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Clustering appliance operation modes with
unsupervised deep learning techniques

Marco Castangia, Nicola Barletta, Christian Camarda, Stefano Quer, Enrico Macii and Edoardo Patti

Abstract—In smart grids, consumers can be involved in de-
mand response programs to reduce the total power consumption
of their households during the peak hours of the day. Un-
fortunately, nowadays, utility companies are facing important
challenges in the implementation of demand response programs
because of their negative impact on the comfort of end-users. In
this paper, we cluster the different operation modes of household
appliances based on the analysis of their power signatures. For
this purpose, we implement an autoencoder neural network to
create a better data representation of the power signatures. Then,
we cluster the different operational programs by using a K-means
algorithm fitted to the new data representation. To test our
methodology, we study the operation modes of some washing
machines and dishwashers whose power signatures were derived
from both submeters and non-intrusive load monitoring tech-
niques. Our clustering analysis reveals the existence of multiple
working programs showing well-defined features in terms of both
average energy consumption and duration. Our results can then
be used to improve demand response programs by reducing their
impact on the comfort of end users. Furthermore, end users can
rely on our framework to favor lighter operation modes and
reduce their overall energy consumption.

Index Terms—smart grids, appliance operation modes, appli-
ance program, clustering, autoencoder, deep learning.

I. INTRODUCTION

ELECTRICITY systems need to constantly keep a perfect
balance between supply and demand to operate prop-

erly [1]. Unfortunately, this equilibrium is not always easy
to achieve for several reasons. On the one hand, energy gen-
erators and utility operators have to face many unpredictable
events that may compromise their energy supply. These sit-
uations have been exacerbated by the higher penetration of
renewable energy sources [2]. On the other hand, consumers
can show significant variations in their energy demand during
the day, which makes more difficult to operate an optimal
energy distribution from utility operators. Since grid inter-
ventions are highly capital intensive and energy shortages are
almost unpredictable, it is more convenient to take action on
the consumer side in order to reduce fluctuations in demand
and increase the overall system efficiency.

Smart Grids allow bidirectional communications between
consumers and providers. In this way, they can cooperate to
improve the overall reliability of the network and lessen the
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risks of energy outages [3]. In this new paradigm, utilities
started to adopt a set of measures aimed at reducing the overall
energy demand during the peak hours of the day, following
the so called Demand Response (DR) programs [4], [5]. In
summary, DR indicates any change in the electricity usage of
end-users in response to variations in the energy prices over
time. Changes may include load shifting from periods of high
demand to periods of lower demand or load reduction during
peak hours. In either cases, the end-users have to relinquish
part of their comfort for the sake of energy efficiency, and
this may represent a serious obstacle when consumers are not
completely convinced to change their habits.

Thanks to the development of advanced metering infras-
tructures, end-users are now able to monitor the total power
consumption of their houses with various degrees of resolu-
tion [6], [7]. Previous studies demonstrate that end-users are
spontaneously encouraged to reduce their energy requirements
once provided with detailed information on their power us-
age [8]. In particular, several investigations report that com-
plete information can save up to 12% of the total residential
energy [9], [10]. In addition, power usage profiles can be used
to reschedule some activity with the goal of better exploiting
the production of on-site PV energy [11].

In this work, we cluster the different operational modes of
household appliances based on the analysis of their power
signatures. To achieve this goal, we leverage the capabili-
ties of autoencoders to automatically extract a better data
representation of the collected power signatures, thus com-
pletely avoiding the cumbersome task of creating handcrafted
features. Then, in order to cluster together operation cycles
with similar power signatures, we fit a K-means algorithm to
the latent representation extracted by the autoencoder. To test
our methodology, we analyze the power profiles generated by
some residential washing machines and dishwashers belonging
to the public (including submetered power signatures) and a
private dataset (storing disaggregated energy profiles). The
clustering results are evaluated quantitatively by means of the
silhouette score, and qualitatively by analyzing the consistency
of relevant attributes such as the average energy consumption
and the mean duration. The results obtained in this work
can enable novel services for both end-users and utilities.
On the one hand, utility companies may ask to the end-
user to just select a lighter program instead of shifting it,
thus causing only a minor impact on the user’s comfort. On
the other hand, end-users can easily reduce their energy bills
by just favoring lighter operational modes over more energy-
intensive programs, once properly informed about the energy
consumption of their appliances.
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The remaining parts of this paper are organized as follows.
Section II reports the most relevant works aimed at clustering
the appliance’s programs; Section III provides a thorough
description of the datasets; Section IV describes in detail
the different processing stages of our clustering methodology;
Section V discusses the results of our clustering analysis
for the washing machines and dishwashers separately; finally,
Section VI reports the most relevant findings of this work,
proposing possible future research directions.

