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based on Jacobi polynomials

E. Carreraa,b✯, R. Augelloa❸, A. Pagania❹, D. Scanoa➜

aMul 2 Group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
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Abstract: In this paper, theories of structures based on hierarchical Jacobi expansions
are explored for the static analysis of multilayered beams, plates and shells. They belong to the
family of classical orthogonal polynomials. This expansion is employed in the framework of the
Carrera Unified Formulation (CUF), which allows to generate finite element stiffness matrices
in a straightforward way. CUF allows also to employ both layer-wise and equivalent single
layer approaches in order to obtain the desired degree of precision and computational cost. In
this work, CUF is exploited for the analysis of one-dimensional beams and two-dimensional
plates and shells, and several case studies from the literature are analysed. Displacements,
in-plane, transverse and shear stresses are shown. In particular, for some benchmarks, the
shear stresses are calculated using the constitutive relations and the stress recovery technique.
The obtained results clearly show the convenience of using equivalent single layer models when
calculating displacements, in-plane stresses and shear stresses recovered by three-dimensional
indefinite equilibrium equations. On the other hand, layer-wise models are able to accurately
predict the structural behaviour, even though higher degrees of freedom are needed.

Keywords: Composite structures; Layer-Wise, Equivalent Single Layer; Beam models, Plate
models, Shell models; Jacobi polynomials; Stress Recovery.

1 Introduction

Layered structures have a leading role in several engineering applications, e.g. aerospace,
biomedical and automotive. With the development of increasingly complex components, the
need has arisen for a method which can simulate the behaviour of these structures. The
anisotropy of the material represents a challenging issue in the development of this method,
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since it causes intricate mechanical phenomena. Moreover, the shear stresses must respect
the condition of continuity at each interface layer, whereas discontinuous mechanical proper-
ties in the transverse direction produce the zig-zag distribution of displacement fields. These
requirements are named as C0

z-requirements by Carrera [1]. Finally, the coupling between
the in-plane and out-of-plane strain components has to be considered. In the present work,
a refined model based on the Jacobi expansion is used for the modelling of multilayered one-
dimensional (1D) beams and two-dimensional (2D) plates and shells structures.
When dealing with 1D structures, Euler-Bernoulli Beam Model (EBBM) [2] and the Timo-
shenko Beam Model (TBM) [3] are the classic models. In the first one, however, shear strain
components are considered null, while in the second they are constant over the cross-section.
When thin-walled and layered components are studied, higher-phenomena may appear within
the structure, due to relevant deformation over the cross-section. In this case, it is necessary
to adopt more refined theories, as described in the influential book by Novozhilov [4]. The
works of Kapania and Raciti [5, 6] and Carrera et al. [7] give comprehensive reviews for
1D theories. Warping functions, which succeeded in capturing the deformations of the beam
cross-section, were proposed by Vlasov [8]. Many scholars, as Ambrosini, Riera et al. [9],
Mechab, Meiche et al. [10] and Friberg [11], adopted these functions for the analysis of thin-
walled structures. Moreover, Schardt [12] suggested the so-called Generalized Beam Theory
(GBT) which expresses the displacement field as a linear combination of cross-sectional de-
formation modes.
Concerning the 2D plate and shell theories, Kirchhoff-Love theory [13, 14] and First Shear
Deformation Theory (FSDT), based on the works by Reissner [15] and Mindlin [16] are the 2D
counterpart of EBBM and TBM, respectively. Classical Lamination Theory (CLT) [17] is the
extension of Kirchoff-Love for laminated structures, and it neglects the out-of-plane strains.
Consequently, some issues occured during the practical stages of the research. FSDT, which
gives better results, considers shear strain components as a constant, and is used in commer-
cial software tools. As classical theories are affected by some drawbacks, several refined plate
Finite Elements (FEs) have recently been developed, as proposed by Reddy and Robbins Jr.
[18] and Carrera [19]. When dealing with laminates, two approaches can be used: Equivalent
Single Layer (ESL) and Layer-Wise (LW) models. In the first one, the number of unknowns
are not affected by the number of layers, while in the second one, they are dependent on the
number of layers (see Carrera [20]). Clearly, Layer-Wise models are adopted when a refined
analysis is required, even though they demand a high computational cost. This influences
the entire design process of the structural components. As this is a crucial point, most of the
works suggested here adopt ESL theories.
Some higher-order theories with ESL approach are those developed by Reddy [21], the so-
called zig-zag theories firstly proposed by Murakami [22] and the theories based on Reissner’s
Mixed Variational Theorem (RMVT) developed by Carrera [23]. Furthermore, Rammerstor-
fer, Dorninger, et al. [24], Reddy [25], Mawenya and Davies [26], and Noor and Burton [27]
developed FE implementations using LW theories. Carrera [28] also proposed a unified for-
mulation for 2D plate and shells using the Principle of Virtual Displacements or RMVT with
ESL and LW approaches.
For beam, plate and shell modelling, refined theories differ from classical ones by using higher-
order polynomials, e.g. Taylor polynomials (see Carrera et al. [29]), zig-zag theories by the
same authors [30] and Lagrange expansions (see Pagani et al. [31]). In the present work,
refined beam, plate and shell models are built using Jacobi polynomials. Jacobi expansions
([32, 33] consist of orthogonal polynomials, which can be derived from a recurrence relation.
Jacobi polynomials are used in several numerical applications. Guo et al. [34] used generalized
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Jacobi functions to resolve partial differential equations, while Abd-Elhameed [35] proposed
an algorithm for solving sixth-order boundary value problems with the aid of the Galerkin
method. Some papers on structural applications build hierarchical functions using integrated
Jacobi polynomials (the interested reader can refer to Beuchler and Schöberl [36]). Jacobi
polynomials are adopted as shape functions in FE elements and as expansions to generate
structural theories. Szabo, et al. [37] proposed a h-p version of FE using hierarchical expan-
sions derived from Legendre polynomials for beam, plate and solid. Beuchler and Pillwein
[38] showed the efficiency of tetrahedral FEM for higher polynomial degrees. Fuentes et al.
[39] suggested a similar FE method based on shifted Jacobi polynomials. They introduced
several shapes for beam, plate and solid elements. Adopting general Jacobi polynomials, the
Legendre case can be derived as a particular case of Jacobi polynomials. Li et al. [40] com-
pared Legendre and Lagrange shape functions for 2D plate elements. Finally, Alanbay et al.
[41] demonstrated the computational efficiency to calculate free vibration frequencies when
weighted orthogonal Jacobi polynomials and Ritz method are adopted in plate simulations.
Pagani et al. [42] used Legendre for 2D cross-section in beam formulation, while Carrera et
al. [43] studied anisotropic plates by means of hierarchical 1D expansions constructed with
Chebyshev polynomials. Finally, Carrera and Valvano [44] analysed composite structures
with embedded piezoelectric sheets through ESL/LW approach with Legendre polynomials.
This paper proposes hierarchical expansions built using Jacobi polynomials in the framework
of CUF. This formulation is versatile since it can be used to derive beam, plate and shell
models and the governing equations are invariant from the adopted theory of structure. In
fact, type and order of expansion, together with the chosen approach, are the input for build-
ing a structural model. The formulation also makes it possible to use weak formulations for
providing numerical solutions. In the present work, Lagrange polynomials have been chosen
as shape functions of Finite Element Method (FEM).
This paper is structured as follows: Section 2 introduces the hierarchical Jacobi expansion,
and in Section 3 the unified formulation and the adopted FEM are proposed. Furthermore,
an explanation of is provided. In Section 4 significant results are presented. Finally, the main
conclusions of this work are drawn in Section 5.

