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RISK OF TRANSPORTATION STRUCTURES AND NETWORKS

Risk definition

Risk = Probability x Consequences

Probability = likelihood of the \ Consequence = Extent of impacts
occurrence of an adverse event (economic, social, and environmental)
and its exposure

2022 Taiwan earthquake
https://www.rte.ie/news/newslens/2022/0919/1324288-bridge-taiwan/

Cascadia Subduction Zone Earthquake  Failure/disruption during normal conditions due to

Source: Oregon OEM e.g., extensive corrosion and deterioration
https://www.oregon.gov/oem/hazardsprep/Pages/Cascadia

Bridge in PA collapsed due to lack of repair
-Subduction-Zone.aspx

Replacement estimated at $25.3 mil
https://www.cnn.com/2022/02/04/us/pennsylvania-bridge-repair/index.html
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RISK OF TRANSPORTATION STRUCTURES AND NETWORKS

Risk definition

Risk = Probability x Consequences

Probability = likelihood of the / \ Consequence = Extent of impacts

occurrence of an adverse event (economic, social, and environmental)
and its exposure

2022 Taiwan earthquake
https://www.rte.ie/news/newslens/2022/0919/1324288-bridge-taiwan/

Cascadia Subduction Zone Earthquake  Failure/disruption during normal conditions due to

Source: Oregon OEM e.g., extensive corrosion and deterioration
https://www.oregon.gov/oem/hazardsprep/Pages/Cascadia
-Subduction-Zone.aspx

Bridge in PA collapsed due to lack of repair

Replacement estimated at $25.3 mil
https://www.cnn.com/2022/02/04/us/pennsylvania-bridge-repair/index.html
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RISK OF TRANSPORTATION STRUCTURES AND NETWORKS

Gaps in the practice of risk assessment

Risk = Probability x Consequences

\ Consequence = Extent of impacts

(economic, social, and environmental)

Impact at key infrastructure assets can spread quickly to the entire system
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RISK OF TRANSPORTATION STRUCTURES AND NETWORKS

Gaps in the practice of risk assessment

 Traditionally, risk assessment has been carried out at the asset level
— Network performance is approximated by aggregating asset performance

« However, transportation assets are interconnected, and the impact of structural
failure may propagate to other routes in the network

33.3% of total demand between AB

33.3%
| | = .
Underlying assumption of Realistic consequences
asset-level risk assessment considering network effects
33.3%
33.3% 40%
(A== (B (A
33.3% 20%

33.3% 40%



SYSTEM-LEVEL IMPACTS OF TRANSPORTATION NETWORKS :
System-level functionality indicators

Connectivity Maximum flow Travel time and distance
(network capacity) (traffic assignment)

~
NSies

Piedmont, CA

Los Angeles, CA
Portland, OR

Computational complexity

Low I High



SYSTEM-LEVEL IMPACTS OF TRANSPORTATION NETWORKS

Why it matterse

* Risk assessment forms the basis for risk management
— Accurate risk assessment is essential to gauging the benefit of management actions
— The risk-informed cost-benefit analysis can be directly used for infrastructure management

Optimization problem of risk management Value = benefit (”Sk reductlon

Maximize: Total benefit in risk reduction
(from a pool of work candidates)

Subject to:  Budget constraint Weight = cost of actlon m
@ !ag@

ltem = work
candidate (action)

Equivalent prioritization (ranking) problem
Knapsack problem: solved by ranking the

projects in decreasing order of benefit/cost
ratio, and select and cut off the sorted work
candidates when the budget is exhausted

Knapsack
capacny Budget

R

https://commons.wikimedia.org/wiki/File:Knapsack.svg



Massive repository

Of deficient structures

SYSTEM-LEVEL IMPACTS OF TRANSPORTATION NETWORKS )
Why it matterse

Scarce resources Lack of Strategic

For maintenance Management

ASCE Report Card (2021)
7.5% of the surveyed bridges
as structurally deficient

ICE Report (2014)

1/3 of the local transportation
systems need urgent attention
for maintenance

McKinsey Report (2013)
60% shortage for investment in
infrastructure globally

ASCE Report Card (2021)
$123 billion in need to clear the
backlog of bridge repair needs

FHWA Questionnaire (2010)
Most states in the U.S. do not
have a systematic strategy for
funding allocation; Worst-first
approach, based on either
condition or qualitative risk
score, is still being widely used.