II. RELATED WORKS

To the best of our knowledge, the number of publications
that focus on clustering the operational modes of household
devices is very limited. Wang et al. [12] used a K-means
clustering algorithm to classify the different operational modes
of a fridge based on its maximum power usage and total energy
demand. The clustering algorithm identified three different
modes of operation for that device: The normal mode, which
presents the largest number of instances and the lower power
consumption, and the defrost and post-defrost modes, which
occur less frequently and present a higher energy demand.
Overall, the authors demonstrated that it is possible to cluster
the different operational cycles of the fridge based on their
peak power and energy consumption. Jaradat et al. [13]
attempted to classify the different operational modes of three
commonly used deferrable appliances, i.e., a washing machine,
a clothes dryer, and a dishwasher. The authors implemented
a supervised model based on the Dynamic Time Warping
distance. Their approach classifies new operational modes
by comparing their power profile with a predefined set of
operational modes previously collected from the monitored
device. In particular, the authors assumed three modes of
operations for each piece of equipment, which they broadly
categorized into light, medium and heavy, based on their
total energy demand. In a later work, the same authors [14]
conducted a new study to improve the previous results. This
time, the authors used a K-nearest neighbors algorithm to
classify the different apparatus operational modes. This new
strategy slightly overcame the previous approach by exploiting
a set of handcrafted features describing the power states of
each appliance’s operational mode. Marcu et al. [15] attempted
to categorize the various programs of two washing machines
based on the differences in their power signatures. According
to their results, it is particularly difficult to cluster different
washing machine programs as these devices, in order to
maximize the program’s efficiency in terms of water and
energy, adapt their operational stages to the specific run time
conditions.

Previous works present clustering methodologies either
based on raw data or manual features. Jaradat et al. [13]
compare the raw power signatures to a set of reference
power loads representing the various operational modes of the
monitored appliances. However, methods based on raw data
are susceptible to noisy points and outliers, thus they often
lead to poor clustering results. In addition, these approaches
can be highly inefficient in the presence of long time series.
The authors of [12], [14], [15] adopt a feature-based approach

relying on the design of handcrafted features to recognize the
different operational modes. On the one hand, the extraction
of manual features is certainly faster and more robust to noise
than the methodologies based on raw data. On the other one,
their application is confined to the specific power signatures of
the monitored device. Indeed, manually extracted features are
hardly reusable with devices from other brands, which may
present very heterogeneous power profiles. Furthermore, the
design of effective features often requires advanced domain
knowledge and can be a very time-consuming task.

In the past decade, researchers discovered that deep learning
can efficiently solve various clustering tasks [16]. Among the
various possible applications, researchers use deep autoen-
coders to learn effective data representations of time series
and use them to help classical clustering algorithms in their
categorization task [17], [18]. Richard et al. [19] investigate the
combination of a convolutional autoencoder and a K-medoids
algorithm to cluster time series data. Interestingly, the authors
verify their clustering methodology on a dataset consisting of
daily power consumption. The results show that convolutional
autoencoders outperform both raw-data-based methods and
feature-based methods. In particular, the embeddings extracted
by the autoencoder achieved better results than the clus-
tering methods applied directly to raw data, including the
techniques adopting shift and scale-invariant distance metrics
(such as dynamic time warping, i.e., DTW). Furthermore, deep
autoencoders produce better data representations than linear
techniques (such as principal component analysis, i.e., PCA),
thanks to the high non-linearity of the encoder’s layers.

In the last five years, researchers started to heavily apply
deep learning techniques to solve the problem of Non-Intrusive
Load Monitoring (NILM) [20]. NILM aims at estimating
the energy consumption of the various household appliances
through the analysis of the total power consumption of the
house [21]. Kelly et al. [22] pioneered the application of
deep neural networks to NILM, demonstrating that the deep
learning approach easily outperforms all previous methods in
terms of disaggregation accuracy. Zhang et al. [23] slightly
improved the results of the previous work by employing
a better neural network architecture. Most importantly, the
authors proved that deep neural networks can distinguish the
different power signatures of the device. D’Incecco et al. [24]
demonstrated that the features learned for certain appliances
can be transferred to estimate the energy consumption of other
devices, providing further insights on the electrical features
learned by deep neural networks.

Motivated by the exceptional capabilities of deep learning
in the extraction of electrical features for energy disaggre-
gation and inspired by the recent success demonstrated by
autoencoders in the context of time series clustering, we
decided to apply them to efficiently cluster the different
operational modes of household instruments. To overcome
the limitations of previous works, we decided to adopt a
solution based on unsupervised learning techniques. Indeed,
the unsupervised approach does not require any class label
to work, which guarantees its applicability in a real-world
scenario. Furthermore, we refused to assume a fixed number
of appliance programs, thus adapting our solution to the
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TABLE I: UK-DALE dataset.