2 Hierarchical Jacobi polynomials for composite struc-

tures

In this paper, theories of structures based on Jacobi polynomials are considered. Differently
from the Lagrange polynomials (see Pagani et al. [31] ), where some selected points are used
to generate the functions, they are formulated using recurrence relations, as done for Legendre
polynomials. The relation describing the orthogonal Jacobi polynomials is expressed in the
following

P (γ,θ)
n (ζ) = (Anζ +Bn)P

(γ,θ)
n−1 (ζ)− CnP

(γ,θ)
n−2 (ζ) (1)

where γ and θ are two parameters and n is the order of the polynomial. The relation is
calculated in ζ = [−1,+1]. The initial values are P

(γ,θ)
0 (ζ) = 1 and P

(γ,θ)
1 (ζ) = A0ζ+B0. The

parameters An, Bn and Cn are presented as follows

An =
(2n+ γ + θ + 1)(2n+ γ + θ + 2)

2(n+ 1)(n+ γ + θ + 1)
(2)

Bn =
(γ2 − θ2)(2n+ γ + θ + 1)

2(n+ 1)(n+ γ + θ + 1)(2n+ γ + θ)
(3)
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Cn =
(n+ γ)(n+ θ)(2n+ γ + θ + 2)

(n+ 1)(n+ γ + θ + 1)(2n+ γ + θ)
(4)

Other popular polynomials can be devised, by opportunely choosing values of the parameters
γ and θ. For instance, Legendre polynomials are given by γ = 0 and θ = 0 (see Fig. 1 (a)
for the first five orders), while the First Kind of Chebyshev Polynomials (see Fig. 1 (b)) are
given by the following formula

Tn(ζ) =
P
(− 1

2
,− 1

2
)

n (ζ)

P
(− 1

2
,− 1

2
)

n (1)
(5)
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Figure 1: Legendre Polynomials (a) and First Kind of Chebyshev Polynomials (b) up to the
fifth order.