SYSTEM-LEVEL IMPACTS OF TRANSPORTATION NETWORKS

Why it matterse

» State DOTs continue to lose ground in bridge management efforts

— At the current funding rate for bridge replacement, an Oregon bridge will need
to stay in service for over 900 years (ODOT 2021 Bridge Condition Report)

Average NBI component ratings by year (Oregon bridges)

Deck = Superstructure = Substructure

6.7

—

6.5 w— =

Source: ODOT

63 2021 Bridge
2010 2012 2014 2016 2018 2020 Condition Report




Risk-informed Bridge Ranking at
Project and Network Levels



OVERVIEW OF METHODOLOGY :
Proposed vs existing methods
Markov chain deterioration model

v" Transition matrix based on historical evidence
v" From Markovian states to reliability indices

Network function for risk assessment
v' Traffic flow re-assignment given bridge failure
v’ Spatial correlation of bridge failures

v Risk assessment at network level



MARKOV DETERIORATION MODEL

Definition and quantification

» Bridge conditions are commonly represented
by condition ratings derived from regular
inspection reports

» Deterioration, represented by the reduction in
condition ratings, can be modeled as a
(descending) Markov chain

S e ot 0 e 0 rsi®
52 0 T2 T3 - 0 52
S3 = 0 0 133 0 S3
s 0 0 0 - 1,,=11Ls.

s(t+1) =TT s(t)

TABLE. Condition rating

and Markov state
Source: Adapted from FHWA (1995)
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Code

Description

Markov state

DN 0oz

]

N/A
Excellent condition
Very good condition—no problems noted
Good condition—some minor problems
Satisfactory condition—structural elements show
some minor deterioration
Fair condition—all primary structural elements
are sound but may have minor section loss,
cracking, spalling or scour
Poor condition—advanced section loss,
deterioration, spalling or scour
Serious condition—Iloss of section, deterioration
of primary structural elements. Fatigue cracks in
steel or shear cracks in concrete may be present
Critical condition—advanced deterioration of
primary structural elements. Fatigue cracks in
steel or shear cracks in concrete may be present or
scour may have removed substructure support.
Unless closely monitored it may be necessary to
close the bridge until corrective action is taken
Imminent failure condition—major deterioration
or section loss present in critical structural
components or obvious vertical or horizontal
movement affecting structure stability. Bridge is
closed to traffic but corrective action may put it
back in light service
Failed condition—out of service; beyond
corrective action

N/A
MS 1

MS 2
MS 3

MS 4

MS 5

MS 6

MS 7




MARKOV DETERIORATION MODEL

Derivation of transition probabilities

O
o
o~

O
@)
O

o
o
N

Median =0.0234

Two-year fransitin frequency
o
w

0.02
0.01
0

O ~O O O O ~O ~O (@) o o o
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w N (@51 o~ N (0] O (@] —_ N w

Year

¥00¢

Two-year transition frequencies from condition 7
to condition 6 (from 24102 bridges in CA)

G00¢
200¢
£00¢
600¢
010¢
L10C
¢10¢
€10¢

800¢

FIGURE. Two-year transition frequencies from NBI data

Used to derive annual transition probabilities due to deterioration
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MARKOV DETERIORATION MODEL

Simulated deterioration

=
o

0.8 0.8
£ 0.6 206
£ 0.4||  Condition Rating - £oat Condition Rating | - FIGURE. Markovian deterioration
CJ1>s 4 Cd>8 [ 4 [~ .
=7 s , . of bridge super- and subsiructures
2 E ; - < | 021 Co6 mm <2 (a) Superstructure
CIR , : l , (o) ,, | =5 | (b) Substructure
0 20 40 60 80 100 0 20 40 60 80 100
Service time (year) Service time (year)
Markov state [ Central safety factor [ Structural reliability index
0; — 04 Hr — Us 0(s) —1
— — — — -1
0(s) =——(s—7N+0 B(s) = = —0 ' ps(s)]

\/M,gaz + 1252 Je(s)zsg + 52



ILLUSTRATIVE EXAMPLE

Highway bridges in LA county, CA

» Cost to transportation users from extra travel time and distance is used for

network-level risk assessment and risk-based ranking
— The highway bridge network include 91 highway bridges on 66 links

Census data of
NBI data of GIS data of
. . ) commute
bridges interested region . .
information

O

Markov chain model: future MS
Relation between MS and reliability
Bayes’ rule to update failure probability
Random field: simulate bridge failure

e Create network model

e Voronoi diagram: OD demands

e Update link cost based on bridge failure
o Traffic assignment with FW algorithm

A A 4

A 4

Direct cost of all
failed bridges

Future failure
probabilities of bridges

Social cost due to bridge failures:
e time cost
® running cost

\ 4

o Calculation of network risk
e Bridge ranking based on risk

Highway Transp n Networkin

o

Angeles
National
Forest

x.- LosAngeles Cddﬁty, CA

Topanga % VNG
State Park \ : H?”YWQQ >
os Angeles,

S Rl

+ Highway bridges
= Highway links
== Links to other counties -
0 5 10 15km {

‘-v"»\
\

15



ILLUSTRATIVE EXAMPLE

Highway bridges in LA county, CA

« Comparison of different bridge performance indicators for ranking

— Structural adequacy and safety
v Condition and load rating of key bridge

components
— Sufficiency rating

v Qualitative indicator combining structural
adequacy and safety, serviceability, and

essentiality for public use

— Project-level quantitative risk
v Quantitative risk assessment

at the asset level

— Network-level quantitative risk
v Quantitative risk assessment

at the system level

1. STRUCTURAL ADEQUACY
AND SAFETY

S, = 55% Max.