Num. of cycles Monitoring period

UK-house-1 Washing machine 1433 2012/11/09 - 2017/04/26
Dishwasher 679 2012/11/09 - 2017/04/26

UK-house-2 Washing machine 59 2013/05/20 - 2013/10/10
Dishwasher 106 2013/05/20 - 2013/10/10

specific preferences of end-users. The deep learning approach
can be easily generalized to multiple devices and brands,
thus preventing the cumbersome task of creating handcrafted
features for each device. Most importantly, autoencoders can
efficiently handle complex patterns in the power consumption
of the appliance, where simple statistics such as the mean
energy absorbed may fail to distinguish between different
operational modes.

III. DATASET

In this section, we introduce the two datasets used to
evaluate our methodology. The first one is public and it
includes submetered power measurements adopted to verify
the performance of our clustering algorithm on a set of clean
power signatures. The second dataset has been generated by
adopting NILM techniques to the aggregated power consump-
tion of five different residential houses and it is used to test the
performance of our algorithm in the presence of noisy power
signatures.

A. UK-DALE

The UK Domestic Appliance-Level Electricity (UK-DALE)
dataset contains the power consumption of five houses in
the UK both at the aggregate-level and at the appliance-
level collected with a sampling frequency of six seconds [25].
In this work, we focused on the submetered power con-
sumption of two appliances, i.e., the washing machine and
the dishwasher, mainly because they usually comprehend a
multitude of operational modes and are present in almost
every household. To demonstrate the effectiveness of our
methodology, we studied the power consumption of House 1
and House 2 of the UK-DALE dataset, since they both include
two dedicated submetered channels for the washing machine
and the dishwasher. Table I reports the number of operation
cycles and the monitoring periods of the appliances under
study. The length of the monitoring period between the two
households explains the large difference in the total number
of cycles. Indeed, House 1 provides more than four years
of submetered data from 9/11/2012 to 26/04/2017, whereas
House 2 covers almost five months of measurements from
20/05/2013 to 10/10/2013. Notice that the power signatures of
the UK-DALE dataset are collected directly at the appliance
level adopting smart plugs. Working on submetered data can
be useful to verify the performance of our algorithm on clean
power signatures, before moving to other kinds of data sources
such as NILM algorithms.

B. Non Intrusive Load Monitoring

”Omitted for Double Blind Review” is a startup applying
Non-Intrusive Load Monitoring techniques to provide detailed

TABLE II: NILM dataset.

Num. of cycles Monitoring period

NILM-house-1 Washing machine 267 2020/09/01 - 2021/12/31Dishwasher 270

NILM-house-2 Washing machine 170 2020/09/01 - 2021/12/31Dishwasher 196

NILM-house-3 Washing machine 162 2020/09/01 - 2021/12/31Dishwasher 479

NILM-house-4 Washing machine 463 2020/09/01 - 2021/12/31Dishwasher 302

NILM-house-5 Washing machine 479 2020/09/01 - 2021/12/31Dishwasher 372

reports on the power consumption of their users. The firm
kindly provided us a large number of power signatures derived
from the disaggregation of some washing machines and dish-
washers operating in their monitored lodgings. Hereinafter, we
refer to this information as the NILM dataset and we use it
to prove that our methodology can work with disaggregated
data. As reported in Table II, this dataset embraces data
collected in five different residences, covers a period of 16
months (from 01/09/2020 to 31/12/2021), and includes a
varying number of operational cycles. NILM data are essentil
to demonstrate the potentiality of our algorithm in a real-world
scenario. Disaggregation algorithms are usually preferred to
submeters for large commercial applications, given their low
costs and high scalability. Moreover, recent NILM algorithms
demonstrated high fidelity in the disaggregation of dishwashers
and washing machines, motivating their use as an alternative
to submeters [26], [27].

IV. METHODOLOGY

In this section, we describe the processing stages that
constitute our clustering methodology. The main steps are
reported in the pipeline of Figure 1. The input consists of a set
of power signatures that can be collected either from submeters
or NILM algorithms. The submeters continuously monitor the
power consumption of the device both during its active and
idle states. Therefore, a first segmentation procedure is applied
to submeters to recognize the active states containing the actual
power signatures of the monitored device. Conversely, NILM
algorithms already provide the disaggregated power signatures
of the appliance with their start and stop times, which are
inferred during the disaggregation process. Both the power
signatures extracted from submeters and those generated by
NILM are passed to the pre-processing step in the same way.
In the pre-processing stage, all instances are normalized to
be fed into a deep autoencoder. This autoencoder is trained
to reconstruct the operation cycles extracted in the previous
step and to learn the best latent representation of the input
data. Finally, the latent representation learned by the neural
network is used by the K-means clustering algorithm, which is
in charge of recognizing the different programs of the device.
The main phases of our methodology are described in the
following sub-sections.
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Pre-processing

Segmentation of 
operation cycles

Autoencoder K-means 
clustering

Submeters

NILM 
algorithms

Power 
signatures

Fig. 1: Pipeline structure of our proposed clustering method-
ology.

