expression:

Ji(I+ α p) = (I+ α p)HΓi(I+ α p)

=
(
IHΓiI+ α (IHΓip+ pHΓiI) + α2 pHΓip

)
= (IHΓiI) + α 2Re (IHΓip) + α2 (pHΓip) .

(3.102)

The same can be done for the active power term (3.41), which gives

Pi(I+ α p) = Re ((I+ α p)HΓi(V + αKp))

= Re
(
IHΓiV + α (IHΓiKp+ pHΓiV) + α2 pHΓiKp

)
= Re (IHΓiV) + α Re (IHΓiKp+ pHΓiV) + α2 Re (pHΓiKp) .

(3.103)

As a last example, each of the field magnitude terms for the co- or cross-polarization
(3.63)–(3.65) can be expressed as

Fj(I+ α p) =
((

E+ αRp
)
⊙

(
E+ αRp

)∗)
j

= (E⊙ E∗)j + α
(
E⊙ (Rp)∗ + (Rp)⊙ E∗)

j
+ α2

(
(Rp)⊙ (Rp)∗

)
j

= (E⊙ E∗)j + α 2Re
(
E⊙ (Rp)∗

)
j
+ α2

(
(Rp)⊙ (Rp)∗

)
j
.

(3.104)

An analytical solution for the minimization of g(α) is important for avoiding
scaling issues of the step length, which is known to be a crucial problem of line search
procedures [45]. It can be shown by starting with the simplest case of functionals
without inequalities (i.e., without ramp functions), that corresponds to a phaseless
pattern fitting with no bounds on the reactance values. In this case the objective
function g(α) reduces to a fourth-order polynomial and the line search procedure
is direct: the derivative dg

dα
is a third-order polynomial, and its roots may be found

in closed form. A closed form solution not only reduces the cost of finding the
stationary point, but it also avoids the need to determine the interval in which to look
for the optimum step length.

In the presence of functions r2(x), the objective g(α) is still a fourth-order
polynomial, but it is piecewise so (see Fig. 3.6 for a graphical example); because
of the continuity of the derivative of r2(x), the derivative dg

dα
is also a piecewise
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Fig. 3.6 Example of a piecewise fourth-order polynomial function f(x). It is the sum of two
terms: a(x) is the square of a second-order polynomial, while b(x) is obtained by applying
the squared ramp to a second-order polynomial. Vertical lines identify the intervals where
the function has a fixed polynomial behaviour.

continuous polynomial, and the determination of its roots can be done with an
iterative process that again does not require to estimate the interval in which to look
for a solution. The devised iterative algorithm for the line search is described in the
form of a pseudo-code in Algorithm 3. It can be described as follows: note that for a
generic function ϕ(x),

r(ϕ(x)) = u(ϕ(x))ϕ(x), (3.105)

where u(x) is the unit step function; hence, the non-linear (rectifying) behavior of a
ramp can be represented as an on/off switch. Then, consider the ramp-less “switched”
version gs(α; u) of (3.101) in which all terms of the kind r(td(α)) are replaced by
ud td(α), with ud = u(td(α)) ∈ {0, 1} and where u = [u1, ..., uNs ] is the switch
pattern vector (Ns is the number of switches, i.e., of ramp terms). For any given
pattern of switch states, the function gs(α; u) is always a fourth-order polynomial
whose minimum point is computed in closed form as anticipated above. One starts by
computing the switch pattern for α = 0, which yields u0, and finds the minimum α⋆

0

of gs(α; u0). With this new value of α, one now evaluates the switches again, which
results in the pattern u1, and the determination of the minimum point is repeated
for gs(α; u1), yielding α⋆

1. The process is iterated until the switch pattern remains
unchanged, i.e., un = un−1: at that point, gs(α; un) = g(α), and α⋆

n = α⋆ is the



3.4 Current-based Optimization Algorithm 41

sought-for minimum point. The algorithm usually converges in much less than Ns

iterations.

Algorithm 3 Algorithm for the line minimization of functionals of type (3.101)
containing inequality terms. The procedure minpoly4 finds the minimum point of the
4th order polynomial defined by coefficients a0, . . . , a4 by computing the stationary
points in closed-form and evaluating the polynomial in all such points to find the
global minimum.

procedure LineSearch(q0, q1, q2, s0, s1, s2, t0, t1, t2)
b0 ← qT

0s0
b1 ← qT

1s0 + qT
0s1

b2 ← qT
2s0 + qT

1s1 + qT
0s2

b3 ← qT
1s2 + qT

2s1
b4 ← qT

2s2

u← u(s0)
repeat

t′0 ← u⊙ t0
t′1 ← u⊙ t1
t′2 ← u⊙ t2

a0 ← b0 + t′0
Tt′0

a1 ← b1 + 2 t′1
Tt′0

a2 ← b2 + 2 t′2
Tt′0 + t′1

Tt′1
a3 ← b3 + 2 t′2

Tt′1
a4 ← b4 + t′2

Tt′2
α← minpoly4(a0, a1, a2, a3, a4)
uold ← u
t ← t0 + α t1 + α2t2
u← u(t)

until u = uold
return α

end procedure

3.4.5 Complexity analysis

As anticipated in the introduction to the chapter, a benefit of the proposed formulation
is the potential for low numerical complexity, when the relevant matrix-vector
products are computed using fast algorithm. Table 3.2 summarizes the complexity of
all matrix-vector operations; the total count includes all operations needed for the
evaluation of the objective function, of its gradient, and for the line-search.
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Table 3.2 Summary of the matrix-vector operations needed for each iteration, with their
respective complexity and total number of occurrences. All operations are considered in
complex format, and a ∈ CN is a generic array.

Operation Complexity Count

La O(N logN) 5

Ra O(Nf logN) 3

G−1a O(N) 5

Γi a O(1) 6Nc

Given that the number of sampling points in the far field,Nf , is largely independent
of the number of unknowns N , and the number of cells Nc is approximately propor-
tional to N , the total asymptotic complexity (neglecting multiplicative constants)
results in

O(N logN) +O(logN) +O(N) +NO(1) = O(N logN).

In this estimation, vector-vector operations have been omitted since their complexity
is negligible with respect to matrix-vector ones.

3.5 Impedance computation

Once the optimum current coefficients I⋆ have been obtained with the process
described in the previous section, the corresponding total electric field is also known,
and the sought impedance Z(r) can be obtained via (2.25) and the definition of Z
(2.27).

In order to formulate an equation for the impedance spatial distribution Z(r),
one must start with its representation in terms of L assigned basis functions ψℓ(r),

Z(r) =
L∑

ℓ=1

zℓ ψℓ(r), (3.106)

where the array z ∈ CL collects the expansion coefficients. Note that this step—
including the choice of the impedance basis functions—is completely independent
from the solution of the optimization process described above, and any post-processing
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to it. Indeed, more than one representations of Z(r) and ensuing impedance
reconstructions could be done for ensuring a stable result. Inserting (3.106) into
(2.27), the IBC matrix Z can be expressed as

(Z)mn =
L∑

ℓ=1

zℓ g
ℓ
mn, gℓmn = ⟨Λm , ψℓ Λn ⟩, (3.107)

and after some elaboration one finds

ZI⋆ = Cz, (3.108)

where C(I⋆) ∈ CN×L is defined as

(C)mℓ =
N∑

n=1

gℓmnI
⋆
n. (3.109)

Consistency with the discretized EFIE-IBC (2.25) requires

Cz = Vtot, (3.110)

with the total electric field Vtot = Vinc + LI⋆, so that

z⋆ = argmin
z∈CL

∥Cz− Vtot∥2 , (3.111)

which corresponds to a linear least-squares minimization problem that can be solved
with standard techniques. Even when the optimization converges with a low residual
value, it is unlikely that the PL condition (3.1) and the bounds on the reactance
value (3.2) are verified for every cell. For this reason, the least-squares problem is
complemented with these two conditions explicitly, ensuring that the final impedance
profile is compliant. The optimization problem becomes

min
z∈CL

∥Cz− Vtot∥2

s.t. Re zℓ = 0, ∀ℓ = 1, . . . , L

XL ≤ Im zℓ ≤ XU, ∀ℓ = 1, . . . , L

(3.112)

which is a convex problem that can be efficiently solved with available specialized
softwares, e.g., CVX [48].
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Of course, one can choose to test (3.110) with a different set of P testing functions
τp, and the related linear system is obtained by premultiplying both sides of (3.110)
by the change of basis matrix BG−1,

BG−1Cz = BG−1Vtot, (3.113)

where
(B)pm = ⟨ τp ,Λm ⟩. (3.114)

The inverse of the Gram matrix G (3.48) is needed since the RWG basis functions
are not orthonormal. The least-squares problem becomes

z⋆ = argmin
z∈CL

∥∥BG−1(Cz− Vtot)
∥∥2
, (3.115)

which is the general formulation for finding an impedance profile which minimizes
the error in the EFIE-IBC equation, with arbitrary basis and testing functions.

