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Summary

In the present thesis we study artificial neural networks with the lens of statistical me-
chanics, field that has proven very useful in understanding the structure of the solution
space of combinatorial optimization problems such as the perceptron, the basic unit of
any artificial neural network.

The rise of artificial neural networks in the last decade has been staggering and now
deep (i.e. many-layered) neural networks applications are ubiquitous in technology and
science. Despite this fact, a comprehensive theory that explains this success is still miss-
ing: according to the classical statistical learning framework, deep networks should not
have good generalization properties because they are utilized in the over-parametrized
regime (i.e. much more parameters than examples), where statistical learning theory
predicts overfitting for any class of models.

An interesting conjecture which has emerged in various contexts argues that the
flatness of the minima can lead to good generalization in the over-parametrized regime.
For this reason recently a theory has been developed that connects the generalization
capabilities of artificial neural networks with the geometrical properties of the error
loss functions that is minimized for learning. This theory makes use of the concept
of local entropy, a function that counts the number of other solutions around a given
solution. So far theoretical results on generalization have been limited to the basic
supervised learning setting of the teacher-student model. Other empirical results are
available which are not limited to a teacher-student setting, but they are still examples
of supervised learning.

Supervised learning means training an artificial neural network to do some classi-
fication task. This means finding a rule to fix the parameters given a set of example
patterns, in a way that the network assigns the correct label to each example. The ad-
jective supervised refers to the fact that each example pattern must be provided with a
label.

The teacher-student model is the prototypical classification problem. In this setting
the examples are independent and identically distributed randomly-generated patterns
and the labels are provided as the output of a second network (called teacher) that
is randomly initialized and that has the same architecture of the first network (called
student).

1



Summary

The main goal of this thesis is to explore the effect of local-entropy-inspired al-
gorithms in situations that are progressively more different from the teacher-student
scenario. First we study a perceptron model on a Gaussian-mixture data distribution,
then we switch to an unsupervised setting (i.e. the examples are not labeled) and finally
we study a system that is completely unrelated to neural networks where local entropy
proves to be useful to understand the evolution of proteins.

Other setting that expand the results of the perceptron teacher-student scenario
have already been studied, all of which focus on supervised learning problems. In [1,
2, 3] the authors show that developing local-entropy-based algorithms improves the
generalization performance also in deep architectures. Additionally, in [4, 5, 6, 7] the
authors study models where an analytical treatment is still feasible, exploring the inter-
play between activation functions, number of parameters of a network, classification
with a margin, the existence of wide flat minima and their effect on generalization.

The thesis is organized into three parts, as it follows.
Part I is made of chapters 1 and 2 and is dedicated to introducing all the concepts

necessary for understanding the results in part II.
In chapter 1 we introduce the basic ingredients of neural networks: the perceptron,

classification problems, the problem of overfitting and how to build deep networks.
In chapter 2 we introduce local entropy and we review the most recent results re-

lated to it. This is useful to understand how the results in this thesis go beyond what is
already known in the literature.

Part II is made of chapters 3, 4 and 5 and contains the results on the three models
that are studied in this thesis.

In chapter 3 we discuss the perceptron Gaussian mixture problem, a simple model
that can show how local entropy is relevant for controlling overfitting even when the
training loss is a convex function. Additionally, on this model no classifier can achieve
zero test error, in contrast with the classical perceptron setting. We show both analyt-
ically and numerically how to systematically improve the generalization performance
in this setting by optimizing local entropy.

In chapter 4 we move on to the more complicated task of unsupervised learning of
composite data. The choice of composite data allows for an assessment of the quality of
the learning that goes beyond the generalization error: if we have access to the genera-
tive model of the examples we can check if the extracted features are similar to the true
features. A natural candidate model for finding efficient representations are undercom-
plete, sparse autoencoders. We show that it is indeed possible to find representations
of composite data in terms of basic features, but that this process is very sensitive to
both overfitting and underfitting. Therefore we present a modified version of the au-
toencoder, the replicated autoencoder, which is designed to find good solutions in cases
where overfitting is a danger. We show that the replicated autoencoder finds good rep-
resentation of composite data both on synthetic data and on real-world biological data,
opening up possible applications in biophysics.

In chapter 5 we generalize the algorithmic schemes introduced for sampling high
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Summary

local entropy configurations in neural networks and apply them to simple models of 3D
protein structures. We first consider a lattice model, showing that by sampling high-
local-entropy native states we find a decrease in the chain-length separation between
contact residues. Also, we show that native states with high local entropy have lower
folding times when we use them to generate a Go model. Then we study all-atom rep-
resentations of proteins. We find that native states of real proteins have higher local
entropy than random decoys, suggesting that local entropy could be relevant in mod-
elling protein evolution. We formulate the interpretation that the ”flatness” of the en-
ergy profile in the native state can extend to the transition state, having consequences
both on the thermodynamic stability of the protein, lowering the free energy of the
native state, and on the folding rate, lowering the free energy of the transition state.

Part III is made of chapter 6 and is devoted to summing up results, discussing con-
nections with the literature and drawing future developments.
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Preliminaries
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Chapter 1

Basics of Artificial Neural Networks

In this chapter we review the basic concepts in the study of Neural Networks. Even
the most advanced deep learning applications can be understood by the means of three
basic elements that are introduced in this chapter:

• the architecture;

• the loss function;

• the optimization algorithm.

The huge variety of neural networks present in the literature can be described by simply
varying these three ingredients.

This introduction has different goals: first, it is necessary for a reader who knows
nothing of the subject; second, it could be useful for the reader who is already familiar
with the subject but is unaware of the important contributions offered by statistical
physics; third, since the study of neural networks is very wide and multidisciplinary,
it serves as a place to fix definitions of concepts that may appear in other works with
different symbols or names.

The first section is devoted to the perceptron, the basic unit of any neural network.
After giving the necessary definitions we report a sketch of the foundational results
obtained with statistical physics: the calculation of the capacity of the perceptron, also
known as Gardner analysis, on which results in chapter 2 build upon.

The rest of the chapter is devoted to introducing deep neural networks and all the
other related concepts. In particular, in the last chapter we introduce regularization
methods within the Bayesian framework.

1.1 Perceptron
The most basic and common task that we can use a neural network for is classification.
Let’s say that we have a collection of 𝑝 data examples {𝜉𝜇

𝑖 }𝑝
𝜇=1 and a collection of 𝑝
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Basics of Artificial Neural Networks

corresponding labels {𝜎𝜇}𝑝
𝜇=1 that describe which of the classes each example belongs

to. For the sake of concreteness, let’s consider a binary classification problem 𝜎𝜇 = ±1.
We will discuss classification with more than two classes in subsection 1.4.2. The task
consists in finding a configuration of the model parameters so that the model assigns
the correct label to each example.

The perceptron is the most basic neural network and the building block of more
complicated architectures. It can perform the classification task and the model is simple
enough to be studied analytically in the framework of statistical mechanics. There are
many other tasks that neural networks can perform, such as generating new examples,
correcting errors, extracting features. Most modern technological applications of deep
learning, such as speech recognition or computer vision, require huge computational
resources and are beyond the scope of this thesis. Here instead we start by studying
classification, as it is the most studied and simplest task that allows us to introduce
gradually concepts that are of general use.

1.1.1 Model definition
A perceptron is a model that performs a weighted sum of the 𝑁 input channels 𝑥𝑖 and
feeds it to a nonlinear function 𝑓, called activation function. A scheme is shown in figure
1.1. The output of the model 𝑦 is interpreted as the predicted label:

𝑦 = 𝑓
(

𝑁

∑
𝑖=1

𝑊𝑖𝜉𝑖)
(1.1)

The specific choice of the activation function 𝑓 depends on the situation: when the
perceptron is used as a neuron inside bigger architectures (see section 1.3) common
choices are the sigmoid function 𝑓(𝑧) = 1/(1 + 𝑒−𝑧) or the so-called rectified linear
unit (ReLU) 𝑓(𝑧) = max(0, 𝑧). When the perceptron is used as a standalone model,
the choice is to use a signum function 𝑓(𝑧) = sgn(𝑧) so that the output is 𝑦 = ±1 and
matches the range of the labels. In this section we discuss the standalone model with
the signum function.

The weights can be either binary or real: the phase diagram of the model changes
a lot depending on this choice. In this chapter we will discuss real weights, leaving the
binary weights for chapter 2.

The inputs too can be either binary or real. In the following we will consider them
binary for simplicity.

1.1.2 Classification and linear separability
The perceptron is capable of correctly classifying only linear-separable dataset, namely
those where a hyperplane can separate the examples with 𝜎𝜇 = +1 from the examples
with 𝜎𝜇 = −1.

4



1.1 – Perceptron

Figure 1.1: Scheme of a perceptron.

To show this property let’s interpret the argument of the perceptron as a scalar
product between the example and the weights:

𝑦𝜇 = sgn(𝑊 ⋅ 𝜉𝜇) (1.2)

The example 𝜉𝜇 is correctly classified if the projection of 𝜉𝜇 on the vector 𝑊 has the
correct sign. This means that the vector 𝜉𝜇 must lay on the correct side of the hyper-
plane whose versor is 𝑊 (see figure 1.2). This is another way of stating the condition

𝑦𝜇 = 𝜎𝜇 ∀𝜇 ∈ [1, 𝑝] (1.3)

Figure 1.2: Separating hyperplane of a perceptron.

We can exploit a symmetry of the problem andmultiply by 𝜎𝜇 both sides of equation
1.2. We get new labels 𝑦′𝜇 ∶= 𝑦𝜇𝜎𝜇 = 1 and new examples 𝑥𝜇 ∶= 𝜉𝜇𝜎𝜇 and the
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condition 1.3 becomes

sgn(𝑊 ⋅ 𝑥𝜇) = 1 ∀𝜇 ∈ [1, 𝑝] (1.4)

This is equivalent to saying that all the examples must lay on the same side of the
hyperplane defined by 𝑊, or that they must have a positive projection on 𝑊:

𝑊 ⋅ 𝑥𝜇 > 0 ∀𝜇 ∈ [1, 𝑝] (1.5)

As for now the hyperplane must cross the origin of the axes. The model can be ex-
tended to have the hyperplane cross the axes in general positions by adding a threshold
term 𝑏, called bias, to equation 1.1:

𝑦 = 𝑓
(

𝑁

∑
𝑖=1

𝑊𝑖𝜉𝑖 − 𝑏
)

(1.6)

Note that this is equivalent to an additional channel to the input and fixing its value
to −1.

With the addition of a bias, the perceptron is capable of correctly classifying set of
examples where there exists a generic separating hyperplane. Examples of impossible
problems are those where the separating surface is curved and situations where the
examples are not in general positions (see figure 1.3).

Figure 1.3: 2-dimensional examples of datasets that are or are not linearly separable.
Panel a) is linearly separable even without the bias, while b) requires a nonzero bias to
be. Panel c) is a case where the points are not in general positions and therefore not
linearly separable. Panel d) is the XOR case, which is not linearly separable.
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1.1 – Perceptron

1.1.3 Learning algorithm
Now that we stated the problem, the question is how to find a configuration of weights
𝑊 that correctly classifies the examples, given that the only information that we have
are the examples themselves. This is called a learning problem.

One could design any rule that comes to mind and then study how effective it is (for
example, ask how many steps are required to find the solution to the problem). Here
we describe the most naive rule that we can imagine, just to introduce the prototype of
a learning algorithm.

The idea is the following:

1. Initialize 𝑊 in a random configuration.

2. Consider one example. Is the association with its label correct?

3. If it is correct, leave the weights as they are.

4. If it is not correct, add something to the weights

5. Go to step 2. Repeat until every example is classified correctly.

Let’s add more detail to this idea. Each cycle of the algorithm consists in an update
of the parameters of the form

𝑊 new
𝑖 = 𝑊 old

𝑖 + 𝜂Δ𝑊𝑖 (1.7)

where 𝜂 is a parameter called learning rate that controls the order of magnitude of
the updates Δ𝑊𝑖. We can write the updates of the 𝑖-th input channel as something
proportional to the direction towards which we expect the correct 𝑊 to be pointed,
which means ∼ 𝜎𝜇𝜉𝜇

𝑖 . Adding the modality of steps 2-3 we can write

Δ𝑊𝑖 =
{

2𝜎𝜇𝜉𝜇
𝑖 if 𝜎𝜇 ≠ 𝑦𝜇

0 otherwise
(1.8)

Or, in a more compact form

Δ𝑊𝑖 = (𝜎𝜇 − 𝑦𝜇)𝜉𝜇
𝑖 (1.9)

An intuitive explanation of this rule is that we are making the weights ”forget” the
wrong direction 𝑦𝜇𝜉𝜇

𝑖 and ”learn” the correct one 𝜎𝜇𝜉𝜇
𝑖 , and if the two are the same we

are doing nothing.
We will see in section 1.3 how this rule can be included in the larger framework of

gradient-based learning, which is the framework that had universal success in training
deep networks.

This learning rule is known as the perceptron rule and it has been proved that it
converges to a solution in a finite number of steps. For a more detailed discussion of
this and other learning rules, and for the proof of convergence see [8].

7
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1.2 Spherical perceptron: properties of the solution
space

Here we study the two most basic problems of learning with a perceptron with contin-
uous weights.

First, we study learning random binary patterns with random binary labels. This
problem is simple enough to showcase a methodology that will be used extensively in
chapter 2. It is also a good starting point in showcasing how physics had great success
in describing learning problems.

Second, we study the teacher-student model, which is the most basic way of making
prediction on the generalization properties of a network, namely how many errors a
network makes on data that it has not seen before.

Before proceeding the analysis, let’s review the perceptron model in a statistical
physics framework.

The perceptron consist in a single set of 𝑁 real weights 𝑊𝑖 ∈ ℝ and in a rule to
compute the output 𝑦 that reads

𝑦(𝑊, 𝜉𝜇) = sgn(𝑊 ⋅ 𝜉𝜇 − 𝑏) (1.10)

where 𝜉𝜇 ∈ {−1,1}𝑁 is the 𝜇-th input pattern and sgn(⋅) is the signum function. 𝑏 is
the threshold, that we put to zero in this section for simplicity. Each input pattern has
a corresponding label 𝜎𝜇 ∈ {−1,1}, with 𝜇 ∈ {1, ..., 𝑝}. A pattern is mislabelled by the
model if 𝜎𝜇 ≠ 𝑦(𝑊, 𝜉𝜇).

The learning task consist in finding a configuration of the weights 𝑊 such that
𝕏𝜉(𝑊 ) = 1, with

𝕏𝜉(𝑊 ) =
𝑝

∏
𝜇=1

Θ(𝜎𝜇𝑦(𝑊, 𝜉𝜇)) (1.11)

being the function that checks if all the patterns are correctly memorized.
An equivalent formulation of the problem is finding 𝑊 such that a loss function 𝐿

that counts the number of errors is minimal:

𝐿(𝑊 ; {𝜉𝜇}) = ∑
𝜇

Θ(−𝜎𝜇𝑦(𝑊, 𝜉𝜇)) (1.12)

where Θ is the Heaviside step function.
If we find a solution such that 𝕏𝜉 = 1, then we have 𝐿 = 0. This formulation is

closer to statistical mechanics, since in principle it allows to study the thermodynamics
of a systemwith energy equal to the loss function, giving information to states with any
number of errors. Here we are only interested in solutions with zero errors, meaning
that we will do a zero-temperature equilibrium analysis.

8



1.2 – Spherical perceptron: properties of the solution space

The quantity that we are interested into is the volume Ω of the solution space

Ω({𝜉𝜇, 𝜎𝜇}) = ∫ 𝑑𝜇(𝑊 )𝕏𝜉(𝑊 )

= ∫ 𝑑𝜇(𝑊 )
𝑝

∏
𝜇=1

Θ
(

𝜎𝜇𝑊 𝜉𝜇

√𝑁 )

(1.13)

The integration measure 𝑑𝜇(𝑊 ) could in general be any measure, but at this stage
there is no reason to choose a non-uniform measure (this will radically change in 2). In
the next chapter we will consider binary weight that do not have this problem, but for
continuous weights we need a finite subset of the parameter space as a domain of the
measure. The most sensible choice is to constraint the weight vector on the surface of
an 𝑁-sphere: since the relevant quantity to determine the separating hyperplane is the
direction of 𝑊, this choice gets rid only of the inessential component of 𝑊. We write
the uniform measure on the sphere as

𝑑𝜇(𝑊 ) =
𝑁

∏
𝑖=1

𝑑𝑊𝑖

√2𝜋𝑒
𝛿(

𝑁

∑
𝑖=1

𝑊 2
𝑖 − 𝑁) (1.14)

where we chose the radius of the sphere to be √𝑁 in order to have extensive quantities
as argument of exponential functions in the later steps of calculations.

We are interested into an average over the realizations of the patterns and labels,
but Ω itself is not suited for this because it is exponential in the size of the system
𝑁, and therefore not self-averaging. The correct quantity to average is the entropy
logΩ. The quantity ⟨logΩ⟩ is called quenched average, as opposed to the annealed
average log ⟨Ω⟩. The latter is much easier to compute and can be a useful lower bound
to the former. Since we have no way of manipulating the logarithm of a summation,
quenched averages require the replica trick to be computed, which is a way of writing
the logarithm as a limit:

logΩ = lim
𝑛→0+

Ω𝑛 − 1
𝑛

(1.15)

Thanks to this we only need to compute the average ⟨Ω𝑛⟩, which is doable.

1.2.1 Storage problem: capacity
The problem consist in learning the correct example-label association of a set of 𝑝 ex-
amples 𝜉𝜇 that have no correlation with their respective labels 𝜎𝜇. The examples and
labels are drawn respectively from the distributions

𝑃 (𝜉𝜇) =
𝑁

∏
𝑖=1

[
1
2

𝛿(𝜉𝜇
𝑖 + 1) + 𝛿(𝜉𝜇

𝑖 − 1)] , (1.16)

9
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𝑃 (𝜎𝜇) = 1
2

𝛿(𝜎𝜇
𝑖 + 1) + 𝛿(𝜎𝜇

𝑖 − 1). (1.17)

Note that we can also exploit the internal symmetry of the model: we can map 𝜉 →
−𝜉, 𝜎 → −𝜎 without changing the error count. Therefore, we can set all the labels to
+1 by absorbing the labels inside the examples.

Asking the perceptron to reproduce this mapping is connected to the question of
how many input-output pairs can be stored in an appropriate configuration of the pa-
rameters 𝑊 without making mistakes.

To answer this question means to compute the maximal number 𝑝𝑐 of associations
that are possible given the size of the model 𝑁.

The physical approach to this problem consist in computing the volume Ω of the pa-
rameter space that is compatible with the set of constraints as a function of the number
of constraints, namely the number 𝑝 of patterns. This calculation will be performed in
the thermodynamic limit 𝑁 → ∞, so a better quantity to consider is the ratio 𝛼 ∶= 𝑝/𝑁,
called capacity or load. We expect the volume to progressively shrink until it becomes
zero for a certain value 𝑝𝑐, that will determine the critical capacity 𝛼𝑐.

Given the volume Ω({𝜉𝜇, 𝜎𝜇}) for a certain a realization of the examples and labels
{𝜉𝜇, 𝜎𝜇}, we want to compute its average over the distribution of examples in order to
have some information on the average problem. Note that this is a crucial difference
between physics and the common approach in computer science, where analyses are
worst-case rather than average case.

Given this observation, the logarithm of the volume seems a better-suited quantity
to average over the ”disorder” variables 𝜉. The average of the logarithm of the volume
is called quenched average, as opposed to the annealed average that we would do if we
computed the logarithm of the average of the volume. See [8] for a deeper introduction
to the quenched and annealed averages.

As said above, the logarithm of the volume is the correct quantity to average. There-
fore, we want to compute the quantity

𝑆 = ⟨logΩ({𝜉𝜇, 𝜎𝜇})⟩𝜉𝜇,𝜎𝜇 (1.18)

via the replica trick 1.15.
Then the average of the replicated volume reads

⟨Ω({𝜉𝜇})⟩𝜉𝜇 =
⟨∫

𝑛

∏
𝑎=1

𝑑𝜇(𝑊 𝑎)
𝑝

∏
𝜇=1

Θ
(

𝑊 𝑎𝜉𝜇

√𝑁 )⟩
𝜉𝜇

(1.19)

where we exploited the symmetry of the problem and set all the labels to +1, and we
also dropped the trivial average over the labels.

The calculation proceeds by introducing two auxiliary set of variables 𝜆𝜇,𝑎 and ̂𝜆𝜇,𝑎

that allow the integral representation of the Θ step function:

10
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Θ
(

∑𝑖 𝑊 𝑎
𝑖 𝜉𝑎

𝑖

√𝑁 )
= ∫

𝑑𝜆𝜇,𝑎𝑑 ̂𝜆𝜇,𝑎

2𝜋
Θ(𝜆𝜇,𝑎) exp

(
𝑖 ̂𝜆𝜇,𝑎(𝜆𝜇,𝑎 −

∑𝑖 𝑊 𝑎
𝑖 𝜉𝑎

𝑖

√𝑁
)
)

(1.20)

Now we are capable of performing the average over the patterns via standard Gaus-
sian integration. The averaged term reads

⟨

𝑛

∏
𝑎=1

exp
(

𝑖 ̂𝜆𝜇,𝑎 ∑𝑖 𝑊 𝑎
𝑖 𝜉𝑎

𝑖

√𝑁 )⟩
= ∏

𝜇
exp

(
−1

2 ∑
𝑎,𝑏

̂𝜆𝜇,𝑎 ̂𝜆𝜇,𝑏
∑

𝑖

𝑊 𝑎
𝑖 𝑊 𝑏

𝑖
𝑁 )

(1.21)

We observe that this step introduced a coupling between different replicas in the

form of ∑𝑖
𝑊 𝑎

𝑖 𝑊 𝑏
𝑖

𝑁 ∶= 𝑞𝑎𝑏. The variable 𝑞𝑎𝑏 actually will be the order parameter of the
model, representing the overlap between replica 𝑎 and 𝑏.

In order to proceed with the calculation, we need to make an ansatz on the form of
the matrix 𝑞𝑎𝑏. The most obvious one follows from the hypothesis that the replicas are
symmetric under permutations, therefore

𝑞𝑎𝑏 =
{

1 if 𝑎 = 𝑏
𝑞 if 𝑎 ≠ 𝑏

(1.22)

̂𝑞𝑎𝑏 = ̂𝑞 (1.23)

This is equivalent to assuming that the Gibbs measure cannot be decomposed into a
mixture of pure-state measures, but rather it is a well-defined unique state. With these
assumptions and in the limit 𝑛 → 0 we are able to write the volume ⟨Ω𝑛⟩𝜉 in the form

⟨Ω𝑛⟩𝜉 = ∫ 𝑑𝑞 𝑑 ̂𝑞 exp (𝑁𝑆RS(𝑞, ̂𝑞; 𝛼)) (1.24)

where we used the RS subscript for the entropy to signal that this expression depends on
the replica-symmetric ansatz me made on the matrix 𝑞𝑎𝑏. This integral is solved in the
limit 𝑁 → ∞ with a saddle-point integration, meaning that the physical values of the
order parameters are those that satisfy the conditions (called saddle-point equations):

𝜕𝑆RS

𝜕𝑞
= 0,

𝜕𝑆RS

𝜕 ̂𝑞
= 0 (1.25)

From these equations we can determine the overlap 𝑞(𝛼) between two typical solu-
tion of the learning problem as a function of the capacity 𝛼. The complete calculation
can be found in [8] or in the original paper [9]. The results are that for 𝛼 = 0 we find
𝑞 = 0; then, as we increase 𝛼, the overlap 𝑞 starts increasing too until it reaches 𝑞 = 1.

11
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This means that at this point two random solutions of the storage problem are exactly
the same, namely there is only one possible distinct solution left. Then we can iden-
tify 𝛼𝑐 as the value of 𝛼 such that 𝑞(𝛼) = 1. For 𝛼 > 𝛼𝑐 we are imposing too many
constraints and the set of solutions becomes empty.

Once we conclude a replica calculation, we should also check if the ansatz that we
used for the Parisi matrix is consistent. In principle one should compute the second
derivatives of the saddle-point expression to see if the solution that we are consider-
ing is a minimum or a maximum, but this calculation is often involved. In practice,
if the ansatz is wrong, nonphysical results are very probable to come up during the
computation of the entropy or other physical observables (as we will see in chapter 2).
Within this chapter we just point out when an ansatz is incorrect without discussing
the matter, so that the reader can assume that the ansatz are correct unless stated oth-
erwise. For the discussion on the stability of each ansatz check the papers cited in the
corresponding sections.

We make an observation to wrap up this subsection: we learned that 𝛼 is the con-
trol parameter of learning problems. In this specific problem a threshold value 𝛼𝑐 de-
termines whether the problem has a solution of not, but studying relevant quantities a
function of 𝛼 is the approach that we will keep in any learning problem. Of particular
interest are phase transitions occurring with 𝛼 as driving parameter. In the next sub-
section, for example, we will compute the generalization error as a function of 𝛼 for a
perceptron in the teacher-student scenario.

1.2.2 Teacher-student problem: generalization error
In this section we introduce the concept of generalization error, that is at the hearth of
inference and learning.

For now, we considered a learning problem as a ”memorization-without-errors”
problem, where we are satisfied when the model correctly reproduces the associations
in the data that we used to train it. Let’s call training set or trainset this set of data. In
reality, we don’t actually care about the performance of the model trainset, because we
are interested in the predictive capabilities of the model, namely how well the model
learned something about the distribution of the data, rather than memorizing a set of
input-output relations ”by heart”. For this reason we are interested in evaluating the
loss function of the model on data that we did not use to train the model, to see how
well the model generalizes. We call testset this new set of data, and we call generaliza-
tion error the value of the loss function on the testset. In many practical cases we have
a limited amount of data; we want to use as much data as possible to train the model so
that we use almost all the information that we have, while also leaving a decent number
of data points in the testset to reliably assess the generalization error. A rule of thumb
is to use 80% of the data for the trainset and the remaining 20% for the testset.

Let’s now study the simplest framework that allows for an analytical calculation of
the generalization error: the teacher-student scenario.

12
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In the teacher-student scenario the labels 𝜎𝜇 are defined as the output of a second
network (the teacher), which is randomly initialized and is identical to the student net-
work. This means that we constrained the student and teacher too to be spherical with
radius √𝑁, namely the following equations hold:

𝑊 2 = ∑
𝑖

𝑊 2
𝑖 = 𝑁 (1.26)

(𝑊 𝑇)2 = ∑
𝑖

(𝑊 𝑇
𝑖 )2 = 𝑁 (1.27)

Figure 1.4: 2-dimensional representation of a teacher-student scenario: 𝜃 is the angle
between the vectors corresponding to the teacher and the student. The shaded area
corresponds to the region of the input space where the two models disagree. A student
is in version space if the shader area is empty.

In this way we can visualize the situation as in figure 1.4: the mistakes in the stu-
dent’s classification are due to the mismatch between the student’s separating hyper-
plane and the teacher’s one. All the data points that line in the shaded area will be
misclassified. If we assume that the data points are random, the probability 𝜀 of mak-
ing a mistake is proportional to angle 𝜃 between the teacher and the student:

𝜀 = 𝜃
𝜋

(1.28)

We can rewrite this expression by defining the teacher-student overlap

𝑅 ∶= ∑
𝑖

𝑊 𝑇
𝑖 𝑊𝑖

𝑁
(1.29)

which is the cosine of 𝜃. Therefore, we see that generalization error depends only on
the overlap 𝑅 between teacher and student:

13
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𝜀 = 1
𝜋
arccos𝑅 (1.30)

We call version space the set of students that are compatible with the teacher, given a
set of examples. Our ”learning procedure” here consist in uniformly sampling a solution
from the version space and studying its generalization error 𝜀.

As we did for the storage case, the strategy is to compute the volume of solutions
averaged over uniform the distribution of students inside the version space. The reason
is that by doing so we need to use the replica trick again, and the overlap 𝑅 will appear
as a natural order parameter of the model. Then we will obtain an expression for 𝑅
as a function of 𝛼 as a saddle-point equations, which leads to the expression for the
generalization error 𝜀(𝛼) that we are looking for.

Here we only sketch the calculation. For a detailed derivation see [8].
The loss function for the teacher-student model is

𝐿(𝑊 ) = ∑
𝜇

Θ(−𝜎𝜇𝜏𝜇) (1.31)

where 𝜎𝜇 = sgn(𝑊 𝑇 ⋅ 𝜉𝜇) is the label given by the teacher perceptron 𝑊 𝑇 and 𝜏𝜇 =
sgn(𝑊 ⋅ 𝜉𝜇) is the output of the student perceptron 𝑊.

In order to compute the entropy of the zero-temperature solution space we use the
replica trick. We end up with an expression similar to equation 1.19, except the integral
representation of constraints now reads

Θ
(

∑𝑖 𝑊 𝑇
𝑖 𝜉𝜇

𝑖

√𝑁

∑𝑗 𝑊 𝑎
𝑗 𝜉𝜇

𝑗

√𝑁 )
= ∫

𝑑𝑢𝜇𝑑 ̂𝑢𝜇

2𝜋
𝑑𝜆𝜇𝑎𝑑 ̂𝜆𝜇𝑎

2𝜋
Θ(𝑢𝜇𝜆𝜇𝑎)

exp
(

𝑖 ̂𝜆𝜇𝑎(𝜆𝜇𝑎 −
∑𝑗 𝑊 𝑎

𝑗 𝜉𝜇
𝑗

√𝑁
) + 𝑖 ̂𝑢𝜇𝑎(𝑢𝜇𝑎 −

∑𝑖 𝑊 𝑇
𝑖 𝜉𝜇

𝑖

√𝑁
)
)

(1.32)

The calculation of the replicated volume proceeds by computing the average over
the disorder (the data). This operation makes us introduce the same order parameters

𝑞𝑎𝑏 = ∑𝑖
𝑊 𝑎𝑊 𝑏

𝑁 that we used in the storage case plus and additional set of order pa-

rameters 𝑅𝑎 ∶= ∑𝑖
𝑊 𝑇𝑊 𝑎

𝑁 , which represent the overlap between the 𝑎-th replica and
the teacher.