A. Segmentation of operation cycles

The purpose of the segmentation procedure is to extract
the individual operations from the continuous active power
measurements received from the submeter. With reference
to Figure 1, note that this phase is exclusively applied to
the submetered data, since the operation cycles coming from
NILM algorithms have been already extracted during the dis-
aggregation process. The input of the procedure is a window
of active power measurements of arbitrary length received
from the submeter, whereas the output is a list of operation
cycles extracted from the corresponding input window. The
segmentation algorithm used in this work is very similar
to the one already proposed by Massidda et al. [28]. The
authors used a rule-based procedure to extract the operations
by using a limited set of parameters. In summary, an appliance
is considered active when its power consumption exceeds a
predefined power threshold, that we called min power. In order
to cope with the temporary idle times of washing machine
and dishwasher, we used an additional parameter called min
off to decide what is the minimum number of samples under
the power threshold such that the appliance operation can
be considered truly completed. Finally, we used a parameter
called min on to filter out false positives that present too short
operations. Table III reports the value of these parameters used
during the segmentation phase for the washing machine and
the dishwasher. We use the same values for House 1 and
House 2. Notice that this set of optimal values is found in an
empirical way, considering the expected duration of a normal
operation and trying to separate individual cycles as well as
possible.

TABLE III: Selected values for the main parameters of the
segmentation procedure.

min power [W] min on [s] min off [s]
Washing machine 25 300 180
Dishwasher 25 300 900

B. Pre-processing

All training instances have been zero padded up to 1600
samples, which correspond exactly to two hours and forty
minutes of activity. Training instances longer than 1600 sam-
ples have been truncated down to 1600 samples to conform
with shorter instances. Neural networks are known to converge

faster when the input values are scaled within a small interval,
whereas normalization generally improves the overall training
process. Therefore, we decided to scale the input data by using
the classical standardization formula reported in Equation 1,
in which the mean µx and standard deviation σx are computed
across all the power measurements x.

xscaled =
x− µx

σx
(1)

C. Autoencoder

The autoencoder is a neural network architecture capable of
learning latent representations of the inputs in a totally unsu-
pervised way [29]. The general architecture of the autoencoder
presents an encoder network followed by a decoder network.
The encoder network is responsible for mapping the inputs into
a lower dimensional space such that the amount of information
preserved from the inputs is maximized. The decoder network
is in charge of mapping back the latent representations to the
original inputs. The autoencoder architecture is constrained by
the amount of information that can be retained by the network
during the training process. In this way, the autoencoder is
forced to capture only the most significant features of the
inputs in order to minimize the overall reconstruction error
across the entire training set.

The 1D convolutional layers (Conv 1D) are composed by
multiple filters which have the purpose of selecting the most
salient features from the input sequence received from the
previous layer. The greater the number of filters, the larger
the amount of features that can be potentially learned. The
filter’s size defines the receptive field of a single filter. To
capture space-invariant features, the filter slides across the
entire input sequence with a certain step size (or stride). Each
filter performs the following computation:

ŷ = f(

n∑
i=1

wixi + b) (2)

where n is the filter’s size, xi are the inputs, wi are the filter’s
weights, b is a bias term, and f is the activation function.

Recurrent layers are specifically designed to capture tem-
poral relations in the input thanks to the capabilities of long
short-term memory (LSTM) cells [30]. At each timestamp the
LSTM cell receives the current input xt plus a digest of all
previous inputs, which is summarized by the short-term state
ht and the long-term state ct. The following set of equations
describes the different operations performed by the LSTM cell:

it = σ(W xixt +Whiht−1 + bi)

ft = σ(W xfxt +Whfht−1 + bf )

ot = σ(W xoxt +Whoht−1 + bo)

gt = tanh(W xgxt +Whght−1 + bg)

ct = ft ⊗ ct−1 + it ⊗ gt

yt = ht = ot ⊗ tanh(ct)

(3)

where W xi, W xf , W xo, and W xg are the weighted connec-
tions of the input vector xt; Whi, Whf , Who, and Whg are
the weights of the previous short-term state vector ht−1; bi,
bf , bo, and bg are the bias terms.
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Fig. 2: Autoencoder architecture.