2.1 Hierarchical Jacobi Expansion for plates and shells

Jacobi polynomials are used to build hierarchical functions, exploiting the fact that orthogonal
polynomials are obtained using Eq. 1. For the 2D plates and shells, they are adopted as
expansion functions with the procedure described in [37]. The expansion functions can be
adopted for both the ESL and LW approaches in the CUF framework, described in Section
3. Fig. 2 shows a illustration of two-layer plate and shell cross-sections, where each layer is
indicated by letter k. Figs. 2 (a,c) depict a ESL approach, where a single element is adopted
along the cross-section, while Figs. 2 (b,d) show a discretization where one element is used
for each layer.
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Figure 2: Hierarchical Jacobi Expansions for plate with ESL approach (a) and LW approach
(b), and shell with ESL approach (c) and LW approach (d). represents an edge expansion,

whereas is an inner expansion.

The set for hierarchic functions is given by

F1(ζ) =
1

2
(1− ζ)

F2(ζ) =
1

2
(1 + ζ) (6)

Fi(ζ) =φi−1(ζ), i = 3, 4, ..., n+ 1

with
φj(ζ) = (1− ζ) (1 + ζ)P γ,θ

j−2(ζ), j = 2, 3, ..., n (7)

The first two functions F1(ζ), F2(ζ) are the vertex expansions. Given the following property

Fi(−1) = Fi(1) = 0, i ≥ 3 (8)

the functions Fi(ζ), i = 3, 4, ... are called bubble functions or edge expansions. The bubble
functions for two different sets of parameters γ and θ are shown in Figs. 3 (a) and 3 (b) for
the cases γ = 1.5, θ = −0.5 and γ = 0, θ = 0 (i.e. Legendre), respectively. 1

2.2 Hierarchical Jacobi Expansion for beams

In this case, vertex, edge and internal polynomials are used as interpolation functions over
the domain. When dealing with laminated structures, ESL and LW approaches, described in
Section 3, can be exploited using the presented Jacobi polynomials. Figure 4 shows a beam
cross-section, and each layer is indicated by letter k. The ESL technique is depicted in Fig.
4 and a single polynomial is employed for the whole cross-section, including the two layers,
whereas a dedicated Jacobi polynomial is reserved for each layer in the LW procedure, shown
in Fig. 4. A similar procedure is described in [43].

1In the literature (see [37] and [43]), the following bubble expression (or multiplied by a pre-factor) are
used for Legendre and Chebyshev of the First Kind

φ∗j (ζ) =

∫ ζ

−1

P
γ,θ
j−1

dζ, j = 2, 3, ..., n

but this procedure does not guarantee the condition in Eq. (7) for every choices of γ, θ and n.
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Figure 3: Edge expansion up to the fifth order with γ = 1.5, θ = −0.5 (a) and γ = 0, θ = 0
(b).

(b)(a)
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k=1 k=1

k=2

Figure 4: Hierarchical Jacobi Expansions for beam with ESL approach (a) and LW approach

(b). represents a vertex expansion, whereas is an edge expansions and indicates an
internal expansions.

6



(a) (b) (c)

Figure 5: Vertex expansions (a), edge expansion (b) and internal expansion (c) for two-
dimensional case with γ = 0, θ = 0.

Vertex expansions The vertex modes correspond to the first-order, quadrilateral Lagrange
polynomials:

Fτ (ξ, η) =
1

4
(1− ξτξ)(1− ητη), τ = 1, 2, 3, 4 (9)

where ξ and η vary above the domain between -1 and +1, and ξτ and ητ represent the vertex
coordinates in the natural plane. In Fig. 5 (a), F1 vertex expansion is shown.

Edge expansions The edge modes are defined for p ≥ 2 in the natural plane as follows

Fτ (ξ, η) =
1

2
(1− η)φp(ξ), τ = 5, 9, 13, 18, ...

Fτ (ξ, η) =
1

2
(1 + ξ)φp(η), τ = 6, 10, 14, 19, ...

Fτ (ξ, η) =
1

2
(1 + η)φp(ξ), τ = 7, 11, 15, 20, ... (10)

Fτ (ξ, η) =
1

2
(1− ξ)φp(η), τ = 8, 12, 16, 21, ...

where p represents the polynomial degree of the bubble function. In Fig. 5 (b), F9 edge
expansion (linked to the third order of Jacobi polynomials) is displayed.

Internal expansions Fτ internal expansions are built by multiplying 1D edge modes.
There are (p− 2)(p− 3)/2 internal polynomials for p ≥ 4 and they vanish at all the edges of
the quadrilateral. For instance, considering the set of fifth-order polynomials, it contains 3
internal expansions, which are

F22(ξ, η) =φ3(ξ)φ2(η), 3 + 2 = 5

F23(ξ, η) =φ2(ξ)φ3(η), 2 + 3 = 5 (11)

F17(ξ, η) =φ2(ξ)φ2(η), 2 + 2 = 4

In Fig. 5 (c), F22 internal expansion (linked to the fifth order of Jacobi polynomials) is
displayed.
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3 Unified formulation for beams, plates and shells

3.1 Preliminaries and CUF assumptions

In this section, the Carrera Unified Formulation (CUF) is presented for beams, plates and
shells. In the present work, hierarchical Jacobi polynomials are adopted as expansion func-
tions.
Let us consider multilayered beam, plate and shell structures as shown in Fig. 6.