In the following, the impedance is expanded as a linear combination of piece-wise
constant basis functions

ψℓ(r) = Iℓ(r) =

1, for r ∈ Sℓ
0, elsewhere

(3.116)

with L = Nc and the shorthand notation Iℓ = ISℓ
is used. A relevant case of the

minimization problem (3.115) is that in which the testing functions are chosen equal
to the conjugate of the current over each individual cell:

τp(r) = Ip(r)J∗(r) =

J∗(r), for r ∈ Sp
0, elsewhere

(3.117)

where J =
∑

n InΛn(r) and P = Nc. In this case, the system (3.113) is diagonal
and square,

(C′)pp zp = (V′
tot)p, p = 1, . . . , Nc (3.118)

where C′ = BG−1C and V′
tot = BG−1Vtot. The solution is easily found to be

zp =
(V′

tot)p
(C′)pp

=
⟨E , IpJ∗ ⟩
⟨ IpJ , IpJ∗ ⟩ =

IHΓpG
−1Vtot

IHΓpI
, p = 1, . . . , Nc. (3.119)
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In this case, conditions (3.1) and (3.2) can be directly enforced by neglecting the real
part of the computed impedance, and clipping the reactance value if it is outside the
prescribed bounds. Eq. (3.119) can be given a variational interpretation: beginning
with the least-squares minimization of the error in the defining EFIE-IBC equation,

z⋆ = argmin
z∈CL

∥E − Z(z)J∥2 , (3.120)

where the impedance Z(r) is expanded with piece-wise constant basis functions
(3.116). The cells Si have non overlapping support, so that, for a function f(r),

∥f∥2 =
Nc∑
i=1

∥Iif∥2 . (3.121)

Moreover, given the choice of pulse basis functions (3.116), a single zi is involved
in each cell, which simplifies the minimization instance (3.120) into a system of
decoupled cell-wise minimization problems:

z⋆i = argmin
zi ∈C

∥Ii(E − ziJ)∥2 , ∀i = 1, ..., Nc. (3.122)

The optimum z⋆i for each coefficient is found by looking at the stationary point of
(3.122) with respect to the real and imaginary parts of zi = z′i + jz′′i . The error
functional can be expressed as

∥Ii(E − ziJ)∥2 = ⟨E − ziJ , Ii(E∗
tan − z∗i J∗) ⟩

= ∥IiE∥2 − 2z′i Re⟨E , IiJ∗ ⟩
− 2z′′i Im⟨E , IiJ∗ ⟩+ (z′2i + z′′2i ) ∥IiJ∥2 ,

(3.123)

and the partial derivatives with respect to the real and imaginary parts of the
impedance are given by

∂

∂z′i
∥Ii(E − ziJ)∥2 = −2Re⟨E , IiJ∗ ⟩+ 2z′i ∥IiJ∥2 , (3.124)

∂

∂z′′i
∥Ii(E − ziJ)∥2 = −2 Im⟨E , IiJ∗ ⟩+ 2z′′i ∥IiJ∥2 . (3.125)
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Setting both derivatives to zero yields

z′⋆i =
Re⟨E , IiJ∗ ⟩
∥IiJ∥2

, (3.126)

z′′⋆i =
Im⟨E , IiJ∗ ⟩
∥IiJ∥2

. (3.127)

Putting all together, the final expression is identical to (3.119):

z⋆i = z′⋆i + jz′′⋆i =
⟨E , IiJ∗ ⟩
∥IiJ∥2

=
IHΓiG

−1Vtot

IHΓiI
. (3.128)

This stationary point does indeed correspond to a minimum, as follows from the
evaluation of the Hessian matrix,

H =

[
2 ∥IiJ∥2 0

0 2 ∥IiJ∥2

]
, (3.129)

which is positive definite.

3.5.1 Impedance regularization

In computing the impedance values by the method outlined in the previous section,
sensitivity may arise, as the computation involves the ratio of the electric field E

and the current J . Different combinations of limiting cases are possible: when E in
(2.18) is zero and the current J is not, the surface corresponds to a PEC boundary
condition (equivalent to Z = 0). When the current J is zero and the field E is not,
it coincides with an open circuit condition (Z = ∞), which implies that there is
no IBC there (i.e., only the dieletric substrate). This last condition can be easily
implemented numerically by removing the corresponding degrees of freedom from
the discretization. Finally, when both the field and the current are zero, the impedance
is not defined and thus will be obtained by interpolating nearby values. All these
cases are summarized in Tab. 3.3.
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Table 3.3 Summary of all possible cases in the reconstruction of impedance values.

|J | = 0 |J | ≠ 0

|E| = 0 undefined Z = 0

|E| ≠ 0 open circuit Z = E/J

In practice, this regularization step is done by setting thresholds τI and τV for
the current and field values, which define how small the quantities must be in order
to be considered negligible. The whole process is described in algorithmic form in
Algorithm 4.

Algorithm 4 Impedance profile computation

Input: I,V = G−1Vtot, τI , τV
Output: z

for i = 1, . . . , Nc do
|I|i ← IHΓiI
|V |i ← VHΓiV
if |I|i < τI then

if |V |i < τV then ▷ Don’t care
Interpolate zi from nearby values

else ▷ Open circuit
Remove cell from mesh

end if
else

zi =
IHΓiV

IHΓiI
end if

end for

Sensitivity may still be present in the impedance computation due to the current
at the denominator of (3.119), or in the subsequent solution of the forward problem
because current and impedance appear as a product in (2.29). Handling the above
limiting cases avoids most of the problems, but more sophisticated regularization
processes may be necessary to yield smoother profiles.



Chapter 4

Numerical results

This chapter presents a series of design cases obtained using the presented method.
Preliminarily, the setup is illustrated: the background medium and the source
(incident) field are defined, the optimization parameters are listed and the validation
procedure is explained. Then, designs for different combinations of geometries and
field specifications are shown and, for each of them, the current and impedance
profile, along with the realized gain patterns, are reported.

4.1 Setup

Background medium In all cases, the considered supporting structure is a single-
layer grounded dielectric slab with εr = 3 and height h = 0.76mm (see Fig. 3.2b
for reference); the dielectric layer and the ground plane extend infinitely in the x-y
plane. This approximation is commonly used in the design of printed antennas and is
needed for the use of fast numerical methods, introduced in Sec. 2.3.1. The design
frequency is 32GHz.

Source field The source field is generated by a (short) centered vertical dipole,
and approximated with its asymptotic form as a TM0 cylindrical surface wave (as
in, e.g., [28]). The analytic expression of this field can be obtained by a TE/TM
decomposition and matching of the boundary conditions at the ground plane and at
the air-dielectric interface. The resulting tangential electric field of the TM0 surface
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wave mode is [
Einc(ρ, φ)

]
tan

= E0H
(2)
1 (βswρ)ρ̂, (4.1)

whereE0 is the amplitude constant, chosen such that the incident power is normalized
to 1W (see App. A.4), H(2)

1 is the Hankel function of the second kind of order 1 and
the propagation constant βsw is the solution of the dispersion equation

αz εr = βz tan(βzh)

αz =
√
β2
sw − k20

βz =
√
k20εr − β2

sw

(4.2)

where βz is the transverse propagation constant in the dielectric, and αz is the
transverse attenuation constant in air.

Impedance constraints In the following, the requirement is for the impedance
to be scalar, with explicit enforcement through the term introduced in Sec. 3.4.1.
Moreover, the allowed reactance is capacitive-only (which greatly simplifies the
design of unit cells by means of printed patches), with values in the range from
−600Ω to −100Ω, as dictated by physical and numerical motivations (see Sec.
2.3.2).

Field specifications The field specifications are enforced by sampling the field on
a regular grid of 40× 40 points in the u-v space, as shown in Fig. 4.1a. The mask
requirements are consequently defined on the same grid (Fig. 4.1b). The choice
of a u-v grid, instead of a spherical one, is motivated by the fact that a spherical
grid has an higher density of sampling points near the broadside direction, and this
would cause a bias in the cost functional for the field. The adopted grid guarantees
that the considered points are (more) uniformly distributed on the spherical upper
surface. All reported examples incorporate the requirement of gain maximization in
the main beam. This is achieved by considering a value of M0 (Sec. 3.4.2) equal to
the field magnitude that would be radiated by an antenna with 100% efficiency in the
main beam region, which corresponds to a physical upper limit for the antenna. The
co-polarization region ΩML is set to the desired 3 dB beam-width and, trivially, its
relative level is µco

L = −3 dB with respect to Fref .



50 Numerical results

(a) (b)

Fig. 4.1 Example of a pattern mask with ΩML (red) and ΩSL (blue): (a) sample on a regular
u-v grid represented on the upper half hemisphere, (b) mask levels for the same samples.

Optimization parameters The weights for the various components of the objective
function were set by experimentation. The values are reported in Table 4.1 for all the
presented designs; since each component has a different normalization, this reflects
in a variation of the order of magnitude for the weights. The algorithm was stopped
on stagnation, and the number of iterations was in all cases limited to 500.