The autoencoder architecture used in this work is described
in Figure 2. The encoder (on the left-hand side) is composed
by a set of convolutional layers alternated with max pooling
layers, which have the twofold function of reducing the input
dimensions and selecting the most relevant features in the
input [31]. The encoder terminates with two LSTM layers
with the purpose of capturing temporal relations among input
values. Notice that the first recurrent layer implements a bidi-
rectional LSTM in order to take into consideration temporal
relations in both directions [32]. The decoder (on the right-
hand size) presents an architecture almost symmetrical to the
encoder. It starts with a recurrent layer followed by a set of
convolutions and up-sampling layers. All convolutional layers
contain 32 filters of size 3 which use a rectified linear unit
(Relu) as activation function. To maintain the same sequence
length after the convolution, we used a stride equal to 1 and
zero padded the input sequence on both sides. The LSTM
cells work with 128 units and use a hyperbolic tangent (tanh)
activation function. The max pooling layers in the encoder
network progressively downsample the input sequences in
order to constraint the amount of information retained in the
latent representation. The up-sampling layers in the decoder
network increment the the previous layer’s dimension back to
the original input shape.

The loss function of the network is the mean square error
computed between the reconstructed signal and the original
input. The network parameters are optimized by using the
adaptive moment estimation (Adam) algorithm with a default
learning rate of 0.001 and a batch size equal to 32. The dura-
tion of the training process is capped at 500 epochs, but it stops
earlier if the reconstruction error does not show improvements
for more than 25 epochs (early stopping criteria). Table IV
reports the training hyper-parameters used for the autoencoder.

TABLE IV: Training hyper-parameters of the autoencoder.

Hyper-parameter Value
Optimizer Adam

Loss mean squared error
Learning rate 0.001

Epochs 1500
Batch size 32

Stopping criteria early stopping with patience equal to 50

D. K-means algorithm

K-means is a partitional clustering algorithm that, given a
number of clusters K, assigns each instance to the cluster
with the closest centroid, such that the mean squared distance
between the instances and their closest centroid is minimized
through an iterative process [33]. Centroids are defined as the
mean of all instances belonging to a cluster. At the beginning,
the algorithm select K random instances in the training set
to be designated as initial centroids. Then, the algorithm
iteratively assigns each instance to the cluster with the closest
centroid. Finally, it updates the centroids of each cluster by
computing the mean value of all instances belonging to it. The
procedure continues until convergence, i.e., until centroids do
not change anymore. The hyper-parameters selected for the
K-means algorithm are reported in Table V. Notice that, as
we are going to discuss in Section V, the number of clusters
K has been omitted from Table V as this value depends on
the specific dataset under study.

TABLE V: K-means hyper-parameters.

hyper-parameter Value
K -

Initialization random
Num. of random initializations 10

Max iterations 300
Tolerance 0.0001

V. RESULTS

In this section, we discuss the results of the clustering
analysis for the analyzed devices, i.e., washing machines and
dishwashers. Firstly, we introduce the silhouette score, which
is the metric adopted to evaluate the clustering results and
to select the optimal number of clusters for each piece of
equipment. Then, we report the most relevant features of
the extracted operational modes, including the average energy
consumption, the mean duration, and the number of cycles
found during the monitoring period.

A. Silhouette score

To validate the results of our clustering, we cannot rely on
typical classification metrics, as we do not have a detailed
annotation of the actual appliance programs selected by end-
users. As a consequence, the most reliable metric to validate
the clustering results is the silhouette score [34]. This repre-
sents a unique measure describing how well a single event fits
the occurrences of its cluster with respect to the instances of
other clusters. The silhouette score s(i) of a single sample is
computed by the following formula:
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s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4)

where a(i) is the mean squared distance between the selected
instance and all other occurrences within its cluster, and b(i)
is the smallest mean squared distance computed between
the selected instance and the samples belonging to all other
clusters. The silhouette score takes values between -1 and 1,
where 1 indicates very good and -1 very bad clustering results.
To validate the quality of our clustering phase across the entire
dataset, we compute the average silhouette score obtained by
all the instances in the dataset.

B. Selecting the optimal number of clusters

As described in the previous section, we used the silhouette
score to find the optimal number of clusters K. More in detail,
we run the K-means algorithm with different values of K and
we keep only the solution with the highest silhouette score.
For our purposes, we used a number of clusters varying from 2
up to 10, considering a realistic scenario in which the end-user
does not use more that 10 different operational modes for the
same appliance. The silhouette scores obtained for these values
of K are reported in Table VI. The highest scores for each
device have been highlighted using boldface. In general, the
optimal number of clusters varies between 2 and 4, which is far
less than the maximum number considered in our procedure
(i.e., 10 clusters). Moreover, the silhouette score assumes a
minimum of two clusters to be computed, thus ignoring the
case in which the end-user utilizes only a single program. We
are perfectly conscious that the end-user may easily stick with
a single operational mode for the entire monitoring period.
However, we must consider that two operational modes with
almost the same energy consumption and duration are practi-
cally identical for our applications. Therefore, we can assume
that two clusters with very similar energy consumption and
duration belong to the same program, without compromising
the effectiveness of our clustering methodology in detecting
operational modes with very distinct characteristics.