After some involved passages we make an RS ansatz

𝑞𝑎𝑏 = 𝑞
𝑅𝑎 = 𝑅

(1.33)

and we end up with a set of coupled saddle-point equations that involve 𝑞, 𝑅 and 𝛼.
From one of these equations we find that 𝑞 = 𝑅, signaling an additional symmetry in

14
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our problem. In fact, the teacher is chosen at random with uniform distribution and
lies in the version space by definition. The student is itself chosen uniformly at random
inside the version space, so we could have expected that the teacher has no special role
in this calculation and is equivalent to just another replica, as shown by the calculation
itself.

The remaining saddle-point equation reads

𝑅
√1 − 𝑅

= 𝛼
𝜋 ∫ 𝐷𝑡𝐻

exp(−𝑅𝑡2/2)

𝐻(−√𝑅𝑡)
(1.34)

where 𝐷𝑡 = 𝑑𝑡
√2𝜋

exp(−𝑡2/2) is a Gaussian measure and 𝐻(𝑥) = ∫∞
𝑥 𝐷𝑡 is the comple-

mentary error function.
This equation can be solved numerically. We find that the teacher-student overlap

𝑅 is zero when we do not have any data point (𝛼 = 0) and monotonically increases
when we increase the size of the trainset, until it tends to 𝑅 = 1 for 𝛼 → ∞. At the
same time the generalization error signals a totally random prediction 𝜀 = 0.5 for 𝛼 = 0
and goes to zero for 𝛼 → ∞.

1.3 Gradient-based learning and deep networks
In the previous sections we introduced neural networks starting from their basic unit
— the perceptron — and we introduced the concept of generalization, which is funda-
mental for inference and learning. In this section we study how to build more complex
network and how to train these objects. The discussion on the generalization capabili-
ties of these architectures is left for the next section.

1.3.1 Gradient descent
Instead of a single perceptron, let’s consider 𝐾 perceptrons with the same set on input
channels. This architecture is called a single-layer feed-forward neural network and
it is just a more general perceptron with multidimensional output (see figure 1.5 for
a sketch of the architecture). The model parameters are now organized as an 𝑁 × 𝐾
matrix. We assume that each perceptron has the same activation function.

In this section we drop the assumption that the activation function of the percep-
tron is binary and we consider a generic continuous-valued activation function 𝑓. This
allows us to use a different strategy for finding a configuration of 𝑊 that implements
a correct clarification. First, let’s introduce a derivable loss function 𝐿 that measures
the deviation between the current output of the model and the desired output; then,
we ask if we can find a solution of the problem by minimizing 𝐿. There are many
possible choices for a derivable loss function, depending on the specific problem and
architecture. Here we introduce the simplest one, the mean squared error.
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Figure 1.5: Sketch of a multidimensional perceptron.

𝐿(𝑊 ; 𝜉𝜇) ∶= 1
2

𝑝

∑
𝜇=1

𝐾

∑
𝑗=1

(𝜎𝜇
𝑗 − 𝑦𝜇

𝑗 )2 (1.35)

There are many possible strategies for minimizing a loss function. Here we intro-
duce the simplest one, called gradient descent, where the update of the parameters Δ𝑊
is given by the gradient of 𝐿 with respect to the parameters themselves:

Δ𝑊𝑖𝑗 = − 𝜕𝐿
𝜕𝑊𝑖𝑗

(1.36)

Let’s write explicitly the loss function and its derivative to compute the update term.

𝐿(𝑊 ; 𝜉𝜇) ∶= 1
2

𝑝

∑
𝜇=1

𝐾

∑
𝑗=1 (

𝜎𝜇
𝑗 −

𝑁

∑
𝑖=1

𝑊𝑖𝑗𝜉
𝜇
𝑖 )

2

(1.37)

Δ𝑊𝑖𝑗 = − 𝜕𝐿
𝜕𝑊𝑖𝑗

=
𝑝

∑
𝜇=1

(𝜎𝜇
𝑗 − 𝑦𝜇

𝑗 )𝜉𝜇
𝑖 =

𝑝

∑
𝜇=1

𝛿𝜇
𝑗 𝜉𝜇

𝑖 (1.38)

where we defined the ”errors” as 𝛿𝜇
𝑗 ∶= 𝜎𝜇

𝑗 − 𝑦𝜇
𝑗 .

Note that now the update reads as a sum of terms identical to equation 1.9, which
was the basic update rule one example at a time. Now instead we are computing the
gradient of the entire loss function, which consists of the sum of an error term for
each example in the dataset. The gradient descent algorithm consists in updating the
weights until the gradients become negligible: at that point we reached a minimum of
𝐿. We call training epoch each time the algorithm sees the entire dataset: in this case,
the number of epoch coincides with the number of update steps. Since we are using
the entire dataset to compute the gradients, this algorithm is also known as full-batch
gradient descent, for reasons that will be clear in the next subsection.
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1.3.2 Stochastic gradient descent
The sum over the examples is a universal characteristic of loss functions: a generic loss
function can be written as

𝐿(𝑊 ; 𝜉𝜇) =
𝑝

∑
𝜇=1

𝑙(𝑊 ; 𝜉𝜇) (1.39)

Regardless of the choices of 𝐿 we will need to compute a sum over the dataset to
evaluate the gradient for the update rule. This operation can become very computa-
tionally expensive, especially since it must be repeated at each step of the algorithm
until convergence.

For this reason themost used variation of gradient descend, called stochastic gradient
descent (SGD), relies on just estimating the gradients on a subset of the dataset, called
mini-batch. The update rule now reads

Δ𝑊𝑖𝑗 = −
𝐵

∑
𝜇=1

𝜕𝑙(𝑊 ; 𝜉𝜇)
𝜕𝑊𝑖𝑗

(1.40)

where 𝐵 < 𝑝 is the dimension of the mini-batch.
SGD is important not only to reduce the computational cost, but also to avoid get-

ting stuck in local minima of the loss function. In fact, in general the loss landscape is
expected to be highly non-convex and therefore following the exact gradient does not
guarantee to reach the global minimum. SGD has an intrinsic noise due to the estima-
tion of the gradient, which gives the algorithm a chance of escaping local minima.

There are many variants of SGD in the literature (see [10] for a representative list),
but they all build on this basic idea of not computing the gradient exactly but sampling
it instead.

1.3.3 Deep learning and Backpropagation
Now that we described a single-layer network, we can add another layer on top of it by
feeding the output of the first layer to the input of the second one (see figure 1.6). This
procedure can be iterated adding any amount of layers to the network and the resulting
architecture is called a deep neural network. This type of layer is called fully connected
layer, since each output neuron is connected to each input one. The main other type of
layer is the convolutional layer, which is essential for computer vision. Discussing con-
volutional neural networks is beyond the scope of this thesis; they are cited here just to
mention that the standard architectures for image learning use a combination of convo-
lutional and feed forward layers. Networks with too many (more than ∼ 5) consecutive
fully connect layers are generally more difficult to train and require special algorithms
to find solutions. For a proper introduction to convolutional neural networks and for
discussion about convergence of fully-connect network see [10].
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Figure 1.6: Sketch of a feed-forward network with two layers.

Stochastic gradient descent applied to deep networks is called backpropagation. The
reason is that it can be interpreted as if we computed the errors in the output layer and
we propagated them back to the input layer.

To show this, let’s write explicitly the quadratic loss function for a two-layered
fully-connected network and compute the gradients. In deep architectures, every layer
of neurons except the first and the last one are called hidden layers; also note that the
input layer is not counted for the total number of layers, so that the number of layers
is equal to the number of parameter matrices. Let’s say that 𝑖 ∈ [1,𝑁], 𝑗 ∈ [1, 𝐽] and
𝑘 ∈ [1,𝐾] are the index spanning respectively the input, hidden and output neurons.
Let’s call 𝑊𝑖𝑗 the weights of the first layer and 𝑈𝑗𝑘 the weights of the second layer.
Then let’s define the following quantities:

• hidden units pre-activations: 𝐻𝜇
𝑗 ∶= ∑𝑖 𝑊𝑖𝑗𝜉

𝜇
𝑖

• hidden units activations: ℎ𝜇
𝑗 ∶= 𝑓(𝐻𝜇

𝑗 )

• output units pre-activations: 𝑌 𝜇
𝑘 ∶= ∑𝑗 𝑈𝑗𝑘ℎ𝜇

𝑗

• output units activations: 𝑦𝜇
𝑘 ∶= 𝑓(𝑌 𝜇

𝑘 )

The loss function reads:

𝐿(𝑊 ; 𝜉𝜇) = 1
2

𝑝

∑
𝜇=1

∑
𝑘 [

𝜎𝜇
𝑘 − 𝑓

(∑
𝑗

𝑈𝑗𝑘𝑓(∑
𝑖

𝑊𝑖𝑗𝜉
𝜇
𝑖 )

)]

2

(1.41)

Now let’s compute the derivative of 𝐿 with respect to 𝑈𝑗𝑘 :

𝜕𝐿
𝜕𝑈𝑗𝑘

= − ∑
𝜇

(𝜎𝜇
𝑘 − 𝑦𝜇

𝑘)𝑓 ′(𝑌 𝜇
𝑘 )ℎ𝜇

𝑗 = − ∑
𝜇

𝛿𝜇
𝑘ℎ𝜇

𝑗 (1.42)
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where we defined the ”errors” as 𝛿𝜇
𝑘 = (𝜎𝜇

𝑘 − 𝑦𝜇
𝑘)𝑓 ′(𝑌 𝜇

𝑘 ). Note that including 𝑓 ′(𝑌 𝜇
𝑘 ) in

the definition of 𝛿𝜇
𝑘 allows us to recognize the same form of equation 1.38.

The derivative of 𝐿 with respect to 𝑊𝑖𝑗 reads

𝜕𝐿
𝜕𝑊𝑖𝑗

= − ∑
𝜇

∑
𝑘

(𝜎𝜇
𝑘 − 𝑦𝜇

𝑘)𝑓 ′(𝑌 𝜇
𝑘 )𝑈𝑗𝑘𝑓 ′(𝐻𝜇

𝑗 )𝜉𝜇
𝑖

= − ∑
𝜇

∑
𝑘

𝛿𝜇
𝑘𝑈𝑗𝑘𝑓 ′(𝐻𝜇

𝑗 )𝜉𝜇
𝑖

= − ∑
𝜇

𝛾𝜇
𝑗 𝜉𝜇

𝑖

(1.43)

wherewe used the definition of 𝛿𝜇
𝑘 in the second line andwe defined 𝛾𝜇

𝑗 ∶= 𝑓 ′(𝐻𝜇
𝑗 ) ∑𝑘 𝛿𝜇

𝑘𝑈𝑗𝑘
in the third line.

Now we can observe how the update rule for 𝑊𝑖𝑗 depends only on the 𝑖-th com-
ponents of the inputs and on some ”hidden layer errors” 𝛾𝑗 that are the result of the
backward propagation of the ”output layer errors” 𝛿𝜇

𝑘 .
As said above, every sumover𝜇 can be performed on thewhole dataset or on smaller

mini-batches. To sum up, the resulting algorithm is sketched below.

Algorithm 1 Stochastic gradient descent with backpropagation

1: initialize the weights of each layer at random
2: for 𝑒 = 1,… , training epochs do
3: split the dataset in mini-batches
4: for 𝑏 = 1,… , number of mini-batches do
5: for 𝜇 = 1,… , size 𝐵 of mini-batches do
6: insert an example 𝜉𝜇

𝑖 in the input layer
7: propagate forward the signal and compute the output 𝑦𝜇

𝑘
8: compute the errors 𝛿𝜇

𝑘
9: backpropagate the error and for each layer compute the updates Δ𝑤𝜇

𝑎𝑏
10: end for
11: update the parameters with the rule 𝑤new

𝑎𝑏 = 𝑤old
𝑎𝑏 + ∑𝐵

𝜇=1 Δ𝑤𝜇
𝑎𝑏

12: end for
13: end for

1.4 Overfitting and regularization
In this section we discuss the general problem of generalization in statistical inference
and we introduce a Bayesian framework for neural network, which proves useful to
understand the common techniques to avoid bad generalization performances.
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1.4.1 General characteristics of overfitting
The problem of overfitting is common issue in inference: if we have a set of data points
that we want to fit with a certain model, we must keep the model ”simple enough” so
that we do not introduce artifact features, which would cause the model to have a very
bad generalization error. The trade-off is that a model that is too simple will not be able
to fit the entire trainset, while a model that is too complicated will overfit the data. For
the sake of concreteness let’s consider the inference of a polynomial curve from a finite
set of data points. In this case we can say that the measure of complexity of the model
is the degree of the polynomial that we choose, that is the amount of parameters of our
model. If we choose degree that is too high, the fitted curve will oscillate a lot in the
gaps between the data points, while the point likely lie on a much smoother curve (see
for example [11]). Note that the difficulty with neural networks is that we do not have
a straightforward way to control the complexity of the fitted function, since it depends
on the details of the training procedure and of the architecture.

The general way to check if the model is overfitting the data is to check the general-
ization error during the training. Usually we see the training error that monotonically
decreases, while the generalization error follows the trend of the training error for a
while then starts increasing (or stops decreasing). The difference between train error
and test error is called generalization gap. This behavior signals that by training the
model further we are generating features that are too specific to the training data.

Any modification that we introduce in the model to prevent overfitting is called
regularization.

One obvious strategy is to stop the training procedure once we reach the general-
ization error minimum rather than when we reach zero training error. This is called
early stopping. The problemwith this regularization is that we are now using the testset
to decide when to stop, which means using the number of training epochs as parameter
to be learned. Therefore, the data points in the generalization set are not unseen by the
model anymore. Amore correct way of doing this is to split further the trainset creating
a validation set used to fix the early stopping parameter, leaving the testset untouched.

In this case the early stopping parameter, namely the number of epochs, is a hy-
perparameter of the learning: it is not one of the parameters of the model but it still
influences the generalization. Other common hyperparameter are the learning rate,
the batch size and the various regularizer strengths, that we will discuss below.

Apart from early stopping, the most obvious regularization is called weigh decay:
it consists in adding a penalty to the loss function proportional to the L2-norm of the
weights 𝑊. This term keeps the order of magnitude of the weights finite, so that the
fitted function does not oscillate too much, preventing one of the most common sources
of overfitting.
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1.4.2 Bayesian framework of learning
Let’s quickly review the Bayes theorem, that will be useful to reinterpret the MSE loss
function and the weight decay in a probabilistic framework. For a much deeper intro-
duction to the role of Bayesian probability in machine learning see [11, 10].

Given the set 𝐻 of hypotheses of our model and the dataset 𝑥, the Bayes theorem
assigns a probability to the model parameters 𝑤 according to the equation

𝑃 (𝑤|𝑥,𝐻) =
𝑃 (𝑥|𝑤,𝐻)𝑃 (𝑤|𝐻)

𝑃 (𝑥|𝐻)
(1.44)

where 𝑃 (𝑥|𝑤,𝐻) is the likelihood of the data given the model, 𝑃 (𝑤|𝐻) is the prior
probability of the model parameters and

𝑃 (𝑥|𝐻) ∶= ∑
𝑤′

𝑃 (𝑥|𝑤′,𝐻)𝑃 (𝑤′|𝐻)

is called evidence. 𝑃 (𝑤|𝑥,𝐻) is called posterior probability and is the subject of study
of Bayesian inference: the criterion known as maximum a posteriori (MAP) estimate
consists in fixing the model parameters 𝑤 by maximizing 𝑃 (𝑤|𝑥,𝐻).

The advantages of MAP respect to the maximization of the likelihood (ML estima-
tion) are many:

• we have a way of comparing different models that is built-in in the Bayesian
framework;

• we can predict new samples from the generative model using a whole probability
distribution over the parameters and not just a point estimate

• we can include in the inference some prior knowledge of the model parameters;
this characteristic is the one that will turn out useful to design regularization
strategies for neural networks.

Model comparison For instance, we observe that in 𝐻 we include any assumptions
that wemade to use the model, included the choice of the model itself. In this paragraph
we will consider also the ML estimate of the model parameters 𝑤 as part of 𝐻. This
allows us to compare different models and even different estimations of 𝑤 within the
same model. In fact, let’s write the Bayes theorem with in a slightly different way:

𝑃 (𝐻|𝑥) =
𝑃 (𝑥|𝐻)𝑃 (𝐻)

𝑃 (𝑥)
(1.45)

do that we can compare some hypotheses 𝐻1 and 𝐻2 using the posterior probabilities
𝑃 (𝐻1|𝑥) and 𝑃 (𝐻2|𝑥). Let’s consider the case where we don’t have any a priori reason
to prefer one of the two hypotheses, so that prior probabilities are equal: 𝑃 (𝐻1) =
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𝑃 (𝐻2) = 1/2. In order to make the comparison we need to compute the two quantities
𝑃 (𝑥|𝐻1) and 𝑃 (𝑥|𝐻2), which are the evidences for the basic MAP estimation of the
parameters. We can get rid of the need to compute 𝑃 (𝑥) by comparing the ratio

𝑃 (𝐻1|𝑥)
𝑃 (𝐻2|𝑥)

=
𝑃 (𝑥|𝐻1)𝑃 (𝐻1)
𝑃 (𝑥|𝐻2)𝑃 (𝐻2)

(1.46)

to answer the question of which of the two hypotheses is more probable.

Predicting new occurrences Let’s say that we observed 𝑝 examples and we want to
predict the 𝑝 + 1-th example. We can write the conditional probability as

𝑝(𝑥(𝑝+1)|𝑥(𝑝),… , 𝑥(1)) = ∫ 𝑑𝑤 𝑝(𝑥(𝑝+1)|𝑤) 𝑝(𝑤|𝑥(𝑝),… , 𝑥(1)) (1.47)

With the traditional inference we would have used only our best guess of the pa-
rameters 𝑤 to predict 𝑥(𝑝+1), whereas with Bayesian inference we can exploit each set of
parameters that has a non-zero probability. Additionally, since each 𝑤 enters the inte-
gral with its probability, we are already incorporating the uncertainty of each estimate
without the need to calculate the variance, as we would do in a traditional inference.

Of course this improvement is not free, since the computation of the integral 1.47 is
often very computationally heavy. Nonetheless, this is an important result that opens
up possibilities that were absent in traditional inference.

Inclusion of prior knowledge Let’s now study the role of the prior in the Bayes
theorem 1.44.

If the prior is flat it is easy to see that a MAP estimation coincides with a ML esti-
mation. Things become more interesting when the prior actually shifts the likelihood
towards regions of the parameters space that are preferred a priori, which is for example
the case of the preference towards ”simple enough” functions that we discussed above.
The magnitude of this shift depends on how peaked the prior distribution is on certain
regions, as we will see in a minute.

We now showhow theMSE loss function and theweight decay regularization can be
interpreted by the means of Bayesian inference. Consider a dataset 𝑥 = {𝑥(1),… , 𝑥(𝑝)}
of samples from an unknown distribution 𝑃data and say that we estimate this distribu-
tion with a model and we get likelihood 𝑃model(𝑥|𝑤), where 𝑤 are the parameters of
the model. The ML estimate of 𝑤 is

𝑤ML = argmax
𝑤

𝑃model(𝑥|𝑤)

= argmax
𝑤

𝑝

∑
𝜇=1

log𝑃model(𝑥|𝑤)

= argmax
𝑤 ∑

𝑥
𝑃data(𝑥) log𝑃model(𝑥|𝑤)

(1.48)
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where in the second line we added a log that does not change the position of the maxi-
mum; we wrote the last line to point out that maximizing the likelihood can be seen as
minimizing the cross entropy (or the Kullback-Leibler divergence) between 𝑃data and
𝑃model. In the following we will switch the perspective from maximizing the likelihood
to minimizing the negative log likelihood (NLL), to get closer to a loss-function formal-
ism.

For the sake of concreteness let’s now say that we are studying a regression problem
where we observe some function 𝑦(𝑥; 𝑤) plus a Gaussian noise with zero mean and
variance 𝜎2, which gives the following distribution of the data:

𝑃 (𝑦obs|𝑥) = 𝒩 (𝑦obs; 𝑦(𝑥; 𝑤), 𝜎2) (1.49)

Let’s now write our loss function, the negative log likelihood:

𝐿NLL(𝑤; 𝑥) = −
𝑝

∑
𝜇=1

log𝑃model(𝑦
𝜇
obs|𝑥

𝜇; 𝑤)

= 𝑝 log 𝜎 +
𝑝
2
log(2𝜋) +

𝑝

∑
𝜇=1

1
2𝜎

||𝑦𝜇
obs − 𝑦(𝑥𝜇; 𝑤)||2

(1.50)

From the last line we can finally observe that the MSE loss function is equivalent to
a ML likelihood estimation where we assume that the data have been generated with
the same model architecture that we are using for the inference plus a Gaussian noise.

Let’s now study a MAP estimation in the same circumstance. The posterior proba-
bility reads

𝑃 (𝑤|𝑦obs) ∝ 𝑃model(𝑦obs|𝑤)𝑃 (𝑤) (1.51)

and the MAP estimator reads

𝑤MAP = argmax
𝑤

𝑝

∑
𝜇=1

[log𝑃model(𝑦
𝜇
obs|𝑤) + log𝑃 (𝑤)] (1.52)

If we now choose a factorized Gaussian prior with zero mean and variance 𝜆−1/2

𝑃 (𝑤𝑖) ∝ exp(−𝜆
2

𝑤2
𝑖 ) (1.53)

and we write the corresponding loss function we obtain

𝐿(𝑤; 𝑥) = const +
𝑝

∑
𝜇=1

1
2𝜎

||𝑦𝜇
obs − 𝑦(𝑥𝜇; 𝑤)||2 + 𝜆

2
||𝑤||2 (1.54)

which is a MSE loss plus a weight decay regularization. We can also observe that the
hyperparameter 𝜆, which is the regularizer ”strength”, is nothing but the inverse vari-
ance of the Gaussian prior. A stronger regularization corresponds to a more peaked
prior distribution.
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1.4.3 Regularization strategies
The definition of a regularization strategy is a modification to the model that is aimed
at improving the generalization error and not the training error.

We already introduced the strategies of early stopping and weight decay in subsec-
tion 1.4.1. From early stopping we learned that minimizing the loss function might not
ensure the best generalization, since we saw how the minimum on the generalization
error happens when the training loss is not yet optimized. This observation help to un-
derstand a general behavior of those regularizers that are terms added to the loss: they
shift the position of the global minimum by a distance that depends on the regularizer
strength 𝜆. This hyperparameter is also interpretable as the Lagrangian multiplier in a
constrained optimization framework.

In this class of additional-loss-terms regularizerswe find all norm-based regularizers
plus a number of sparsity-enforcing regularizers (we will talk about the importance of
sparsity in chapter 4). Some examples are:

• 𝐿2, which is used to keep the norm of the parameters from exploding;

• 𝐿1, which is used to enforce sparsity in the weights;

• 𝐿0, which is a more effective sparsity enforcer but it is not derivable, so it must
be used with non gradient-based algorithms such as belief propagation;

• (𝐿1)2, which is an example of an ad-hoc regularizer for feature extraction with
restricted Boltzmann machines (see [12]);

• 𝐿1(ℎ), which is a sparsity enforcer applied to the activation of some layer of
a network rather than to the weights themselves; this is still related to feature
extraction and will be the regularizer studied throughout chapter 4.

A more subtle class of regularizers are the modifications to the learning procedure
that produce a regularization on the model parameters in a indirect way.

• Noise injection As we said in subsection 1.3.2, in general the loss landscape is
complex and non-convex, so we need strategies to avoid getting stuck in local
minima or to end up in very slow dynamics that take an unreasonable amount
of steps to converge. The intrinsic noise of SGD helps the convergence of the
dynamics, but this and other forms of noise during the training can also have
a regularization effect: for example we can perturb the example patterns each
time we feed them to the network so that the model is less prone to overfit the
specific patterns; we can also perturb the weights at each mini batch, for example
by setting to zero a small fraction of them so that no single input channel can
be fundamental and therefore collective features are encouraged (this is called
dropout technique).
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• Initialization If loss landscape is rough and non-convex it could be hard for al-
gorithms to move significantly away from the initial condition, therefore the ini-
tialization of neural becomes of great importance; sometimes a bad initialization
prevents the model to be able to learn at all. The universal strategy for initializing
neural networks is to have a very small norm from the beginning, incorporating
in this way an implicit 𝐿2 regularization in the initial condition which we already
know is a good prior for our model.

Some strategies can become quite elaborate, so that they become more of a prepro-
cessing phase:

• Data augmentation A strategy similar to injecting noise in the example patterns
is to generate different version of the example, each with a different perturbation.
A good example of this comes from computer vision: when we classify faces we
expect the faces in the dataset to have slightly different poses from each other, but
those are inessential to the classification. In order to prevent the model to focus
on the poses, we can generate additional variations of the pictures by rotating
them slightly, of reflecting them. This procedure builds an extended dataset that
can be used as a normal trainset.

A comprehensive introduction many of the possible regularization strategies in
deep neural networks can be found in [10].
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Chapter 2

Local Entropy and neural networks

This chapter focuses on the theory of local entropy, a concept that offers a possible
solution to the conundrum of why deep neural network do not overfit, in contrast to
what the theoretical framework of statistical learning predicts.

The concept of local entropy has been first developed on the binary perceptron, the
simplest formulation of a learning problem with constrained synapses. According to
a worst-case analysis the model is intractable and no efficient (polynomial time) algo-
rithms should exist.

An equilibriumdescription predicts the existence of an extensive number ofmetastable
states that dominate the Gibbs measure and trap algorithms based on free-energy mini-
mization. Additionally, the solutions appear to be geometrically isolated, making local-
search strategies worse.

Nevertheless, the existence of a number of efficient solvers (see [13, 14]) contradicts
what we just stated, suggesting that equilibrium statistical mechanics is not enough to
describe learning in the binary perceptron. For this reason binary perceptron seems the
perfect starting point to understand the gap between theory and numerical results in
neural networks. We will discuss results for deeper networks at the end of the chapter.

We begin by presenting the surprisingly rich structure of the binary perceptron
solution space. First in section 2.1 we review the standard equilibrium results for both
storage and teacher-student scenarios, highlighting how the isolated nature [explain
this above] of typical solution clashes with empirical results. Then in section 2.2 we
carry a large-deviation analysis that introduces the idea of local entropy and clarifies
how algorithms are attracted to subdominant solutions that are invisible to equilibrium
statistical mechanics.

With the new understanding of the geometry of the phase space, in section 2.3
we are able to design a class of algorithms that specifically search for these subdomi-
nant solutions, improving performances. In fact, it is important to note that, from the
teacher-student scenario, we learn that flat minima not only are accessible but also have
good generalization properties.
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In section 2.5 we briefly review the theory of local entropy for some common tools
of more complicated architectures, in order to bridge the gap between the perceptron
and the state-of-the-art models in deep learning.

2.1 Binary perceptron: properties of the solution space
In order to carry the calculations we need to specify the distribution of the patterns
{𝜉𝜇}. We know only two analytically solvable cases. The first one is to consider in-
dependent identically distributed random patterns drawn from the uniform distribu-
tion; this is called the random storage case. The other option is the teacher-student
case and consist in labels generated by a teacher perceptron with weights 𝑊 𝑇, namely
𝜎𝜇 = sgn(𝑊 𝑇 ⋅ 𝜉𝜇).

2.1.1 Storage
Revisiting the Gardner analysis

This subsection contains only a sketch of the complete calculations and it follows the
discussions contained in [15, 14]. For detailed calculations see those, or for example [8].

The binary storage perceptron has the same symmetry as the spherical storage per-
ceptron: we can map 𝜉 → −𝜉, 𝜎 → −𝜎 without changing the error function. Since we
are studying random patters, this symmetry allows us to set all the labels to +1 without
loss of generality.

We set up the standard Gardner analysis but instead of a uniform distribution over
the sphere we consider the uniform distribution on the hypercube vertices, that fixes
the weights to be binary:

𝑑𝜇(𝑊 ) =
𝑁

∏
𝑖=1

(𝛿(𝑊𝑖 − 1) + 𝛿(𝑊𝑖 + 1)) (2.1)

We need to compute the following average:

⟨Ω𝑛⟩ =
⟨∫

𝑛

∏
𝑎=1

𝑑𝜇(𝑊 𝑎)
𝛼𝑁

∏
𝜇=1

Θ
(

∑𝑖 𝑊 𝑎
𝑖 𝜉𝑎

𝑖

√𝑁 )⟩
𝜉

(2.2)

where 𝑎 ∈ {1, .., 𝑛} is the replica index. At the end of the calculation we will do the
limit 𝑛 → 0. Note that we scaled the weights with 1/√𝑁 in order to have extensive
quantities as argument of exponential functions, in the same fashion of the standard
Gardner analysis.