Validation It is important to recall that the optimization process avoids the solution
of the forward problem (2.29); this fact can be used to verify the consistency and
stability of the obtained impedance profile. The procedure, outlined in Fig. 4.2, is the
following: from the optimized current I⋆, the impedance profile Z(r) is determined
by computing the values for each cell with (3.128), keeping only its imaginary part,
and applying the regularization procedure in Sec. 3.5.1, where thresholds for currents
and fields have been set to 3% of their maximum value. Next, a new current is
computed by solving the forward problem (2.29) for this impedance profile and the
specified source field. All the radiation patterns shown in this chapter have been
obtained this way; hence, the results take into account a possible efficiency reduction
due to the impedance reconstruction process. In order to assess the effect of the
impedance computation step, the co-polar component of the field radiated by the
optimized current will also be reported.
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Table 4.1 Weights for the components of the objective function.

Antenna Pattern wact wrct wscal wML wSL

circular, 6λ0

pencil, circ. pol. 1 0.1 1 10−15 10−15

pencil, lin. pol. 1 0.5 1 10−16 10−16

squinted, lin. pol. 1 0.1 1 10−12 10−12

circular, 10λ0

pencil, circ. pol. 1 0.1 1 10−15 10−15

pencil, lin. pol. 1 0.1 1 10−15 10−15

flat-top, lin. pol. 1 0.1 1 10−15 10−15

elliptical pencil, circ. pol. 1 0.01 0.1 10−15 10−15

symmetric strip pencil, lin. pol. 1 10−3 10−3 10−16 10−16

Current
optimization

Impedance
computation

EFIE-IBC
solution

Far-field
pattern

DESIGN

VALIDATION

Fig. 4.2 Flowchart of the design and validation process.
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Radiation performance In the following, radiation results will be given in terms
of the realized gain, as explained in Sec. 3.4.2; losses in the conductors and the
dielectric substrate are not considered. The post-processing of results also includes
the computation of the total radiated power, Prad; the total radiation efficiency
e0 = Prad/Pinc ≤ 1 allows to compute also the directivity (which will be larger or
equal to the realized gain). The aperture efficiency, defined as

eap =
Aeff

Aphy

, where Aeff = Dmax
λ20
4π
, (4.3)

will also be reported in the relevant cases (e.g., for pencil beam antennas); Aphy is
the physical aperture area, while Aeff is the effective one and Dmax is the maximum
directivity. Each far field pattern is shown along with the corresponding mask
specifications. Consistent with the example in Fig. 3.4, green lines represent the
main lobe co-polarization mask, red lines correspond to the cross-polarization mask
and blue lines to the side lobe masks. The dotted line identifies the reference level
for each case, and the arrows denote relative quantities.

4.2 Circular Metasurface

As the first application, the design method has been applied to the case of a circular
metasurface antenna. This shape was chosen for its practical relevance and prevalence
in the literature. As common, the metasurface has a hole in the center to host the
feed.

Two geometries are considered: a medium-sized antenna with a diameterD = 6λ0

(λ0 = c/f ), shown in Fig. 4.3a, and a large one with a diameter D = 10λ0 (Fig.
4.3b). The former involves Nc = 16 206 degrees of freedom for the impedance, with
N = 24 046 RWG basis functions, while the latter has Nc = 23 616 and N = 35 241.

The current is initialized to an everywhere ŷ-directed current with a raised-cosine
radial profile with roll-off toward the inner and outer edges (Fig. 4.4). This current
radiates broadside with linear polarization, and is (obviously) not realizable with
a passive lossless metasurface. It will be used as the starting current even when
seeking to design a squinted beam and/or for circular polarization, as this will allow
to assess the robustness of the algorithm.
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(a) (b)

Fig. 4.3 Surface mesh for the circular metasurface antenna: (a) medium-sized antenna with
D = 6λ0; (b) large antenna with D = 10λ0. The two figures are drawn to scale.
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Fig. 4.4 Initial current for the design of circular metasurfaces. Arrows represent the direction
of the current.
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Fig. 4.5 Pencil beam with circular polarization: optimized surface current magnitude for (a)
D = 6λ0 (b) D = 10λ0.

4.2.1 Pencil beam, circular polarization

The first field specification for the circular antenna is a pencil beam pattern with
circular polarization, as this is one of the most researched configurations. For
both antenna sizes, the reference level has been considered as the field value in the
broadside direction, i.e., Fref = F (θ = 0°), but all other specifications differ between
the two. In particular, for the antenna with D = 6λ0, the main lobe region ΩML goes
from θ = −5° to 5°, with a cross-pol relative level σcx = −15 dB, while the side
lobes mask ΩSL starts from θ = 20°, with a required relative level of σSL = −20 dB.
The output of the optimization is the current in Fig. 4.5a, and the corresponding
impedance is shown in Fig. 4.6a. Here, and in the following, white areas in the
impedance plot correspond to the absence of IBC. Fig. 4.7a shows the requirement
masks (with azimuthal symmetry) along with the obtained pattern in the plane cut
φ = 90°. A 3D view of the same pattern in the u-v plane is given in Fig. 4.7b. In
this case, the realized gain is of 19 dB, with a directivity of 21 dB and an aperture
efficiency of 37%.
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Fig. 4.6 Pencil beam with circular polarization: resulting surface reactance for (a) D = 6λ0

(b) D = 10λ0.
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Fig. 4.7 Pencil beam pattern with circular polarization, antenna with D = 6λ0: (a)mask
requirements and realized gain in the plane cut φ = 90°, (b) realized gain in the u-v plane.
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Fig. 4.8 Pencil beam pattern with circular polarization, antenna with for D = 10λ0: (a) mask
requirements and realized gain in the plane cut φ = 90°, (b) realized gain in the u-v plane.

For the same case of circular polarization, the large antenna with D = 10λ0 has
been designed with the following specifications: the main lobe region ΩML goes
from θ = −3° to 3°, with σcx = −15 dB, while the side lobes requirements go from
θ = 15°, with σSL = −20 dB. The optimized current and the impedance are shown
in Figs. 4.5b and 4.6b, respectively. The resulting radiation pattern are given in Fig.
4.8a and 4.8b. The achieved realized gain is of 24.5 dB, with a directivity of 25.5 dB
and a resulting aperture efficiency of 35%.

As it can be noted, in both cases the current shows some “streaks” that can be
attributed to the absence of any regularization (as anticipated in Sec. 3.5.1). As a
consequence, the impedance profile shows some jigsaw (which would be anyway
smoothed out in the unit cell layout process); however, this does not impact on
radiation and overall performances.

It is remarkable that the proposed optimization algorithm reaches the same
spiral shape that was devised in [7] based on analytical considerations; the proposed
algorithm employs no assumption, and actually reaches this spiral shape and circular
polarization starting from a constant current with linear polarization. The achieved
directivity of ≈ 20 dB for the medium-sized antenna compares well with the case
in [7], that also employed a scalar impedance for the design of a spiral modulated
metasurface antenna with a diameter of 7.3λ0 (here it is 6λ0).
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4.2.2 Pencil beam, linear polarization

In the next case, the specifications are for a broadside radiation with linear polarization,
which is less usual for the considered type of antenna. The reference level is still
equal to the field magnitude value in the broadside direction, as it was for the previous
case. The main lobe region ΩML for the medium-sized antenna extends from θ = −5°
to 5°, with side lobe masks ΩSL from θ = 20°, as for the circular polarization case.
The required relative levels are σcx = σSL = −20 dB.

The optimized current in is Fig. 4.9, and the resulting reactance in Fig. 4.10.
As in the case of circular polarization, there are “streaks” of limited entity in the
current, attributed to absence of smoothing regularization. The (axi-symmetric)
mask specifications are indicated in Fig. 4.11a along with the obtained radiated
field. In this case the directivity is 20.9 dB, while the realized gain is 14.8 dB. The
aperture efficiency is 35%.
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Fig. 4.9 Pencil beam with linear polarization: optimized surface current magnitude for (a)
antenna with D = 6λ0, (b) antenna with D = 10λ0.

The pattern requirements for the large antenna are as follows: ΩML from θ = −3°
to 3°, ΩSL from θ = 20°, with σcx = σSL = −20 dB. The results are reported in
Figs. 4.9b, 4.10b and 4.12b. As it can be seen, the impedance pattern remains
as in the medium-sized case. The directivity reaches 26 dB, with a corresponding
realized gain of 23.2 dB and aperture efficiency of 40%. Side-lobe performance
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Fig. 4.10 Pencil beam with linear polarization: resulting surface reactance for (a) antenna
with D = 6λ0, (b) antenna with D = 10λ0.
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Fig. 4.11 Pencil beam pattern with linear polarization, antenna with D = 6λ0: (a) mask
requirements and realized gain in the plane cut φ = 90°, (b) realized gain in the u-v plane.
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Fig. 4.12 Pencil beam pattern with linear polarization, antenna with D = 10λ0: (a) mask
requirements and realized gain in the plane cut φ = 90°, (b) realized gain in the u-v plane.

appear different in the E- and H-plane, and worse in the E-plane than for the circular
polarization case: the difference can be attributed to the scalar impedance employed
here.