C. Analysis of washing machine cycles

The clustering analysis performed on the washing machine
cycles shows the presence of power signatures recurring
several times during the monitoring period. These signatures
can be associated with the most common operational modes.
Table VII reports the average energy consumption, the mean
duration time, and the number of cycles for each washing ma-
chine programs traced in the UK-DALE and the NILM dataset.
Overall, we can notice that end-users prefer less energy-
intensive programs that appear with the highest frequency in
our analysis. We can also notice that the duration time is
not indicative of the total energy consumption of a washing
machine program. Indeed, the power used by the washing
machine is generally dominated by the water heating stage
occurring in the first phases of the working cycle. Figure 3
shows the typical power signature of the four washing machine
programs used in the first house of the UK-DALE dataset.
Figure 4 depicts the three signatures found in the fourth

Fig. 3: Operational modes of the washing machine in the first
house of the UK-DALE dataset.

Fig. 4: Operational modes of the washing machine in the
fourth house of the NILM dataset.

house of the NILM dataset. These signatures clearly show that
longer heating stages correspond to a greater power absorption,
whereas the spin cycles represent only a minor contribution to
the total energy demand.

D. Analysis of dishwasher cycles

The clustering results of the dishwasher identify several
well-defined power signatures that can be assigned to as
many working modes for that device. Table VIII reports
the average energy consumption, the mean duration, and the
number of cycles identified for each dishwasher program in
the UK-DALE and in the NILM dataset. The results show
that end-users tend to favor lighter dishwasher programs in
most cases, except for the houses in the UK-DALE dataset
and the third houses in the NILM dataset. Similarly to the
results for the washing machine, the duration of the operation
cycle is not correlated with its total energy consumption.
Figure 5 plots two power signatures of the dishwasher from
the first house of UK-DALE. Figure 6 illustrates four different
programs from the first house of the NILM dataset. Overall,
the dishwasher presents very distinctive patterns characterized
by the alternation of multiple heating stages with different
durations and distances.

E. Discussion

Our methodology is particularly effective in clustering the
different operational modes of both washing machines and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE VI: Silhouette scores obtained with a different number of clusters (K) for the washing machine and the dishwasher in
the houses of the UK-DALE’s dataset and the ”Omitted for Double Blind Review”’s dataset.

Number of
clusters

UK-house-1 UK-house-2 NILM-house-1 NILM-house-2 NILM-house-3 NILM-house-4 NILM-house-5
WM DW WM DW WM DW WM DW WM DW WM DW WM DW

K = 2 0.26 0.73 0.51 0.84 0.064 0.293 0.132 0.304 0.143 0.229 0.061 0.286 0.173 0.244
K = 3 0.31 0.52 0.13 0.86 0.057 0.325 0.139 0.152 0.119 0.198 0.110 0.183 0.159 0.148
K = 4 0.32 0.39 0.12 0.61 0.068 0.351 0.113 0.119 0.126 0.168 0.065 0.158 0.140 0.158
K = 5 0.27 0.38 0.11 0.61 0.058 0.275 0.116 0.128 0.141 0.147 0.063 0.155 0.134 0.133
K = 6 0.27 0.40 0.12 0.56 0.063 0.286 0.114 0.099 0.138 0.145 0.066 0.149 0.131 0.132
K = 7 0.26 0.42 0.12 0.54 0.060 0.288 0.112 0.114 0.134 0.142 0.060 0.145 0.105 0.122
K = 8 0.20 0.44 0.11 0.49 0.036 0.304 0.115 0.102 0.114 0.145 0.057 0.129 0.100 0.129
K = 9 0.20 0.45 0.12 0.50 0.038 0.302 0.106 0.118 0.116 0.112 0.059 0.131 0.100 0.124

K = 10 0.20 0.44 0.11 0.48 0.042 0.311 0.120 0.109 0.105 0.097 0.044 0.129 0.114 0.121

TABLE VII: Average energy consumption, average duration,
and number of cycles for the washing machine use cases.