Then we proceed in the same way as we did for the spherical perceptron: we intro-
duce two auxiliary set of variables that allow the integral representation of the Θ step
function; then we compute the average over the disorder, which introduces a coupling
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between different replicas that we call overlap 𝑞𝑎𝑏. At this point we make a replica
symmetric ansatz and compute the remaining integral with a saddle-point integration.
It is worth noting that these steps are exactly the same as the spherical case, except the
integration measure 𝑑𝜇(𝑊 ).

From the standard Gardner analysis (see 1.2.1) of the spherical perceptron we know
that the critical capacity 𝛼C can be identified as the 𝛼 such that 𝑞 → 1. Solving equa-
tions 1.25 we find a solution that reaches 𝑞 = 1 at a capacity 1.27, but this cannot be
correct because the binary perceptron is composed of 𝑁 bits and therefore its capacity
is bounded at 1. Additionally, we find numerically that the entropy 𝑆RS becomes neg-
ative after the value 0.833, signaling that the solution cannot be correct in that regime.
Interestingly, we could ask if the zero-RS-entropy capacity us indeed the critical capac-
ity itself, since we don’t find any solutions after that point. This is in fact the case, but
we will have a more clear picture in the next section.

These observations are pointing out that the RS ansatz is not working. They way
to ensure that the RS solution is unstable is to compute the Hessian of the entropy
evaluated in the solution. Numerically it is found that the RS solution is unstable for
𝛼 = 1.015.

One-step replica-symmetry breaking

We understood that we need another ansatz for the matrix 𝑞𝑎𝑏. If we assume that be-
cause of the glassy landscape the ergodicity is completely broken, we can think of the
probability measure 𝒫 as decomposed into a convex linear combination of pure-state
measures 𝒫𝑎, each of those corresponding to a cluster of solutions geometrically sepa-
rated from the others. We group the 𝑛 replicas in 𝑛/𝑚 blocks, each containing 𝑚 replicas.
It is useful to define new indices that explicitly describe the organization in blocks: we
split the index 𝑎 into the couple (𝛼, 𝛽), where 𝛼 ∈ {1, ..., 𝑛/𝑚} is the block index and
𝛽 ∈ {1, ...,𝑚} is the inter-block index. The one-step replica-symmetry breaking (1RSB)
ansatz consist in the following:

𝑞𝛼𝛽,𝛼′𝛽′
=

⎧⎪
⎨
⎪⎩

1 if 𝛼 = 𝛼′ and 𝛽 = 𝛽′

𝑞1 if 𝛼 = 𝛼′ and 𝛽 ≠ 𝛽′

𝑞0 if 𝛼 ≠ 𝛼′ and 𝛽 ≠ 𝛽′
(2.3)

̂𝑞𝛼𝛽,𝛼′𝛽′
=

{
̂𝑞1 if 𝛼 = 𝛼′ and 𝛽 ≠ 𝛽′

̂𝑞0 if 𝛼 ≠ 𝛼′ and 𝛽 ≠ 𝛽′ (2.4)

With this matrix we find a new entropy 𝑆1RSB and new set of saddle-point equations.
Nowwe can try again to identify the critical capacity threshold 𝛼C by studying the limit
𝑞1 → 1 with 𝑞0 < 1. With the proper scaling the saddle-point equation for 𝑚 reduces
to the requirement 𝑆RS, which confirms the idea that the zero-RS-entropy criterion can
be used to identify 𝛼C in the binary perceptron.
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Interestingly we find only two solutions to the saddle-point equations that are stable
for 𝛼 < 𝛼C: the trivial RS one with 𝑚 = 0 and 𝑞1 = 𝑞0 = 𝑞RS and the 1RSB one with
𝑞1 = 1 and 𝑞0 = 𝑞RS. For 𝛼 ≥ 𝛼C the entropy of the 1RSB solution is not negative but
zero, thus correcting the nonphysical behavior.

The picture that emerges from this analysis is that the solutions, rather than being
organized into clusters, are organized into an exponential number of point-like pure
states for 𝛼 < 𝛼C.

Additionally, we see that the typical solutions can be seen both as unique pure states
with solutions at overlap 𝑞RS and as an ensemble of pure states that are point-like clus-
ters, with internal overlap 𝑞1 = 1 and external overlap 𝑞0 = 𝑞RS. These point-like
clusters have zero internal entropy, but their complexity turn out to be equivalent to
the RS internal entropy.

Franz-Parisi analysis

We want to confirm the picture that we built in the previous section of the geometry of
the typical solutions in a binary storage perceptron. In particular, we want information
about the vicinity of typical solutions. Specifically, we ask if those are really isolated,
that is how far from a given solution we do find another one.

In order to do this, we compute the so-called Franz-Parisi potential in the zero-
temperature limit. This analysis was done first in [15]. The idea of the Franz-Parisi
potential 𝒮FP is to consider a reference configuration �̃� samples from the Boltzmann
distribution at temperature 1/𝛽′, then to compute the free-energy of a bigger model
where a configuration 𝑊 at temperature 1/𝛽 is constrained to be at distance 𝐷 from the
reference �̃�:

𝒮FP = 1
𝑁 ⟨

1
𝑍(𝛽′) ∑

{�̃� }

𝑒−𝛽′𝐸(�̃� ) log
( ∑

{𝑊 }
𝑒−𝛽𝐸(𝑊 )𝛿 (𝑑(𝑊, �̃� ) − 𝐷))⟩

𝜉,𝜎

(2.5)

where 𝐷 is the Hamming distance between two configurations.
In the limit 𝛽, 𝛽′ → ∞ the reference configuration is sampled from a uniform dis-

tribution over the solution space. We also remind that without loss of generality we
can consider all the labels 𝜎𝜇 = 1 ∀𝜇, trivializing the average over 𝜎. We obtain the
expression:

𝒮FP = 1
𝑁 ⟨⟨

log ∑
{𝑊 }

∏
𝜇

Θ
(∑

𝑖

𝑊𝑖𝜉
𝜇
𝑖

√𝑁 )
𝛿 (𝑑(𝑊, �̃� ) − 𝐷)⟩

�̃�
⟩

𝜉

(2.6)

This expression can be expanded with the use of the replica trick. The main order
parameters are

• the overlap between two typical solutions ̃𝑞𝑐𝑑 ∶= ∑𝑖 �̃� 𝑐
𝑖 �̃� 𝑑

𝑖 /𝑁;
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• the overlap between two replicas 𝑞𝑎𝑏 ∶= ∑𝑖 𝑊 𝑎
𝑖 𝑊 𝑏

𝑖 /𝑁;

• the overlap between a replica and a solution 𝑆𝑐𝑎 = ∑𝑖 �̃� 𝑐
𝑖 𝑊 𝑎

𝑖 /𝑁.

The expression reduces after an involved calculation to a saddle-point integration
with seven order parameters in total. The seven saddle-point equations can be inte-
grated numerically to find the optimal value of the order parameters and consequently
compute the Franz-Parisi potential.

Figure 2.1: Typical solutions of a binary perceptron in the storage case are isolated. The
image shows theoretical curves of Franz-Parisi entropy, which show a zero-entropy gap
in the vicinity of the reference. Different colors correspond to increasing value of the
capacity 𝛼 = 𝑝/𝑁, while the dotted curve corresponds to 𝛼 = 0, which is the logarithm
of the unconstrained volume of the space at a certain distance. Image from [14].

The results are shown in figure 2.1. For all values of 𝛼 we find a zero-entropy gap
in the vicinity of the reference, namely for small distance 𝐷. This means that there are
no other solution within a certain distance, and there is no cluster of typical solutions.
Additionally, we see that the gap increases as the number of pattern increases. This
could be the origin of the computational hardness of the binary perceptron, since it
becomes harder and harder for local-search strategies to find other solutions.
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2.1.2 Teacher-student
This subsection follows the results in [16], where the equilibrium analysis of the binary
perceptron was extended to the teacher-student scenario. We will see that the results
do not change qualitatively from the storage scenario: typical solutions are isolated for
all values of 𝛼, and the teacher itself is isolated and indistinguishable from all other
typical solutions.

Equilibrium analysis

It is easy to see that the loss 𝐿 is invariant under the transformation 𝜉𝜇 → −𝜉𝜇. This
fact allows us to fix the gauge 𝑊 𝑇

𝑖 = 1 ∀𝑖 without loss of generality. Therefore, the
labels become 𝜎𝜇 = sgn(∑𝑖 𝜎𝜇

𝑖 ) and thanks to the scale invariance of the Θ function we
can remove the sgn functions. The loss becomes:

𝐿(𝑊 ) = ∑
𝜇

Θ
(

−
∑𝑖 𝜉𝜇

𝑖

√𝑁

∑𝑗 𝑊𝑗𝜉
𝜇
𝑗

√𝑁 )
(2.7)

The replica calculation proceeds similarly to the storage case. We first make a RS
ansatz and we find a threshold capacity 𝛼D = 1.245, after which the entropy becomes
negative. A 1RSB approach gives the correct results of zero entropy for 𝛼 > 𝛼D and
shows that the only solution in that regime is the one with 𝑅 = 1, namely the teacher
itself.

Franz-Parisi analysis

Given that the teacher itself is the only (and therefore isolated) solution for 𝛼 > 𝛼D it is
interesting to ask whether the solution below the critical capacity are isolated too. To
do this we compute again the Franz-Parisi potential, in the same fashion we did above
for the storage case.

We take the expression of the Franz-Parisi entropy 2.5 and we plug in the expression
for the energy of the teacher-student perceptron 2.7. The results reads

𝒮FP = 1
𝑁 ⟨

1
𝑍 ∑

{�̃� }
∏

𝜇
Θ

(
∑𝑖 𝜉𝜇

𝑖

√𝑁

∑𝑗 �̃�𝑗𝜉
𝜇
𝑗

√𝑁 )

log ∑
{𝑊 }

∏
𝜇

Θ
(

∑𝑖 𝜉𝜇
𝑖

√𝑁

∑𝑗 𝑊𝑗𝜉
𝜇
𝑗

√𝑁 )
𝛿 (𝑑(𝑊, �̃� ) − 𝐷)⟩

𝜉

. (2.8)

We call �̃� the pseudo teacher. Its distribution is the uniform one among all the
students compatible with the original teacher (that we set to 1 with a gauge choice).
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The new student perceptron is constrained to be at distance 𝐷 from the pseudo-teacher
and to still be compatible with the original teacher.

The distance constraint introduces a coupling between the student and the pseudo
teacher, and therefore we have two additional order parameters other than the old ones

̃𝑞𝑐𝑑, 𝑞𝑎𝑏 and 𝑆𝑐𝑎:

• the overlap between the pseudo-teachers and the teacher �̃�𝑐 ∶= ∑𝑖 �̃� 𝑐
𝑖 /𝑁;

• the overlap between a student and the teacher 𝑅𝑎 ∶= ∑𝑖 𝑊 𝑎
𝑖 /𝑁;

The saddle-point equations that we obtain for the whole set of order parameters are
the same that we would have obtained if we studied the model of a student coupled to
the teacher via a distance constraint, except that the overlap 𝑆 would play the role of the
actual teacher-student overlap, rather than being the pseudo-teacher-student overlap.
By further comparing the saddle-point equations in the two cases one can note that a
typical solution to the teacher student problem, which we chose as our pseudo-teacher,
is indistinguishable from the teacher in everything except the generalization properties
(see the Supplemental Material of [16] for the equations).

The numerical solution to the saddle-point equations is shown in figure 2.2. We
see that for all 𝛼 > 0, the entropy is always negative in a neighborhood of the pseudo-
teacher, meaning that all typical solutions of the teacher-student problem (including
the teacher itself) are extensively isolated.

2.1.3 Contradictory numerical results
We now compare the results obtained with an heuristic algorithm and the typical solu-
tions obtained with the equilibrium analysis of the last section. In particular, we want
to check if algorithms really find isolated solutions; we intuitively expect that isolated
solutions are golf-course-like holes in the loss landscape, and that for this reason they
are very hard to be detected by algorithms that use local-search-based strategies.

The number of solutions as a function of the distance from a reference solution is
shown in figure 2.3. We can see that there is a remarkable difference between the curve
of typical solutions and the curve of algorithmic solutions, also visible if we compare
the entropy as a function of the Franz-Parisi potential (inset of figure 2.3). See [16] and
[14] for more details of how to compute the curves and for deeper discussions.

The observation that equilibrium statistical mechanics appears to not describe the
solutions found by algorithms raises the need for a different theory that matches with
the numerical experiments. This new theory is described in the next section.

2.2 Binary perceptron: subdominant states
In this section we introduce a large-deviation analysis that will reveal the existence of
a class of out-of-equilibrium solutions that have radically different properties from the
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Figure 2.2: Typical solutions of a binary perceptron in the teacher-student case are iso-
lated. The image shows theoretical curves of Franz-Parisi entropy, which show negative
values in the vicinity of the reference. Different colors correspond to increasing value
of the capacity 𝛼 = 𝑝/𝑁, while the top black curve corresponds to 𝛼 = 0, which is the
logarithm of the unconstrained volume of the space at a certain distance. Image from
[14].

typical solutions, namely they are subdominant with respect to the Boltzmann measure
and they are clustered in dense regions of the solution space. We will see that this new
class turns out to have a much better agreement with numerical results, therefore we
will argue these dense solutions are the ones accessible to simple learning protocols,
rather than the isolated equilibrium solutions.

We start the analysis by defining a biased probability measure 𝑃 biased towards
solutions that have many other solutions nearby:

𝑃 (�̃� ; 𝑦, 𝑑) =
𝕏𝜉(�̃� )𝒩 (�̃� , 𝑑)𝑦

∑{ ̃𝑊 ′} 𝕏𝜉( ̃𝑊 ′)𝒩 ( ̃𝑊 ′, 𝑑)𝑦
(2.9)
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Figure 2.3: The entropy of typical solutions do not correspond to the entropy of al-
gorithmic solutions. The image shows a comparison between curves of Franz-Parisi
entropy for different references. From bottom to top: the purple curve is for typical
solutions; the blue and the red curves are for algorithmic solutions (the blue curve is
estimated with a Monte Carlo while the red is estimated with belief propagation, see
[16]); the green curve is for the solution that optimizes local entropy. Note that the
algorithm solution and the local-entropy optimal solution do not have a zero-entropy
gap in the vicinity of the reference. Image adapted from [16].

where the function 𝒩 (�̃� , 𝑑) counts the number of solutions at distance 𝑑 from the
reference �̃�:

𝒩 (�̃� , 𝑑) = ∑
{𝑊 }

𝕏𝜉(𝑊 )𝛿(𝑊 ⋅ �̃� ,𝑁(1 − 2𝑑)) (2.10)

The meaning of equation 2.9 can be understood by changing the value of the ”in-
verse temperature” 𝑦: if we set 𝑦 = 0 we recover the Boltzmann case, namely the flat
measure in the solution space; if we increase 𝑦 the measure gets more biased around
dense solutions and if we send 𝑦 → ∞ we would expect to find the minimum of an
energy-like function defined as ℰ(�̃� ) = − 1

𝑁 log𝒩 (�̃� , 𝑑).
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The average of −ℰ(𝑑, 𝑦) over the disorder and the solution space is called local
entropy 𝒮 (𝑑, 𝑦):

𝒮 (𝑑, 𝑦) ∶= − ⟨ℰ(�̃� )⟩𝜉,�̃� = 1
𝑁 ⟨log𝒩 (�̃� , 𝑑)⟩𝜉,�̃� (2.11)

The local entropy can be obtained as the first derivative of a certain average free
entropy density ℱ

ℱ (𝑑, 𝑦) = − 1
𝑁𝑦 ⟨

log
( ∑

{�̃� }

𝕏𝜉(�̃� )𝒩 (�̃� , 𝑑)𝑦
)⟩

𝜉

(2.12)

In fact

𝒮 (𝑑, 𝑦) = 𝜕𝑦(𝑦ℱ (𝑑, 𝑦))

= − 1
𝑁 ⟨

1
𝑍(𝑦) ∑

{�̃� }

𝕏𝜉(�̃� )𝑒𝑦 log𝒩 (�̃� ,𝑑) log𝒩 (�̃� , 𝑑)
⟩

𝜉

= − 1
𝑁 ⟨

1
𝑍(𝑦) ∑

{�̃� }

𝕏𝜉(�̃� )𝑒𝑦 log∑{𝑊 } 𝕏𝜉(𝑊 )𝛿(𝑊 ⋅�̃� ,𝑁(1−2𝑑))

log ∑
{𝑊 }

𝕏𝜉(𝑊 )𝛿(𝑊 ⋅ �̃� ,𝑁(1 − 2𝑑))
⟩

𝜉

(2.13)

Note that in the limit 𝑦 → 0 this expression reduces to a formula analogous to a Franz-
Parisi potential. Here, instead, we leave 𝑦 as a control parameter.

Another important quantity will be the complexity Σ, also called external entropy,
which is defined as

Σ(𝑑, 𝑦) = ℱ (𝑑, 𝑦) − 𝑦𝒮 (𝑑, 𝑦) (2.14)

The external entropy counts the number of different cluster, while the local entropy
(also called internal entropy) counts the number of solutions inside a cluster.

Our large deviation analysis consists in calculating the average free entropy density
2.12 with the replica method. This free energy is minimal in correspondence of dense
clusters of solutions which are subdominant with respect to the Boltzmann measure.

This analysis can be performed in the two scenarios of random storage and teacher-
student, depending on the definition of the characteristic function 𝕏𝜉(𝕎). We will see
that the RS saddle point produces qualitatively very similar results for both the random
storage and the teacher-student scenarios below the corresponding critical capacity
(respectively 𝛼c and 𝛼TS).
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We end this preliminary subsection by providing an alternative ”soft” definition to
equation 2.10 of 𝒩 (�̃� , 𝑑). This definition, or variations of it with different distances,
will be useful in the next section. Instead of using the Kronecker delta-function, a more
natural definition uses a Lagrangian multiplier 𝛾 to enforce a certain distance:

𝒩 (�̃� , 𝑑) = ∑
{𝑊 }

𝕏𝜉(𝑊 ) exp(−
𝛾
2

(𝑊 − �̃� )2) (2.15)

This definition will come in handy when we will consider models with 𝛽 ≠ 0 and when
we will design algorithms to actively search for dense clusters, because the Lagrange
multiplier will simply be coupling between different replicas of the same model. In the
thermodynamic limit, definitions 2.10 and 2.15 are equivalent.

2.2.1 Sketch of the large-deviation analysis
Herewe present a sketch of the calculations of the local entropy curves that will be show
in the following subsections. For the complete discussion and the detailed calculations
see the original works [14, 16].

Let’s call volume Ω the argument of the logarithm in ℱ (𝑑, 𝑦) (equation 2.12):

Ω(𝑑, 𝑦) ∶= ∑
{�̃� }

𝕏𝜉(�̃� )𝒩 (�̃� , 𝑑)𝑦

= ∑
{�̃� }

𝕏𝜉(�̃� )
[ ∑

{𝑊 }
𝕏𝜉(𝑊 )𝛿(𝑊 ⋅ �̃� ,𝑁(1 − 2𝑑))

]

𝑦 (2.16)

To compute ℱ (𝑑, 𝑦) we need first to compute the average of the 𝑛-th power of Ω:

⟨Ω(𝑑, 𝑦)𝑛⟩𝜉 =
⟨∫

𝑁

∏
𝑖=1

∏
𝑐

𝑑𝜇(�̃� 𝑐
𝑖 ) ∫

𝑁

∏
𝑖=1

∏
𝑐𝑎

𝑑𝜇(𝑊 𝑐𝑎
𝑖 ) ∏

𝑐
𝕏𝜉(�̃� 𝑐) ∏

𝑐𝑎
𝕏𝜉(𝑊 𝑐𝑎)

∏
𝑐𝑎

𝛿(
𝑁

∑
𝑖=1

𝑊 𝑐𝑎
𝑖 �̃� 𝑐

𝑖 , 1 − 2𝑑𝑁)
⟩

𝜉

(2.17)

where we defined two set replicas, both from the 𝑛 exponent and from the 𝑦 exponent.
Thismeans that we end upwith two different replica indices: index 𝑐 ∈ 1,… , 𝑛 refers to
the 𝑛 replicas of the reference configuration �̃�; index 𝑎 ∈ 1,… , 𝑦 refers to the replicas
of the student configuration 𝑊, 𝑦 for each reference replica, so 𝑛𝑦 in total.

In otherwords, we can picture the following situation: we have 𝑛 reference solutions
acting as pseudo-teachers for groups of 𝑦 student replicas at a fixed distance 𝑑. At this
stage we take only the limit 𝑛 → 0, while 𝑦 is still a parameter of the problem.
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Now we proceed in the standard way of replica calculations: we plug into equa-
tion 2.17 the integral representation of the characteristic functions 𝕏𝜉 and of the 𝛿
function, then we perform the average over the disorder in the large N limit. At this
point we have to specify an ansatz for the Parisi matrix: we choose the RS ansatz as it
is the simplest one.

Interestingly we can note that, even within the RS ansatz, we already have a geo-
metric structure in the model, namely the one described above. This structure has been
produced by the reweighting term and it is formally similar to a 1RSB description, with
an important difference: the distance between the student replicas is now fixed, and
not a parameter of the Parisi matrix that needs to be optimized.

After choosing the ansatz we can proceed with the saddle point integration, that
is solved by minimizing a free energy density with respect to the order parameters of
the problem. We find 11 saddle point equations for the storage scenario and 13 for the
teacher-student scenario. These equations must be integrated numerically. The form of
the equations depends on the choice we make for the parameter 𝑦, which is discussed
immediately below.

Once we have computed the free energy 2.12 with the replica trick, we can compute
the local entropy simply as its derivative (see equation 2.11).

Problems with the large y limit, RS ansatz

Aswe said above one idea to compute expression 2.12 would be to take the limit 𝑦 → ∞,
in order to find the optimal state of the local entropy 2.11. Unfortunately this limit leads
to nonphysical results within the RS ansatz. In fact, if we compute the average free
entropy density 2.12 and from that the complexity 2.14, we see that for all values of 𝛼
and 𝑑 there is a value of 𝑦 beyond which Σ(𝑑, 𝑦) < 0, which is absurd.

This behavior signals the incorrectness of the RS ansatz. This fact can be interpreted
geometrically: a RS ansatz implies that there should be a unique solution with maximal
local entropy (since the overlap between different replicas tends to 1); if this is not true
it means that the set of solutions with maximal local entropy has a non-trivial structure,
namely is not a single cluster anymore (beyond said 𝑦).

Finite y, RS ansatz

Instead of taking the 1RSB ansatz, we take a different approach. We fix the value of 𝑦
to the highest possible so that the complexity is non-negative: this is called the van-
ishing complexity criterion. In practice, we must find the value 𝑦∗ = 𝑦∗(𝑑, 𝑦) such that
Σ(𝑑, 𝑦∗) = 0, then we plug it in the saddle point equations so that the dependency on 𝑦
is dropped.

With this method we are actually able to compute the average free energy in a
meaningful way (for certain ranges of 𝛼 and 𝑑 that we will discuss below), and therefore
we can compute the local entropy too. The main results are listed in the following
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subsections. Note that the results listed in the storage subsection are also valid for the
Teacher-student case. In subsection 2.2.3 we will discuss the generalization properties
that are specific for this scenario.

It must be noted again that the solutions obtained with the vanishing complexity
criterion are not the solutions with maximal local entropy, as those would be the ones
obtained with 𝑦 → ∞. The values of local entropy discussed here are therefore a lower
bound. However, we can note that 𝑦∗ → ∞ both when 𝑑 → 0 and 𝑑 → 1, suggesting
that problems with the RS ansatz only appear for intermediate distances. Adjustments
due to further levels of RSB would likely be small, and limited to the intermediate re-
gions of 𝑑.

2.2.2 Storage
The results for the random storage scenario are shown in fig. 2.4.

For 𝛼 < 𝛼c local entropy is greater than zero in a neighborhood of 𝑑 = 0, signaling
the presence of a dense cluster of solutions in correspondence of high-local-entropy
regions. Additionally, the curves for different capacity collapse onto each other when
𝑑 → 0. Since in particular they collapse on the 𝛼 = 0 curve, we learn that the center of
the cluster is extremely dense of solution, namely at the same density as if there were
no constraints. The size of the cluster appears to reduce when we increase 𝛼, until it
disappears when 𝛼 = 𝛼c.

For larger distances local entropy collapses onto the entropy of typical solutions
(according to the Boltzmann distribution) with a second-order phase transition.

We also note that there is a capacity threshold 𝛼U beyond which the local entropy
curves stop being monotonic in 𝑑 and at some point start being negative. This is when
the RS ansatz starts failing again, signaling that the dense cluster is breaking into a
more complex structure.

2.2.3 Teacher-student
The teacher-student scenario is useful to test the generalization properties of the solu-
tions inside the dense cluster. It turns out that they are generally much better than the
typical solutions.

In fig. 2.5 we compare the generalization error as a function of 𝛼 for typical solu-
tions, dense solutions and Bayes-optimal solutions. We see that the generalization error
increases monotonically with 𝑑, until we reach the error of typical solution when 𝑑 = 0
(as expected since the biased measure 2.9 is equivalent to the Boltzmann measure if
𝑑 = 0).

Additionally, we see that the curve for small 𝑑 is in perfect agreement with the
algorithmic solutions. This result supports the idea that algorithmic results are not
distributed according to a Boltzmann distribution but rather according to a local entropy
distribution like 2.9.
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Figure 2.4: Local-entropy-optimal solutions of a binary perceptron in the teacher-
student case are part of a dense cluster of solution. The image shows theoretical curves
of Franz-Parisi entropy, which have a positive monotonic behavior in the vicinity of
the reference. Red curves correspond to local-entropy-optimal solutions for different
values of 𝛼 = 𝑝/𝑁, while blue dotted curves correspond to typical solutions. The top
black curve corresponds to 𝛼 = 0, which is the logarithm of the unconstrained volume
of the space at a certain distance. Image from [16]

An intuitive way to interpret the good generalization property is a Bayesian ar-
gument: the output of a solution that lies in the middle of a cluster can be seen as a
Bayesian estimator of all the solutions in the same cluster, therefore solutions towards
the center of the cluster are expected to have a higher posterior weight than those at
the border and even higher than those isolated.
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Figure 2.5: Local entropy of a solution correlates with its generalization. The image
shows the generalization error as a function of 𝛼 for different kind of solutions. From
bottom to top: the green curve corresponds to a Bayes-optimal solution; the purple
and red curves correspond to theoretical curves of local-entropy-optimal solution; the
black dots correspond to algorithmic solutions; the blue curve corresponds to typical
solutions. Image from [16].

2.3 Local entropy as objective function
In this section we describe how the theory introduced in the previous section can be
exploited to derive a number of algorithms that actively target dense clusters of solu-
tions.

Before introducing algorithms we want to study a slight variation of the free energy
2.12 where we remove the constraint for the reference configuration �̃� to be itself a
solution of the problem (i.e. a ground state of the original loss function):

ℱ (𝑑, 𝑦) = − 1
𝑁𝑦 ⟨

log ∑
{�̃� }

𝒩 (�̃� , 𝑑)𝑦
⟩

𝜉

= − 1
𝑁𝑦 ⟨

log ∑
{�̃� }

𝑒𝑦 log∑{𝑊 } 𝕏𝜉(𝑊 )𝛿(𝑊 ⋅�̃� ,𝑁(1−2𝑑))

⟩
𝜉

(2.18)

The reason for studying this model is that in this way we can use equation 2.18 as
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an objective function and study the properties of �̃�: if �̃� is a solution of the original
problem this is due to the optimization of local entropy and not simply enforced by a
constraint. Therefore, we will consider a storage scenario and compute the error rate
of �̃�.

In the following subsection we sketch this large-deviation analysis and compare
the results both with the constrained case and with numerical simulation. The full
discussion, as well as the algorithms used, can be found in [17, 14].

2.3.1 Sketch of the large-deviation analysis with unconstrained
reference, storage

The replica calculation of equation 2.18 in a storage scenario with a RS ansatz leads
to a number of nonphysical results. In fact, if we use again the vanishing complexity
criterion to fix the value of 𝑦, the local entropy appears to be positive even for 𝛼 > 𝛼c,
signaling the incorrectness of the RS ansatz. Additionally, the external entropy appears
to be negative for all values of 𝛼 and 𝑑.

Therefore, we have to make a 1RSB ansatz. The specific choice is to consider the
symmetry breaking at the level of the reference configuration �̃� and not at the level of
the ”student” configurations 𝑊.

Here we have again a situation similar to equation 2.17, where we have 𝑛 groups
(corresponding to �̃�) of 𝑦 replicas (corresponding to 𝑊). We have two different replica
indices: index 𝑐 ∈ 1,… , 𝑛 refers to the 𝑛 replicas of the reference configuration �̃�;
index 𝑎 ∈ 1,… , 𝑦 refers to the replicas of the student configuration 𝑊, 𝑦 for each
reference replica, so 𝑛𝑦 in total.

In this scenario the calculation with finite 𝑦 appears to be too difficult, so we resort
to the limit 𝑦 → ∞.

The first thing to note about the results is that the external entropy is still negative
for all values of 𝛼 and 𝑑, even though its value tends to zero for 𝑑 → 0. Additionally, all
the other nonphysical behaviorswe had in the RS ansatz nowdisappear. Another couple
of observations lead us to believe that this level of approximation is good enough: first,
the qualitative behavior is the same as the RS calculation for the constrained model; and
second, numerical experiments are in great agreement with this analysis (see figure 2.6).