Attempting to draw a comparison between these results and published ones is not
easy, as most of the center-fed, broadside-radiating, linearly polarized metasurface
antennas available in the literature have a predefined impedance pattern (e.g., [49]),
as opposed to the “free-shape” impedance optimization used here. The impedance
profile bears a resemblance with the one in [50], where it was obtained with
holographic techniques. Similar to the circular polarization case, it is remarkable
that the automated design recovers a shape determined on the basis of analytical
wave-based considerations.

4.2.3 Squinted beam, linear polarization

The next considered configuration is a squinted beam pattern pointing at an angle
θ0 = 30°, for the antenna with D = 6λ0. In this case, the field specifications are not
axially-symmetric: the reference level is Fref = F (θ = 30°, φ = 0°), the main lobe
region ΩML extends 5° from both sides of the pointing direction, i.e., from θ = 25°
to 35° in the plane φ = 0°, and the sidelobes constraints start 15° outside the main
beam region in all directions. The required cross-pol and sidelobes relative levels are
σcx = σSL = −15 dB.
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The optimized current and impedance are illustrated in Figs. 4.13a and 4.13b,
respectively. The resulting pattern and mask specifications are shown for the plane
cut φ = 90° (Fig. 4.14a) and with a top view of the u-v plane (Fig. 4.14b). The
directivity is 18 dB and the realized gain is 14 dB. It is important to recall that this
squinted beam has been obtained with a starting current that radiates broadside.
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Fig. 4.13 Squinted beam pattern with linear polarization, antenna with D = 6λ0: (a)
optimized surface current magnitude, (b) resulting surface reactance.

4.2.4 Square flat-top, linear polarization

The last example for the circular metasurface involves a shaped-beam design for
the antenna with D = 10λ0. In particular, the aim is to obtain a square flat-
top beam pattern (square in the u-v plane). The mask specifications are defined
in the u-v coordinates: the main lobe region is defined by the square region
ΩML = [−0.15, 0.15]× [−0.15, 0.15]. The reference level in this case is given by the
average of the field magnitude over the main lobe region, i.e.,Fref = (

∑
j∈ML Fj)/NML.

The maximum admissible ripple in the main beam region is 2 dB, which implies
µco

L = −1 dB and µco
U = 1dB. Cross-pol and side lobes relative levels are both

required to be σcx = σSL = −15 dB.

Fig. 4.15a shows the optimized current magnitude, while Fig. 4.15b reports the
computed impedance. The resulting pattern and mask specifications are shown in
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Fig. 4.14 Squinted beam pattern with linear polarization, antenna with D = 6λ0: (a) mask
requirements and realized gain in the plane cut φ = 0°, (b) top view of the pattern in the u-v
plane.

Fig. 4.16a for the plane cut φ = 90°, and in Fig. 4.16b with a top view of the u-v
plane with the main beam region highlighted. The average directivity over the main
beam is 15 dB and the realized gain is 13 dB.
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Fig. 4.15 Flat-top pattern with linear polarization, antenna with D = 10λ0: (a) optimized
surface current magnitude, (b) resulting surface reactance.
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Fig. 4.16 Flat-top pattern with linear polarization, antenna with D = 10λ0: (a) mask
requirements and realized gain in the plane cut φ = 90°, (b) top view of the pattern in the
u-v plane.

4.3 Elliptical Metasurface

The design is not limited to circular shapes. Another relevant class of metasurface
antenna is constituted by elliptical ones [20]. The considered ellipse has a major axis
a = 7.4λ0 and a minor axis b = 4.5λ0. The source is the same as for the circular
case.

The chosen field specifications are for a pencil beam with circular polarization
and axially symmetrical field mask: the reference level is Fref = F (θ = 0°), the
main lobe region ΩML extends from θ = −3° to 3°, with side lobe masks ΩSL from
θ = 15°. The required relative levels are σcx = σSL = −15 dB.

The optimized current and impedance are illustrated in Figs. 4.17a and 4.17b,
respectively. The resulting pattern and mask specifications are shown for the plane cut
φ = 90° (Fig. 4.18a) and with a 3D view of the u-v plane (Fig. 4.18b). The achieved
directivity is 21.5 dB and the realized gain is 19.8 dB, with an aperture efficiency of
26%. It is interesting to note that the impedance and current patterns resemble those
of the circular metasurface, except that they are clipped to the ellipse boundary. This
suggests that the shape of the surface has a relatively little influence on the impedance
and current patterns, as these are mainly connected to the interaction with the incident
field and to the desired radiation. This could also explain the lower directivity and
decreased efficiency, compared to the circular case, as a circular polarization is most
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Fig. 4.17 Elliptical antenna with circular polarization: (a) optimized surface current magnitude,
(b) resulting surface reactance.

effectively radiated by a surface that extends equally in all directions, having the
same “symmetry” of the incident field.
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Fig. 4.18 Elliptical antenna with circular polarization: (a) mask requirements and realized
gain in the plane cut φ = 0°, (b) 3D of the pattern in the u-v plane.
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4.4 Symmetric Strip Antenna

To demonstrate the flexibility of the proposed method, it has been applied to design
the impedance profile for a completely different geometry with respect to the rounded
shapes considered so far: a symmetric strip antenna. The antenna is constituted by
two symmetric strips of length of 5λ0 that extend on both sides of the center feed,
with a width of λ0/4; the employed triangular mesh has N = 5948 and Nc = 4148

(see Fig. 4.19). For this case, the initial current was chosen as a constant current
tapered toward the outer edges, polarized along the x̂ direction.

The target pattern has a broadside radiation, with Fref = F (θ = 0°), a main
lobe ΩML that extends from θ = −3° to 3°, and sidelobes region ΩSL beginning at
θ = 10°. For this desing, σcx = σSL = −15 dB. The pattern requirements have been
enforced only on the plane φ = 0°, with θ = [−90°, 90°], the reason being that the
antenna has a sub-wavelength size in the transverse direction, therefore it radiates a
predictable cosine-like pattern in the orthogonal plane which does not require control.
The weight of the frad component has been adjusted accordingly, reaching a balance
between the different optimization terms.

The final optimized current is shown in Fig. 4.20a. The corresponding resulting
impedance, displayed in Fig. 4.20b, alternates areas with a sawtooth-like behaviour
and open circuit sections (see Fig. 4.20c for a cut view along the x axis). Given
the geometry of the strip antenna and its radiation pattern, one can draw similarities
with broadside radiating 1D leaky-wave antennas [51, 52]. However, the present
work is full-wave, and does not rely on analytical expansions for the fields typical of
leaky-wave analysis.

5λ0 5λ0

λ0/4

Fig. 4.19 Mesh for the symmetric strip antenna. The source is placed in the gap between the
two strips.



4.4 Symmetric Strip Antenna 65

0 10 20 30
|J | (A/m)

(a)

-300 -250 -200 -150
ImZ (Ω)

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-250

-200

-150

-100

x/λ0

Im
Z
(Ω

)

(c)

Fig. 4.20 Symmetric strip antenna: (a) optimized surface current, (b) resulting surface
reactance, (c) cut view of the impedance profile along the x axis (vertical lines represent the
surface bounds).

The relevant plane cut pattern is shown in Fig. 4.21a, along with the mask
requirements; as can be seen from Fig. 4.21b, the top view of the pattern in the u-v
space confirms the behaviour of the radiation in the transverse plane. The achieved
realized gain is equal to 13.1 dB, with a directivity of 15.8 dB. It must be observed
that the power of the incident field refers to an unrestricted cylindrical source, with
only a portion thereof intercepted by the thin strip metasurface; hence, the realized
gain may be significantly lower than the one actually observed in the case of a
finite-size dieletric substrate. Furthermore, the obtained total efficiency indicates that
the optimization has avoided bandstop effects, possibly present in leaky-wave-based
designs, that are associated with higher reflection coefficients.
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Fig. 4.21 Symmetric strip antenna: (a) mask requirements and realized gain in the plane cut
φ = 0°, (b) top view of the pattern in the u-v plane.

4.5 Analysis

In all cases, the presented method resulted in satisfactory designs, yielding realizable
impedance distributions and radiation patterns compliant with the mask-type specifi-
cations. Rather different field specifications were considered, and no symmetries
have been enforced (which can still be easily done, reducing the computational cost),
showing a substantial symmetry preservation with respect to the incident field.

Of particular relevance is the fact that all results have been obtained without any
a-priori information, and all designs for the circular metasurface have been obtained
from the same starting current, regardless of desired polarization and beam direction.
Although a proof of optimimality could not be provided, the presented results appear
as a practical confirmation of stability and flexibility. The discrepancies observed
between the optimized and the final radiation fields can be mostly attributed to the
algorithm employed for the impedance computation. This means that the results can
be improved, without modifying the current optimization step, by considering more
sophisticated approaches to obtain the impedance.

From the computational and memory point of view, the design instances ran on a
Desktop PC with Intel Core i7 processor and 16GB RAM; memory occupation at
all times was within 4GB for the largest case of circular antenna with D = 10λ0.
The total time required for each design varied as a consequence of the different
number of iterations needed to reach convergence; as a reference measure, the time
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that each iteration of the non-linear conjugate gradient took ranges from 3 s for the
strip antenna, up to 10 s for the design of the large circular antenna. Considering
an average of 500 iterations, this results in a total optimization time of less than
1.5 h in the worst case. Of course, this does not take into account the time spent
on finding the right balance of the weighting coefficients which, nevertheless, is
moderate compared to the total one.