2D plate model 2D shell model1D beam model

Figure 6: Generic multilayered beam, plate and shell models. For 1D model, y is the direction
of the beam axis, and z is the thickness coordinate of the 2D models. A Cartesian reference
system is employed for the 1D beam and 2D plate models (x, y, z), whereas a curvilinear
system (α, β, z) is used for the 2D shell model.

The cross-section A of the 1D model lays on the x− z plane of a Cartesian reference system.
As a consequence, the beam axis is placed along the y direction and the 2D plate model uses
the z coordinate for the thickness direction and the coordinates x and y indicate the in-plane
mid-surface Ω0. Finally, the shell uses a curvilinear reference frame (α, β, z) to account
for the curvature, where α and β are the two in-plane directions. In this work, only single
curvature shell structures (i.e cylindrical shells) are considered. The displacement vector for
the models is introduced in the following

uk(x, y, z) =
{

uk
x uk

y uk
z

}T
, uk(α, β, z) =

{

uk
α uk

β uk
z

}T
(12)

where k indicates the layer. In the relations shown in Eq. (12), a Cartesian reference system
is adopted for the former, and a curvilinear system for the latter. The stress, σk, and strain,
ǫ
k, vectors are expressed in vectorial form,

σ
k =

{

σk
xx σk

yy σk
zz σk

xz σk
yz σk

xy

}T
, ǫ

k =
{

ǫkxx ǫkyy ǫkzz ǫkxz ǫkyz ǫkxy
}T

σ
k =

{

σk
αα σk

ββ σk
zz σk

αz σk
βz σk

αβ

}T
, ǫ

k =
{

ǫkαα ǫkββ ǫkzz ǫkαz ǫkβz ǫkαβ
}T

(13)

The displacement-strain relations are expressed as

ǫ
k = buk (14)

where b is the matrix of differential operators. More informations can be found in Carrera et
al. [45, 46].
As far as the constitutive relation is concerned, linear elastic orthotropic materials are con-
sidered in this work. Consequently, the constitutive relation reads as:

σ
k = Ck

ǫ
k, (15)
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where Ck is the material elastic matrix, whose explicit form can be found in Bathe [47] and
Hughes [48].
Within the framework of the CUF, the 3D displacement field uk(x, y, z) of the 1D beam and
2D plate and uk(α, β, z) of 2D shell models can be expressed as a general expansion of the
primary unknowns. The displacements can be conveniently written in the most general way
for all the three formulations as follows

uk(x, y, z) = F k
τ u

k
τ (16)

Fτ are the expansion functions of the generalized displacements uτ , the Einstein convention

Formulation 3D Fields CUF Expansion
1D beam : uk(x, y, z) F k

τ (x, z) uk
τ (y)

2D plate : uk(x, y, z) F k
τ (z) uk

τ (x, y)
2D shell : uk(α, β, z) F k

τ (z) uk
τ (α, β)

Table 1: CUF formulation. τ is the repeated indexes with τ = 1, 2, ....,M , while M denotes
the order of expansion.

with the repeated index τ is assumed, M denotes the order of expansion. In Table 1, the
independent variables are explicitly shown for each formulation.

3.2 Finite Element Approximation

The Finite Element Method (FEM) is adopted to discretise the generalized displacements uk
τ .

Thus, recalling equations described in Table 1, they are approximated as displayed in Table
2, where Ni stand for the shape functions, the repeated subscript i indicates summation, Nn

Formulation 3D Field FEM+CUF Expansions
1D beam : uk(x, y, z) Ni(y) F k

τ (x, z) uk
τi

2D plate : uk(x, y, z) Ni(x, y) F k
τ (z) uk

τi

2D shell : uk(α, β, z) Ni(α, β) F k
τ (z) uk

τi

Table 2: Finite element method. i is repeated index with i = 1, 2, ...., Nn, Nn is the number
of the FE nodes per element.

is the number of the FE nodes per element and uk
τi are the following vectors of the FE nodal

parameters:

uk
τi =

{

uk
xτi

uk
yτi

uk
zτi

}T
uk
τi =

{

uk
ατi

uk
βτi

uk
zτi

}T
(17)