In figure 2.6 the numerical results are obtained with Entropy-driven Monte Carlo,
an algorithm first introduced in [17]. This algorithm and another one called Entropy
SGD (first introduced in [1]) have been particularly important in the development of
the theory of local entropy and therefore their general idea is described below. For
more detailed descriptions see the original papers.

We will describe in mode detail other two algorithms, Replicated Monte Carlo and
Replicated SGD, because they are used extensively in this thesis.
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2.3 – Local entropy as objective function

Figure 2.6: High-local-entropy solutions calculated without the constraint that the cen-
ter is a zero-loss solution still have better generalization properties. Panel A shows the
train error as a function of the overlap with the center. Panel B shows the correspond-
ing local entropy. Image from [17].

2.3.2 Algorithm: Entropy-driven Monte Carlo
The idea of this algorithm is simply to perform aMarkov-Chain Monte Carlo procedure
with standard Metropolis-Hastings accept rule, where we use local entropy as objective
function instead of the original loss function. This algorithm is called Entropy-driven
Monte Carlo (EdMC).

The main technical difficulty is the estimation of local entropy of a solution at each
step. The most efficient way to do so is to run a belief propagation (BP) algorithm on
the model with an external field proportional to said solution.

The reason for this BP approach is that we can write a variation of the distance term

43



Local Entropy and neural networks

in equation 2.15 using the overlap between �̃� and 𝑊 instead. Then if we use a Bethe
approximation on the definition of local entropy we obtain modified BP equation that
consist in standard equations with an additional external field.

Once we have a way of estimating local entropy, the algorithm proceeds in the
standard way proposing moves to change the configurations and accepting them with
a probability that depends on the difference of local entropy via theMetropolis-Hastings
rule.

For a deeper description of this algorithm and of belief propagation equations, see
[17].

2.3.3 Algorithm: Entropy SGD
Since we can use local entropy as an objective function, if our model has continuous
parameters then we can design a gradient-based optimization of it.

We are interested the gradient of local entropywith respect to themodel parameters
�̃�. Let’s write local free entropy using a variation of equation 2.15 where we use a
energy (loss) function 𝐸(𝑊 ; 𝜉) instead of the characteristic function 𝒳𝜉(𝑊 )

ℱ (�̃� ; 𝛽, 𝛾) = log∫𝑊
𝑒−𝛽𝐸(𝑊 ;𝜉)−𝛾(𝑊 −�̃� )2

𝑑𝑊 (2.19)

If we compute the gradient of local entropy with respect to �̃� we obtain

∇�̃�ℱ (�̃� ; 𝛽, 𝛾) = 𝛾(�̃� − ⟨𝑊⟩𝛽,𝛾) (2.20)

where the average is computed on the distribution 𝑃 (𝑊 ; 𝛽, 𝛾, �̃� ) induce by local en-
tropy:

𝑃 (𝑊 ; 𝛽, 𝛾, �̃� ) ∝ 𝑒−𝛽𝐸(𝑊 ;𝜉)−𝛾(𝑊 −�̃� )2
(2.21)

The expectation in equation 2.20 is hard to compute, therefore we resort to an estima-
tion via Langevin dynamics, which is a MCMC algorithm for drawing samples from
a Bayesian posterior distribution. The strategy consists in adding Gaussian noise into
maximum-a-posteriori (MAP) updates to obtain a stochastic process that converges to
distribution 𝑃 (𝑊 ; 𝛽, 𝛾, �̃� ) so that we can use samples from the trajectory to compute
the average numerically.

The peculiarities of this algorithm are two. First, it has been proven that we can just
choose a random subset of the dataset to compute the energy 𝐸(𝑊 ; 𝜉): this is crucial
to scale well on big dataset, because computing the gradient with respect to millions
of inputs at each step is unfeasible. Second, it has been proven that this stochastic
process does not require aMetropolis-Hastings rule in a certain limit of theMAP-update
equations, which is good because if not we would have needed to compute the full
energy at each step.
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The minimization of the negative local entropy via Langevin dynamics that we de-
scribed here is called Entropy-SGD. For a detailed description and a discussion of the
approximations see [1].

2.4 Replicating models
In this section we introduce an approach to optimize local entropy alternative to the
ones described above, that rely on a difficult estimation of Gibb-like integrals. The
advantages of this new approach will be its simplicity and generality, that allow for a
very broad application. The concepts reviewed in this section have been introduced fist
in [13].

Let’s write the biased measure 2.9 with all the modifications introduced in the last
sections: first we drop the constraint on �̃�, then we use the soft constraint on the
distance in equation 2.15 with generic distance 𝑑(⋅, ⋅), then we consider the case 𝛽 > 0
and we use an energy function 𝐸(�̃� ) instead of the characteristic function 𝒳𝜉. The
resulting measure reads

𝑃 (�̃� ; 𝑦, 𝛽, 𝛾) = 1
𝑍(𝑦, 𝛽, 𝛾)

𝑒𝑦ℰ(�̃� )

= 1
𝑍(𝑦, 𝛽, 𝛾)

𝑒𝑦 log∑𝑊 𝑒−𝛽𝐸(𝑊 )−𝛾𝑑(𝑊,�̃� )2

= 1
𝑍(𝑦, 𝛽, 𝛾)

(∑
𝑊

𝑒−𝛽𝐸(𝑊 )−𝛾𝑑(𝑊,�̃� )2
)𝑦,

(2.22)

where 𝑍(𝑦, 𝛽, 𝛾) is the normalization constant.
The key observation of this section is that, if we imagine 𝑦 as an integer, 𝑍(𝑦, 𝛽, 𝛾)

appears as the partition function of an expanded model consisting in 𝑦 replicas {𝑊 𝑎}
of the original model coupled to a ”center” �̃�:

𝑍(𝑦, 𝛽, 𝛾) = ∑̃
𝑊

(∑
𝑊

𝑒−𝛽𝐸(𝑊 )−𝛾𝑑(𝑊,�̃� ))𝑦

= ∑̃
𝑊

∑
{𝑊 𝑎}

𝑒−𝛽 ∑𝑦
𝑎=1 𝐸(𝑊 𝑎)−𝛾 ∑𝑦

𝑎=1 𝑑(𝑊,�̃� ).
(2.23)

This fact allows for a much simpler andmore general approach to design algorithms
that look for high local entropy solutions: we just choose an algorithm for the original
model apply it to replicated model. We will see in the rest of this thesis that the exact
scheme of coupling replicas is unimportant, as well as other details such as adding back
an energy term on the center �̃�.

In the following subsections we introduce the two main algorithms that are em-
ployed throughout this thesis: Replicated SGD, that will be used on neural networks in
chapters 3 and 4, and Replicated Monte Carlo, that will be used on lattice proteins in
chapter 5.
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2.4.1 Algorithm: Replicated SGD
Given a generic neural networkwithweights𝑊 and loss function𝐿(𝑊 ; {𝜉𝜇}) = ∑𝑀

𝜇=1 𝑙(𝑊 ; 𝜉𝜇),
where {𝜉𝜇}𝑀

𝜇=1 are the data points, the Replicated-SGD algorithm consists in minimiz-
ing the following replicated loss function:

𝐿rep(�̃� , {𝑊 𝑎}; {𝜉𝜇}) ∶=
𝑦

∑
𝑎=1

𝑀

∑
𝜇=1

𝑙({𝑊 𝑎}; 𝜉𝜇) + 𝛾
𝑦

∑
𝑎=1

𝑑(𝑊 𝑎, �̃� )2 (2.24)

where �̃� is the central replica and 𝑑(𝑊 𝑎, �̃� ) is a generic distance. The precise defini-
tion of 𝑑 usually does not matter; the most common choice is the mean square distance.
Note that �̃� is a parameter of the model and must be updated with its own gradient;
since we do not have a loss term 𝐿(�̃� ; {𝜉𝜇}), the only force moving the center will
be due to coupling with replicas only. At the end of the training we will use the cen-
ter as our model and predictor. We expect the center to lay in the very middle of the
cluster of solutions while the replicas stop on the border, and we know that this prop-
erty is connected with better generalization properties (see [7, 6]). Different values of
𝛾 will change the final properties of �̃�; usually a non-negligible value is required to
have some effect, but not too big in order to avoid numerical problems. An annealing
procedure for 𝛾 can be useful if the loss landscape appears to be particularly rough, but
is not mandatory at this stage.

As we did for standard SGD, the replicated loss can be optimized in mini batches,
namely 𝜇 ∈ [1,𝐵] with 𝐵 < 𝑀, so that the computation of the gradient is less heavy
at the cost of introducing noise.

A different coupling scheme consists in dropping the center replica and coupling
every replica with each other. The resulting loss function reads:

𝐿rep({𝑊 𝑎}; {𝜉𝜇}) ∶=
𝑦

∑
𝑎=1

𝑀

∑
𝜇=1

𝑙({𝑊 𝑎}; 𝜉𝜇) +
𝛾
2

𝑦

∑
𝑎,𝑏=1

𝑑(𝑊 𝑎,𝑊 𝑏)2 (2.25)

Until now we do not have a center to use as a predictor; one way to go is to do
the annealing procedure of 𝛾 carefully enough to make the replicas collapse onto each
other, so that they are a single solution of the original problem. Another option, if we
want to avoid the 𝛾-annealing procedure but we still want to keep this second coupling
scheme, is to build a center replica on the fly as the barycenter of the replicas whenever
we need to make a prediction. This happens even during the training, for monitoring
purposes.

Apart from these general characteristics, eachmodelwill have specific design choices.
We will describe those in the corresponding chapters.
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2.4.2 Algorithm: Replicated Monte Carlo
In case we have model with discrete degrees of freedom Γ, such as the lattice polymers
that we will use in section 5.2, a gradient-based optimization is not feasible. In this case
we resort to optimizing a replicated energy function 𝐸rep(Γc, {Γ𝑎}) via Monte Carlo
with Metropolis-Hastings rule. The replicated energy function reads

𝐸rep(Γc, {Γ𝑎}) = 𝐸(Γc) +
𝑦

∑
𝑎=1

𝐸(Γ𝑎) + 𝛾
𝑦

∑
𝑎=1

𝑑(Γ𝑎,Γc)2 (2.26)

where this timewe include the energy of the center replica𝐸(Γc). The reason for includ-
ing this therm is that in section 5.2 we will optimize models that have hard constraint,
which must be satisfied in order to have an acceptable configuration (in particular, the
hard constraints will be the condition that monomers must not occupy the same site
of the lattice, this constraints modeling steric repulsion in polymers). For this reason
we cannot define the center simply as the barycenter of the replicas, because there is
no guarantee that it will be an acceptable configuration satisfying the hard constraints.
Additionally, depending on the model and the choice of the distance, the definition of
a barycenter itself may make little sense: it would require some rounding of discrete
coordinates that in turn can lead to inconsistent distances between monomers. This
would be acceptable if we modeled inter-monomer bonds with harmonic potentials,
not in our case of a lattice model where the distance is fixed by the lattice step.

Given this ambiguity in the definition of a barycenter, one could drop the central
replica and try to make replicas collapse into a single configuration by performing an
annealing of 𝛾. This strategy proved extremely difficult and inconvenient: when 𝛾 be-
comes high and the inter-replica distance low, most of the moves are rejected and the
sampling freezes, especially if we are also have high values of 𝛽.

The solution is to consider all the replicas connected to a central one that is still
endowed with its energy function, so that it is guaranteed to be an acceptable configu-
ration. The role of center is granted through the coupling topology, so we still expect
the center to have different physical properties than replicas. Another good reason to
choose this coupling scheme is that it does not require an annealing of 𝛾. This is handy
when we are interested in studying the phase diagram of the replicate model, because
we can simply do simulations at constant values of 𝛾 and compute thermal averages at
different values of 𝛾 and 𝛽.

In section 5.2 we describe in a more detailed way the replicated Monte Carlo algo-
rithm that we used to sample lattice polymers from a local-entropy distribution.
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2.5 Elements of deep learning
An important observation is that, in deep learning, we don’t have any of the certain
convergence problems (some of which are of numerical nature, such as vanishing gra-
dients) the landscape is rather smooth and algorithms often find a good solution. One
way of seeing this property is that deep architectures are the results of heuristic in-
tuitions that have accumulated in the last decade of software engineering, so that we
don’t know how they affect the structure of the solution space. An hypothesis is that
these heuristics (such as SGD, ReLUs, regularizers, dropout, skip connections, Cross
Entropy Loss) could be biasing the learning towards accessible regions, thus remov-
ing the expected computational hardness. Since local entropy has been found to be a
useful concept for describing why the algorithms are not affected to the computational
hardness, we are tempted to ask two questions:

• Is the design of deep networks implicitly optimizing local entropy?

• Can we improve results even further by explicitly optimizing local entropy?

In order to answer these questions we quickly review here the most recent results
on the theory of local entropy, which consider typical elements of deep architectures
and study their effect on the presence of wide flat minima of the loss landscape.

Cross entropy loss A first study can be done by changing the loss function: in [4]
the authors study a cross-entropy loss instead of aMSE loss for a perceptron on a binary
classification. The cross entropy (CE) loss for a binary classification problem is simply

𝐿CE(𝑤) = −
𝑝

∑
𝜇=1

log 𝑝(𝑦𝜇(𝑤) = 𝜎𝜇) (2.27)

where 𝑝(𝑦𝜇 = 𝜎𝜇) is the probability that the output 𝑦𝜇 the model is equal to the correct
label 𝜎𝜇. This probability for a perceptron reads

𝑝(𝑦𝜇 = 𝜎𝜇) = 𝑒
𝛾𝜎𝜇 ∑𝑖 𝑤𝑖𝜉

𝜇
𝑖

√𝑁

𝑒
𝛾𝜎𝜇 ∑𝑖 𝑤𝑖𝜉

𝜇
𝑖

√𝑁 + 𝑒
−𝛾𝜎𝜇 ∑𝑖 𝑤𝑖𝜉

𝜇
𝑖

√𝑁

(2.28)

Where we introduced the parameter 𝛾 that functions as an inverse temperature and
can also be seen as the order of magnitude of the weights if we consider a spherical
perceptron. By plugging this expression in equation 2.27 we obtain:

𝐿CE = −
𝑝

∑
𝜇=1

𝑓𝛾 (
𝜎𝜇 ∑𝑖 𝑤𝑖𝜉

𝜇
𝑖

√𝑁 )
(2.29)
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where we defined the function

𝑓𝛾(𝑥) ∶= −𝑥
2

+ 2
𝛾
log(2 cosh(𝛾𝑥)) (2.30)

Nowwe can ask how similar are theminima of the loss function 2.29 to wide flat minima
that are optimal states of local entropy, and how different they are form the sharp con-
figurations that are typical of MSE loss. This questions can be answered by computing
the Franz-Parisi potential to obtain the local entropy of solutions that optimize the CE.
It turns out that there is a range of values of 𝛾 — neither too-small nor too-large values
— for which the minima of the CE are indeed large and exponentially dense. Algorith-
mically the best procedure appears to be an annealing of 𝛾, although this algorithm is
slower and less effective than the direct optimization of local entropy.

Committee machine A further step is to consider a deeper architecture that is still
analytically tractable, namely the committee machine (both real-valued and binary).
The committee machine consists in 𝐾 perceptrons with disjunct inputs, whose outputs
are averaged to compute the output of the model. This model can be seen as a two-layer
neural network where we don’t learn the upper layer but instead we just set its weights
to +1. A scheme of this architecture is shown in figure 2.7. In [4] the authors also show

Figure 2.7: A scheme of a committee machine.

that subdominant regions with high local entropy, namely wide flat minima, still exist
in a committee machine storing random patterns, suggesting that the theory of local
entropy that we discussed in this section might be relevant even for deep networks.
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ReLU activation function A two-layer network allows to study the effect of the
choice of the activation function on the loss landscape. In [18] the authors compute the
critical capacity 𝛼𝑐 of a tree-like committee machine with ReLU activation functions
and show that below 𝛼𝑐 wide flat minima are still present. In particular, the use of
ReLUs improves the robustness of the solutions respect to threshold units, measured
with respect to perturbations the model weights (either binary or real-valued) or the
input channels.

Learningwithmargin A different take on local entropy and flat regions is discussed
in [7], where the authors show that, in a binary classification problem, high local en-
tropy regions can be accessed also by imposing amargin to the classifier. This technique
consists in taking the loss function 1.12 and adding an offset term 𝑘, called margin:

𝐿(𝑊 ; {𝜉𝜇}) = ∑
𝜇

Θ(−[𝜎𝜇𝑦(𝑊, 𝜉𝜇) − 𝑘]) (2.31)

In this way we are not simply requiring the model to classify correctly the examples,
by we also require that the decision boundary has a distance at least 𝑘 from any data
point (see figure 2.8 for a sketch of this situation). The authors show that increasing

Figure 2.8: A scheme of learning a decision boundary with a margin requirement.
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the margin, the distance between typical solution decreases, signaling that the solutions
start clustering together. Additionally, when they study the neighborhood of a solution
with margin �̃� > 0, they find a dense cluster of solution with margin 𝑘 < �̃�. The clas-
sification problem becomes impossible when �̃� becomes too high; a classification with
the highest possible value corresponds to optimizing the local entropy. It is interesting
to note optimizing local entropy by imposing a margin makes sense only for shallow
networks such as the perceptron or the committee machine, since it affects only the last
layer of parameters. Imposing a margin to internal neurons of a deep network seems
unfeasible, therefore the explicit optimization of local entropy appears to be a more
general approach, suitable for state-of-the art architectures.

Overparametrization A noteworthy property of deep network is that they are able
to fit the trainset almost perfectly while mantaining good generalization performances.
This property is counterintuitive given what we discussed in section 1.4: in statistical
inference fully optimizing a loss function leads to overfitting, while, on the other hand,
regularization strategies improve generalization but prevent the full optimization of
the train loss; on the contrary, deep architectures appear to have enough parameters
to do well both on the trainset and the testset. The role of the number of parameters
of a neural network and its connection with local entropy has been studied in [6]. The
authors analytically study an overparametrized binary perceptron (also called random
feature model), which consists in a two-layer network where weights in the first layer
are fixed and random rather than learned. This model can also be seen as a standard
perceptron learning the following dataset:

̃𝜉𝑖 = sgn
(

1
√𝐷

𝐷

∑
𝑘=1

𝐹𝑘𝑖𝜉𝑘)
(2.32)

where 𝐹𝑘𝑖 is a 𝐷 × 𝑁 matrix whose element are sampled from a Gaussian distribution
with zero mean and unit variance. The output of the perceptron reads

𝑦 = sgn
(

1
√𝑁

𝑁

∑
𝑖=1

𝑊𝑖 ̃𝜉𝑘)
(2.33)

A scheme of this architecture can be found in figure 2.9. The correct labels 𝜎𝜇 are
assigned with a 𝐷-dimensional teacher network with random binary weights 𝑊 𝑇

𝑘 :

𝜎𝜇 = sgn
(

1
√𝐷

𝐷

∑
𝑘=1

𝑊 𝑇
𝑘 𝜉𝑘)

(2.34)

Given the number of examples 𝑝, the authors compute the phase diagram of this object
as a function of the order parameters 𝛼 = 𝑝/𝑁 and 𝛼𝑇 = 𝑝/𝐷. They find that the between
the SAT and UNSAT phases that we encounter by increasing 𝛼 there is another phase
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Figure 2.9: A scheme of an overparametrized perceptron.

transition, corresponding to the algorithm threshold at which algorithms stop finding
solutions (called local entropy transition). Interestingly, if we start from the UNSAT
phase andwe increase 𝛼𝑇 while keeping 𝛼 fixed, we first encounter the LE transition line
and then the SAT line. This means that by increasing the degree of overparametrization
𝑁/𝐷 we create wide flat minima in the loss function. This fact might be the explanation
of the counterintuitive behavior of deep networks.

Deep architectures Finally, we see that optimizing local entropy improves perfor-
mance even in state-of-the-art deep networks. In [1, 2] the authors show that imple-
mented algorithms that explicitly optimize local entropy for deep architectures (Entropy-
SGD and Replicated-SGD) improves the convergence time and the generalization error.
Interestingly, a connection between different measures of flatness and generalization
properties has an increasingly important focus in the recent literature (for some review
on this point see [2, 19, 20, 21]), showing that the flatness of a minimum of the train
loss is the best predictor for its generalization on common datasets, supporting that
the theory local entropy might describe well not just shallow networks but also deep
architectures.
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Novel applications of Local Entropy
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Chapter 3

The Gaussian Mixture Problem

The content of this chapter follow the content of my paper at ref. [5].
The first model that we study to get progressively away from the classical teacher-

student scenario has twomain differences: first, the problems is convex, and second, the
train loss of the teacher is not zero this time, which is an interesting setting to explicitly
study the effects of optimizing the train loss too much.

We discuss the connection between local entropy, flatness and generalization in
a very basic model of high-dimensional statistical machine learning [22, 23, 24, 25]:
Gaussian mixtures. The generative model is defined as follows. For a given problem
size 𝑁, an 𝑁-dimensional vector v⋆ is randomly generated from a standardmultivariate
normal 𝒩 (0, I𝑁). Then we generate a label 𝜎 = 1 or 𝜎 = −1 with probability 𝜌 and
1 − 𝜌, respectively, and we generate a pattern 𝜉 according to the value of the label 𝜎
as 𝒩 (𝜎v⋆/√𝑁,Δ I𝑁). In this way we construct a training set with 𝑃 ≡ 𝛼𝑁 such
patterns; the coordinate 𝑖 ∈ {1, ...,𝑁} of pattern 𝜇 is therefore given by

𝜉𝜇
𝑖 =

𝑣⋆
𝑖

√𝑁
𝜎𝜇 + √Δ 𝑧𝜇

𝑖 (3.1)

where 𝑧𝜇
𝑖 are i.i.d Gaussian random variables with zero mean and unit variance. This

results in two potentially overlapping clusters, with the label indicating the cluster a
pattern belongs to and where Δ controls their width. We will refer to the problem with
𝜌 = 0.5 as the balanced case; we call all other cases unbalanced.

As usual in statistical physics, we will consider the high-dimensional limit, where
both 𝑁 → ∞ and 𝑃 → ∞ with the ratio 𝛼 = 𝑃

𝑁 fixed.
In this chapter we analyze the performance of a threshold-linear classifier (a single-

unit neural network). This machine is parametrized by a vector of weights 𝑤 of length
𝑁 and a bias 𝑏, but when studying the balanced case we always simply set 𝑏 = 0. The
machine predicts the label of a pattern 𝜉 as:

�̂� (𝜉;𝑤, 𝑏) = sign
(

1
√𝑁

𝑁

∑
𝑖=1

𝑤𝑖 𝜉𝑖 + 𝑏
)

(3.2)
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We can observe that this classifier is invariant to an overall rescaling of the parameters
𝑤′ = 𝜅𝑤 and 𝑏′ = 𝜅𝑏 for any 𝜅 > 0. It is natural to identify the irrelevant degree of
freedom in the parametrization with the norm of 𝑤.

The most elementary metric by which to measure the performance of this classifier
on the training set is the number of errors, which can be expressed as

ℒerr(𝑤, 𝑏) =
𝑃

∑
𝜇=1

Θ [−𝜎𝜇 �̂�(𝜉𝜇;𝑤, 𝑏)] (3.3)

where Θ (⋅) is the Heaviside step function, that is Θ (𝑥) = 1 if 𝑥 ≥ 0 and 0 otherwise.
This error-counting loss obviously inherits the scale invariance, but it has the drawback
that it cannot be used with the gradient-based methods usually employed in training
large neural networks (which is the situation about which we hope to gain the most
insight from this simple model). It is therefore of interest to consider a generalized
overall loss function form:

ℒ(𝑤, 𝑏) =
𝑃

∑
𝜇=1

ℓ
[

𝜎𝜇
(

1
√𝑁

𝑁

∑
𝑖=1

𝑤𝑖 𝜉𝜇
𝑖 + 𝑏

)]
(3.4)

where ℓ (⋅) is a generic single-pattern loss function. The error-counting case corre-
sponds to ℓ (𝑥) = Θ (−𝑥). In what follows we analyze the mean squared error (MSE)
loss ℓ (𝑥) = 1

2 (𝑥 − 1)2, which is a well-studied differentiable loss. As for other choices
of differentiable losses (e.g. cross-entropy, hinge, etc.) the scale-invariance property is
lost, and the role of norm regularization may become important.

It’s important to observe that this model possesses some rather peculiar features if
compared to typical classification tasks performed with neural networks, namely the
training loss is convex. Indeed, Bayes-optimal performance can be achieved with a
single configuration of the model parameters (instead of requiring a distribution) which
can be derived analytically. Additionally, due to the overlap between the Gaussian
distributions which are used to generate the data, no classifier can achieve zero test
error (in the teacher-student context this would be somewhat similar to the case of
having a “noisy”, unreliable teacher). Therefore, care must be used when considering
how the results may generalize to non-convex scenarios.

Recently, this model has been studied in [26] by using Gordon’s inequality. The
authors showed that the MSE loss is severely prone to overfitting, especially when 𝛼 ≃
11. They also showed however that, in spite of the fact that the output of the model is
norm-independent, the generalization performance is considerably improved by adding
to the loss an 𝐿2 regularization term on theweights, 𝜆 ‖𝑤‖2. For large 𝑁, the parameter

1This value corresponds to the transition point above which the MSE loss has a unique minimum,
since minimizing the MSE entails solving a system of 𝑃 equations in 𝑁 unknowns; in the balanced case,
it is also the transition point where the data is no longer linearly separable.
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𝜆 > 0 is a Lagrange multiplier that implicitly fixes the norm of the weights. The optimal
choice of 𝜆 depends in general on 𝛼 and 𝜌. For the balanced case, 𝜌 = 0.5, the optimum
is obtained for all 𝛼 in the limit 𝜆 → ∞ (corresponding to vanishing values for the norm
of the weights), and in that case the network reaches the Bayes-optimal generalization
bound.

In light of these findings, it is interesting to further discuss the role of the norm for
these class of models. As we remarked above, the output of the network (and thus the
generalization error) has a scale invariance, i.e. it is independent of the norm (as long
as the bias is also properly rescaled). As a consequence we need to understand which
are the geometrical features of the solutions space of the classifier that are induced by
the regularization of the surrogate loss function used for gradient learning.

It is worth noticing that this scenario also applies to most deep neural network
models that use ReLU activations in the intermediate layers and an argmax operation
to produce the output label, and are therefore invariant to uniform scaling of all their
weights and biases. Since the norm cannot affect the generalization capabilities of the
network, it seems unlikely that a norm-based regularization could be a valid general
strategy.2

In this chapter, we argue for a different, more general criterion to avoid overfitting
and improve generalization, proposed in several recent works [17, 4, 18], namely that of
maximizing the local entropy, which is a particular measure of flatness that can be ana-
lyzed theoretically and efficiently approximated algorithmically. We refer to gradient-
based algorithms that operate by maximizing (an approximation to) the local entropy
as “entropic algorithms”. One example is given by the replicated stochastic gradient
descent (rSGD) algorithm introduced in [13], where the local entropy is targeted by
using several replicas moving in the loss landscape and at the same time feeling an at-
traction during their dynamics. Another algorithm is entropy-SGD (eSGD) [27], where
the local entropy is estimated using stochastic gradient Langevin dynamics [28]. Those
algorithms have been applied to state-of-the-art deep neural networks [2], proving that
they can achieve improved generalization performances.

In particular, for the balanced case, we show analytically that the minimum norm
condition, which results in Bayes-optimal performance, corresponds to solutions of
maximum local entropy for the classifier (which is norm invariant). We also show that
these solutions can be found by entropic algorithms acting on the MSE loss function,
and that these algorithms are much less sensitive to the norm.

For the unbalanced case, the authors of [26] found that, when the bias is learned,
reaching the Bayes-optimal generalization error with 𝐿2 regularization alone is impos-
sible, and that there exists an optimal finite value of 𝜆 that minimizes the generalization

2There is a caveat to this statement: for particular choices of the loss, e.g. cross-entropy, it is possible
to reparametrize the problem in an invariant way and interpret the norm in terms of a time-evolving
parameter of the loss with a “focusing” role, see [4].
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error. In this chapter we show however that there exists a choice of the bias and of 𝜆 that
allows to reach the Bayes-optimal performance, and that such parameters also have a
higher local entropy (measured again in a scale-invariant way). We show both analyti-
cally and numerically how to systematically improve the generalization performance in
this setting. Learning the bias with entropic algorithms leads to improved performance
compared to those which can be attained by the 𝐿2 regularized loss function.

The rest of the chapter is organized as follows. In section 3.1 we briefly review
the typical scenario obtained by performing a standard replica-symmetric (RS) replica
calculation over the Gibbs measure. We discuss in particular how the choice of the
bias is decisive for generalization performances in the unbalanced case. In section 3.2
we explore the local entropy landscape around the Bayes optimal configuration for the
MSE loss function, by performing a calculation á la Franz-Parisi [29]. In section 3.3 we
discuss how targeting the local entropy loss we can improve generalization. Finally,
section 3.5 contains some conclusions.