Energy consumption
[kWh]

Duration
[hh:mm]

Number of
cycles

UK-house-1

Program A 0.08 ± 0.03 0:49 ± 0:16 133 (9%)
Program B 0.67 ± 0.22 1:06 ± 0:12 708 (50%)
Program C 0.75 ± 0.17 1:34 ± 0:15 474 (33%)
Program D 1.40 ± 0.30 1:56 ± 0:18 118 (8%)

UK-house-2 Program A 0.23 ± 0.01 0:17 ± 0:02 2 (3%)
Program B 0.41 ± 0.09 0:40 ± 0:05 57 (97%)

NILM-house-1

Program A 0.87 ± 0.49 1:52 ± 0:39 66 (24.72%)
Program B 0.95 ± 0.09 2:08 ± 0:09 79 (29.59%)
Program C 1.21 ± 0.13 2:37 ± 0:18 72 (26.97%)
Program D 1.29 ± 0.12 2:17 ± 0:09 50 (18.73%)

NILM-house-2
Program A 0.34 ± 0.22 2:07 ± 0:29 60 (35.29%)
Program B 0.66 ± 0.11 1:38 ± 0:20 80 (47.06%)
Program C 1.10 ± 0.20 1:50 ± 0:24 30 (17.65%)

NILM-house-3 Program A 0.34 ± 0.18 2:04 ± 0:35 94 (58.02%)
Program B 0.57 ± 0.21 1:47 ± 0:17 68 (41.98%)

NILM-house-4
Program A 0.69 ± 0.20 1:55 ± 0:25 225 (48.60%)
Program B 0.86 ± 0.18 2:00 ± 0:16 71 (15.33%)
Program C 1.32 ± 0.23 1:58 ± 0:18 167 (36.07%)

NILM-house-5 Program A 0.24 ± 0.07 1:12 ± 0:23 142 (58.68%)
Program B 0.55 ± 0.14 1:09 ± 0:16 100 (41.32%)

dishwashers. However, we must highlight that the clustering
analysis is more effective for the dishwasher as the washing
machine operations present a greater variance within the same
cluster both in terms of energy consumption and duration.
On the other hand, dishwasher operations are well-defined
and do not present significant deviations within the same
cluster, neither in energy consumption nor in duration. These
considerations are proved by the standard deviation values,
which are smaller in Table VIII for the dishwasher (i.e.,
0.14 kWh) than for the washing machine in Table VII (i.e.,
0.17 kWh). Moreover, the average standard deviation in the
duration of the washing machine programs (i.e., 14 minutes)
is about two times the one for the dishwasher (i.e., 7 minutes).
The reason for this discrepancy in the cohesion is probably
due to the different water temperatures selected by the user
of the washing machine, which may cause a lot of variability
within the same operational mode. Nevertheless, the clustering
algorithm managed to extract significant groups of operations
showing a strong affinity in their power signatures.

To compare the UK-DALE and the NILM dataset we can
apply the Principal Component Analysis (PCA) to the latent
representations extracted by the autoencoder and plot the first
two principal components of the clusters. In this way, we dis-
cover that the clusters formed in the first case are slightly more
cohesive than those created in the second. For the washing
machine, Figure 7 shows that the clusters are less sparse for

TABLE VIII: Average energy consumption, average duration,
and number of cycles for the dishwasher use cases.

Energy consumption
[kWh]

Duration
[hh:mm]

Number of
cycles

UK-house-1 Program A 1.16 ± 0.10 1:39 ± 0:03 257 (35%)
Program B 1.61 ± 0.10 1:25 ± 0:03 422 (65%)

UK-house-2
Program A 0.97 ± 0.04 1:17 ± 0:01 7 (7%)
Program B 1.11 ± 0.07 0:47 ± 0:02 90 (85%)
Program C 1.33 ± 0.09 1:13 ± 0:02 9 (8%)

NILM-house-1

Program A 0.93 ± 0.13 2:06 ± 0:04 129 (47.78%)
Program B 1.08 ± 0.35 1:22 ± 0:24 59 (21.85%)
Program C 1.16 ± 0.15 2:01 ± 0:07 48 (17.78%)
Program D 1.48 ± 0.14 2:11 ± 0:06 34 (12.59%)

NILM-house-2 Program A 0.68 ± 0.11 2:08 ± 0:06 181 (92.35%)
Program B 1.03 ± 0.13 1:30 ± 0:08 15 (7.65%)

NILM-house-3 Program A 1.02 ± 0.19 1:29 ± 0:10 74 (15.45%)
Program B 1.28 ± 0.20 1:56 ± 0:07 405 (84.55%)

NILM-house-4 Program A 0.97 ± 0.11 1:33 ± 0:03 246 (81.46%)
Program B 1.23 ± 0.14 1:53 ± 0:15 56 (18.54%)