Chapter 5

Conclusions

In this dissertation, a novel approach for the design of 3D metasurface antennas
has been presented, which is fully automated and computationally efficient. The
metasurface is modelled as a layer of equivalent impedance boundary condition
(IBC), which defines its macroscopic behaviour, allowing to effectively handle the
desing of electrically large metasurface antennas.

The proposed method aims at the macroscopic design of the equivalent surface
impedance distribution, by requiring it to be physically realizable (i.e., passive and
lossless, with reactance within practical limits), and that the resulting radiated field
obeys the specifications, when excited by a given incident field. The implementation
of the individual unit cells can be carried out, once the impedance distribution is
known, by means of tested methods available in the literature.

The metasurface design is formulated as an electromagnetic scattering problem
based on an Electric Field Integral Equation, where the only unknown is the
(equivalent) electric current flowing on the metasurface. The numerical discretization
is based on a triangular mesh of the surface and the expansion of the current in
RWG basis functions. The optimization process employs only this equivalent current,
and avoids the solution of the forward problem at each iteration, greatly reducing
the computational load per iteration. A non-linear conjugate gradient algorithm
is employed for the minimization task. The objective function has a polynomial
formulation that incorporates inequality constraints through the use of squared ramp
functions, and it has been demonstrated that it can be cast in a form that allows the use
of fast matrix-vector product routines for the relevant electromagnetic operators, i.e.,
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the scattering and radiation ones. Moreover, the line search procedure is carried out
in an iterative way trough the closed form minimization of fourth-order polynomials,
without requiring a priori assumptions on the search interval. The impedance
distribution is obtained only at the end of the current synthesis, and independently
from it, through the numerical solution of the IBC equation, computed by expanding
the impedance with arbitrary basis functions.

The presented application examples concentrated on low-profile metasurface
antennas with on-surface feed: the considered shapes were circular and elliptical
surfaces, and a symmetric strip structure. Field specifications included pencil and
shaped beam patterns, both broadside and squinted, and for both circular and linear
polarizations. Owing to the satisfactory results, the flexibility of the approach has
been verified, together with its stability and independence of the solution from the
choice of the initial current.

Several improvements and extensions are foreseen based upon the work presented
in this thesis. First of all, the full design cycle includes the unit cell design. Therefore,
the obtained impedance profiles will be implemented by an appropriate layout of
unit cells, allowing full-wave simulations to be carried out in order to verify the
robustness of the modelling. After that, prototyping and testing will be the last
step toward the practical use of the proposed method. From the algorithmic point
of view, a generalization to tensor impedances is of relevance for the design of
anisotropic metasurface antennas, allowing a finer control of polarization. This
extension represents a necessary step toward the design of multi-beam antennas,
where the same metasurface radiates different prescribed fields, when illuminated by
different incident fields. Finally, current and impedance postprocessing, including
smoothing and filtering, will be investigated in future developments.



Appendix A

Power balance for metasurface
antennas

A.1 Power density absorbed by a surface

In order to define the energetic properties of a metasurface, the expression of the
absorbed power density for a general surface S is needed. To this aim, Poynting’s
theorem is applied to an arbitrary volume V that crosses this surface, giving

P̃ = Pdiss + j2ω(Wm −We)

=

˚

V

p̃ dV =

‹

∂V

S · n̂ dS,
(A.1)

where Pdiss is the total dissipated power, We and Wm are the electric and magnetic
stored energies, respectively, and p̃ is the absorbed (volume) power density. The
surface integral involves the Poynting vector S = E×H∗ and the normal unit vector
n̂ is directed inside the volume, as dictated by the “load” convention. The boundary
∂V is given by the union of three disjoint surfaces: S+ and S− are on the opposite
sides of S, while Sside is the surface that joins the two sides across S. With this
partition of the bounding surface, the surface integral can be written as

P̃ =

¨

S+

S · n̂ dS +

¨

S−

S · n̂ dS +

¨

Sside

S · n̂ dS. (A.2)
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In the limit where S+ and S− tend to S from the two sides, the volume integral
collapses into a surface integral over S and the contribution of the integral over
Sside vanishes. The normal unit vectors on both sides have opposite directions, i.e.,
n̂|S− = −n̂|S+ ≡ n̂, and the expression for the total surface power (A.1) reduces to

lim
S+→S
S−→S

P̃ =

¨

S

p̃ dS = −
¨

S

(S+ − S−) · n̂ dS. (A.3)

By restricting the analysis to the case where the surface introduces discontinuities in
the magnetic field only (as is the case for a metasurface that imposes an Impedance
Boundary Condition of the type (2.1)), it follows that E+ = E− = E and the final
expression reads

P̃ =

¨
S
p̃ dS = −

¨
S
E×(H+ −H−)

∗ · n̂ dS

=

¨
S
E · [n̂×(H+ −H−)

∗] dS

=

¨
S
E · J∗ dS,

(A.4)

where the definition (2.15) for the equivalent surface current has been used. Since
the surface S is arbitrary, the equality of the integrands in (A.4) must hold point-wise.
The definition of the surface absorbed power density is therefore given by

p̃ = E · [n̂×(H+ −H−)
∗] = E · J∗. (A.5)

A.2 Power balance for radiation scattered by a surface

In the following, the aim is to investigate the power balance in the case of scattering
of an incident field by a generic surface. Consider a volume V , which contains
source currents Jsrc and Msrc, and a passive scatterer (Fig. A.1). Consistent with the
integral equation approach, the scatterer, enclosed by volume Vsc, is replaced with
equivalent currents Jeq and Meq on the boundary surface ∂Vsc. Applying Poynting’s
theorem to the volume V results in

P̃src = P̃sc + P̃out + j2ω (Wm −We), (A.6)
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Fig. A.1 Depiction of the scattering problem for the computation of the power balance.

where

P̃src = −
˚

V

(E · J∗
src +H∗ ·Msrc) dV, (A.7)

P̃sc =

‹

∂Vsc

(Eavg · J∗
eq +H∗

avg ·Meq) dS, (A.8)

P̃out =

‹

∂V

(E ×H∗) · n̂ dS, (A.9)

We =
1

2

˚

V

ε |E|2 dV, (A.10)

Wm =
1

2

˚

V

µ |H|2 dV. (A.11)

Here, Psrc is the power supplied by source currents, Psc is the power absorbed (the
real part corresponds to dissipated power) by the scatterer, Pout is the power radiated
outside volume V (n̂ is the outward unit normal vector), and We and Wm are the
electric and magnetic stored energies. The average fields in (A.8) are defined as

Eavg =
1

2

(
E+ +E−

)
, (A.12)

Havg =
1

2

(
H+ +H−

)
, (A.13)

where subscripts + and − refer to the field on each side of the surface. They are
needed as the equivalent currents on ∂Vsc create a discontinuity in the electric and
magnetic fields.



A.2 Power balance for radiation scattered by a surface 73

In the analysis of the field scattered by an object, the total field outside the
scatterer can be obtained as the superposition of the incident and scattered fields,

E = Einc +Esc,

H = Hinc +Hsc,

where the incident field is the one radiated by source currents Jsrc and Msrc in
absence of the scatterer, while the scattered field is due to equivalent currents Jeq

and Meq which represent the effect of the scatterer. The latter are obtained as the
solution of an integral equation.

Therefore, two source-field couples can be identified, which are both individual
solutions to Maxwell’s equations in the background medium (in absence of the
scatterer):

(Jsrc ,Msrc) −→ (Einc ,Hinc), (A.14)

(Jeq ,Meq) −→ (Esc ,Hsc). (A.15)

The sum of the two is the solution of the scattering problem,

(Jsrc + Jeq ,Msrc +Meq) −→ (E ,H). (A.16)

With this decomposition, Poynting’s theorem can be formulated for each set of
sources independently, then for the sum of the two. In what follows, the analysis is
restricted to the active power, i.e., the real part of the complex power, as it is the
most relevant one for the evaluation of efficiency. The imaginary part, related to the
storage of energy, is linked to the resonant behaviour of the scatterer and will not be
discussed further.

Sources (Jsrc ,Msrc) For the source currents alone, the real part of Poynting’s
theorem reads

Pinc = −Re

˚
V
(Einc · J∗

src +H∗
inc ·Msrc) dV

= Re

‹
∂V
(Einc ×H∗

inc) · n̂ dS ≥ 0.