3.1 Bayes-optimal configurations
The partition function of the Gaussian mixture model, with a regularization over the
weights of the linear classifier can be written as

𝑍 = ∫ ∏
𝑖

𝑑𝑤𝑖 𝑒−𝛽ℒ(𝑤,𝑏)− 𝜆
2 ∑𝑖 𝑤2

𝑖 (3.5)

where 𝛽 is the inverse temperature. Notice that in our treatment the bias has been fixed
as an external parameter. To study the case in which the bias is a learned parameter we
would add another integral over 𝑏 in the definition of 𝑍. In the following wewill denote
the average over the training set with angle brackets: ⟨⋅⟩ ≡ ∏𝑃

𝜇=1 𝔼𝑣⋆,𝜎𝜇𝔼𝜉𝜇|𝑣⋆,𝜎𝜇 [ ⋅ ].
The typical properties of the model are derived by computing the average log-

volume ⟨ln𝑍⟩ /𝑁, which is the (typical) free entropy of the model −𝛽𝑓, where 𝑓 is
the corresponding free energy. The free entropy can be computed in the large-𝑁 limit
using the “replica trick”:

ln𝑍 = lim
𝑛→0

𝜕𝑛𝑍𝑛 . (3.6)

The whole computation in the large 𝑁 and 𝛽 limit using an RS ansatz is reported in [5].
Here we discuss the results. In figure 3.1 we show the generalization error found by
optimizing the regularized MSE loss function, in the balanced case and one unbalanced
case, as a function of the bias and the squared norm (which is implicitly but monoton-
ically controlled by 𝜆). We also show with a black dashed line the value that the bias
takes when it is learned, for any given value of the squared norm. In both the balanced
and unbalanced cases there exist choices of the bias and the squared norm that achieve
the Bayes optimal performance. However, an important difference can be noted: if we
learn the bias in the balanced case we always find 𝑏 = 0 for every value of the squared
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3.2 – The local entropy is larger in the vicinity of the Bayes-optimal configuration

Figure 3.1: Generalization error found by optimizing the regularized MSE loss, as a
function of the bias and squared norm. The black dashed line represents the value of
the bias obtained by maximizing the Gardner volume. Both plots are for 𝛼 = 0.7 and
Δ = 1. Left: Balanced case (𝜌 = 0.5). The Bayes optimal generalization error in this
case is 𝜖𝑔 ≃ 0.2605 … computed using its analytical expression, found in [5]. Right:
Unbalanced case, with 𝜌 = 0.2. The Bayes optimal generalization error in this case is
𝜖𝑔 ≃ 0.1679 … .

norm; sending 𝜆 → ∞ (and therefore the squared norm to zero) one recovers the Bayes
optimal performance. This is not true in the unbalanced case: fixing 𝜆 and learning the
bias never gives the optimal performance.

3.2 The local entropy is larger in the vicinity of the
Bayes-optimal configuration

In order to quantify the local geometrical landscape around a typical configuration �̃�
of the Gibbs measure with loss function ℒ𝑟 = ∑𝜇 ℓ𝑟, regularization parameter 𝜆𝑟 and
inverse temperature 𝛽𝑟, we have studied the so-called Franz-Parisi free entropy [29, 15].
It is defined as

− 𝛽𝑓FP(𝑆) ≡ 1
𝑁 ⟨

∫ ∏𝑖 𝑑�̃�𝑖 𝑒−𝛽𝑟ℒ𝑟(�̃�, ̃𝑏)− 𝜆𝑟
2 ∑𝑖 �̃�2

𝑖 ln𝒱 (�̃�,𝑆)

∫ ∏𝑖 𝑑�̃�𝑖 𝑒−𝛽𝑟ℒ𝑟(�̃�,�̃�)− 𝜆𝑟
2 ∑𝑖 �̃�2

𝑖 ⟩
(3.7)

where the quantity

𝒱 (�̃�,𝑆) ≡ ∫ 𝑑𝜇𝑃(𝑤) 𝑒−𝛽ℒ(𝑤, ̃𝑏)𝛿
(∑

𝑖
𝑤𝑖�̃�𝑖 − 𝑁𝑆

)
(3.8)

is the volume of configurations𝑤 at inverse temperature 𝛽 that have overlap 𝑆 with the
reference configuration �̃�. The measure 𝑑𝜇𝑃(𝑤) is a flat measure over a hyper-sphere
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of squared radius 𝑃, i.e. the weights 𝑤 have square norm 1
𝑁 ∑𝑖 𝑤2

𝑖 = 𝑃. The overlap
𝑃 is chosen to match the squared norm of the reference �̃�, that is 𝑃 = 𝑄. Note that
𝑄 is fixed via a soft constraint by the regularization parameter 𝜆𝑟; in addition we have
chosen, for simplicity, the bias of the constrained configuration 𝑤 to match the one of
the reference.

Notice that in equation (3.7) and (3.8) we use different losses ℒ𝑟 and ℒ (and different
parameters too): the landscape of which we explore the geometrical features can differ
from the landscape from which we get the reference configuration.

The computation of equation (3.7) is long and involved; here we just sketch themain
steps, referring to [5] for the details. The average over the disorder in equation (3.7)
can be done by using two replica tricks, one for the denominator and another one for
the logarithm in the numerator:

1
𝑍

= lim
𝑟→0

𝑍𝑟−1 (3.9a)

ln𝑍 = lim
𝑛→0

𝜕𝑛𝑍𝑛 (3.9b)

Once the average is performed, one has to introduce several order parameters in or-
der to decouple the expressions over the size of the training set 𝛼𝑁 and of the dimension
𝑁. Using indexes 𝑎 or 𝑏 for replicas in {1,… , 𝑟} and 𝑐, 𝑑 ∈ {1,… , 𝑛} the order param-
eters are 𝑝𝑐𝑑 = 1

𝑁 ∑𝑖 𝑤𝑐
𝑖 𝑤

𝑑
𝑖 , 𝑡𝑎𝑐 = 1

𝑁 ∑𝑖 �̃�𝑎
𝑖 𝑤𝑐

𝑖 , 𝑂𝑐 = 1
𝑁 ∑𝑖 𝑣⋆

𝑖 𝑤𝑐
𝑖 , 𝑃 𝑐 = 1

𝑁 ∑𝑖(𝑤
𝑐
𝑖 )

2 and
the corresponding conjugated ones. Note that 𝑃 𝑐 is just the squared norm 𝑃 because
of the spherical constraint inside the measure 𝑑𝜇𝑃(𝑤). Among the conjugated order
parameters, we also need to introduce an additional parameter, ̂𝑆𝑐, which imposes the
hard constraint on the overlap between the reference configuration �̃� and 𝑤.

Using an RS ansatz over the order parameters and performing the large 𝛽𝑟 limit we
obtain

− 𝛽𝑓FP (𝑆) = 𝔊𝑆 + 𝛼𝔊𝐸 , (3.10)

where the definition of the entropic and energetic terms are reported in [5]. When
𝛼 = 0 the Franz-Parisi free entropy can be evaluated analytically

− 𝛽𝑓FP (𝑆, 𝛼 = 0) = 1
2 [1 + ln (2𝜋) + ln(

1
𝜆𝑟

− 𝜆𝑟𝑆2
)] , (3.11)

and it gives the logarithm of the total volume of configurations at overlap 𝑆 with the
reference. For a given loss ℓ (⋅) the local entropy of a given configuration �̃� can be

computed by evaluating the local energy 𝜖ℓ = 𝜕(𝛽𝑓FP)
𝜕𝛽 and then using

𝒮 = 𝛽 (𝜖ℓ − 𝑓FP) . (3.12)

The normalized local entropy is just the local entropy (3.12) minus the total log-volume
at 𝛼 = 0 given in equation (3.11). It is the logarithm of a fraction of a volume, and thus
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Figure 3.2: Balanced case (𝜌 = 0.5). Normalized local entropy as a function of the
distance 𝑑 computed from reference configurations found by optimizing the regularized
MSE loss, with varying regularization strength 𝜆. Larger values of 𝜆 correspond to
minimizers with better generalization properties. In both figures 𝛼 = 0.7, Δ = 1, 𝑏 = 0.
The cutoff 𝜖 is chosen to be equal to the training error of the reference (left), or is given
by the training error of the ”oracle” 𝑤 = 𝑣⋆ (right panel) as in equation (3.14).

is upper bounded by zero; additionally, defining the distance as

𝑑 ≡ 1
2

∑𝑁
𝑖=1 (�̃�𝑖 − 𝑤𝑖)

2

∑𝑁
𝑖=1 �̃�2

𝑖
= 1 − 𝑆

𝑃
(3.13)

the normalized local entropy is always zero for 𝑑 = 0. For �̃� located in sharp minima
we expect that the normalized local entropy will have a sharp drop near 𝑑 ≃ 0, whereas
for flat minima it will be close to zero within some range of small distances.

We have explored the normalized local entropy landscape of the configurations
found by optimizing the regularized MSE loss (i.e. ℓ𝑟 (𝑥) = 1

2 (𝑥 − 1)2), where the train-
ing error is used in the local entropy definition (i.e. ℓ (𝑥) = Θ (−𝑥)). We stress that by
using the error instead of the MSE we explore the properties of the model in the regime
in which it operates during classification.

On the other hand, the parameter 𝛽 has been chosen in such a way that the training
error of 𝑤 is equal to a certain cutoff 𝜖.

We have analyzed two different choices for the energy 𝜖:

• in the first case 𝜖 is chosen to be equal to the training error of the reference. This
case is depicted in the left panel of figure 3.2 for the balanced case and in the right
panel of figure 3.3 for the unbalanced case. See the corresponding captions for
details.
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Figure 3.3: Unbalanced case (𝜌 = 0.2). In both plots 𝛼 = 0.7 and Δ = 1. Left: Gen-
eralization error for a typical minimizer of the MSE loss as a function of the squared
norm, for various choices of the bias 𝑏 = -0.4, -0.3, -0.2, -0.1. Full lines are analytical
results, points and error bars are numerical results obtained with 𝑁 = 1000. On the
red curve, instead, the bias is learned (it’s the value that maximizes the free entropy)
and thus it’s different for every value of the squared norm. The dashed curve is the
Bayesian generalization error (see [5]). Right: Normalized local entropy as a function
of the squared-distance 𝑑 computed from reference configurations found by optimizing
the regularized MSE loss, for various choices of the bias 𝑏𝑟 = -0.4, -0.3, -0.2, -0.1 (and
𝑏 = 𝑏𝑟). The corresponding value of the squared norm has been chosen by using the one
that minimizes the generalization error for that fixed value of 𝑏 (see left panel). In the
red curve, instead, the bias has been fixed by a saddle point equation (i.e. it is learned).
The cutoff 𝜖 is chosen to be equal to the training error of the reference.

• in the second case, only used for the balanced case, 𝜖 is chosen as the training
error of an ”oracle classifier” with 𝑤 = 𝑣⋆, which is given by:

𝜖⋆
𝑡 = 𝛼 ∫ ∏

𝑖
𝑑𝑣⋆

𝑖 𝑑𝜉𝑖𝑃 (𝜉𝑖 ∣ 𝑣⋆
𝑖 ) 𝑃𝑣 (𝑣⋆

𝑖 ) 𝜃
(

− 1
√𝑁 ∑

𝑖
𝑣⋆

𝑖 𝜉𝑖)
= 𝛼𝐻

(
− 1

√Δ)
(3.14)

This corresponds to the smallest possible test error that any linear classifier ma-
chine could achieve, which is non-zero because of the overlap between the two
clusters. This case is depicted in the right panel of figure 3.2.

In both cases we clearly see that reference configurations with better generalization
properties have higher local entropy curves. We remind that, in the balanced case,
the configurations with better generalization properties correspond to larger values
of the regularization parameter 𝜆, whereas in the unbalanced case they correspond to
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Figure 3.4: Generalization error of the center �̄� of a system of 𝑦 replicas, each optimiz-
ing the MSE loss and with a constraint on the angle between the replicas, as a function
of the norm 𝑛 of the replicas. In both figures 𝛼 = 0.7; the Bayes optimal error is plot-
ted with a dashed black line. Left: Balanced case with 𝑦 = 10 replicas. The red curve
(small-angle) corresponds to cos (𝜃) = 0.9; the large-angle case to cos (𝜃) = 0.1. Solid
curves are theoretical results, points are numerical results obtained with 𝑁 = 1000,
averaged over 30 samples. In the limit 𝜃 = 0 the results reproduce those of a single
device; increasing 𝜃 the dependence on the norm reduces (the curve flattens onto the
Bayes-optimal dashed line in the limit 𝜃 = 𝜋/2 and 𝑦 → ∞). Right: Unbalanced case
(𝜌 = 0.2). Solid curves correspond to analytical results, points are numerical results
obtained with 𝑁 = 1000 and respectively 100, 30, 20 samples for 𝑦 = 1,3,10. The angle
between the 𝑦 replicas has been fixed to 𝜃 = 𝜋/2.

particular fine-tuned values of the bias 𝑏 and 𝜆 as already evidenced in the right panel
of figure 3.1.

3.3 Algorithms that target flatter regions of the MSE
landscape also generalize better

The results of the previous section confirm that the local entropy landscape constructed
using the training error is a good predictor of generalization performance. However,
when dealing with much more complex architectures, using the training error as the
loss function in equation (3.12) is not (yet) algorithmically feasible. In particular, the
entropic algorithms rSGD and eSGD must still operate on a differentiable loss. This
leaves the question whether targeting high-local-entropy regions in a differentiable loss
landscape can still lead to good generalization results open. We have investigated this
question analytically on theGaussianmixturemodel with a linear classifier and theMSE
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loss, using the same technique explained in [4, 18], see [5] for details. This amounts to
studying the generalization error of the barycenter of a replicated system of 𝑦 classifiers,
each with its own parameters 𝑤𝑎 with 𝑎 = 1,… , 𝑦, each optimizing the MSE under
constraints on their norms 𝑛 and on their mutual angles 𝜃, that is: ∀𝑎, 𝑎′ ∶ ‖𝑤𝑎‖ =
𝑛, 𝑤𝑎 ⋅𝑤𝑎′

= 𝑛2 cos (𝜃). The barycenter is defined as �̄� = 1
𝑦 ∑𝑎 𝑤

𝑎. In this analysis we
used the angle 𝜃 rather than the distance in order to compare situations with different
norms.3 Notice also that we have not imposed analytically an analogous constraint over
the biases of the replicas. In other words, the bias of every replica is the same andwe call
it 𝑏. In order to set the bias for the barycenter we recall the fact that the error-counting
loss is scale invariant, so that the value of the bias is significant only when compared to
the norm of the weights. Additionally, we note that in general ‖𝑤𝑎‖ ≥ ‖�̄�‖, so if we
were to naively use 𝑏 as bias of the barycenter we would change its relative magnitude
respect to ‖�̄�‖. For this reason we set ̄𝑏 = 𝑏 ‖�̄�‖ / ‖𝑤‖.

Our goal is to check if we can improve the generalization performances. Due to
the peculiarities of this model, in the balanced case we can simply check whether the
barycenter is aligned with the solution of the norm-regularized model with large 𝜆,
which we know to be the optimal classifier.

Some representative results are shown in fig. 3.4. In the left panel we analyze the
balanced case. Our results indicate that, with sufficientlymany replicas (even just 𝑦 = 3)
and with sufficiently large angles the generalization performance is nearly optimal and
the dependence on the norm is mild, and much less pronounced than at small angles
(the limit of zero angles reproduces the results of the norm-regularized analysis with-
out replicas). The fact that for this model the best results are obtained with widely
separated replicas is due to the simple nature of the problem, and we do not expect this
phenomenon to just carry over as-is to the case of deep neural networks, where the
landscape is non-convex and the structure of the symmetries is generally much more
complex (both in terms of the scale invariance and of discrete permutation symmetries).

In the right panel of figure 3.4 we show also what happens in the unbalanced case.
We have compared the performance of the typical minimizer of the norm-regularized
MSE loss with the one of the replicated system. We show that by increasing the number
of replicas keeping fixed the angle between them, the generalization performance is
improved. The large 𝑦 limit can be handled analytically, and it is indistinguishable
from the results obtained with 𝑦 = 10 replicas.

The analytical curves describe verywell the numerical results that are obtainedwith
rSGD. The algorithm consists in training 𝑦 replicas of a perceptron with and additional
term ℒd in the loss function of each model proportional to the sum of distances from
the other replicas; in order to force the replicas to stay at a given distance 𝑑0, we modify

3This is equivalent to using the cosine similarity, often employed in machine learning contexts. We
should note however that in a multi-layer classifier the structure of the scale invariance is more compli-
cated and the cosine similarity by itself would not be sufficient to account for it.
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3.4 – Numerical details

this term by including 𝑑0 as offset:

ℒ (𝑎)
d =

𝑦

∑
𝑏≠𝑎

(𝑑𝑎𝑏 − 𝑑0)
2 , (3.15)

where the index 𝑎 refers to the replica of which we are computing the loss.

3.4 Numerical details

We used rSGD for all simulations reported in this work. As described in the main
text, the algorithm consists in training 𝑦 replicas of a perceptron each initialized dif-
ferently, with an additional term in the loss function of each model proportional to the
sum of distances from the other replicas. The total loss function is

ℒ({𝑤𝑎, 𝑏𝑎}𝑦
𝑎=1) =

𝑦

∑
𝑎=1

[ℒ 𝑎
MSE + 𝜆ℒ 𝑎

d ]

=
𝑦

∑
𝑎=1 [

ℒ 𝑎
MSE + 𝜆

𝑦

∑
𝑎≠𝑏

(𝑑𝑎𝑏 − 𝑑0)
2

]

(3.16)

where ℒ 𝑎
d is the term we introduced in order to force the replicas to stay at a given

distance 𝑑0. The bias is treated separately: in the cases where 𝜌 = 0.5 it is simply set to
zero; in the cases where 𝜌 ≠ 0.5 we add to the loss of each replica 𝜆 ∑𝑦

𝑎≠𝑏 (𝑏𝑎 − 𝑏𝑏)
2.

This is done in order to match results with analytical calculations, where the replicas
share the same bias.

Thenwe define a centermodel as our predictor, defined as the average of the replicas
in the following way:

�̄� = 1
𝑦

𝑦

∑
𝑎=1

𝑤𝑎 (3.17a)

̄𝑏 = ‖�̄�‖ 1
𝑦

𝑦

∑
𝑎=1

𝑏𝑎

‖𝑤𝑎‖
(3.17b)

The perceptron (�̄�, ̄𝑏) is the model we use to compute loss and error on both the testset
and the trainset. Note that, as discussed in the main text, the bias of the center model is
not simply the average of the biases, but rather the average of the biases weighted by
the inverse norm of the weights, scaled by the norm of the predictor itself. Note that
at the end of the training the replicas are expected to have the same value 𝑏 of the bias,
and since the norm of the replicas is fixed to some given ‖𝑤‖ the bias of the center will
simply be ̄𝑏 = 𝑏 ‖�̄�‖ / ‖𝑤‖.
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The Gaussian Mixture Problem

Most of the following details should not matter for the sake of generalization error
because the problem is convex. They still determine the rate of convergence to the
analytical solution, so we report them in detail.

The training is performed with PyTorch by using full-batch gradient descent with
learning rate 1 ⋅ 10−4. Initialization is standard Xavier. In the cases with 𝑦 = 1 we train
with the Adam optimizer for 2 ⋅ 104 epochs.

In the cases with 𝑦 > 1 we train with the SGD optimizer with momentum 0.5 for
4 ⋅ 104 epochs. In those cases we increase the coupling constant 𝜆 at each epoch by a
factor 𝜆1 = 5⋅10−3 starting from the value 𝜆0 = 1⋅10−4 up to amaximum 𝜆max = 1⋅102;
namely we set 𝜆(𝑡) = min[𝜆0(1 + 𝜆1)𝑡, 𝜆max].

The norm is always kept fixed by renormalizing the weights to the given magnitude
before each forward pass of the perceptron.

3.5 Conclusions
We have presented an analytical study concerning the connection between local en-
tropy and optimal generalization in the case of Gaussian mixtures. Configurations of
weights that reach Bayes-optimal performance were shown to be located inside regions
of high local entropy, i.e. in wide flat minima of the error-counting loss function. We
have also shown that targeting the wide flat minima of the differentiable loss function
used for gradient learning (e.g. MSE) is a viable algorithmic strategy.

These results are relevant for the very active discussion around the success of deep
learning from different points of view. First, work is in progress to extend the local-
entropy-related results to deeper architectures (see [6, 1, 2]). Second, the relation be-
tween the sharpness of minima and their generalization is getting progressively more
attention in the community.

A number or experimental results has been known to confirm the connection be-
tween flatness and generalization for some years [30, 31].

In [19] they make an extensive experimental study where they test many quanti-
ties to see which one correlates best with the generalization. They indeed find that a
measure of the flatness around the solution works best.

In [21] they argue that neural networks have an inductive bias towards simple func-
tions, where concept of simplicity is defined taking inspiration from Kolmogorov com-
plexity. This fact proves very useful to learn real-world dataset (which seem to be simple
example-label relations). Interestingly, one of the possible way to measure this simplic-
ity is again the flatness around a weight configuration. In [20] they discuss the cases
when simplicity is equivalent to flatness.

The results presented in this chapter fit in this line of works by providing a simple
model where analytical calculations are available and complications of non-convexity
of the landscape are absent, shining some light on how flatness influences the general-
ization properties.
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Chapter 4

Natural Representation of Composite
Data with a simple Autoencoder

The content of this chapter follow the content of my paper at ref. [32].

4.1 Introduction to unsupervised learning
We call unsupervised learning a learning task where the examples do not come with as-
sociated labels, so that the inference problem takes the form of extracting some features
of their distribution rather that reproducing associations. Basic examples of unsuper-
vised learning are principal component analysis (PCA) and clustering algorithms, while
some neural networks that approach this task in a more advanced way are restricted
Boltzmann machines (RBMs) and variational autoencoders (VAEs), that are described
in detail in [10]. Here we want to study the effects of local entropy on the simplest neu-
ral network capable of solving an unsupervised-learning problem, therefore we choose
undercomplete autoencoders. These are multi-layer neural networks that are trained
to realize the identity function: their goal is to learn a compressed parametrization of
the data distribution. To this end, the training is performed under the constraint that
the internal representation in a specific low-dimensional layer called bottleneck.

A basic unsupervised learning problem cannot be formulated on randomdata, which
are uncompressible and featureless by definition. We need composite data (also called
structured), that is defined by having some form of correlation between its channels.
This correlation also implies that data that can be thought of as a composition of basic
features. For such data we expect that an efficient description can often be constructed
by a – possibly weighted – enumeration of the basic features that are present in a single
observation.

If the data is composite in nature, we expect a representation that captures the true
underlying contribution of features to generalize well. Indeed, we can use the notion of
a ”correct” representation of the data as an additional — and maybe better — measure of
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Natural Representation of Composite Data with a simple Autoencoder

generalization in the context of unsupervised learning. We will study a basic example
of such data in section 4.2.

One of the most promising disciplines where one can find important unsupervised
learning problems is biology. As a first example, we could describe genomes of single
organisms as a composition of genes and gene clusters, where the presence or absence
of specific genes is determined by the evolutionary history and further reflected in the
presence or absence of functions and biochemical pathways the organism has at its
disposal [33, 34]. Depending on the level of description, such a composition is not
necessarily a linear superposition of the basic features. It has recently been estimated,
for example, that due to horizontal gene transfer the genome ofHomo Sapiens outside of
Africa is composed of 1.5%−2.1% of Neanderthal DNA [35], but no single genomic locus
is actually a superposition. Nonetheless, such a description conveys a lot of information:
a machine learning algorithm that could be trained in an unsupervised manner on a
large number of genomes and automatically output such coefficients would be very
valuable in the field of comparative genomics [36].

As a further example we can take the gene expression signature of a single cell,
which is determined by the activity of modules of genes that are activated depending on
cell identity and the environmental conditions [37]. Since there are far fewer such gene
modules than genes, the activity of these modules can be used as an efficient description
of the state of the cell. The inference of such modules based on single cell genomic data
and downstream tasks like clustering cells into subtypes is an ongoing field of research
[38].

On a even more fine-grained level, there have been recently several successful ef-
forts to model protein sequence data as a composition of features that arise from struc-
tural and functional constraints and are also influenced by phylogeny [12, 39]. This
leads to several possible patterns of amino acids for making up functional groups, or
contacts between amino acids, and the presence or absence of these patterns can be
used as features and inferred from aligned sequence data of homologous proteins.

There are also many examples of composite data outside of biology. An immedi-
ate example are images that contain multiple objects. The efficient extraction of such
objects, which can be seen as basic features, has important applications, for example
for self-driving cars [40]. In such applications, one is of course also interested in the
number and locations of the objects, but a basic description of an image, using an enu-
meration of objects present, can be part of a general pipeline.

As a final example, we note that in natural language processing documents are often
modeled as a mixture of topics, each of which gives a contribution to different aspects
of the document: for example, the authors of ref. [41] use the distribution of words. As
in the case of genomes, the actual document is far from being a superposition of the
topics, but such a description is nonetheless useful in fields like text classification.

Sparse autoencoders are a natural candidate model for finding efficient representa-
tions of composite data: in fact, under the assumption that only a few basic features
contribute to any given observation and that the number of basic features is smaller
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4.1 – Introduction to unsupervised learning

than the dimension of the bottleneck, such an internal representation could be expected
to identify the basic features that describe the data. An example of how sparsity con-
straints help feature extraction is shown in figure 4.1.

Figure 4.1: Weights corresponding to specific hidden units of a shallow autoencoder
trained on images of handwritten digits from the MNIST dataset, imposing the sparsity
regularization of equation 4.5. The output corresponding to activating single hidden
units becomes progressively more similar to an actual example for higher values of the
regularizer strength 𝛾. Ideal features should look like the second row, where each hidden
unit corresponds to a section of the input and examples are reconstructed by combining
those. The first row corresponds to zero sparsity; the following rows correspond to
increasing values of 𝛾 (respectively: 𝛾 = 0, 𝛾 = 3.0 ⋅ 10−2, 𝛾 = 3.5 ⋅ 10−1, 𝛾 = 4.0 ⋅ 10−1).

In this chapter, we present evidence that it is indeed possible to find representations
of composite data in terms of basic features, but that this process is very sensitive to
both overfitting and underfitting: If the imposed sparsity is not strong enough, the
resulting representation does not correspond to the basic features. If it is too strong,
the dictionary of basic features is not represented completely.

Therefore, we present a modified version of the autoencoder, the replicated autoen-
coder, which is designed to find good solutions in cases where overfitting is a danger.
We test this hypothesis on synthetic and on real, biological data. In both cases we find
more natural representations of the data using the replicated autoencoder.

4.1.1 Autoencoders
We train feed-forward autoencoders (AE) with stochastic gradient descent (SGD), min-
imizing the reconstruction error 𝐿err.
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𝐿err(�⃗�; {𝜉𝜇}) = 1
𝑀

𝑀

∑
𝜇=1

1
𝑁

𝑁

∑
𝑗=1

(𝜉𝜇
𝑗 − 𝑦𝑗(𝜉𝜇; �⃗�))

2
(4.1)

where 𝑦𝑗 is the output of 𝑗-th neuron of the output layer 𝑙 parametrized by the network
weights �⃗�:

𝑦𝑗(𝜉𝜇; �⃗�) = 𝑓
(∑

𝑖𝑗
𝑤(𝑙)

𝑖𝑗 ℎ𝑖(𝜉𝜇; �⃗�(𝑙−1),… , �⃗�(1))
)

(4.2)

where 𝑓 is a given activation function, ℎ𝑖 is the output of the 𝑖-th neuron of the previous
layer 𝑙−1, and �⃗�(𝑙−1),… , �⃗�(1) are the weights of all the layers except the last one. Note
that we choose each output neuron to have the same activation function and the index
𝑗 is there because the arguments of 𝑦 depend on 𝑗. Furthermore, 𝑀 is the dimension
of the dataset and 𝑁 is the dimension of the input and output layers. Since the data
points in each dataset considered in this chapter have values included between 0 and 1,
the choice for the activation function 𝑓 of the neurons in the output layer is a logistic
sigmoid function (both for shallow and deep autoencoders), defined as

Sigm(𝑥) ∶= 1
1 + 𝑒−𝑥 (4.3)

where 𝑥 is the weighed sum of the inputs of a given layer. In the case of the last layer
it reads ∑𝑖𝑗 𝑤(𝑙)

𝑖𝑗 ℎ𝑖.
In the following sections we will present results obtained with two different archi-

tectures (see figure 4.2):

• a shallow AE made of an input layer, one hidden layer made by 𝐻 units and one
output layer, with 𝐻 < 𝑁 (figure 4.2, left);

• a deep AE, made of an input layer, three hidden layers made respectively by 𝐾,
𝐻 and 𝐾 units, with 𝐾 > 𝑁 > 𝐻 (figure 4.2, right).

We use the sigmoid activation function also for the hidden layer in the case of the
shallow AE. On the contrary, the activation function we use in the deep AE is the so-
called rectified linear unit (ReLU), defined as

ReLU(𝑥) ∶= max(0, 𝑥) (4.4)

The reason for the different choice is purely based on performance: a shallow AE
with ReLU activations on the hidden layer would perform badly, while the deep AEwith
sigmoid activations onmany layers is difficult to train and achieves worse performance.

In addition to this, a regularization terms is added to the loss function to prevent
overfitting but most importantly to obtain sparse codes of the inputs in the hidden layer;
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4.1 – Introduction to unsupervised learning

for this reason we chose a L1 penalty for the activations ℎ𝑙(𝜉𝜇; �⃗�) of the neurons of the
central hidden layer:

𝐿reg(�⃗�; {𝜉𝜇}) = 1
𝑁

𝐻

∑
𝑙=1

|ℎ𝑙(𝜉𝜇; �⃗�)| (4.5)

To summarize, we optimize the loss function

𝐿tot(�⃗�; {𝜉𝜇}) = 𝐿err(�⃗�; {𝜉𝜇}) + 𝛾𝐿reg(�⃗�; {𝜉𝜇}) (4.6)

where 𝛾 is the regularizer strength. Higher values of 𝛾 enforce lower activations of the
units in the hidden layer and higher overall sparsity (for a detailed discussion on the
general effects of this regularizer, see for example ref. [42]).