In this work, when using formulation for beam, classical one-dimensional FEs with three-
node(B3) and four-node (B4) are adopted, i.e. parabolic and cubic approximation along the
y axis are assumed, respectively. For the 2D plate and shell formulations, classical 2D nine-
node bi-quadratic FEs (Q9) is adopted for the shape function in the x, y and α, β planes, see
Bathe [47] for more details. These shape functions have been chosen, since they have a faster
convergence than linear (B2) and bi-linear (Q4) elements.
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Formulation Displacement Virtual Displacement
1D beam : uk(x, y, z) = Ni(y)F

k
τ (x, z)u

k
τi δuk(x, y, z) = Nj(y)F

k
s (x, z)δu

k
sj

2D plate : uk(x, y, z)= Ni(x, y)F
k
τ (z)u

k
τi δuk(x, y, z)= Nj(x, y)F

k
s (z)δu

k
sj

2D shell : uk(α, β, z)=Ni(α, β)F
k
τ (z)δu

k
τi δuk(α, β, z)=Nj(α, β)F

k
s (z)δu

k
sj

Table 3: Displacements and virtual displacements. τ and s are the repeated indexes with
τ, s = 1, 2, ....,M , while M denotes the order of expansion. i and j are repeated index with
i, j = 1, 2, ...., Nn, Nn is the number of the FE nodes per element.

3.3 Governing equations and Finite Element Matrices

The Principle of Virtual Displacements (PVD) is used and it reads:
∫

Vk

(δǫTσ)dVk = δLe (18)

where Vk is the integration domain and k is the considered mathematical layer. The left-hand
side of the equation represents the variation of the internal work, while the right-hand side is
the virtual variation of the external work. Since the real and the virtual systems are used in
PVD, it is useful to show how the displacements are expressed and which indexes are used in
the different systems (see Table 3). When an approach has to be introduced, LW has different
functions for each layer k, whereas ESL uses the same functions for every layer k.
Substituting the geometrical relations (Eq. (14)), the constitutive equation (Eq. (15)), and
applying the CUF (Table (1)) and the FEM (Table (2)), the following governing equations
are obtained:

δqk
sj : Kkijτs qk

τi = Pk
sj (19)

where Kkijτs is a 3 × 3 matrix, called fundamental nucleus (FN) of the mechanical stiffness
matrix. The stiffness matrix of each layer k is obtained from the expansion of the FN on the
indexes τ and s. On the other hand, Pk

sj is a 3 × 1 matrix, called fundamental nucleus of the
external load (see [49, 46] for further details). Then, the matrices of each layer are assembled
at the multi-layer level.

4 Numerical Results

In this section, results on displacements and stresses are displayed for four benchmarks. They
are compared with reference solutions from the open literature (see Table 4 for a schematic
representation). It is demonstrated that, given the polynomial order, the parameters γ and
θ do not alter the results. Thence, there are no specifications in tables and figures. When
the results are presented as LJn, it indicates Layer-Wise (Hierarchical) Jacobi and n is the
polynomial order, whereas EJn stands for Equivalence Single Layer (Hierarchical) Jacobi.
For the shear stresses results, the letter H indicates the use of Hooke’s Law, and the letter I
stands for stress recovery method. The tables report only stresses from Hooke’s Law.

4.1 Convergence characteristics and shear locking treatment for

the proposed elements

Here, numerical issues for thin structures are analysed. The convergence of transverse dis-
placement is studied for beams, plates and shells. In order to investigate the shear locking
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B1: Two-layer Beam [50] B2: Three-layer plate [51]

z

x

y

b

a h

L/h = 20, 200 and h/t = 0.5 b/h = 4, 1000 and a = 1
Cantilever beam loaded by Simply supported, loaded with a transverse

a uniform pressure at the top position sinusoidal pressure p = Pz sin
(

π x
b

)

towards negative z-axis. P = 1000Pa at the top position with Pz = 1Pa
B3: Five-layer sandwich plate [52, 53] B4: Three-layer shell [54, 28]

z

a

x

y

b

h

�

�

�

h

b a

z

R

a/h = 100, a = b, h3 = 8mm, Rβ/b = π/3, Rβ/h = 4, 10, 1000 and a = 1
h1 = h2 = h4 = h5 = 0.5mm

Simply supported, loaded with a transverse Simply supported, loaded with a transverse
sinusoidal pressure p = Pz sin

(

π x
a

)

sin
(

π x
a

)

sinusoidal pressure p = Pz sin
(

π x
b

)

at the top position with Pz = 1Pa at the top position with Pz = 1Pa

Table 4: Geometrical properties of the four Benchmarks.