(A.17)
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Sources (Jeq ,Meq) The equivalent currents radiate a field equal to Esc outside
volume Vsc, and a field that cancels the incident field inside, i.e., −Einc, inside. The
fields are discontinuous at the boundary ∂Vsc, and their averages are equal to

Eavg =
1

2

(
Esc −Einc

)
, (A.18)

Havg =
1

2

(
Hsc −Hinc

)
. (A.19)

Therefore, the real part of Poynting’s theorem is formulated as

Peq = Re

¨
∂Vsc

1

2

(
(Esc −Einc) · J∗

eq + (Hsc −Hinc)
∗ ·Meq

)
dV

=
1

2
Re

¨
∂Vsc

(
Esc · J∗

eq −Einc · J∗
eq +H∗

sc ·Meq −H∗
inc ·Meq

)
dV

= −Re

‹
∂V
(Esc ×H∗

sc) · n̂ dS ≤ 0.

(A.20)

In this case, the absorbed power is negative, as suggested by the fact that, in this case,
the source currents are equivalent ones and do not correspond to a physical setting.

Sources (Jsrc + Jeq ,Msrc +Meq) In this case, the left hand side of Poynting’s
theorem Psrc can be written as the sum of two terms,

Psrc = Pinc − Prefl, (A.21)

where Pinc has been defined in (A.17), and

Prefl = −Re

˚

V

(Esc · J∗
src +H∗

sc ·Msrc) dV. (A.22)

The term Pinc, being the physical power delivered by source currents in absence of
scattering, must be non-negative. The reflected power Prefl, instead, is given by the
product of a current with the field radiated by another set of sources, and as such
it does not represent a physical power. Therefore, it can be positive or negative.
However, for the currents Jeq, Meq to represent physical scattering by a passive
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object, they must obey

0 ≤ Psrc ≤ Pinc −→ 0 ≤ Prefl ≤ Pinc. (A.23)

In this case, the average fields on the equivalent source layer are

Eavg =
1

2

(
E + 0

)
=

1

2

(
Einc +Esc

)
, (A.24)

Havg =
1

2

(
H + 0

)
=

1

2

(
Hinc +Hsc

)
. (A.25)

The right hand side of Poynting’s theorem can then be written as Psc + Pout, where

Psc = Re

‹
∂Vsc

1

2

(
(Esc +Einc) · J∗

eq + (Hsc +Hinc)
∗ ·Meq

)
dV

= Re
1

2

‹
∂Vsc

(
Esc · J∗

eq +Einc · J∗
eq +H∗

sc ·Meq +H∗
inc ·Meq

)
dV

= Peq +Re

‹
∂Vsc

(
Einc · J∗

eq +H∗
inc ·Meq

)
dV,

(A.26)

Pout = Re

¨
∂V

(
(Esc +Einc)× (Hsc +Hinc)

∗) · n̂ dS

= Re

¨
∂V

(
Esc ×H∗

sc +Esc ×H∗
inc +Einc ×H∗

sc +Einc ×H∗
inc

)
· n̂ dS

= Pinc − Peq +Re

¨
∂V

(
Esc ×H∗

inc +Einc ×H∗
sc

)
· n̂ dS.

(A.27)

In conclusion, Poynting’s theorem can be expressed using the newly defined quantities:

Pinc − Prefl = Peq +Re

‹
∂Vsc

(
Einc · J∗

eq +H∗
inc ·Meq

)
dV

+ Pinc − Peq +Re

‹
∂V

(
Esc ×H∗

inc +Einc ×H∗
sc

)
· n̂ dS.

(A.28)
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r → ∞

Sgnd Sgnd

Ssrc

Sfar

S−
mts

S+
mts

Srim Srim

Fig. A.2 Illustration of the surfaces involved in the formulation of Poynting’s theorem for a
single-layer metasurface.

In this way, the reflected power can be alternatively written as

Prefl = −Re

‹
∂Vsc

(
Einc · J∗

eq +H∗
inc ·Meq

)
dV

− Re

‹
∂V

(
Esc ×H∗

inc +Einc ×H∗
sc

)
· n̂ dS.

(A.29)

A.3 Single-layer Metasurface

The derivation of the previous section will now be specialized to the case of a
single-layer metasurface. Poynting’s theorem is applied to the volume in Fig. A.2,
bounded by the closed surface ∂V = Sfar ∪ Srim ∪ Sgnd, where: Sfar encloses the
upper half sphere, with a radius that tends to +∞, Srim encircles the outer border of
the dielectric substrate, and Sgnd covers the lower ground plane. Sources Jsrc and
Msrc are enclosed by the surface Ssrc. The scattering element, i.e., the metasurface
layer where equivalent electric currents J flow, is surrounded by ∂Vsc = Smts, that
can be further subdivided into an upper surface S+

mts and lower one S−
mts.

Specializing the general formula (A.6) to this case, the different power contribu-
tions can be written as

Pout = Pfar + Prim + Pgnd, (A.30)

Psc = Pmts. (A.31)
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With this, Poynting’s theorem is written as

Psrc = Pfar + Prim + Pgnd + Pmts. (A.32)

Each term is given by an integral over the respective part of the surface,

Psrc = Re

¨

Ssrc

(Eavg · J∗
src +H∗

avg ·Msrc) dS, (A.33)

Pfar = Re

¨

Sfar

(E ×H∗) · r̂ dS =

¨

Sfar

|E|2
η

dS, (A.34)

Prim = Re

¨

Srim

(E ×H∗) · ρ̂ dS, (A.35)

Pgnd = Re

¨

Sgnd

(E ×H∗) · (−ẑ) dS = Re

¨

Sgnd

(ẑ ×E) ·H∗ dS = 0, (A.36)

Pmts = Re

[¨
S+
mts

(E ×H∗) · (−ẑ) dS +

¨

S−
mts

(E ×H∗) · ẑ dS

]

= Re

¨

Smts

E · (ẑ × (H+ −H−)
∗) dS = Re

¨

Smts

E · J∗ dS.

(A.37)

It is useful to derive additional quantities for analyzing the power balance. The
incident power is given by

Pinc = Re

¨

Ssrc

(Einc ×H∗
inc) · ρ̂ dS, (A.38)

and the radiated power is

Prad = Pfar =

¨

Sfar

|E|2
η

dS. (A.39)
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Lastly, the reflected power can be written as

Prefl = −Re

¨
Smts

Einc · J∗ dV

− Re

¨
Sfar

(
Esc ×H∗

inc +Einc ×H∗
sc

)
· r̂ dS

− Re

¨
Srim

(
Esc ×H∗

inc +Einc ×H∗
sc

)
· ρ̂ dS.

(A.40)

These quantities are functions of the incident field and of the equivalent current,
without the need for an explicit expression of the source currents. This is useful
whenever the incident field is known, but the related sources are difficult to find (e.g.,
for an incident plane wave). The radiation efficiency is defined as

erad =
Prad

Psrc

=
Prad

Pinc − Prefl

, (A.41)

while the total efficiency is given by

e0 =
Prad

Pinc

. (A.42)

A.4 Surface wave incident power

Being able to find the power delivered by the source (incident) field is key in the
evaluation of efficiency. The most practical case of on-surface feed is constituted by a
vertical pin at the center of the metasurface, connected through a coaxial aperture in
the ground plane. The radiated spectrum is composed of guided waves and free space
radiating waves. The usual assumption is to neglect the radiating waves and assume
a purely fundamental, TM0 mode propagation. In most cases, this approximation is
good enough for the design.

The TM0 surface wave mode is a valid solution of Maxwell’s equations on a
dielectric slab, outside of a cylindrical region of radius Rsrc which encloses all
sources. The incident power is given by the integral of the Poynting’s vector on this
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cylindrical surface (A.38),

Pinc = Re

¨

Ssrc

Einc×H∗
inc · ρ̂ dS = −Re

2πˆ

0

+∞ˆ

0

EzH
∗
φRsrc dφ dz, (A.43)

where the relevant components of the electric and magnetic fields are given by

Ez(ρ, z) =


E0

βsw
αz

H
(2)
0 (βswρ) e

−αzz, z > 0

E0
βsw
εrαz

H
(2)
0 (βswρ) [cos(βzz)− γ sin(βzz)] , −h < z < 0

(A.44)

Hφ(ρ, z) =


E0

jωε0
αz

H
(2)
1 (βswρ) e

−αzz, z > 0

E0
jωε0
αz

H
(2)
1 (βswρ) [cos(βzz)− γ sin(βzz)] , −h < z < 0

(A.45)

with γ = tan(βzh), and H
(2)
0 , H(2)

1 are Hankel functions of the second kind of order
0 and 1, respectively, and the propagation constants βsw, βz, and αz are given by
the solution of (4.2). Substituting (A.44), (A.45) into (A.43), after carrying out the
integration one finds

Pinc = |E0|2 ωε0
[

εr
(βz)2

1

sin2(βzh)

(
h+

sin(2βzh)

2βz

)
+

1

(αz)3

]
. (A.46)

This is also the maximum amount of active power that the source can supply.



Appendix B

Passivity and losslessness condition
for tensor impedance

In this appendix, the requirement for a tensor impedance to be passive and lossless
(PL) will be derived rigorously. In particular, it will be demonstrated that the most
general form of a PL tensor impedance is the following:

Z = jXII +RNN + jXKK + jXLL, (B.1)

where XI , RN , XK and XL are real values. By substituting the expansion (2.7) in
(2.8), and using definitions (2.3)–(2.6) for the basis dyadics, the complex power
density can be written as

p̃ =
(
Z · J

)
· J∗ =

=
[(
ZII + ZNN + ZKK + ZLL

)
· J

]
· J∗ =

=ZI

(
I · J

)
· J∗ + ZN

(
N · J

)
· J∗

+ ZK

(
K · J

)
· J∗ + ZL

(
L · J

)
· J∗,

(B.2)

and the PL condition requires Re p̃ = 0.