We observe that with higher 𝛾 there are more units that show little to no activation
on any input pattern in the training set: The auto-encoder shuts down some units in a
trade-off between the two regularization terms in the loss function. We call the number
of active units 𝐷∗ the inferred dictionary size, and 𝐻 − 𝐷∗ is the number of deactivated
units. We infer 𝛾 and therefore 𝐷∗ from the data (see below).
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Figure 4.2: Schemes of the basic autoencoder architectures used throughout the paper.

4.1.2 Replicated systems and unsupervised learning
We are interested in the relation between the generalization error in unsupervised
learning and the goodness of the internal representation of an autoencoder: we know
that local entropy influences the generalization error, therefore we might expect it to
influence also the internal representation of a model. For this reason we optimize local
entropy in unsupervised models, and ask if increasing generalization performance con-
stitutes evidence that the current representation in the hidden units is corresponding
to the basic features in the data.

In this chapter we will sometimes refer to the optimization of local entropy as a
robust optimization. Here we repeat for convenience (and to fix the notation) some of
the definition that we introduced in chapter 2, specialized for the case of autoencoders.
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The local (free) entropy of a certain configuration of the weights �⃗�∗ is defined [13]
as:

Φ (�⃗�∗; 𝛽, 𝜆) = log∑
�⃗�

exp (−𝛽 (𝐿tot (�⃗�) + 𝜆𝑑(�⃗�, �⃗�∗)2)) , (4.7)

where the function 𝑑 measures the distance between the weights: several choices are
possible, but in the rest of the chapter we use exclusively the euclidean distance. The
parameter 𝜆 controls indirectly the locality, i.e. the size of the portion of landscape
around �⃗�∗ that we are considering (a larger 𝜆 corresponds to a smaller radius). The
parameter 𝛽 has the role of an inverse temperature in physics, and it controls indirectly
the amount of flatness required of the local landscape (a larger 𝛽 corresponds to flatter
landscapes).

Computing the local entropy is expensive and impractical in most cases. However,
as described in detail in ref. [13], if we use the negative local entropy −Φ as an energy
function (i.e. as the objective function that we wish to optimize) with an associated
fictitious ”inverse temperature” 𝑅 that we choose to be a positive integer, the canonical
partition function of the system is amenable to an equivalent description that can be
implemented in a straightforward way: We add 𝑅 replicas of our model, (�⃗�(𝑟))

𝑅
𝑟=1, and

we add an interaction between each replica 𝑟 and the central (original) configuration
�⃗�∗ that forces them to be at a certain distance. We thus end up with the new replicated
objective function

𝐿R =
𝑅

∑
𝑟=1

𝐿(𝑟)
tot + 𝜆

𝑅

∑
𝑟=1

𝑑(�⃗�(𝑟), �⃗�∗)2, (4.8)

where 𝐿(𝑟)
tot is the total loss of the replica 𝑟. It is important at this stage to observe that

the canonical physical description presupposes a noisy optimization process where the
amount of noise is regulated by some inverse temperature 𝛽, while in this chapter (fol-
lowing ref. [13]) we will be relying on the noise provided by SGD instead, thereby using
the mini-batch size and the learning rate as ”equivalent” control parameters. Relatedly,
we should also note that, although the interaction term is purely attractive, the replicas
won’t collapse unless the coupling coefficient 𝜆 is very large, due to the presence of
noise in the optimization. Thus, in our protocol, the coefficient 𝜆 is initialized to some
small value and gradually increased at each training epoch.

4.1.3 Learning algorithm
The robust optimization protocol that we use throughout this chapter is a version of
replicated SGD (introduced in subsection 2.4.1) and can be then summarized as follows.
We train 𝑅 autoencoders with different initialization coupled with a central autoen-
coder �⃗�∗, which we call the center. Every replica is trained on batches from the train-
ing set with normal SGD, but we add a gradually increasing coupling term between
every replica and the central autoencoder, see equation (4.8). At the end of the training
procedure, we have 𝑅 trained replicas and one center. All of these 𝑅 + 1 models are
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autoencoders that can be used for prediction or representation. We typically discard
all replicas and only use the center. We call an autoencoder that is trained using this
procedure a replicated autoencoder (R-AE).

The algorithm we use to train a R-AE consists in iterating two alternating steps: a
step of SGD on each replica computed on its own reconstruction loss, followed by a step
in which each replica is pushed towards the center and the center towards the replicas.
In practice this procedure is similar to elastic-averaging SGD [43], which in turn is
related to the optimization of local entropy [13]. The pseudocode for the algorithm is
sketched in alg. 2.

Algorithm 2 Training procedure for replicated autoencoder

Input: current weights �⃗�(𝑟), �⃗�∗

Hyper-parameters: batch size, learning rate 𝜂, coupling 𝜆
1: for 𝑖 = 1,… , steps do
2: for 𝑟 = 1,… , replicas do
3: 𝑥 ← minibatch[𝑖, 𝑟]
4: �⃗�(𝑟) ← �⃗�(𝑟) − 𝜂∇⃗𝑤𝐿(�⃗�(𝑟); 𝑥)
5: end for
6: for 𝑟 = 1,… , replicas do
7: �⃗�(𝑟) ← �⃗�(𝑟) − 𝜆(�⃗�(𝑟) − �⃗�∗)
8: �⃗�∗ ← �⃗�∗ + 𝜆(�⃗�(𝑟) − �⃗�∗)
9: end for

10: end for

We impose an exponential scheduling on the coupling 𝜆 between the replicas and
the center, namely we take 𝜆(𝑡) = 𝜆0(1 + 𝜆1)𝑡, where 𝑡 is the time step of the training
in units of epochs.

The training of a single autoencoder (S-AE) is performed with the same procedure
with just one replica and setting 𝜆 = 0.

In order to set the values for the many hyperparameters of these algorithms, we
selected one prototype case among the synthetic data and one among the protein data,
and we proceed by trial and error in order to find a regime in which the training con-
verges and has good performance; once we found these values, we assume that the
general performances should not be sensitive to the fine-tuning of the hyperparame-
ters: for this reason we use the same set of hyperparameters for every synthetic dataset
and the other set of hyperparameters for all the protein families. We observe them to
work well in the majority of cases.

For synthetic data we set 𝜂 = 2.5 ⋅ 10−4, 𝜆0 = 4 ⋅ 10−2, 𝜆1 = 3 ⋅ 10−2 and train the
shallow autoencoder for 350 epochs and the deep autoencoder for 700 epochs. For all
protein data we set 𝜂 = 5, ⋅10−4, 𝜆0 = 8 ⋅ 10−3, 𝜆1 = 3 ⋅ 10−2 and train for 300 epochs.
The training epochs are sufficient to reach convergence of the training loss. The batch
size is fixed to 50 for all trainings.
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All the results for replicated models in this chapter are obtained using 𝑅 = 5 repli-
cas.

We do not use any momentum, which would produce a deterioration of perfor-
mances across every region of parameters and non-convergence. The reason for this
behavior could be that the loss landscape for this optimization problem appears to be
highly non-convex, especially when the bottleneck size is close to the intrisic dimension
of the data (this happens at a specific value 𝛾∗, discussed below); momentum-related
techniques, on the other hand, are designed to work well when the loss landscape is
sufficiently smooth [42].

In the rest of this chapter we ask if this robust optimization is helpful for finding
a natural representation of composite data. We test this idea first on synthetic data
where we control the generative process and then extend the approach to protein se-
quence data. In the latter case the exact generative process is unknown, but a coarse
approximation to the basic features can be found in the taxonomic labels.

4.2 Preliminary studies

4.2.1 Synthetic data
Following ref. [44], we generate synthetic datasets 𝑋 = {�⃗�𝜇}𝑀

𝜇=1 of examples �⃗�𝜇 ob-
tained as superposition of basic features, modeled as follows. We consider a dictionary
of basic features {𝑣𝑑}𝐷

𝑑=1, where 𝐷 is the size of the dictionary. In this setup, we choose
𝑣𝑑 as a random binary (0 or 1) sparse vector of length 𝑁. We use binary weights 𝛼𝜇

𝑑
to control the contribution of the basic feature 𝑣𝑑 on the observation �⃗�𝜇 and set only a
small number of the weights to 1 for each observation. The final observation is defined
to be

�⃗�𝜇 = min
(

1,
𝐷

∑
𝑑=1

𝛼𝜇
𝑑 𝑣𝑑)

𝜇 ∈ {1 … 𝑀} (4.9)

Note that this is not a simple linear superposition due to the element-wise min
function. The purpose of this way of generating data is to let all basic features have a
potential impact on every observation while keeping the task of inferring their contri-
butions and the basic features themselves non-trivial. A possible representation of the
data is one where each feature 𝑣𝑑 in the dictionary corresponds to a single hidden unit
in the central layer of the autoencoder. We call this the natural representation of the
synthetic dataset. This representation needs 𝐷 hidden units. For this reason we expect
the autoencoder to be able to find the natural representation when 𝐻 ≥ 𝐷, given that
an appropriate value for 𝛾 has been used.

We generate synthetic data points according to equation (4.9) with the following
characteristics: each example has 784 components, we generate training sets with
𝑀train = 60000 examples and a test set with 𝑀test = 10000 examples. We used four
different datasets with dictionary sizes 𝐷 = 80, 160, 240 and 320.
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The architecture (figure 4.2) is fixed: we used intermediate hidden layers with 𝐾 =
1000 and a bottleneck with 𝐻 = 400 for all our experiments with synthetic data.

We chose the feature vectors 𝑣𝑑 to be random with binary (0 or 1) independent
entries, with a fixed average fraction 𝑝𝑣 of non-zero components. The coefficients 𝛼𝜇

𝑑
are also binary, sparse and random: they were generated with a probability 𝑝𝑑 of being
non-zero. However, in order to make the retrieval problem sufficiently difficult, for
each pattern �⃗�𝜇 we ensured that it contained at least three features (i.e. we discarded
and resampled those that didn’t meet the criterion ∑𝑑 𝛼𝜇

𝑑 ≥ 3). The generation of a
dataset is therefore parametrized by 𝑁, 𝑀train, 𝑀test, 𝐷, 𝑝𝑣 and 𝑝𝑑. In this chapter,
we fixed the sparsity of the features at 𝑝𝑣 = 0.1 and the sparsity of the coefficients at
𝑝𝑑 = 0.01. We always chose 𝑀 ≫ 𝐷.

Since we work with binary patterns, the activation function of the output layer is
chosen to be Sigm(𝑥) ∶= 1/(1+𝑒−𝑥), which sets the range of each output unit between 0
and 1. The loss function of choice for these datasets is mean square error (MSE), which
is simply the squared difference between a unit in the input layer and the corresponding
unit in the output layer, summed over all the units.

4.2.2 A more distributed representation improves performance
of shallow autoencoders

We trained the models with the single (S-AE) and robust (R-AE) algorithms for many
values of the regularizer strength 𝛾, stopping the training after a fixed number of epochs
sufficient to reach convergence in train loss, test loss and regularization loss. It is
worth to note that the robust algorithm could speed up the training with a more precise
scheduling of the coupling hyperparameter 𝜆, but we chose to keep the same number
of epochs of the single algorithm in order to keep the comparison between the two as
clean as possible. Therefore, we chose a schedule for 𝜆 such that the replicas collapse to-
gether withing the chosen number of epochs. A similar reasoning holds for the learning
rate: better result could be obtained for some values of 𝛾 using a fine-tuned scheduling
of the learning rate, especially in the deep architecture (see section 3.1). Nonetheless,
for each architecture we found a learning rate appropriate for all values of 𝛾 and kept
it fixed during the training, in order to highlight the effects of the optimization of the
local entropy.

Since in principle same values of 𝛾 can have different effects on the two different
training algorithms, we compare the results on equal terms of the L1 norm. High values
of 𝛾 correspond to forcing low values of the regularization loss.

It is convenient to define some words to describe the states of neurons of the hidden
layer. Let’s say that a neuron dead if its output is zero for every example in the dataset;
this can be a way in which the network minimizes the L1 norm: it effectively reduces
the size of the hidden layer by killing some of its units. Let’s say that a neuron is active
if it is not dead. An active unit still can have zero output on some examples and non-
zero output on some other examples. We say that the neuron is firing for an input if its
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Figure 4.3: The sparsity-inducing regularizer turns off 𝐻 − 𝐷∗ hidden units; the re-
construction performance starts deteriorating for a number 𝐷∗ of active units less than
the dimension of the dictionary of the dataset 𝐷. A) The performance robust AE starts
deteriorating at a lower value of the regularization loss L1. B) The shallow AE shows a
regime in which some hidden units are activated in a compositional way: the solid line
describes the number of active units which are not turned off, while the dashed line
describes the average number of firing units per pattern; a higher difference between
these two quantities means a representation of input more distributed across the active
hidden units. The robust AE shows this regime for more units and for smaller values
of L1 norm; this is the reason why it achieves better performance for smaller values of
the regularization loss. C-D) Reconstruction loss of single autoencoders as a function
of the number of active units, for many values of the dictionary dimension 𝐷: the er-
ror starts growing quickly when 𝐷∗/𝐷 < 1. The over-parametrized region 𝐷∗/𝐷 > 1
corresponds to a plateau in the regularization loss L1. These trainings were performed
using a shallow autoencoder 784 > 400 > 784 trained for 350 epochs on datasets with
different 𝐷 but the same number of patterns 𝑀 = 6 ⋅ 104. For the sake of simplicity, we
limited each pattern 𝜉𝜇 to be composed of exactly three features 𝑣𝑑 randomly chosen
with uniform probability 𝑝𝑢 = 0.01. The trainings in A-B were performed for fixed
𝐷 = 320.

output is non-zero.
As seen in figure 4.3A, in both cases the test loss curve as a function the L1 norm

has two well recognizable regimes: at high values of L1 norm (low 𝛾), the test loss
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increases slowly up to a critical value; then it changes drastically the slope and the
reconstruction performance rapidly deteriorates (the outputs are very bad for value of
MSE greater than ∼ 3 ⋅ 10−2).

In figure 4.3B (solid line) we can see that the critical value of L1 norm corresponds
to a point in which increasing 𝛾 does not decrease the regularization loss but decreases
only the number of active hidden units: in this regime the autoencoder only uses a
number of hidden units 𝐷∗ < 𝐻, while the other 𝐻 − 𝐷∗ are dead (both trainset and
testset).

The striking difference between the robust algorithm and the single algorithm is that
the former is able to achieve a good performance at higher sparsity; this is connected
to the fact that, at L1 norm between ∼ 0.08 and ∼ 0.10, the robust autoencoder has a
number of active units much larger than the single autoencoder. To explain how this is
obtained, we consider the average number of active units per pattern, reported in figure
4.3B (dashed line): in the robust autoencoder this number is lower than 𝐷∗, while in the
single autoencoder it is much closer to 𝐷∗. Given that the two hidden representation
have the same L1 norm, we deduce that, while the single autoencoder always fires all the
active units, the robust autoencoder fires only a fraction of the active units, namely it
uses a distributed representation. The values of L1 norm inwhich this behavior happens
is the same where the robust AE performs much better than the single AE.

It is important to note that, in this simple architecture, a proper sparse represen-
tation of data (which is close to how these data were generated) is achievable only by
the robust AE, since the L1 regularizer on the single AE mainly kills hidden units. This
difference offers us an interpretation of the results on deeper architectures, where a
robust training helps to actually retrieve the original features of the sparse data: this
could be due to robust training being more biased towards deeper architectures.

4.2.3 Shallow autoencoders can infer the intrinsic dimension of
the dataset

The region of increased performance in the robust AE ends when the number of active
units 𝐷∗ becomes lower than the dimension 𝐷 of the dictionary of the dataset (in figure
4.3B this happens when 𝐷∗/𝐻 = 0.80, since we used 𝐷 = 320). We repeated the same
experiment for different values of 𝐷. The result is that we can exploit the number of
active units in the hidden layer to infer the intrinsic dimension of the dataset: if we plot
both the MSE loss or the L1 loss as a function of 𝐷∗/𝐷, for every value of 𝐷 we observe
a point at 𝐷∗/𝐷 = 1 at which the curve changes slope (figure 4.3C and 4.3D). Since
the performance starts to deteriorate at that point, it is reasonable to think that the AE
is going from an over-parametrized regime to an under-parametrized regime, and that
the turning point corresponds to the intrinsic dimension of the dataset.
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4.2.4 Deep autoencoders can retrieve more original features of
the dataset

We performed the same kind of experiments for the deep AE: training the architecture
at various sparsity using datasets with various dimensions 𝐷 of the dictionary. This
time we compared the results for same values of the parameter 𝛾 and not the L1 norm;
the reason is that where the function L1(𝛾) is stable, it has the same value for every
value of 𝐷, and for 𝛾 > 10−2 it is unstable. This means it that is impossible to use the
L1 norm as a useful quantity to plot on the 𝑥 axis (figure 4.4C).

Let us first consider the optimization of single AE using different values of 𝐷 (see
figure 4.4A): the common behavior is that the MSE loss slowly increases with 𝛾 up to a
critical value, fromwhich the performance starts deteriorating very quickly; in contrast
to the shallow AE, now the values of the MSE loss are decreasing for decreasing 𝐷.
Another difference with the shallow AE is that, after a peak of instability in the training
at a certain value of 𝛾, the MSE loss shows a plateau where the performance is bad, but
not fully deteriorated.

To understand what is happening in terms of the inference of the original features,
we consider the number of active hidden units (figure 4.4B) and the number of highly
activated hidden units per pattern (figure 4.4D), measured with the participation ratio
(PR):

PR𝑎(ℎ) = (∑𝐻
𝑙=1(ℎ𝑙)𝑎)

2

∑𝐻
𝑙=1(ℎ𝑙)2𝑎

(4.10)

with 𝑎 = 2. We find that, for sufficiently small 𝐷 (in particular 𝐷 = 80), the deep AE is
able to find a range of values of 𝛾 where 𝐷∗/𝐷 = 1; for the same values of 𝛾 the number
of active hidden units when we present a feature 𝑣𝑑 as an input is precisely 1. This
suggests that each active hidden unit is assigned to a feature 𝑣𝑑 of the dictionary, and
that the AE is able to represent the patterns 𝜉𝜇 with the exact structure in which they
are created. It is interesting to note that the function 𝐷∗(𝛾) is qualitatively different
when the AE finds the ground truth representation and when it does not: for 𝐷 = 80
the function is concave and has a plateau, while for 𝐷 > 80 the function is convex.
This could suggest the presence of some sort of crossover between two regimes of AEs.
Irrespectively of whether the AE finds the ground truth or not, the L1 loss has a local
minimum for values of 𝛾 corresponding to 𝐷∗ ≃ 𝐷.

The robust AE improves the performance in different ways. As shown in figure
4.4F, the autoencoder activates the correct number of hidden units on a wide range of
values of 𝛾, while the single AE does not even have a plateau in 𝐷∗. Additionally, as
shown in figure 4.5B, the robust AE it is able to fully retrieve the dictionary of features
for bigger dictionaries than single AE. This could be connected to the fact that robust
AE spontaneously finds more distributed representations, so that could be more adapt
to retrieve features from correlated data. Another improvement is observable in the
MSE loss (figure 4.4E): increasing 𝛾 both the test and the train loss increase smoothly
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Figure 4.4: The deep AE is able to retrieve all the features of a sufficiently small dic-
tionary, at a specific value of the regularizer strength 𝛾∗. For 𝛾 > 𝛾∗ the performance
quickly deteriorates. The robust AE is able to fully retrieve bigger dictionaries. A-
D) The performance of a single deep AE trained on a dataset Ξ𝐷 depends on 𝐷: for
smaller dictionaries the test loss (solid line) is smaller and the rough region appears
for a higher value of 𝛾; the train loss (dashed line) shows a weaker dependence on 𝐷.
The retrieval of features improves for smaller dictionaries up to 𝐷 = 80, when the AE is
able to fully retrieve all the dictionary: the curve of active units (B) develops a plateau
at the value 𝐷∗/𝐷 = 1 and each active unit corresponds to one feature of the dictionary
(D). E) For a robust deep AE, both the training loss (red dashed line) and the test loss
(red solid line) does not present a rough region for high values of 𝛾: the test error
starts increasing smoothly at a certain value of 𝛾. F) That value of 𝛾 corresponds to the
point at which there are less active units 𝐷∗ than the dimension of the dictionary 𝐷.
The curve of active units exhibits a plateau at 𝐷∗ = 𝐷, meaning that the robust deep
AE is able to fully retrieve a dictionary of 𝐷 = 160 features, while the single deep AE
is not.

until the reconstruction fully deteriorates, skipping the instabilities and the plateau.
Again, we find that themain difference between the R-AE and the S-AE is that the R-

AE is able to achieve a better reconstruction performance at high sparsity, in the region
where 𝛾 ≳ 0.03 (see figure 4.5A). This is connected to the observation that the R-AE has
a number of active units 𝐷∗ that is significantly larger than the S-AE while keeping a
similar L1 norm for most inputs. This might sound paradoxical, but we recall here that
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𝐷∗ is the number of units in the bottleneck that show a significant activation for at least
one input from the training set. This is not directly suppressed by the L1 regularization
on the bottleneck, which penalizes cases in which many units are activated for a single
input. There are thus different ways to realize the same overall L1 norm. The S-AE kills
more units, while using a larger fraction of the remaining active units on the inputs
on average. The R-AE, on the other hand, kills fewer units completely, using a smaller
fraction of the active units for every input. Another way of stating this fact is that the
R-AE uses representations that are more distributed over all available units and keeps
𝐷∗ closer to 𝐷 (see 4.6 for an example of this behavior). Another interesting difference
is the dynamics of the two algorithms, which is shown in figure 4.7.

Figure 4.5: The AE is able to retrieve all the features of a sufficiently small dic-
tionary. (A) The test loss (dashed line, right y-axis) increases slowly with 𝛾, up to a
certain knee point 𝛾∗, which corresponds to the point where the fraction of retrieved
features has a maximum (solid line, left y-axis); for 𝛾 > 𝛾∗ the performance quickly
deteriorates. The curves are obtained with one execution of the training for each value
of 𝛾. The dimension of the dictionary is fixed to 𝐷 = 160. (B) The performance of
the AE trained on a dataset 𝑋𝐷 (y-axis) depends on the dimension of the dictionary 𝐷
(x-axis): the retrieval of features is better for smaller dictionaries, and the robust AE is
able to fully retrieve bigger dictionaries (for 𝐷 = 80 both single and robust AE retrieve
100% of the features, while for 𝐷 = 160 only the robust AE is able to do so). For each
𝐷 the plot shows 9 results with S-AE and 4 with R-AE, each one corresponding to dif-
ferent realizations of the same training procedure. The regularizer strength is set in the
proximity of the knee point, namely 𝛾 = 3 ⋅ 10−2.

If we plot the loss as a function of 𝛾, we observe that it grows slowly up to a cer-
tain knee point 𝛾∗ (figure 4.5A, dashed line). This point coincides with the maximum
number of retrieved features. This can be interpreted as a phase transition between
overfitting and underfitting, and for 𝛾 > 𝛾∗ the performance deteriorates quickly.

In general, the retrieval of features is better for smaller dictionaries for both mod-
els, but for larger dictionary sizes the R-AE retrieves a higher number of features, see
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Figure 4.6: There are different ways to realize the same overall L1 norm of the units
in the bottleneck layer. The figure shows rank plots for different AE. On the x-axis
there are the hidden units ranked by their average activation: the units on the right are
the most active on average and the ones on the far right are the ones that are always
deactivated (their signal is next to zero across all the dataset). On the y-axis there is
the average activation of the units. In the high sparsity case we can see that S-AE
deactivates more units completely, while R-AE, on the other hand, deactivates fewer
units completely. This effect disappears at lower sparsity, far from the knee point of
the loss curve. The dataset used for these result is PF01978.19.

figure 4.5B: for 𝐷 = 80 both the S-AE and the R-AE retrieve 100% of the features, while
for 𝐷 = 160 only the R-AE is able to do so. For 𝐷 ≥ 240 the R-AE finds ∼ 40% more
features than the S-AE.

4.3 Application to biological data: protein families
In this section we test the capability of the R-AE to infer basic features on real data.
We use sequence data of homologous proteins because they allow a reasonable inter-
pretation of composition: due to co-evolution of residues that are part of structural
contacts or functional groups, certain patterns of amino acids arise. These patterns can
be exploited for the prediction of contacts with the structure of a single protein [45,
46], infer protein interaction networks [47, 48] and paralogs [49, 50], model evolution-
ary landscapes [51] and predict pathogenicity of mutations in humans [52, 53]. Since
these patterns are inheritable, we expect their presence to be partly determined by the
phylogenetic history of the organism and therefore to be correlated with its taxonomy.
We therefore argue that a ‘natural’ representation of an amino acid sequence should be
correlated with taxonomy of the organism.

We thus proceed as follows. We consider a wide variety of protein families and we
use aligned sequences in a one-hot encoding as the input of the autoencoders. Each

81



Natural Representation of Composite Data with a simple Autoencoder

Figure 4.7: Example trajectories of the loss during the training; ten trajectories are
shown for S-AE and three for R-AE. The panels on the left show the train loss, the right
ones show the test loss. Here we show a case where S-AE and R-AE have the same
performance (D=160, top line) and one case where R-AE has a much better performance
(D=240, top line). Note that the improvement is greater for the test loss, showing that
R-AE generalizes better. These trajectories refer to figure 2B in the main text. The
regularizer strength is set in the proximity of the knee point, namely 𝛾 = 3 ⋅ 10−2.

family is partitioned in train set, test set and validation set in the proportion 80%-10%-
10%. We then test two different measures of correlation between the representations
of the S-AE and the R-AE of the sequences with their taxonomic labels. Note that,
analogously to the case of synthetic data, the training of the autoencoders is agnostic
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about these labels.

4.3.1 Protein data
We considered 18 protein families from the PFAM database (tab. 4.1) selected according
a number of criteria: we want many types of proteins represented, as well as families
covering many different partitions of the tree of life; additionally, we chose families
with a sufficient number of sequences and species, varying the ratio between these two
numbers. We use aligned data (multiple sequence alignment, or MSA).

DATASET n. seq n. species n. amm DATASET n. seq n. species n. amm
PF01978.19 4531 1806 68 PF04545.16 35976 8384 50
PF09278.11 6117 2867 65 PF00805.22 38453 3485 40
PF00444.18 6551 5971 38 PF07676.12 48848 6060 38
PF03459.17 8823 4066 64 PF00356.21 49284 5450 46
PF00831.23 9782 9209 57 PF03989.13 60674 8153 48
PF00253.21 10577 8650 54 PF01381.22 72011 9760 55
PF03793.19 20495 4026 63 PF00196.19 85219 6666 57
PF10531.9 22080 7683 58 PF00353.19 101177 2304 36
PF02954.19 35339 5079 42 PF04542.14 110168 8385 71

Source: https://pfam.xfam.org/

Table 4.1: List of dataset used for training the AE, listed by their number of sequences.
The protein families of ribosomal domains are highlighted; notice that, for these fami-
lies, the ratio of the number of different species over the number of sequences is higher
than for the other families.

Given a sequence 𝑆 = {𝑎𝑖}𝐴
𝑖=0 of length 𝐴 to the AE, we represent each amino-acid

𝑎𝑖 with a 21-components one-hot encoding: each input sequence is thus a binary vector
of length 𝑁 = 𝐴 × 21, and the entire dataset with a matrix (𝑀,𝑁). The architecture is
rescaled according to the sequence length 𝐴: we set 𝐾 = 1.1 × 𝑁, and the number of
units in the bottleneck to 𝐻 = 0.4 × 𝑁.

Since each amino acid is a categorical variable represented by a one-hot encoding,
a common way to compute the reconstruction error 𝐿(𝑖) for a single amino acid 𝑎𝑖 is
the cross entropy between the input and the output. To do this, we consider the 21
units {𝑧(𝑖)

𝑗 }𝑗=1,…,21 in the output layer that describe the site 𝑖, then we apply a softmax
operation so that each unit can be interpreted as a probability

Softmax(𝑧(𝑖)
𝑗 ) ∶= 𝑒𝑧(𝑖)

𝑗

∑21
𝑗=1 𝑒𝑧(𝑖)

𝑗

(4.11)

and finally we compute the cross entropy

𝐿(𝑖) = −𝑧(𝑖)
𝑗∗ + log

21

∑
𝑗=1

𝑒𝑧(𝑖)
𝑗 (4.12)
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where 𝑗∗ is the index corresponding to the true value of the amino acid 𝑖. The complete
loss function is the summation of the cross entropy losses for each amino acid of the
sequence:

𝐿 =
𝐴

∑
𝑖=1

𝐿(𝑖). (4.13)

Here we choose a linear activation function for the units in the output layer.

4.3.2 The internal representation correlateswith the natural one
The behavior of the autoencoders trained on protein sequence data is qualitatively sim-
ilar to what we saw for synthetic data: there is always a knee point in the curve of
the loss (both train and test) as a function of 𝛾, see 4.8, 4.9, 4.10. We expect that the
range of values around the knee point corresponds to a representation that is close to
the underlying biology.

We determine the knee point 𝛾∗ for a given protein family by fitting the error curve
(not directly the loss) on the test set by two connected line segments and then use the
point where they intersect as 𝛾∗. All the subsequent analysis is done on the validation
set, using the autoencoder with the identified 𝛾∗.