problem, very thin structures are taken into account. Four types of integration techniques
are compared, namely, Full scheme (F), Reduced integration scheme (R)(see Zienkiewicz et
al. [55]), Selective integration scheme (S)(see Kavanagh et al. [56]) and Mixed Interpolation
Tensorial Components (MITC)(see Bucalem et al. [57]). Finally, for extended reviews, see
[46] and Carrera et al. [58] . The first case is the two-layer composite beam presented in
Carrera et al. [50]. Parabolic (B3) FEM elements are used, whereas LJ5 and EJ5 theories
along the cross-section are adopted for composite and bimetallic beams with L/h = 200. Fig.
7 show how shear locking phenomenon is dependent only by the FEM discretization, while
structural theories is not affected by this numerical phenomenon. A faster convergence for LJ5
is given because it has more degrees of freedom than EJ5. Furthermore, thin three-layered
plate (b/h = 1000) and shell (Rβ/h = 1000) are considered, respectively from Pagano [51]
and Ren [54]. Biquadratic (Q9) FEM elements are used, whereas LJ5 and EJ5 theories along
the cross-section are employed for both structures. For the sake of conciseness, only results
with LJ5 theory are shown in Fig. 8, since EJ5 theory gives very similar results, as already
demonstrated for the beam case. Finally, the integration techniques are able to resolve the
numerical issues for beam, plate and shell formulations.
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composite beam with 1D formulation using LJ5 (a) and EJ5 (b) theories along the cross-
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4.2 B1: Two-layer beam

As first assessment, a two-layer composite and a bimetallic beam are considered. The analysis
was firstly proposed by Carrera et al. [50]. Regarding the cross-ply beam, good results can
be achieved for the transverse displacements and the in-plane stresses as displayed in Table
5 and Fig. 9, while there are greater differences for the shear stresses calculated through the
Hooke’s Law (see Table 5 and Fig. 10). Excellent results can be obtained if the shear stresses
are calculated through the integration of indefinite equilibrium equations, i.e. the stress re-
covery technique, and remarkable improvements are obtained also for lesser refined theories.
Considering the bimetallic structure, again the displacements and the in-plane stresses are in
general well captured (see Table 6). In this case, it is particularly difficult to obtain a similar
distribution of the shear stresses (as illustrated in Table 6 and Fig. 10) because of transverse
anisotropy of the material properties; i.e. E3 is different along the z direction, while it is
constant for the composite. Indeed, a big hiatus is observed at the interface layer for ESL
theory. Adopting the stress recovery method can resolve these problems.

Model −uz × 103mm σyy × 103MPa σyz × 103MPa DOF
LW[50] 5.263 90.33 23.00 1848

Present Analysis(Layer-Wise)
LJ1 5.220 90.93 16.35 396
LJ2 5.246 91.04 16.35 858
LJ3 5.263 90.40 23.00 1320
LJ4 5.263 90.27 23.02 1914
LJ5 5.263 90.30 23.01 2640

Present Analysis(Equivalent Single Layer)
EBBM 5.140 92.96 — 66
TBM 5.265 92.38 10.02 110
EJ1 5.147 95.91 10.07 264
EJ2 5.233 91.04 16.35 528
EJ3 5.240 91.55 14.76 792
EJ4 5.256 90.60 20.34 1122
EJ5 5.260 90.13 22.27 1518

Table 5: Transverse displacement,in-plane and shear stresses of two-layer composite beam
with 1D formulation. −uz calculated in [0, L, 0], σyy calculated in [0, L/2, 0.05m] and σyz

calculated in [0, L/2,−0.025m].

4.3 B2: Three-layer composite plate

For the second benchmark a thick plate (b/h = 4) is considered. The analysis was originally
proposed by Pagano [51] and further investigated by Carrera [59]. Transverse displacements
are compared in Table 7. Classical models are not able to approach the reference solution,
while the J ESL models can improve the results. Once again, LW models lead to the most
accurate results. Similar conclusions can be drawn when looking at the in-plane stresses (see
Table 7 and Fig. 13 (a) and Fig. 14 (a)) and transverse stresses as one can see in Figs. 13 (b)
and 14 (b). Shear stresses are calculated through constitutive relation. Some drawbacks are
found for the classical and ESL models, especially because the continuity and zero condition
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Model −uz × 103mm σyy × 103MPa σyz × 103MPa DOF
LW[50] 0.2008 234.8 11.58 5124

Present Analysis(Layer-Wise)
LJ1 0.1808 237.5 12.16 1098
LJ2 0.2008 234.7 11.74 2379
LJ3 0.2009 234.7 12.22 3660
LJ4 0.2010 234.9 13.09 5307
LJ5 0.2010 234.8 12.95 7320

Present Analysis(Equivalent Single Layer)
EBBM 0.2025 234.4 — 183
TBM 0.2029 234.8 14.80 305
EJ1 0.1629 234.8 14.79 732
EJ2 0.2006 235.0 11.35 1464
EJ3 0.2008 234.7 15.49 2196
EJ4 0.2009 234.8 15.64 3111
EJ5 0.2010 234.9 13.73 4209