First, it will be shown that (B.1) is necessary for the impedance to be passive
and lossless. Considering that the PL condition must hold for any current J , the
demonstration starts by applying it to the particular case J = J0û, with J0 an
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arbitrary complex constant, obtaining

0 =Re
[
ZI

(
J0û

)
· J∗

0 û+ ZN

(
J0v̂

)
· J∗

0 û

+ ZK

(
J0û

)
· J∗

0 û+ ZL

(
J0v̂

)
· J∗

0 û
]

=Re
[
ZI |J0|2 + ZK |J0|2

]
=(ReZI +ReZK) |J0|2 ,

(B.3)

where the unit vectors û and v̂ are orthogonal, therefore û · v̂ = 0. Taking into
account the arbitrariness of J0, (B.3) implies

ReZI = −ReZK. (B.4)

At the same time, applying the PL condition to the case J = J0v̂ yields

0 =Re
[
ZI

(
J0v̂

)
· J∗

0 v̂ + ZN

(
− J0û

)
· J∗

0 v̂

+ ZK

(
− J0v̂

)
· J∗

0 v̂ + ZL

(
J0û

)
· J∗

0 v̂
]

=Re
[
ZI |J0|2 − ZK |J0|2

]
=(ReZI − ReZK) |J0|2 ,

(B.5)

which is fulfilled only when
ReZI = ReZK. (B.6)

Conditions (B.4) and (B.6) are both verified if and only if

ReZI = ReZK = 0. (B.7)

Another relevant case is that for which J = J0û+ J0v̂, resulting in the following
condition:

0 =Re
[
ZI

(
J0û+ J0v̂

)
·
(
J∗
0 û+ J∗

0 v̂
)
+ ZN

(
J0v̂ − J0û

)
·
(
J∗
0 û+ J∗

0 v̂
)

+ ZK

(
J0û− J0v̂

)
·
(
J∗
0 û+ J∗

0 v̂
)
+ ZL

(
J0v̂ + J0û

)
·
(
J∗
0 û+ J∗

0 v̂
)]

=Re
[
ZI 2 |J0|2 + ZN

(
|J0|2 − |J0|2

)
+ ZK

(
|J0|2 − |J0|2

)
+ ZL 2 |J0|2

]
=(ReZI +ReZL) 2 |J0|2 ,

(B.8)
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which, by considering the already established requirement ReZI = 0, reduces to

ReZL = 0. (B.9)

Finally, looking at the PL condition for J = J0û+ J∗
0 v̂ gives

0 =Re
[
ZI

(
J0û+ J∗

0 v̂
)
·
(
J∗
0 û+ J0v̂

)
+ ZN

(
J0v̂ − J∗

0 û
)
·
(
J∗
0 û+ J0v̂

)
+ ZK

(
J0û− J∗

0 v̂
)
·
(
J∗
0 û+ J0v̂

)
+ ZL

(
J0v̂ + J∗

0 û
)
·
(
J∗
0 û+ J0v̂

)]
=Re

[
ZI 2 |J0|2 + ZN

(
J0

2 − (J0
2)∗

)
+ ZK

(
|J0|2 − |J0|2

)
+ ZL

(
J0

2 + (J0
2)∗

)]
=Re

[
ZI 2 |J0|2 + ZN 2j Im(J0

2) + ZL 2Re(J0
2)
]

=ReZI 2 |J0|2 − ImZN 2 Im(J0
2) + ReZL 2Re(J0

2).

(B.10)

According to (B.7) and (B.9), ReZI = ReZL = 0, and the last condition follows:

ImZN = 0. (B.11)

Therefore, the demonstration of the necessity of (B.1) is complete; it remains to
be demonstrated that it is also sufficient to ensure passivity and absence of losses.
Substituting a general value for the current, J = Juû+Jvv̂, the active power density
can be written as

Re p̃ =Re
{[(

jXII +RNN + jXKK + jXLL
)
·
(
Juû+ Jvv̂

)]
·
(
J∗
uû+ J∗

v v̂
)}

=Re
[
jXI

(
Juû+ Jvv̂

)
·
(
J∗
uû+ J∗

v v̂
)
+RN

(
Juv̂ − Jvû

)
·
(
J∗
uû+ J∗

v v̂
)

+ jXK

(
Juû− Jvv̂

)
·
(
J∗
uû+ J∗

v v̂
)
+ jXL

(
Juv̂ + Jvû

)
·
(
J∗
uû+ J∗

v v̂
)]

=Re
[
jXI

(
|Ju|2 + |Jv|2

)
+RN

(
JuJ

∗
v − J∗

uJv
)

+ jXK

(
|Ju|2 − |Jv|2

)
+ jXL

(
JuJ

∗
v + J∗

uJv
)]

=Re
[
jXI

(
|Ju|2 + |Jv|2

)
+RN2j Im(JuJ

∗
v )

+ jXK

(
|Ju|2 − |Jv|2

)
+ jXL2Re(JuJ

∗
v )
]

=0,

(B.12)

for any value of Ju and Jv. This concludes the demonstration.



Appendix C

Far-field computation for single-layer
metasurface

The ability to compute the far field radiated by currents in a multi-layer medium is
fundamental in the analysis of metasurface antennas. This appendix reports the steps
required for the computation of fields radiated by surface electric currents flowing
on a grounded dielectric substrate, as needed for single-layer metasurfaces. Since
the background medium is translationally invariant, it is useful to employ a spectral
representation of the electric field in the transverse plane:

E(ρ, z) =
1

(2π)2

+∞¨

−∞

Ẽ(kρ; z) e
−jkρ·ρ d2kρ, (C.1)

where ρ = xx̂ + yŷ. The antenna can be analyzed as an infinite aperture at the
plane z = z0, i.e., at the air-dielectric interface, which allows to express the spectral
electric field everywhere as a function of the aperture field Ea(ρ) = E(ρ, z0),

Ẽ(kρ; z) = Ẽa(kρ) e
−jkz(z−z0), Ẽa(kρ) = Ẽ(kρ; z0), (C.2)

where the spectral electric field at the aperture is defined as

Ẽa(kρ) =

+∞¨

−∞

Ea(ρ) e jkρ·ρ d2ρ. (C.3)
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The objective is to compute the electric field in the upper half-space, i.e., for
0 ≤ θ < π/2. For a given observation direction, identified by the spherical angles
(θ, ϕ), the spectral integral (C.1) is amenable to an asymptotic approximation. By
using the stationary phase method, the stationary point k⋆ is found to be

k⋆ = k0 (sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ)

= k0 (sin θ ρ̂+ cos θ ẑ)

= k0 r̂.

(C.4)

It is worth noting that this stationary point is in the same direction of the observation
point. After some lengthy calculation, the integral (C.1) simplifies to

Efar ≈ jk0
e−jk0r

2πr
e jk⋆zz0 cos θ Ẽa(k⋆

ρ). (C.5)

Finally, the magnetic field in the far region is easily derived from the electric field,

H far =
1

η0
r̂×Efar, (C.6)

with η0 =
√
µ0/ε0 the free space impedance.

The transverse quantities are naturally expressed in the cylindrical coordinate
system, while the far field is usually given in spherical coordinates. Starting from the
spectral electric field in the cylindrical coordinate system, Ẽ = Ẽρ ρ̂+ Ẽϕ ϕ̂+ Ẽz ẑ,
the spherical components can be written as

Ẽr = Ẽρ sin θ + Ẽz cos θ

Ẽθ = Ẽρ cos θ − Ẽz sin θ

Ẽϕ = Ẽϕ

(C.7)

By requiring that the spectral field satisfies Maxwell’s equations in a homogeneous
medium,

∇ ·E = 0 −→ Ẽ · k = 0. (C.8)
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At the stationary point, by substituting (C.4) in (C.8), one finds

k0

(
Ẽρ sin θ + Ẽz cos θ

)
= 0 (C.9)

−→ Ẽz = −
sin θ

cos θ
Ẽρ. (C.10)

With (C.10), (C.7) can be rewritten as
Ẽr = 0

Ẽθ =
Ẽρ

cos θ
Ẽϕ = Ẽϕ

(C.11)

Finally, the electric far field (C.5) can be expressed as a function of the cylindrical
components of the aperture field. The spherical components of the far field,
Efar = Efar

θ θ̂ + Efar
ϕ ϕ̂, are found by substituting (C.11) inside (C.5),

Efar
θ = jk0

e−jk0r

2πr
ejk

⋆
zz0 Ẽa

ρ(k
⋆
ρ), (C.12)

Efar
ϕ = jk0

e−jk0r

2πr
ejk

⋆
zz0 cos θ Ẽa

ϕ(k
⋆
ρ), (C.13)