Knee Point Identification

An important part of our approach is identifying the knee point 𝛾∗ in the loss curve. To
this end, we consider the reconstruction error curve on the test set in dependence of 𝛾.
The curve has two parts, separated by the knee point: A slow increase in reconstruction
performance (decrease in error) and a drastic decrease in reconstruction performance
(drastic increase in error) when 𝛾 becomes too high. We fit the region around the knee
point with the function:

𝑓 (𝛾) =
{

𝑎1 (𝛾 − 𝛾∗) + 𝑏 if 𝛾 < 𝛾∗

𝑎2 (𝛾 − 𝛾∗) + 𝑏 if 𝛾 ≥ 𝛾∗ (4.14)

which is simply the equation of two straight lines passing from the same point at 𝛾∗.
From the fit over the four parameters 𝑎1, 𝑎2, 𝑏, 𝛾∗ we obtain the estimation of the po-
sition of the knee point.

We use the error curve (the number of wrong amino acids in the reconstruction)
rather than the loss directly, since the error curve is better approximated by two line
segments and therefore easier fitted by our approach, leading to better approximations
of the knee point.

The knee point is different for each protein and we expected it to be also different
for S-AE and R-AE. Empirically, however, we obtained the best results across all the
protein families by using the 𝛾∗ of the S-AE also for the R-AE.
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Figure 4.8: Part 1: The behavior of the autoencoders trained on protein sequence data
is qualitatively similar to what we saw for synthetic data: there is always a knee point
in the curve of the loss as a function of 𝛾, corresponding to the maximum correlation
with the taxonomic labels.

Captured taxonomic information

Wemeasure the taxonomic information captured by the hidden layer in twoways: First,
in analogy with synthetic data, under the very hopeful hypothesis that each taxonomic
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Figure 4.9: Part 2

label corresponds to a single hidden unit. We test this idea in the next paragraph. Sec-
ondly, we ask how well a clustering of the sequences based on the hidden representa-
tions correlates with the taxonomic labels in comparison to a clustering based directly
on the amino acid sequences.

Since the taxonomic classification is modeled by a tree, we consider the labels as
organized by their depth 𝑑, that is their distance from the root of the tree. For example,
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Figure 4.10: Part 3

the root has 𝑑 = 0, the label ’Bacteria’ has 𝑑 = 1, ’Proteobacteria’ has 𝑑 = 2. Every
label is associated with one or more sequences in the training set and every sequence
corresponds to several labels (see figure 4.11 for a sketch and figure 4.12 for how dif-
ferent subsets are represented in the AE hidden layer). The labels near the root are
the most populated, while the labels deeper in the tree are sparsely populated. We ex-
pect the labels in the first few levels to be more correlated with the hidden unit since
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deeper labels correspond to only a few sequences in the training set (see figure 4.13).
For these reasons we restricted the following analysis to labels up to depth 𝑑 = 5, with
the additional condition that they must contain at least 20 sequences from the training
set.

Figure 4.11: Scheme of the data organization. Since the taxonomic labels live on a
tree, each amino-acid sequence correspond to multiple labels on different depths of the
tree.

Neuron-Taxon correlation

Given a taxonomic label indexed by 𝑙, we consider the binary variable 𝑦𝑙(𝑠𝜇) that, for
each sequence 𝑠𝜇 in the dataset, is equal to 1 if the sequence belongs to that taxon and is
equal to 0 otherwise; then, after the AE has been trained, we compute (on the training
set) the correlation matrix 𝐶𝑙,𝑘 between the variables {𝑦𝑙} and the activations {ℎ𝑘} of
the hidden units. For every label 𝑙 we select the most correlated unit 𝑘∗(𝑙). Then we
define a score 𝑄 as the average correlation (on the test set) of the most correlated units
for every label:

𝑄 ∶= 1
𝐿

𝐿

∑
𝑙=1

𝐶𝑙,𝑘∗(𝑙) (4.15)

where 𝐿 is the total number of labels considered in a dataset.
The results are shown in figure 4.14: R-AE consistently finds a higher score than

S-AE. It is useful to note the general trend of this score: the more sequences in the
dataset, the worse the score. Additionally, the protein families of ribosomal domains
have a much higher score, which is probably due to the fact that ribosomes are well
sampled (see the 4.4 section for more on this).
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Figure 4.12: Different taxonomic subsets are represented in different ways in
the AE hidden layer. Upper panel: the average activation for a given subset (y axis)
is shown for the 𝐷∗ active hidden units of the hidden layer (x axis). The dashed line
correspond to the average activation for the father label ”Bacteria”. Lower panel: cor-
relation coefficient between the average activation of hidden units and the taxonomic
labels defining the subsets.

Clustering data in the latent space

For a given label 𝑙 at depth 𝑑, we consider the sub-labels 𝑙′ at depth 𝑑 + 1 branching
from 𝑙; we select the subset of the training set corresponding to the label 𝑙, then we
compute the centroids of the clusters corresponding to the sub-labels 𝑙′ by averaging
the sequences with that sub-label. Given a new sequence from the test set belonging to
𝑙, we assign the sub-label 𝑙′ according to the closest centroid. In order to perform this
clustering procedure on disjoint subsets in such a way that the accuracies are indepen-
dent of each other, we fix the depth 𝑑 and consider only labels 𝑙 found at that depth. We
choose 𝑑 = 2, because it provides the most variety of sub-labels with a high number of
examples in the protein families we considered.

First we run this procedure using the original sequences, the same ones on which
we trained the AEs. Then we repeat the clustering using, for each sequence, its repre-
sentation in terms of the hidden units of the AEs. We ask whether this representation
improves the accuracy of the clustering, depending on whether we use the representa-
tion from R-AE or S-AE.

The results are shown in figure 4.15: the representation learned by R-AE does im-
prove the accuracy for the majority of labels both respect to S-AE (bottom-left panel)
the to input space (bottom-right panel).
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Figure 4.13: Less populated subsets are more difficult to identify. Each line of the
matrix shows the correlation coefficients between a taxonomic label and all the active
units of the AE hidden layer, sorted from the most correlated to the most uncorrelated.
The empty space corresponds to the 𝐻 −𝐷∗ dead hidden units. Each taxonomic label is
shown with its populations. The labels with small populations have lower correlations
with hidden units.

4.4 Conclusions
In this chapter we have presented a method to extract representations of composite
data that connects to the structure of the underlying generative process. To this end,
we combined two techniques that allowed us to recover such representations from the
bottleneck of autoencoders trained on the composite data: The first is a regularization
that forces the autoencoder to use a sparse representation. The second is the replicating
of the autoencoder, which changes the properties of the solutions found. We showcased
the method on two different datasets. In the first dataset, where we controlled the gen-
erative process, we showed that the replication allows to extract the underlying basic
features also in cases where the sparsity constraints are too strong for a single autoen-
coder. After a closer analysis, we found that replication enables the system to effectively
disentangle basic features and specialize parts of the internal representations.

In a second step, we applied the same method to protein sequence data. Since pat-
terns of amino acids are inheritable, we used the correlation between the extracted
representations and the phylogenetic labels as a metric for assessing the quality of the
representation. We found that the replication of the autoencoder resulted in represen-
tations that are closer to biological reality and that the qualitative characteristics of
the loss function and internal representations are similar to autoencoders trained on
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Figure 4.14: The robust AE consistently capturesmore biological information in
most of the protein families considered. (A) The panel shows an aggregate score of
correlation between the hidden units of the network and the taxonomic labels present
in each protein family (equation (4.15)); the families are show on the x-axis according to
their number of sequences. The circled points correspond to ribosomal domains, which
appear to be the datasets with the highest performance of our method. (B) The panel
shows, for each family, the score improvement gained by training the robust AE respect
to training the single AE.

synthetic data.
One intriguing observation is that the point where the internal representation be-

comes correlated with the basic features is identifiable: The knee point in the loss curve
in dependence of the regularization parameter corresponds to the peak performance in
feature retrieval. For synthetic data we were able to verify this directly. Near this knee
point, each hidden unit represented one basic feature. This also allowed us to infer the
number of basic features present in the data (i.e. its inherent dimensionality). For pro-
tein sequence data, we observed that the internal representation becomes correlated
with taxonomic labels at the knee point. After this knee point, the loss deteriorates
quickly, indicating that the autoencoder starts dropping important information from
the internal representation.

Interestingly, we found that feature retrieval on synthetic data becamemore difficult
for increasing dictionary sizes. This could be addressed either by using a larger and
therefore more expressive architecture or by using a larger training set. We generally
expect the size of the training set necessary for the extraction of the basic features to
scale with the size of the dictionary [54, 55].

Regarding the difficulty of the feature extraction task, we found a similar behavior
on the protein families: Families with more sequences also contain a higher number
of labels and are expected to have a wider variety of features. It is further noteworthy
that the correlation between taxonomic labels and internal representations was more
pronounced for ribosomal domains than for other families with a similar number of
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Figure 4.15: The representation of the AE improves a clustering algorithm. (A)
The panel shows the accuracy of a clustering algorithms run into the latent space of
the neural network versus the accuracy of a clustering algorithms run on the original
data point. Each point corresponds to a label in a protein family: given the subset of a
protein family corresponding to that label, we consider the task of clustering that subset
according to the subcategories of that label. (B,C)The panels show two 2D density plots
of the score improvement as a function of the score on the original data points, respect
to S-AE (B) and to the input space (C).

sequences (see figure 4.14, circled markers). This is probably due to the fact that ri-
bosomes are well studied systems in many species and that in the databases we used
there are more species per sequence for these domains (see tab. 4.1). This indicates that
a well-balanced dataset is an additional factor in the inference of basic features from
composite data.

In conclusion, we have shown that replicated autoencoders are better suited for
extracting natural representations of composite data. In particular, we positively tested
this capability on protein sequences and their taxonomic labels. This result is a proof
of concept that this method works even outside synthetic problems, and that the details
of the procedure could be further optimized to obtain even better results.
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On amino-acid data, the difference between single and robust autoencoders is less
evident than on synthetic data. Nevertheless, the fact that we see there is some im-
provement was not necessarily expected, and its presence seem to confirm the strong
hypotheses that we made: namely that taxonomic labels can be associated to single
hidden units, and that amino-acid sequences can be seen as superposition of features
specific to taxonomic labels.

Some parts of this method could be improved in future works. For example, the
relation between the sparsity of the autoencoder representation and the level of the
taxonomic tree could be explored. In fact, one expects that features of an AE with a
smaller bottleneck would correspond to labels closer to the root of the taxonomic tree
and, on the contrary, a bigger bottleneckwould describe labels closer to the leaves. If we
were able to characterize this dependence we could also choose an appropriate subset of
taxonomic labels to test. Additionally, the quality of the representation could be tested
by comparing it to other sequence representations that are becoming the standard in
bioinformatics (see for example [56]). Finally, note that we used a very simple neural
network (especially compared those used in [56]). In particular, moving from shallow
to deep autoencoders allowed us to identify which feature is connected to which hidden
unit and made a robust model essential on synthetic data. It is reasonable to think that
using more advanced architectures the difference between a single model and a robust
one would improve even on amino-acid sequences data.

The approach presented in this chapter is very general, since we used no prior
knowledge about the biology involved. This fact encourages us to believe that the
method could be useful for other data in biology where the representations and ba-
sic features extracted might lead to new biological insights. Another possible direc-
tion of future research we point to the increasing number of measurements coming
from single-cell transcriptomics [57]. In these data, the basic features are conceptually
clearer than in protein sequence data and we suspect that representations of cell states
in terms of gene expression modules would be found. Such representations could in
turn be used to cluster cell types or analyze pathologies like Alzheimer’s Disease [58].
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Chapter 5

Evolution optimizes Local Entropy

The content of this chapter follow the content of my paper at ref. [59].
Proteins are the machinery of life. In order to perform their functions, the majority

of proteins fold into a compact native state that is intimately linked with their polypep-
tide conformation, as it has been known for thirty years [60]. The goal of this study
was to rationalize the observation that the number of protein sequences is largely more
abundant than the number of protein conformations, causing substantial degeneracy
in the map between sequence and structure. The problem has regained importance in
more recent years, when it has become feasible to design proteins de novo with custom
functions, and thus it has become critical to understand which conformations can be
best designed [61].

Most theoretical results point to the conclusion that we can observe a small subset
of all possible protein conformations because they exhibit physical properties that make
them biologically more fit rather than just because they are poorly sampled by evolu-
tion. Some conformations therefore appear to be more ”designable” than others [62].
Some works justify the better designability of existing conformations by their greater
kinetic accessibility during the folding process, often associated with conformational
symmetries such as secondary structures [63, 64, 65]. An optimal balance between lo-
cal and nonlocal contacts would make the folding rate of some native conformations
particularly fast. This hypothesis is supported by the correlation observed in proteins
between the average linear separation between residues in contact in the native state
and the rate of folding [66]. Other works relate the design of a native conformation to
its thermodynamic stability, thus focusing on its equilibrium rather than kinetic charac-
teristics. The basic idea is that stable proteins exhibit a large gap between the energy of
the native state and those of competing conformations [67] and this gap can accommo-
date a large number of sequences that fold to the same native state [68, 69]. Different
conformational properties may contribute to this enhanced thermodynamic stability.
More compact conformations are more stable because they can exhibit more attractive
interactions and because they protect more efficiently hydrophobic residues from the
solvent. Daisy-like conformations that maximize the trace of the eighth power of the
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contact matrix have also been shown to be particularly stable [70]; in fact, this quantity
has been shown to correlate with the evolutionary age of the proteins [71]. Similarly,
the presence of loops of specific sizes has been found to improve thermodynamic sta-
bility and justified by [72] energy arguments.

Still, the fact that specific protein conformations can be particularly stable at equi-
librium is usually associated with the property of amino acid sequences to exhibit
markedly low potential energy in those conformations, thus more efficiently minimiz-
ing system frustration. On the other hand, although the native state of proteins is
usually considered macroscopically unique, its entropy is not negligible compared to
the competing denatured state [73]. This entropy arises from the constellation of con-
formations, structurally similar to the ground state, that lie beyond the transition state.
They certainly include several vibrational states, conformational sub-states [74], and
perhaps other conformations whose contribution to the partition function cannot be
separated from that of the ground state.

The hypothesis we wish to further investigate in the present work is whether the
entropy of the native state of natural proteins, and not just the potential energy, is par-
ticularly optimized compared to that of random conformations. This hypothesis was
suggested several years ago [75] by a qualitative computational analysis in which some
of the most mobile dihedrals of small proteins were changed and the number of con-
formations within 4Å from native conformations and devoid of steric clashes was esti-
mated. It was found that natural proteins exhibit more neighboring conformations than
random decoys. More recently, a knowledge–based local–entropy parametrization was
used to predict contact changes between amino acids during protein conformational
changes [76].

From a statistical–physics point of view, this quantity is captured by the so-called
local entropy, i.e., the log of the number of low energy configurations within a given
distance from a reference configuration (for continuous systems the definition can be
generalized straightforwardly). Recently, it has been seen that the notion of local en-
tropy plays a central role in systems that exhibit a potentially very complex energy
landscape and at the same time possess highly accessible states that correspond to high
local entropy minima [16, 13]. The latter turn out to be accessible by a multitude of
dynamical processes which are not designed to have the Gibbs distribution as station-
ary probability measure, due e.g. to non-thermal external perturbations. Systems of
this type are non-convex models of artificial neural networks (including deep neural
networks), in which entropic phenomena play essential roles [4] for the (unexpected)
success of the current learning processes, largely based on non-equilibrium variants of
gradient descent.

Here we want to generalize the algorithmic schemes introduced for sampling high
local entropy ground states in neural systems [17] and apply them to simple models of
3D protein structures. Considering both lattice model and all-atom representations of
proteins, we show that by sampling native states with high local entropy (which are in
principle rare compared to states that dominate the Gibbsmeasure) we find a decrease in
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the linear separation between contact residues. In addition, the ”flatness” of the energy
profile in the native state can extend to the transition state, having consequences both
on the thermodynamic stability of the protein, lowering the free energy of the native
state, and on the folding rate, lowering the free energy of the transition state. The
generality of the sampling method would allow it to be used in conjunction with any
structure prediction method, such as e.g. Alpha–fold [77] and Rosetta Fold [78], and
could aid in the search for sequences folding onto the most designable structures.

5.1 Local entropy and protein structures
To define a probability measure that ignores narrow ground states and enhances the
statistical weight of large dense regions of ground states, we can consider the local
free-entropy

𝑆loc(Γ, 𝛾, 𝛽) = log∫ 𝑑Γ′ exp [−𝛽𝑈(Γ′) − 𝛾𝑑(Γ,Γ′)] , (5.1)

where 𝑑(Γ,Γ′) is any metrics suitable for the protein-structure model under consider-
ation and 𝛾 is its conjugate Lagrange multiplier. We describe the explicit choice of 𝑑 in
section 5.2 (see equation 5.7). Here and in the following, we shall set Boltzmann’s con-
stant to 1. In the limit of 𝛽 → ∞, this expression reduces (up to an additive constant)
to a ”local entropy”: it counts the number of minima Γ′ of the energy, weighing them
(via the parameter 𝛾) by the distance to a reference configuration Γ. For continuous
variables, the local entropy becomes the log of a weighted volume around a reference
configuration. We can then define the probability distribution

𝑃 (Γ; 𝑦, 𝛾, 𝛽) = 1
𝑍(𝑦, 𝛾, 𝛽)

𝑒𝑦𝑆loc(Γ,𝛾,𝛽) (5.2)

where 𝑦 determines the degree of concentration of the probability distribution on high
local entropy regions. When 𝑦 is large, only the configurations Γ that are surrounded
by an large number of local minima will have non-negligible weight. By increasing the
value of 𝛾, it is possible to focus on tighter neighborhoods around Γ, and at large values
of 𝛾 the target Γ will also share with high probability the properties of the surrounding
minima. From an algorithmic perspective we can use the high local entropy probability
distribution as a starting point for designing a Markov Chain, in the same way that
simulated annealing uses the Gibbs measure. One possibility [13, 17] is to observe that
if we take 𝑦 to be a non-negative integer we can rewrite the partition function as a
product of identical systems connected by a distance constraint

𝑍(𝑦, 𝛾, 𝛽) = ∫ 𝑑Γ𝑒𝑦𝑆loc(Γ,𝛾,𝛽)

= ∫ 𝑑Γ𝑐

𝑦

∏
𝑎′=1

𝑑Γ𝑎′ 𝑒−𝛽 ∑𝑦
𝑎=1 𝑈(Γ𝑎)+𝛾 ∑𝑦

𝑎=1 𝑑(Γ𝑎,Γ𝑐)−𝛽𝑈(Γ𝑐)
(5.3)
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where Γ𝑐 is the ”central” reference configuration, and {Γ𝑎} are the configurations of
the replicated systems. This partition function describes a system of 𝑦 + 1 interacting
replicas of the initial system, one of which acts as the reference system, while the other
𝑦 systems are subject to a distance constraint with respect to the reference system. This
gives us a very simple and general scheme to direct algorithms to sample wide minima
of the energy landscape: replicate the model, add an interaction term with a reference
configuration, and run the algorithm on the resulting extended system. In practice, we
only need to consider the following effective system

𝑈eff(Γ𝑐, {Γ𝑎}) =
𝑦

∑
𝑎=1

[𝑈(Γ𝑎) −
𝛾
𝛽

𝑑(Γ𝑎,Γ𝑐)] + 𝑈(Γ𝑐) (5.4)

and run our preferred Monte Carlo (MC) Markov Chain update. Replicas are initialized
at random, while the center configuration is initialized at the average of the replica
configurations. It is worth noting that 𝑦 controls the value of the local entropy and that
relatively small values of 𝑦 are sufficient to obtain the results we are interested in. By
taking the inverse temperature of the individual systems 𝛽 to be large, we focus the
sampling on flat ground states.

5.2 Effects of the local entropy on the equilibriumcon-
formations of polymers

Wefirst tested the effect of controlling the local entropy of a polymer on a simple cubic–
lattice model, which offers the advantage of a fast sampling of the conformational space
of the system and of defining unambiguously the zero of the entropy. We employed a
standard model on a cubic lattice [67] in which the beads, sitting on the vertices of
the lattice, cannot overlap. They interact with a contact potential depending on the
conformation Γ = {�⃗�𝑖}𝑁

𝑖=1

𝑈(Γ) = 1
2

𝑁

∑
𝑖𝑗=1

𝐽𝑖𝑗Δ𝑖𝑗(Γ), (5.5)

where the contact function Δ𝑖𝑗(Γ) is 1 if the 𝑖th and 𝑗th beads are neighbors in space
and |𝑖 − 𝑗| > 2 and zero otherwise.

The chain is simulated with a standard Monte Carlo algorithm that includes the
corner flip, the crankshaft and rotations of the ends as elementary moves. At each step,
a monomer is chosen at random for it with flat a priori probability and a random move
is chosen randomly with uniform probability among those that are possible, accepting
it with the standard Metropolis probability. The initial conformation is generated from
a random self–avoiding walk in the lattice. The simulations for computing equilibrium
quantities consist of 107 steps, recording the conformation every 104 steps. See Fig. 5.1
for example trajectories that reach equilibrium. Simulations we use to compute the
folding time consist of 106 steps, recording the conformation every 102 steps.
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Figure 5.1: Examples of trajectories of the gyration radius. (a-d) The solid blue
curve corresponds to the gyration radius of the center, while the other curves corre-
spond to the radius of the three replicas. (e) The curve corresponds to the gyration
radius of a single configuration obtained with plain Monte Carlo. The radius of gyra-
tion is recorder every 104 MC steps. To compute the thermal averages of the phase
diagram in Fig. 1a of the main text we used the last 300 samples of the trajectory of the
center (namely from MC steps > 7 ⋅ 106 to the end of the trajectory). We observe that
the radius of the centers has lower variability than the one of plain Monte Carlo and it
decreases faster.
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In order to control the local entropy of the system, we performed a Monte Carlo
simulations of 𝑦 replicas of the system starting from independent conformations and
interacting with the potential defined in equation (5.4). The Metropolis acceptance rate
now reads 𝑝accept = min (1, 𝑒−Δ), where Δ = 𝛽Δ𝐸 + 𝛾Δ𝑑 and

Δ𝑑 =
{

𝑑(Γnew
𝑎 ,Γ𝑐) − 𝑑(Γold

𝑎 ,Γ𝑐), if we are moving a replica 𝑎
1
𝑦 ∑𝑦[𝑑(Γ𝑎,Γnew

𝑐 ) − 𝑑(Γ𝑎,Γold
𝑐 )], if we are moving the center 𝑐.

(5.6)

5.2.1 Increased local entropy depletes long–range contacts in ho-
mopolymers

The simplest polymer model that can be studied is the lattice homopolymer, obtained
setting 𝐽𝑖𝑗 = −1 in equation (5.5) for each pair 𝑖, 𝑗. We compared the results of a
standard Monte Carlo sampling of the Boltzmann distribution with a replicated Monte
Carlo, which controls the local entropy through the parameter 𝛾, as described in Sect.
5.1. To define the local free entropy we adopt for this system a distance function defined
by

𝑑(Γ1,Γ2) = 1 − 1
𝑁𝑐

𝑁

∑
𝑖<𝑗

Δ𝑖𝑗(Γ1)Δ𝑖𝑗(Γ2), (5.7)

that is the fraction of different contacts between the two conformations Γ1 and Γ2; here
𝑁𝑐 is themaximum number of contacts that the chain can build. As displayed in Fig. 5.2,
we have checked that the results are robust with respect to the distance function (e.g. by
comparison with root-mean-square distance, RMDS) and to a different coupling scheme
of the replicas. What might be an optimal definition of distance is an interesting prob-
lem that goes beyond the scope of our study and that might deserve further study.

In a homopolymer the only relevant equilibrium effect is the coil–globule transition.
A comparison between the transition described by a Boltzmann sampling and that ob-
tained controlling the local entropy (cf. Sect. 5.1) is shown in Fig. 5.4a for a polymer
with 𝑁 = 70 (see Fig. 5.3 for two example configurations). In the case of Boltzmann
sampling (𝛾 = 0) the coil–globule transition is marked by a jump of the radius of gy-
ration (𝑅𝑔) at an inverse temperature 𝛽 ≈ 30. In the lattice model we measure lengths
in units of the lattice step, which is set to 1 so that 𝑅𝑔 is dimensionless. Increasing the
bias associated with the local entropy (i.e., by increasing 𝛾) leads to a stabilization of
the globule, the transition temperature increasing with 𝛾. At the same time, we observe
a compaction of the coil state, associated with the fact that at short distances more
compact conformations have certainly a larger number of neighboring other confor-
mations (cf. equation 5.7) and thus a larger local entropy. The globular phase, in which
the polymer is maximally compact, is weakly affected.

In Fig. 5.4b we compared the distributions of contact range (i.e., of the values of
|𝑖 − 𝑗| when 𝑖 and 𝑗 are in contact) for fixed inverse temperature 𝛽 = 100, at which
the system is in the globule phase at all values of 𝛾 we simulated. A homopolymeric
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Figure 5.2: The phase diagram is consistent with respect to choices of distance
and replica coupling scheme. This portion of the phase diagram has been com-
puted using Root Mean Square Distance (RMSD) as distance and by coupling repli-
cas with each other, without a center. RMSD between two polymers is calculated as
𝑑RMDS(Γ,Γ′) = 1

𝑁 (∑𝑁
𝑖=1 ||𝑟𝑖

Γ − 𝑟𝑖
Γ′

||2)1/2, where 𝑁 is the number of residues and 𝑟𝑖
Γ

is the position of the 𝑖-th residue of the structure Γ. The effects of local entropy on the
transition with these choices are qualitatively the same as in Fig. 1 of the main text.

(a) (b)

Figure 5.3: Examples of compact configurations in the lattice model. Panel (a) is
obtained with plain Monte Carlo, panel (b) is obtained by sampling local entropy. The
color of the beads represents the index of each bead, from 0 (red) to 70 (purple).

globule is expected to display an initial decrease of the contact probability up to the dis-
tance corresponding to the diameter of the globule, followed by a flat distribution [79].
At 𝛾 = 0 the distribution displays overall the expected character but is quite irregular
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because of the constraints imposed by the cubic lattice on the 𝑅𝑔 of highly–compact
conformations (i.e., there is a non–monotonic relation between 𝑅𝑔 and energy). In-
creasing 𝛾, we observed a regular increase of short–range contacts at the expense of
long–range contacts.
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Figure 5.4: Local entropy changes the properties of a lattice homopolymer. (a)
Radius of gyration as a function of the inverse temperature for increasing values of 𝛾.
𝑅𝑔 is dimensionless, since measure lengths in units of the lattice step which is set to 1.
The points represent thermal averages. We used 𝑦 = 3 + 1 replicas, the last one being
the center. (b) Distribution of the range of contacts |𝑖 − 𝑗| at 𝛽 = 100 for increasing
values of 𝛾. Increasing 𝛾 suppresses long-range contacts and favors short-range ones.
The error bars on the fist bin are generated by bootstrapping.

5.2.2 Increased local entropy simultaneously stabilizes and de-
creases folding time of model proteins

To obtain a clear picture of the effects of the local entropy on the folding properties
of model proteins, we calculated the equilibrium stability and the folding rate of a Go
model [80] on lattice. This is defined choosing a target conformation Γ0 and setting

𝐽𝑖𝑗 = −𝐽 ⋅ Δ𝑖𝑗(Γ0) (5.8)

in equation (5.5), where 𝐽 defines the energy scale and was set to 1. With this choice of
𝐽𝑖𝑗, the target conformation is by definition the ground state of the system, and thus the
equilibrium state at low temperature. The reason for using a Go model is to decouple
the effect of protein sequence from that of protein structure, focusing our attention
only on the latter. Here the protein sequence is described effectively, assuming that
evolution has minimized energetic frustration to the maximum degree [81].

We chose as target conformation Γ0 either conformation sampled by the homopoly-
meric model according to Boltzmann distribution (𝛽 = 100 and 𝛾 = 0) or biasing their

102



5.2 – Effects of the local entropy on the equilibrium conformations of polymers

local entropy (𝛽 = 100 and 𝛾 > 0), in all cases taking care of selecting only globu-
lar conformations (our choice for the cutoff is 𝑅𝑔 < 2.5). We thus obtained different
potentials that depend on 𝛾 through the choice of Γ0.

We then simulated at low temperature (𝛽 = 120) the dynamics of the system start-
ing from a random, high–temperature, coil state with the standard Metropolis scheme,
that at fixed temperature approximates the Smoluchowski equation and thus reports
realistic trajectories of the system [82]. From each trajectory we obtained the fraction
of native contacts 𝑓𝑁(𝑡) (that for the Gomodel is = 𝑈(Γ(𝑡))/𝑈(Γ0), where Γ(𝑡) is the con-
formation of the chain at time 𝑡), we calculated the average 𝑓𝑁(𝑡) over 40 simulations
and fitted them by a two–state kinetics

𝑓𝑁(𝑡) = 𝑓eq ⋅ (1 − 𝑒−𝑡/𝜏) + 𝑓0 (5.9)

where 𝜏 is the mean folding time, 𝑓0 is the residual fraction of native contacts in the
initial conformation, 𝑓𝑒𝑞 is the equilibrium similarity to the target conformation, that in
the two–state approximation is equal to the equilibrium probability of the native state
(cf. Fig. 5.5). We show in Table 5.1 the average and standard deviation of the mean
square error for each fitted curve.
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Figure 5.5: Examples of averaged folding trajectories of lattice Go models and
corresponding fitted curves. The left panel shows trajectories of the fraction of na-
tive contacts as a function of Monte Carlo steps. The blue dashed ones correspond to
references with 𝛾 = 0, the orange solid ones correspond to references with 𝛾 = 1𝑒4. The
right panel shows the corresponding curves obtained by fitting the trajectories with an
exponential curve.