Table 6: Transverse displacement,in-plane and shear stresses of bimetallic beam with 1D
formulation. −uz calculated in [0, L, 0], σyy calculated in [0, L/2, 0.05m] and σyz calculated
in [0, L/2,−0.01249m].
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Figure 9: In-plane stresses calculated in [0, L/2, z] of two-layer composite beam with 1D
formulation for LW (a) and ESL (b) models.
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Figure 10: Shear stresses calculated in [0, L/2, z] of two-layer composite beam with 1D for-
mulation for LW (a) and ESL (b) models.
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Figure 11: In-plane stresses calculated in [0, L/2, z] of bimetallic beam with 1D formulation
for LW (a) and ESL (b) models.
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Figure 12: Shear stresses calculated in [0, L/2, z] of bimetallic beam with 1D formulation for
LW (a) and ESL (b) models.

at the low and top positions are not respected (see Table 7 and Fig. 15 (b)). LW models,
except for the LJ1 and LJ2, can overwhelm these problems almost perfectly (see Table 7 and
Fig. 15 (a)). Secondly, the shear stresses are obtained adopting the stress recovery method,
which improves the results. However, some significant differences persist for the ESL models.

4.4 B3: Five-layer composite sandwich plate

A thin sandwich plate (a/h = 100) is presented as the third benchmark. This study case
is taken from Pagani, Valvano et al. [52] and Petrolo and Lamberti [53]. Considering the
transverse displacements, classical and ESL models are not able to approach the LW reference
solution and to have a similar trend, while the LW theories reproduce it (see Table 8 and
Fig. 16) very accurately. The in-plane stresses, as displayed in Table 8 and Fig. 17, are
well reproduced by every theory. Several problems, instead, arise from the calculations of the
shear stresses, using only the Hooke’s Law. The theories with lesser degrees of freedom are
very dissimilar from the reference and LW solutions (which are very close to the first), as it
is usual for plates with great anisotropies along the transverse direction (see Table 8 and Fig.
18). In this case a LW approach is mandatory to obtain good results for shear stresses.

4.5 B4: Three-layer composite shell

The last benchmark deals with a cylindrical shell, considering two different thickness Rβ/h = 4
and Rβ/h = 10. The analysis was originally proposed by Ren [54] and further investigated
by Carrera [28]. Firstly, the thick shell Rβ/h = 4 is analysed. Regarding the transverse
displacements (see Table 9), classical models are not suitable to calculate it, while the ESL

16



Model uz σxx σxz DOF
Exact[51] 2.887 1.176 0.358 —

Present Analysis(Layer-Wise)
LJ1 2.881 1.003 0.361 2604
LJ2 2.864 1.155 0.355 4557
LJ3 2.887 1.173 0.359 6510
LJ4 2.887 1.173 0.359 8463
LJ5 2.887 1.173 0.359 9765

Present Analysis(Equivalent Single Layer)
CLT 0.511 0.629 — 651
FSDT 2.093 0.633 0.160 1085
EJ1 2.092 0.626 0.160 1302
EJ2 2.074 0.651 0.159 1953
EJ3 2.687 1.136 0.285 2604
EJ4 2.685 1.134 0.285 3255
EJ5 2.741 1.134 0.324 3906

Table 7: Transverse displacement, in-plane and shear stresses of three-layer composite plate
under sinusoidal pressure with 2D formulation. uz calculated in [a/2, b/2, 0], σxx calculated
in [a/2, b/2, h/2], σxz calculated in [a/2, 0, 0].
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Figure 13: In-plane(a) and transverse (b) stresses in [a/2, b/2, z] for three-layer composite
plate with 2D formulation for LW models.
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Figure 14: In-plane(a) and transverse (b) stresses in [a/2, b/2, z] for three-layer composite
plate with 2D formulation for ESL models.
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Figure 15: Shear stresses in [a/2, 0, z] for three-layer composite plate with 2D formulation for
LW (a) and ESL models (b).
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Model uz σxx σxz DOF
LW[52] 3.1167 -0.7819 0.1825 27783
ESL[52] 3.0220 -0.7795 0.0917 6615

Present Analysis(Layer-Wise)
LJ1 3.1241 -0.7762 0.1823 44652
LJ2 3.1167 -0.7762 0.1859 78141
LJ3 3.1167 -0.7762 0.1825 111630
LJ4 3.1167 -0.7762 0.1825 145119
LJ5 3.1167 -0.7762 0.1825 178608

Present Analysis(Equivalent Single Layer)
CLT 2.9363 -0.7697 — 11163
FSDT 2.9429 -0.8004 0.0048 18605
EJ1 2.8218 -0.7674 0.0048 22326
EJ2 2.9429 -0.7713 0.0048 33489
EJ3 3.0222 -0.7739 0.0929 44652
EJ4 3.0222 -0.7738 0.0929 55815
EJ5 3.1088 -0.7690 0.2306 66978