Until now, the expression for the far field has been given in terms of the spectral
electric field. There remains to express it as a function of the source current. For this,
the transversal fields are decomposed in TE and TM modes [34]. For the stationary
phase point k⋆, the transverse spectral basis (k̂⋆

ρ, ẑ×k̂⋆
ρ) coincides with that of the

spatial observation direction (ρ̂, ϕ̂), which allows to write

Ẽa
ρ(k

⋆
ρ) = V TM(k⋆

ρ; z0), (C.14)

Ẽa
ϕ(k

⋆
ρ) = V TE(k⋆

ρ; z0), (C.15)

where V TE and V TM are the TE and TM longitudinal transmission line voltages,
respectively. For the case of surface currents residing on the plane z = z0,
J = Js(ρ) δ(z − z0), the expression of these voltages reduces to

V TM(k⋆
ρ; z0) = −gTM(k⋆

ρ) ρ̂ · J̃s(k
⋆
ρ), (C.16)

V TE(k⋆
ρ; z0) = −gTE(k⋆

ρ) ϕ̂ · J̃s(k
⋆
ρ), (C.17)
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zz0z0 − h

IVZd Z0

Fig. C.1 Equivalent transmission line for a grounded dielectric substrate. Sources are confined
at z = z0.

where gTE and gTM are the transmission line transfer functions. The spectral surface
current is defined as

J̃s(k
⋆
ρ) =

+∞¨

−∞

Js(ρ
′) ejk

⋆
ρ·ρ′

d2ρ′. (C.18)

With these definitions, the final expression for the far electric field is given by

Efar ≈ −jk0
e−jk0r

2πr
e jk⋆zz0

[
gTM(k⋆

ρ)θ̂ρ̂+ cosϕ gTE(k⋆
ρ)ϕ̂ϕ̂

]
· J̃s(k

⋆
ρ). (C.19)

Equivalent Transmission Line Green’s function

For the case of a single layer metasurface, the equivalent transmission line problem is
the one in Fig. C.1, where all the quantities depend on the transverse wavevector kρ.
The distinction between TE and TM cases will be made explicit when needed. The
impedances for the two cases are written in terms of the longitudinal wavevectors as

ZTE

0 =
ωµ0

k0z
, ZTE

d =
ωµ0

kdz
, (C.20)

ZTM

0 =
k0z
ωε0

, ZTM

d =
kdz

ωε0εr
, (C.21)

where

k0z =

√
k0

2 − |kρ|2, (C.22)

kdz =

√
εrk0

2 − |kρ|2. (C.23)

By considering that a shorted transmission line segment of length h has an equivalent
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IVjZd tan(kdzh) Z0

Fig. C.2 Simplified circuit for finding the transmission line transfer function.

input impedance of jZd tan(kdzh), and that an infinite length transmission line has
an input impedance equal to its characteristic one, the problem reduces to that in
Fig. C.2. The transfer functions are then easily computed as the parallel of the two
equivalent impedances on the two sides,

g(kρ) =
V

I
=

jZ0Zd tan(kdzh)

Z0 + jZd tan(kdzh)
=

jZd tan(kdzh)

1 + j(Zd/Z0) tan(kdzh)
. (C.24)



Appendix D

Complex gradient

The need for a complex gradient operator arises naturally in the optimization of
functions involving complex variables. Although it is always possible to express a
function of complex variables as a function of the real and imaginary parts separately,
this usually complicates analytical derivations. Motivated by this, in [47] a complex
gradient operator is defined in such a way that it retains all the properties of the
“classical” one that are relevant for optimization problems. This appendix summarizes
the main properties and theorems, which have been used extensively in the present
work.

Consider a complex vector z = z′ + jz′′ ∈ CN and a function f(z) : CN → C.
The complex gradient operator is defined as

∇̃f(z) ≡ 1

2

(
∇′f(z′, z′′) + j∇′′f(z′, z′′)

)
, (D.1)

where f(z′, z′′) is considered a function of the real and imaginary parts of z separately,
and ∇′, ∇′′ are (real) gradient operators acting on the real and imaginary part,
respectively. A few relevant properties that follow from (D.1) are listed:

∇̃(c f(z)) = c ∇̃f(z), (D.2a)

∇̃(f(z)g(z)) = f(z)∇̃g(z) + g(z)∇̃f(z), (D.2b)

∇̃(h(f(z))) =
(
∂̃h∗

∂f

)∗
∇̃f(z) + ∂̃h

∂f
∇̃f ∗(z), (D.2c)
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where c ∈ C, f, g : CN → C, and h : C → C. Partial derivatives of a function
h(z) : C→ C, z = z′ + jz′′ are consistently defined as

∂̃h

∂z
=

1

2

(
∂h

∂z′
+ j

∂h

∂z′′

)
. (D.3)

By using the definition (D.1) and properties (D.2a)–(D.2c), one can derive the
complex gradient for terms that are frequently encountered in the definition of
objective functions:

∇̃(zHa) = ∇̃(aTz∗) = a, (D.4a)

∇̃(aHz) = ∇̃(zTa) = 0, (D.4b)

∇̃ (zHMz) = Mz, (D.4c)

∇̃ |f(z)|2 = ∇̃(f(z)f ∗(z)) = f ∗(z)∇̃f(z) + f(z)∇̃f ∗(z), (D.4d)

∇̃Re f(z) = ∇̃
(
1

2

(
f(z) + f ∗(z)

))
=

1

2

(
∇̃f(z) + ∇̃f ∗(z)

)
, (D.4e)

∇̃ Im f(z) = ∇̃
(
1

2j

(
f(z)− f ∗(z)

))
=

1

2j

(
∇̃f(z)− ∇̃f ∗(z)

)
, (D.4f)

where a ∈ CN and M ∈ CN×N . The following theorems establish the usefulness of
the complex gradient operator in the optimization of functions of complex variables.

Theorem 1. Let f : CN → R be a real-valued scalar function whose gradients
with respect to the real and imaginary parts exist everywhere. Then, the condition
∇̃f = 0 is necessary and sufficient to determine a stationary point for f .

Proof. the function f can be expressed as a real function of the 2N variables z′k and
z′′k , hence f is stationary if, and only if, ∂f/∂z′k = 0, ∂f/∂z′′k = 0 for k = 1, . . . , N .
From the definition of the complex gradient one has

∂̃f

∂zk
=

1

2

(
∂f

∂z′k
+ j

∂h

∂z′′k

)
. (D.5)

Equating the real and imaginary parts of the equation for the stationary condition,
the result is that is verified if, and only if, ∂̃f

∂zk
= 0 for k = 1, . . . , N , i.e., if and only

if ∇̃f = 0.
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Theorem 2. Let f : CN → R be a real-valued scalar function whose complex
gradient exists in a point z0 ∈ CN . The complex gradient ∇̃f defines the direction of
the maximum rate of change of f in a neighbourhood of z0.

Proof. For an infinitesimal variable change δz, the change in the function value is
given by

δf = f(z0 + δz)− f(z0)
= (∇′f)Tδz′ + (∇′′f)Tδz′′ = 2Re

[
(∇̃f)Hδz

]
.

(D.6)

From Schwarz’s inequality, the following holds:∣∣Re [(∇̃f)Hδz]∣∣ ≤ ∣∣(∇̃f)Hδz ∣∣ ≤ ∥∥∇̃f∥∥∥∥δz∥∥, (D.7)

where the norm of a complex array is defined as ∥a∥ =
(∑

k |ak|
2 ) 1

2 . Equality
only holds when δz = c ∇̃f , where c ∈ R, i.e., when the increment is in the same
direction as the gradient. In this case

|δf | = 2 |c|
∥∥∇̃f∥∥2

. (D.8)



Notation and Acronyms

Notation Description
a Scalar in R or C
r Position vector in R3

E Geometric vector in R3 or C3

û Unit vector in R3 or C3

a 1-dimensional array, column vector in Rn or Cn

A 2-dimensional array, matrix in Rm×n or Cm×n

L Linear operator
(v)n, vn n-th element of a vector

(A)mn, Amn (m,n) element of a matrix
Re (z), Im (z) Real part, imaginary part
|z|, |r| Absolute value, Euclidean norm for geometric vectors
∥a∥ 2-norm for column arrays

z∗, a∗, A∗ Conjugate
aT, AT Transpose
aH, AH Hermitian (conjugate) transpose
LT Transpose operator
LH Adjoint operator
⟨f , g ⟩ Bilinear product
f · g Dot product
f×g Cross product
a⊙ b Element-wise product

df
dx

, f ′(x) Derivative
∇f Gradient
∇̃f Complex gradient
∂V Boundary of a domain

Table 5.1 Common notations
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Acronym Meaning
IBC Impedance Boundary Condition

MoM Method of Moments
EFIE Electric Field Integral Equation
EFIO Electric Field Integral Operator
SIE Surface Integral Equation
FF Far-field

RWG Rao-Wilton-Glisson
FFT Fast Fourier Transform

GMRES Generalized Minimal Residual
PEC Perfect Electric Conductor
MTS Metasurface

Table 5.2 Common acronyms
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