NILM-house-5 Program A 0.86 ± 0.31 1:46 ± 0:20 109 (29.30%)
Program B 0.96 ± 0.10 1:19 ± 0:02 263 (70.70%)

the UK-DALE than for the NILM dataset. This difference is
even more visible for the clusters of the dishwasher, reported
in Figure 8. This difference is also highlighted by the average
standard deviations obtained for the two datasets and reported
in Table VII and VIII. The clusters from the submetered data
present an average deviation in the power consumption of 0.11
kWh and a variation of only 5 minutes for their duration. In
contrast, the clusters obtained from the NILM data set presents
higher deviations, i.e., 0.17 kWh in terms of power and 15
minutes in terms of duration. The difference between the two
datasets is probably due to inaccuracies in the disaggregation
algorithm, which may generate some spurious operation cycles
containing traces from other devices in the aggregated power
signal. However, the gap in terms of clustering does not
interfere with the final goal of our methodology. As a matter
of fact, we can still provide a good estimate of the average
energy demand for a certain program if we compute the mean
of the energy consumption for its cluster. In this sense, learning
a good data representation is fundamental to placing spurious
operation cycles in the neighborhood of their correct program.
Based on the previous observations, we can state that our
algorithm can properly manage data from both the submeters
and the disaggregation algorithms, once the available power
signatures are sufficiently accurate.

F. Applications

The results presented in this study can be beneficial for
both end-users and utility companies to optimize their energy
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Fig. 5: Operational modes of the dishwasher of the first house
of the UK-DALE dataset.

Fig. 6: Operational modes of the dishwasher of the first house
of the NILM dataset.

Fig. 7: Two-dimensional PCA projections of the washing
machine cycles in the first house of the UK-DALE dataset
(left-hand side) and in the fourth house of the NILM dataset
(right-hand side).

Fig. 8: Two-dimensional PCA projections of the dishwasher
cycles in the first house of the UK-DALE dataset (left-hand
side) and in the first house of the NILM dataset (right-hand
side).

utilization and management. Past publications show that per-
sonalized recommendation systems are more effective than
traditional real-time feedback in reducing the total energy
consumption of end-users [9]. Indeed, people usually prefer to
receive precise suggestions to reduce their energy consumption
instead of interpreting cryptic energy reports [35].

In this context, the proposed algorithm can be used to
implement an advanced recommendation system aimed at sug-
gesting more practical actions to reduce the end-users’ energy
consumption. These actions can be tailored to the specific
habits of consumers, who can be progressively taught to apply
better practices in the use of their appliances. Smart challenges
and personalized notifications can be used to increase the end-
users’ engagement and periodical feedback can be provided
to check their progress towards the end goals. Thanks to
the proposed algorithm, we can track the exact number of
working cycles of each appliance’s program and suggest new
methods to reduce the impact of energy-intensive programs on
the energy bill. For example, end-users can choose a lighter
operational mode to decrease their energy consumption due
to a washing machine, a dryer, or a dishwasher. In those
houses equipped with solar panels, the information on the
power consumption of each program can be matched with the
domestic provisioning of solar power to increase the energy
self-sufficiency of the house.

Alternatively, heavy programs can be shifted towards off-
peak hours to leverage potential discounts from utility com-
panies, favoring lighter operation modes during peak hours.
Indeed, utility companies can improve DR programs by sug-
gesting lighter operational modes instead of shifting the entire
program activation, with only a minor impact on the end-user’s
comfort. Furthermore, the information on the duration of the
operational modes can help Demand-Side Management (DSM)
programs to provide more precise scheduling of their devices
during the day. Finally, the use of lighter programs together
with the adoption of green habits can also help to reduce the
overall energy demand of entire urban areas during peak hours,
which may relax the requirements of DR programs.

VI. CONCLUSION

We introduce a two-stage clustering approach to identify the
different operational modes of household appliances based on
the analysis of their power signatures. We first implement
an autoencoder neural network to create a better data repre-
sentation of the power signatures. Then, we fit a K-means
algorithm to the latent representation extracted by the autoen-
coder. In this way, we group operational cycles with similar
power signatures. Finally, we test our framework on authentic
working cycles. To guarantee the feasibility of the proposed
framework, we analyze the power signatures of some washing
machines and dishwashers collected using both submeters
and non-intrusive load monitoring techniques. Our clustering
results reveal the presence of multiple operation modes with
well-defined features in terms of both energy consumption and
duration. Overall, our analysis demonstrates the effectiveness
of our methodology and our study presents the very first
framework to automatically classify the different operational
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modes of deferrable apparatus with a completely unsupervised
approach. The adoption of deep learning techniques overcame
the limitations of handcrafted features as proposed in previous
works, thus allowing a greater flexibility of the methodology,
which can now be easily generalized to multiple devices
and manufacturers. In addition, the features extracted by the
autoencoders speed up the clustering process by reducing
the data dimensionality and are more robust to noisy power
signatures such as those provided by NILM algorithms. Most
importantly, the unsupervised learning approach does not rely
on the annotations of our equipment programs, which are
rarely available in a real-world scenario. Finally, we provide
a set of real-world applications of our work that can help
both end-users and utility companies to optimize their energy
utilization and management.
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