Table 8: Transverse displacement, in-plane and shear stresses of the five-layer composite
sandwich plate with 2D formulation. uz calculated in [a/2, a/2,+h/2], σxx calculated in
[a/2, a/2,−h/2], σxz calculated in [0, a/2, 0].
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Figure 16: Transverse displacement in [a/2, a/2, z] of five-layer composite sandwich with 2D
formulation for LW (a) and ESL (b) models.
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Figure 17: In-plane stresses in [a/2, a/2, z] of five-layer composite sandwich with 2D formu-
lation for LW (a) and ESL (b) models.
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Figure 18: Shear stresses in [a/2, a/2, 0] of five-layer composite sandwich with 2D formulation
for LW (a) and ESL (b) models.
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improve with the increasing of DOF. Excellent results are obtained for the LW models. The
in-plane stresses are calculated well by LW models, while several problems can be found when
adopting theories with fewer DOFs (see Table 9 and 19). As usual, the shear stresses are
calculated with more difficulties. If results with the Hooke’s Law are considered, classical and
ESL theories are not able to be near to the reference solution. Better results are obtained
with more refined theories (see Table 9 and Fig. 20). If the stress recovery method is used,
less refined theories are improved greatly, whereas LW models almost fit perfectly with the
reference solution(see Table Fig. 20). Secondly, a thinner shell Rβ/h = 10 is analysed.
Transverse displacements (see Table 9) are well obtained, except for CLT, FSDT, EJ1 and
EJ2. Same considerations can be given for the in-plane stresses as shown in Table 9 and Fig.
21. Considering the shear stresses, there is an analogous behaviour to thick shell, even though
ESL models are very near to the reference solution (see Table 9 and Fig. 22).

Rβ/h = 4 Rβ/h = 10
Model uz σββ σβz uz σββ σβz DOF

Exact[54] 0.457 1.367 0.476 0.144 0.897 0.525 —
CLT[54] 0.0781 0.732 — 0.0777 0.759 — —

Present Analysis(Layer-Wise)
LJ1 0.440 1.199 0.478 0.141 0.853 0.525 2100
LJ2 0.454 1.334 0.471 0.144 0.883 0.523 3675
LJ3 0.458 1.354 0.475 0.144 0.884 0.524 5250
LJ4 0.458 1.354 0.475 0.144 0.884 0.524 6825
LJ5 0.458 1.354 0.475 0.144 0.884 0.524 8400

Present Analysis(Equivalent Single Layer)
CLT 0.074 0.654 — 0.076 0.709 — 525
FSDT 0.293 1.318 0.178 0.112 0.721 0.184 875
EJ1 0.331 0.759 0.208 0.119 0.766 0.196 1050
EJ2 0.329 0.789 0.208 0.119 0.766 0.196 1575
EJ3 0.425 1.318 0.375 0.136 0.869 0.382 2100
EJ4 0.426 1.306 0.375 0.136 0.868 0.382 2625
EJ5 0.435 1.315 0.429 0.140 0.875 0.476 3150

Table 9: Transverse displacement,in-plane and shear stresses of three-layer composite shell
under with 2D shell formulation. uz calculated in [a/2, b/2, 0], σββ calculated in [a/2, b/2, h/2]
and σβz calculated in [a/2, 0, 0].

5 Conclusions

The present work evaluated the performances and benefits of adopting Equivalent Single Layer
(ESL) and Layer-Wise (LW) approaches based on the Hierarchical Jacobi Expansion (HJ) in
the static analysis of beams, plates and shells. Various geometries were analysed and one-
dimensional (1D) beams, two-dimensional (2D) plates and shells were employed. Different
kinds of pressures and geometrical boundary conditions were considered.
Four case studies were taken from well-known literature problems. Results are compared with
reference solutions and classical models. The following main conclusions can be summarized
as follows:
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Figure 19: In-plane stresses in [a/2, b/2, z] of three-layer composite shell with 2D shell formu-
lation, for LW (a) and ESL (b) models, in case of Rβ/h = 4.
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Figure 20: Shear stresses in [a/2, 0, z] of three-layer composite shell with 2D shell formulation,
for LW (a) and ESL (b) models, in case of Rβ/h = 4.
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Figure 21: In-plane stresses in [a/2, b/2, z] of three-layer composite shell with 2D shell formu-
lation for LW (a) and ESL (b) models, in case of Rβ/h = 10.
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Figure 22: Shear stresses in [a/2, 0, z] of three-layer composite shell with 2D shell formulation,
for LW (a) and ESL (b) models, Rβ/h = 10.
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❼ Given a certain polynomial order, the parameters γ and θ of the Jacobi polynomials are
not influential for the calculations.

❼ On the topic of shear locking, LW and ESL models with Jacobi polynomials produce
similar trends when a convergence for displacements is performed.

❼ The proposed LW approach with Jacobi polynomials guarantees to obtain results close
to the solutions from the literature. Given that LW approach has a high computational
cost, it is sometimes useful to adopt the ESL approach. Furthermore, it gives better
results than classical theories.

❼ The stress recovery method is able to resolve some of the critical issues presented in the
calculation of the shear stresses, even for the low-order models.

Future works could be usefully devoted to free-vibration analysis and to the study of geomet-
rical nonlinear applications.
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