In Fig. 5.6a we plotted the values of 𝜏 (in MC steps) and 𝑓eq as a function of the
parameter 𝛾 that controls the local entropy of the target conformation Γ0. The values
are medians over 60 realization of Γ0. The corresponding standard deviations are shown
in Table 5.4. It is shown that the stability of the native state increases with 𝛾, while the
folding time displays a non–monotonic behavior with a minimum at 𝛾 ≈ 1.2 ⋅ 104.
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𝛾 std(𝑓eq) std(𝜏) median(MSE) std(MSE)
5.0 ⋅ 102 8.2239 ⋅ 10−2 1.0669 ⋅ 103 2.7821 ⋅ 10−4 1.5583 ⋅ 10−4
2.0 ⋅ 103 1.3406 ⋅ 10−1 8.9720 ⋅ 102 2.2772 ⋅ 10−4 1.7510 ⋅ 10−4
8.0 ⋅ 103 1.1693 ⋅ 10−1 4.3120 ⋅ 103 1.8888 ⋅ 10−4 1.0092 ⋅ 10−4
2.5 ⋅ 103 7.5114 ⋅ 10−2 2.2077 ⋅ 103 2.3513 ⋅ 10−4 1.1705 ⋅ 10−4
5.0 ⋅ 103 1.0108 ⋅ 10−1 1.2295 ⋅ 103 2.8181 ⋅ 10−4 2.1203 ⋅ 10−4
6.0 ⋅ 103 1.0941 ⋅ 10−1 2.6071 ⋅ 103 2.0890 ⋅ 10−4 1.2907 ⋅ 10−4
7.0 ⋅ 103 1.5255 ⋅ 10−1 1.8627 ⋅ 104 3.0163 ⋅ 10−4 2.1992 ⋅ 10−4
9.0 ⋅ 103 1.2876 ⋅ 10−1 2.1858 ⋅ 103 2.0844 ⋅ 10−4 2.2282 ⋅ 10−4
1.0 ⋅ 104 9.0906 ⋅ 10−2 3.8539 ⋅ 102 2.4447 ⋅ 10−4 1.1748 ⋅ 10−4
1.1 ⋅ 104 8.6400 ⋅ 10−2 4.3558 ⋅ 102 2.0593 ⋅ 10−4 1.5520 ⋅ 10−4
1.2 ⋅ 104 1.0607 ⋅ 10−1 3.9646 ⋅ 102 2.6716 ⋅ 10−4 1.1724 ⋅ 10−4
1.3 ⋅ 104 1.3475 ⋅ 10−1 6.4258 ⋅ 102 2.3607 ⋅ 10−4 1.8014 ⋅ 10−4
1.4 ⋅ 104 7.7247 ⋅ 10−2 3.8472 ⋅ 102 3.0565 ⋅ 10−4 1.3042 ⋅ 10−4
1.5 ⋅ 104 9.7204 ⋅ 10−2 2.9444 ⋅ 102 2.4793 ⋅ 10−4 2.0832 ⋅ 10−4
2.0 ⋅ 104 6.7892 ⋅ 10−2 7.8561 ⋅ 102 2.8288 ⋅ 10−4 1.4823 ⋅ 10−4
3.0 ⋅ 104 8.9116 ⋅ 10−2 6.2010 ⋅ 102 2.8535 ⋅ 10−4 1.7384 ⋅ 10−4

Table 5.1: Folding times and stabilities are less variable for higher values of
𝛾. The first two columns of the table show standard deviation of stabilities and folding
times shown in Fig. 2a of themain text. The last two columns showmedian and standard
deviation of mean square error of fits averaged over the samples, attesting the goodness
of the fits.

To rationalize these results, we estimated what is the radius of the neighborhood
of the target conformation that is affected by the increase in local entropy at varying
𝛾. In Fig. 5.6b we plotted the average inter–conformation distance obtained from the
replica simulation from which we obtained the conformations Γ0 (cf. equation 5.4) as
a function of 𝛾. For large 𝛾 (> 1.5 ⋅ 104) the average distance displays a plateau at 𝑑 ≈
0.6; decreasing 𝛾 the average distance increases, overcoming 0.9 for plain Monte Carlo
simulations. In the plot is also marked the transition state at 𝑑 = 0.7, that separates the
denatured state from the native basin.

Both the stabilization and the kinetic effects of the local entropy can be clarified
noting what part of the free–energy profile 𝐹 (𝑑) = 𝐸(𝑑) − 𝑇 𝑆(𝑑) is affected by the
local entropy. At large 𝛾 the local entropy affects only the close neighborhood of the Γ0
(𝑑 ≲ 0.4), decreasing its free energy and thus stabilizing it with respect to the denatured
state, which is unaffected. The transition state is not affected as well, so the folding
rate, that according to Kramers theory depends on the free energy of the transition
state calculated with respect to the denatured state, is similar to that at 𝛾 = 0. When 𝛾
is decreased, the neighborhood of Γ0 affected by the increase in local entropy reaches
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the transition state (𝑑 ≃ 0.7) and lowers it, decreasing the folding time. The non–
monotonicity of the folding time arises from the fact that making 𝛾 even smaller, also
the denatured state is affected and then folding barrier grows again.

The degree of cooperativity of the folding transition decreases slightly with 𝛾 (see
Table 5.2). This is not unexpected because 𝛾 > 0 leads to the stabilization of conforma-
tions with varying distance from the native one, thus decreasing the two-state character
of the folding transition.

𝛾 cooperativity 𝜅
0.0 1.21 ± 0.01

0.5 ⋅ 104 1.35 ± 0.04
1.0 ⋅ 104 1.28 ± 0.03
2.0 ⋅ 104 1.42 ± 0.07

Table 5.2: Local entropy leads to less cooperative transitions. The table shows the
estimated average cooperativity of the coil globule transition for go models on refer-
ences at various values of 𝛾. The cooperativity is defined with the Privalov coefficient
𝜅, that is 1 in case of perfect first-order transition and greater than one the less cooper-
ative the transition is. The definition is 𝜅 ∶= ∫ 𝑑𝑇 𝐶𝑣(𝑇 )/2𝑇𝑓√𝐶𝑣(𝑇 ), where 𝑇𝑓 is the
folding temperature and 𝐶𝑣 is the specific heath of the transition.

5.3 The local entropy of natural proteins is larger than
that of random decoys

We then tested the hypothesis that the native state of natural proteins displays a larger
local entropy than random polypeptidic conformations with the same density. We stud-
ied seven natural proteins and a stable protein designed de novo (HHH) [61].

To estimate the local entropy associated with the native state we need to describe
the energy of the protein in the neighborhood of the crystallographic structure. For this
purpose we made use of an all–atom Go model [80], that is expected to be particularly
realistic in the native basin. At the same time, it allows one to decouple the effect of the
sequence from that of the native conformation in the calculation of the local entropy.

In order to evaluate the local entropy, we performed molecular dynamics (MD) sim-
ulations with Gromacs 2020.4 [83] using the all–atom Go model obtained by Smog2
[84]. The native conformations of the proteins were: protein G (pdb code 1pgb, 56
residues), ACBP (pdb code 2abd, 87 residues), CI2 (pdb code 2ci2, 83 residues), src-SH3
(pdb code 1srl, 64 residues), villin headpiece (pdb code 5vnt, 63 residues), barnase (pdb
code 1bnr, 110 residues) and HHH (artificial protein, pdb code 5uoi, 43 residues). MD
simulations were performed in the range of temperature from 1 to 200 (in energy units)
for 2 ⋅ 105 steps of time step 5 ⋅ 10−4 ps with stochastic dynamics [83]. The Go potential
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Figure 5.6: Structures with high local entropy are more stable and fold faster.
(a) The average folding time (in MC steps, orange triangles, left y-axis) for target con-
formations Γ0 obtained at different values of 𝛾 and the average stability of the structure
(blue circles, right axis). The orange bar indicates the transition state ‡ calculated in
the right panel. (b) The average distance between the central conformation and the
replicas at different values of 𝛾 obtained from the simulation used to generate the Γ0.
Aligned with the right axis we show the free energy of a Go model as function of the
distance from the native state for various structures at low 𝛾. Both the distance and
the free energy are dimensionless given the definition of the model. We can see that
the region around 𝛾 = 1 ⋅ 104, marked with an orange bar, corresponds to the typical
distance between native and transition state.

of each decoy, whose parameters in Smog2 depend on the number of residues and of na-
tive contacts in the native conformation, is rescaled to that of the corresponding native
protein in order to facilitate the comparison among them. The microcanonic entropy
𝑆(𝐸) is extracted from all the simulations performed at different temperatures for the
same protein with the maximum–likelihood code developed in ref. [85].

As a control model we generated putative native conformations from a homopoly-
meric model, derived from the original models as follows. Starting from the crystal-
lographic structure of each protein, we generated an all-atom model similar to that
described above (i.e., with the same atomic structure), but where each pair of atoms
interacts instead in the same way with the Lennard–Jones potential

𝑉LJ(𝑟𝑖𝑗) = 𝐶 (12)
𝑖𝑗 /𝑟12

𝑖𝑗 − 𝐶 (6)
𝑖𝑗 /𝑟6

𝑖𝑗 (5.10)

where for all 𝑖, 𝑗we set𝐶 (6)
𝑖𝑗 = 1.4⋅10−2 kJmol−1 nm6 and𝐶 (12)

𝑖𝑗 = 1.0⋅10−4 kJmol−1 nm6.
No potential is applied to the dihedrals at this stage. The parameters 𝐶 (6) and 𝐶 (12) are
chosen with a grid search so that, after an annealing MD of the chain, the number of
contacts in the putative conformations is not smaller than in the original model (see
Fig. 5.7), to rule out trivial effects in the calculation of the local entropy. The resulting
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conformation is used as putative Γ0 (examples of these configurations can be found in
Fig. 5.8).

1.0 1.2 1.4 1.6 1.8 2.0
Radius of gyration

1pgb

2abd

2ci2

HHH random
original

(a)
15000 20000 25000 30000

N contacts (between atoms)

1pgb

2abd

2ci2

HHH random
original

(b)

Figure 5.7: The decoys have similar compactness than the native structures. We
show radius of gyration and number of atomic contacts for the proteins under study
and for the associated random decoys. In order to obtain this distribution of prop-
erties for decoy configurations we set 𝐶 (6)

𝑖𝑗 = 1.4 ⋅ 10−2 kJmol−1 nm6 and 𝐶 (12)
𝑖𝑗 =

1.0 ⋅ 10−4 kJmol−1 nm6 in the Lennard-Jones potentials between pairs of atoms.

The entropy 𝑆(𝐸) for four proteins is displayed in Fig. 5.9(c–f) (see also Fig. 5.10)
and compared with the random decoys of each of them, matching the different curves
at infinite temperature (cf. the insets). In most cases, proteins display in the native
energy region (below the transition state) an entropy that is larger than that of the
random decoys. This effect is summarized Fig. 5.9(a), that displays the density of local
entropy

𝑠loc = 1
𝑁

log
𝐸‡

∑
𝐸=𝐸N

𝑒−𝛽𝐸+𝑆(𝐸), (5.11)

where 𝐸N is the minimum energy of the system and 𝐸‡ is the energy of the transition
state, approximated as the average energy at the transition temperature (cf. caption
of Table 5.3). The local entropy is calculated at low temperature (𝛽 = 10−1) at which
all proteins and decoys are stable (cf. Fig. 5.11). Equation (5.11) is the microcanonical
counterpart of equation (5.1). The density of local entropy of native proteins is always
larger than the average 𝑠 of the decoys, in five cases out of eight for more than one
standard deviation 𝜎𝑠. From 𝑠 and 𝜎𝑠 we estimated the p–values associated with the
null hypothesis that the entropy density of the native protein is smaller than that of the
decoys within a Gaussian approximation, that is 𝑝 = [1 − erf((𝑠 − 𝑠)/√2𝜎𝑠)]/2, where
erf is the error function. The p–values are rather low, except for CI2 (2ci2) and for the
CHE–Y (1cye).

The protein HHH, designed de novo and not shaped by natural evolution, seems to
display the same features of natural proteins. However, one has to consider that the
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Figure 5.8: Examples of compact configurations in the all-atom model. Different
colors correspond to secondary structures, showing that random decoys show little to
no secondary content.

scaffold they used for the design is a helix bundle typical of natural proteins.
Finally (cf. Fig. 5.11), we observed that the peaks in the specific heat of the four
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Figure 5.9: Natural structures have higher local entropy than random ones at
low energy. (a) The density of local entropy of the native state (orange crosses), the
average density of local entropies of the decoys (blue circles) and the associated stan-
dard deviation (blue bars) for each protein. On the right axis are reported the associated
p–values. (b) the native conformation of CI2 (2ci2) and an example of decoy. (c–e) The
entropy density calculated as a function of energy for four proteins (solid orange curves)
and for the associated decoys (dashed blue curves). The gray vertical bars indicate the
region where the transition states are (the band is centered on the average over the
protein and the decoys, its width is twice a standard deviation). In the inset is displayed
the whole entropy density, while in the main figures only the region of the native state.
Note the energy density has been rescaled for every structure as described in section
5.3, so the energy units are arbitrary.

proteins tend to be wider and less pronounced, in agreement with what we found in
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Figure 5.10: Entropy density calculated as a function of energy for four proteins (solid
orange curves) and for the associated decoys (dashed blue curves), for the remaining
four proteins.

subsection 5.2.2: the wider the specific heat, the less cooperative the transition [86] (a
measure of cooperativity of the transition can be found in Table 5.2). At the same time,
the majority of native proteins display a larger folding temperature (cf. the main peak
in the specific heat in Fig. 5.11), in agreement with the fact that a larger local entropy
stabilizes the native state.

5.4 The local entropy depends on the topology of con-
tacts

Finally, one can investigate whether there is an elementary way to reinterpret why
natural proteins display a larger local entropy than random conformations. This aspect
can be studied easily in the context of a Go model in which the frustration associated
with the sequence is minimized [81].

In fact, in this case one can insert in the definition of local entropy of equation (5.1)
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Figure 5.11: Thermodynamics of all-atom models. Each plot show the internal
energy and the specific heat (inset) as a function of the temperature for the four proteins
we studied (solid orange curves) and for their random decoys (dashed blue curves).

the expressions of equations (5.5), (5.7) and (5.8), obtaining

𝑆𝑙𝑜𝑐(Γ0) = (5.12)

= log∫𝑑Γ exp
[(𝛽𝐽 +

𝛾
𝑁𝑐 )

𝑁

∑
𝑖<𝑗

Δ𝑖𝑗(Γ0)Δ𝑖𝑗(Γ)
]
,
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Protein Mean(𝐸tr) Var(𝐸tr) Mean(𝑇tr) Var(𝑇tr)
1pgb 6.69 1.95 89.16 18.76
2abd 7.73 1.60 88.76 14.75
2ci2 5.67 1.18 88.43 14.80
HHH 5.84 1.83 77.45 14.84
1bnr 8.72 0.92 92.74 12.06
1cye 9.81 4.40 107.24 32.00
5vnt 7.40 1.65 83.81 12.13
1srl 6.72 1.82 72.88 9.95

Table 5.3: Average transition temperatures and corresponding transition ener-
gies. We identified transition temperatures for each native and random structure as the
position of the first peak in the specific heat (coming from high temperatures). The cor-
responding transition energy is determined with the energy curves shown in Fig. 5.11.
We average those energies for each protein to determine the region where the transi-
tion states are in Fig. 3c-f in the main text. This ”transition region” is plotted as a gray
band.

where 𝑑Γ ≡ 𝑑𝑥1𝑑𝑥2 … and an immaterial constant has been disregarded. This is
essentially the free energy of the Go model at a rescaled temperature. The exponential
in the integrand can be expanded in series,

𝑒… = 1 + (𝛽𝐽 +
𝛾

𝑁𝑐 )

𝑁

∑
𝑖<𝑗

Δ𝑖𝑗(Γ0)Δ𝑖𝑗(Γ)+ (5.13)

+ 1
2 (𝛽𝐽 +

𝛾
𝑁𝑐 )

2 𝑁

∑
𝑖<𝑗
𝑘<𝑙

Δ𝑖𝑗(Γ0)Δ𝑘𝑙(Γ0)Δ𝑖𝑗(Γ)Δ𝑘𝑙(Γ) + …

Moving the Δ𝑖𝑗(Γ0) out of the integral and defining the interaction volume as 𝑣 ≡
∫ 𝑑ΓΔ𝑖𝑗(Γ) and the total volume available to each degree of freedom as 𝑉, one obtains

𝑆loc(Γ0) = log [𝑉 𝑁 + + + + + … ] , (5.14)

where the graphs indicate the terms of the expansions. For example,

= (𝛽𝐽 +
𝛾

𝑁𝑐 ) 𝑉 𝑁−1𝑣
𝑁

∑
𝑖<𝑗

Δ𝑖𝑗(Γ0) (5.15)

is the contribution of a single contact, that depends on the number ∑ Δ𝑖𝑗(Γ0) of contacts
of the native conformation. Thus, the larger is the number of contacts on the native
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conformation, the larger is the local entropy. Similarly,

= 1
2 (𝛽𝐽 +

𝛾
𝑁𝑐 )

2
𝑉 𝑁−2𝑣2

𝑁

∑
𝑖<𝑗<𝑘

Δ𝑖𝑗(Γ0)Δ𝑗𝑘(Γ0), (5.16)

where ∑ Δ𝑖𝑗(Γ0)Δ𝑗𝑘(Γ0) is the number of triples of nodes (e.g., amino acids) interacting
pairwise. For a graph with loops, for example,

= 1
3! (𝛽𝐽 +

𝛾
𝑁𝑐 )

3
𝑉 𝑁−2𝐴▷𝑣2

𝑁

∑
𝑖<𝑗<𝑘

Δ𝑖𝑗(Γ0)Δ𝑗𝑘(Γ0)Δ𝑘𝑖(Γ0), (5.17)

where 𝐴▷ = 3/4 is a parameter that arise in the integration of the contact functions Δ
from the constraints given by looped graphs. In fact,

∫ 𝑑𝑥𝑖𝑑𝑥𝑗𝑑𝑥𝑘Δ(|𝑥𝑖 − 𝑥𝑗|)Δ(|𝑥𝑗 − 𝑥𝑘|)Δ(|𝑥𝑘 − 𝑥𝑖|) = 𝑉 ⋅ 3
4

𝑣2. (5.18)

For a generic graph, 𝐴 ≤ 1 and is equal to the unity if the graph does not contain loops
because the variables can be integrated sequentially. For a fully–connected graph of 𝑛
nodes, that in the language of network theory is called a clique, 𝐴 = 𝑛/2𝑛−1.

By the linked cluster theorem, the sum of graphs in equation (5.13) is the exponential
of the sum of connected graphs, so the local entropy results simply the sum of connected
graphs. Note that the connected graphs are different from zero only if the associated
∑ Δ𝑖𝑗(Γ0)Δ𝑗𝑘(Γ0) … is different from zero, that is the corresponding structure is in the
native protein. The goal is to spot what are the most important graphs. The general
form of a graph is

𝐴
𝑙! (𝛽𝐽 +

𝛾
𝑁𝑐 )

𝑙
𝑉 𝑁−𝑛+1𝑣𝑛−1 ⋅ (# of instances in Γ0), (5.19)

where 𝑛 is the number of interacting nodes, 𝑙 is the number of links (i.e., interactions be-
tween nodes) and 𝐴 depends on how links loop together. Each term is also proportional
to the number of instances that the specific graph appears in the native conformation
of the protein.

Proteins will display a large local entropy if they are rich of graphs with large values
of

𝑤 ≡ 𝐴
𝑙!

𝐵𝑙𝑉 𝑁−𝑛+1𝑣𝑛−1, (5.20)

where we defined 𝐵 ≡ 𝛽𝐽 + 𝛾/𝑁𝑐. Thus, local entropy depends on the topology of
native contacts. For unlooped graphs (𝐴 = 1), for fixed 𝑛, 𝑤 has a maximum at 𝑙∗ = 𝐵.
Typically, for proteins 𝛽𝐽 is of the order of 1; 𝛾/𝑁𝑐 for the model of Fig. 5.6b is of the
order of 104/102 = 102, and consequently 𝑙∗ ∼ 102.

However, for graphs composed of 𝑙∗ links, fully–connected graphs display a larger
weight 𝑤. In fact, if we compare the value of 𝑤clique for a fully connected graph (𝑙 ∼ 𝑛2)
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with that 𝑤unloop of an unlooped graph (𝑙 ∼ 𝑛) at 𝑙 = 𝐵, one obtains 𝑤clique/𝑤unloop =
(𝑉 𝑁/𝑣)𝐵/2𝐵−1/2 that is large for 𝐵 ≫ 1.

It was shown [70] that Tr [Δ𝑖𝑗(Γ0)]𝑛 for 𝑛 ≫ 1 is a good determinant of protein
designability. Since this quantity counts the number of closed paths of length 𝑛 in the
interaction network of the protein, it will be correlated with the number of clusters
with large 𝑤; consequently, the tendency of evolution to maximize Tr [Δ𝑖𝑗(Γ0)]8 [71] is
tantamount to the optimization of the local entropy. Notice that for the lattice–model
proteins discussed above, the average values of Tr [Δ𝑖𝑗(Γ0)]𝑛 with 𝑛 = 4,8 are increas-
ing with 𝛾, that is with the bias towards having high entropy at short distances (cf.
Table 5.4).

𝛾 Tr 𝑀4 Tr 𝑀8 cont. range
0.0 784.4 ± 0.8 41150 ± 90 19.28 ± 0.05

0.5 ⋅ 104 790.3 ± 0.9 41524 ± 99 19.80 ± 0.05
1.0 ⋅ 104 821.3 ± 0.9 44814 ± 112 17.96 ± 0.05
1.5 ⋅ 104 794.7 ± 0.9 42511 ± 98 16.81 ± 0.04

Table 5.4: Properties of the contact map 𝑀 of lattice structures. The table shows
the fourth and eighth power of the contactmap and themean contact range as a function
of 𝛾. The quantities are averaged over 60 structures.

5.5 Conclusions
The concept of local entropy was used to explain the properties of complex systems like
artificial neural networks [16, 13], in which the ”energy” landscape is highly roughed
and the system learning dynamics leads to atypical configurations with respect to the
Gibbs measure. In particular, states characterized by a large local entropy can be easily
accessed in spite of the abundance of competing states that tend to block the learning
procedure.

In the present work we claimed that the concept of local entropy plays an important
role also in systems that can move in a smoother energy landscape and thus are not in a
glassy regime. In particular, we focused our attention on the three–dimensional confor-
mation of proteins, that evolved along the eons through a complex dynamics described
by Darwinian evolution. The high diversity of native conformations of known proteins
and their redundancy (i.e., the existence of analogous proteins) suggests that evolution
explored a large part of conformational space and thus that protein conformations can
be regarded as stationary realizations of the evolutive dynamics.

In the present work, we made use of a Go model to estimate the local entropy of
proteins, in order to separate the evolutionary problem of sequence design from that
of conformational selection, removing in this way frustration from the system [87].
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Although it is known [88] that frustration plays an important role in determining the
features of the denatured state up to the formation of the transition state, one expects
it to be less relevant to determine the local properties of the native state and thus the
estimation of its local entropy, in agreement with the principle of minimal frustration
of the native state [81]. We thus think that the Go model is particularly suitable for the
specific problem we face.

A relevant question is then whether the ensemble of native conformations can be
described by Boltzmann statistics or the evolutionary accessibility of native conforma-
tions is important to define the fitness of proteins. The latter case would imply that
out-of-equilibrium effects affect the set of existing protein conformations. In the cases
we studied, the local entropy of proteins is indeed larger than that of random decoys
displaying the same length and density. As alreadymentioned in the introduction, these
ideas are not new. However, our aim was to provide a simple proof of concept with a
novel technique that can be generalized to more realistic settings for protein design.
While previous estimation of the local entropy are either qualitative [75] or based on
a knowledge–based, empirical function [76], the methods we suggest inspired by the
study of complex systems [16] make use of a direct calculation of the local entropy.
Being based on simple statistical–mechanical concepts, we expect this method to be
widely applicable to different class of models.

In fact, we showed that the large local entropy of model proteins has consequences
both on their thermodynamic and equilibrium properties. It straightforwardly stabilizes
the native state, decreasing its free energy, but extending to the transition state can
also improve the folding rate. From this point of view, the concept of evolutionary
optimization of the local entropy is related to the dynamical variational principle stated
in ref. [65]. In fact, also the mechanistic reason for the increase in the folding rate is
the same: local entropy biases the stabilizing contacts to be closer along the sequences,
making their formation kinetically faster [66].

Code availability The scripts and the main data used and produced in this work can
bee freely downloaded at https://gitlab.com/bocconi-artlab/local-entropy-proteins.
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Chapter 6

Discussion and future perspectives

In this thesis we studied the effects of optimizing local entropy in a wide variety of
systems, each of those farther form the context where the concept was originally de-
veloped, namely simple neural networks trained on supervised problems.

We found that looking for wide flat minima in neural networks is relevant even
when the problem is convex while the naive optimization of the loss is not sufficient to
generalize well (chapter 3).

We also showed that wide solutions of sparse autoencoders implement represen-
tation of data with different properties than typical solutions, and we saw that these
representations are closer to the actual structure of data when such structure is known
(chapter 4). We explored some real-world applications of this improved feature extrac-
tion on amino-acid sequences of homologous proteins families.

Finally, we abandoned neural networks and applied the concept of local entropy to
the problem of protein folding. In particular, we disentangled the study of the sequence
from that of the three-dimensional structure and showed how structures that maximize
local entropy seem to be better suited from the point of view of evolutionary fitness
(chapter 5).

This last model is particularly interesting for several reasons. First, it is the first
finite-dimensional model where local entropy is studied, and there were no a priori rea-
sons for it to be effective. Second, if a similar study is conducted on more realistic mod-
els on proteins (for example using the recent deep learning tools [78, 77] to bridge the
gap between the structures and the sequences), it could be a case of a real-world (mean-
ing not from computer science) system where physics of subdominant states plays an
important role.

Moreover, the connection between learning algorithms and evolutionmight be deeper
than just both solving optimization problems: this connection resides in neutral theory.

The neutral theory of protein evolution (see [89]) starts from the observation that
most of the mutations that can happen to a protein sequence are neutral, namely they
do not change the fitness of the sequence. A consequence of this fact is that most of the
volume of mutations is due to random drift rather than selective pressure. This fact is
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related to the designability (sometimes called evolvability) of a protein, since a sequence
that accepts more neutral mutations is less prone to destructive mutations, therefore is
more stable [90]. On the other hand, a protein structure that hardly changes – i.e. a
more robust structure – is less probable to reach beneficial mutations and therefore
seems a pitfall for the evolution process.

The interplay between robustness and designability of protein structures has been
clarified in [91], by separating the two concepts for the genotype (the sequences) and
the phenotype (the structures): the author showed that robust structures possess a large
neutral network, which is the set of all sequences forming the same structure and con-
nected by neutral mutations. They also showed that a large neutral network improves
designability, because a sequence folding to such structure can change a lot before pro-
ducing a new phenotype and therefore as access to a bigger set of different phenotypes,
with this set proportional to the size of the neutral network.

It is clear that natural sequences are very different from random ones [92]. Can local
entropy describe the structures that are good for evolution as if the evolution was an
algorithm that can only visit particularly accessible structures, in analogy with neural
networks? What dynamics do we expect to be involved in the process of evolution?

From the point of view of sequences, we don’t expect to be a process of retaining
neutral or beneficial mutation to be a stochastic process that reached equilibrium, just
because it has been estimated that evolution only explored a fraction of the possible
sequences (see [93]). It is plausible that evolution can only visit those sequences that
are well-connected via neutral paths to the root of the evolutionary tree. In this picture,
a particularly fit structure that is isolated in the fitness landscape effectively does not
exist for evolution.

From the point of view of structures, we expect that a protein should be able to
fold in a variety of situations: some in vivo examples are the folding that happens
as soon as the amino-acid chain is assembled reading the RNA, or folding reactions
that are catalyzed by enzymes in the crowded cell environment; moreover, a protein
folds also in vitro inside pure solutions The requirement to be a good folder in many
different situations could create an evolutionary pressure for the structures to be almost
”universal folders”, namely to be the ending point of the different dynamics that can
come up inside a cell, in analogy with high-local-entropy states being attractors for
many of the heuristic algorithms that are used to train neural networks.

In this thesis we showed that good folders show higher local entropy than random
structures, but whether this effect is due to evolution optimizing it or due to evolution
happening in the high-local-entropy subset of the sequence space is yet to be under-
stood.

To wrap up this discussion, another way of studying the role of local entropy in
protein folding would be to ask if local entropy could be a null model for natural selec-
tion by capturing the geometrical requirements (see [65, 94]) of the fitness score, which
cause the existence of neutral networks.

A theory that relies on similar hypotheses have been formulated using the concept
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of Kolmogorov complexity, both for genotype-phenotype maps ([93, 95, 21]) and neural
networks ([21, 20]). A study of the connection between local entropy and algorithmic
complexity could be an interesting development of this thesis.
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