2. SERVICEABILITY AND
FUNCTIONAL OBSOLESCENCE

Sz = 30% Max. . ESSENTIALITY FOR

PUBLIC USE

28 Lane on Str
29 Average Da i\y T fﬂ
32 Appr. Rdwy. Width
43 Structure Type, Main
51 Bridge Rdwy Width
53 VC over deck

58 Deck c ndition

67 Structural Evaluation
68 Dec k Gcmt ry

69 Underclearances

71 Wate may Adequacy
72 Appr. Rdwy. Align.
100 STRAHNET Highway
Designation

Sa = 15% Max.

19 Dto Len gth

29 Average Daily Traffic
100 STRAHNET Highway
Designation

FIGURE. Sufficiency rating composition
Source: FHWA (1995)



ILLUSTRATIVE EXAMPLE

Highway bridges in LA county, CA

Traffic assignment was first carried —f\ Y R
out to derive baseline travel time <1000 20000
and travel distance of all users \ — —
0-1000 10000 220000
M \

Traffic fills the 110 during rush hour in downtown L.A.

nnnnn
/i

uuuuuuuuuuuuuuuuuuuuuuuuu

R ey

FIGURE. Traffic flow estimation from traffic assignment



ILLUSTRATIVE EXAMPLE

Bridge ranking: network risk vs safety/sufficiency ratings

EQNG /-

Traffic flow (Vehicles/hour) -I
<1000 220000
[ -
0-1000 10000 220000

/’\ W Top 10 bridges (Safety)

/. Top 10 bridges (Sufficiency)
v @ Top 10 bridges (network risk)

\ & All bridges
h ) 5
® ‘ ¥ O
®A—7
L
oW
O @O

FIGURE. Locations of top-ranked bridges
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ILLUSTRATIVE EXAMPLE

Bridge ranking: network risk vs project risk

0.25
m Network risk  ®mProject risk
0.2
L20.15
O
x
X%
& 0.1
O N I I I
W Q o o)
\‘b \(fp \<\ \q/q, \\/\ &° \Cbb Q‘O \b
o o o o o o o o 655 o
Bridge ID

FIGURE. Risk ratio and bridge ranking (top 10) based on network- and project-level risks
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Network-Level Asset Management
Enabled by Deep Reinforcement
Learning



RiSK OF DETERIORATING BRIDGE NETWORKS

Network risk based on transportation functionality

* Network risk due to bridge deterioration can be formulated based on

— Network connectivity
— Travel time and travel distance of network users
— Traffic flow capacity (maximum flow between all origin-destination pairs)

» Network risk based on flow capacity is defined as follows

Rygr(s) = z p(c|s)[Fo — F(c)] Origin-—- < t5—>< /\\ -~ Destination

BS

¢ = binary vector denoting bridge failures in a network (i.e.
config. of a damaged network)

F, = flow capacity in an intact network

F(c) = flow capacity given config. c

p(c|s) = prob. of config. ¢ given bridge states s

Ryer(s) = network risk given bridge states s

Fy = 5 when all bridges are safe
If bridge B1 failed,

¢ =[1,0,0,0,0]and F(c) = 2
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LIFE-CYCLE RISK MANAGEMENT AND REINFORCEMENT LEARNING

Formulation of reinforcement learning (RL) problem
« Risk management in structural life-cycle as a sequential decision-making problem

Bridge performance
given adopted action

Maintenance Inspection
and failure costs and/or repair

A\

Decision-maker or
Decision-making tool




LIFE-CYCLE RISK MANAGEMENT AND REINFORCEMENT LEARNING

Formulation of reinforcement learning (RL) problem
5 action per bridge in a 10-year

g?vde%ec%eggergdggﬁeon decision-horizon across 100 bridges
= 9,765,6257% potential policy paths
i foilre costs anaor ropair SHIE L EEAES)
11V] >
o) O
®
O O
O @) O ®
Decision-maker or O : : O
Decision-making tool @
Source: FHWA
O O O
O O
B5c41
l: Environment -
Iz,
State Action
: ST S A
One episode = One service life t+1 | | Reward Sesq | t
| Agent

One time-step = One year

Source: Sutton and Barto (2018)



LIFE-CYCLE RISK MANAGEMENT AND REINFORCEMENT LEARNING

Formulation of reinforcement learning (RL) problem

* The condition preservation effort in bridge management systems can
be formulated as a problem of risk-informed value maximization:

Find a policy from state s fo action a: m(a|s) = Pr|[a|s],Vva € A,s €S

to maximize the following recursive value function:
Vir1(s) = Eg[R(s,a,8") + vV (s)]

where the risk-informed reward is defined as

C(s,a,s’)+R S R S
R(s,as) = — ( A) ast( )+WNET' NET(S)
ECON

AFLOW




LIFE-CYCLE RISK MANAGEMENT AND REINFORCEMENT LEARNING

Formulation of reinforcement learning (RL) problem

* When network risk is ignored (wygr = 0), the optimization can be carried out at
the asset level
— Bridges are considered homogeneous assets in a large inventory
— The optimal policy is scaled based on the number of bridges in the inventory

* However, since the network consequences are non-additive, the policy
considering network risk must be analyzed at the network level

Consider the damaged network with two failed
bridges, BT and B3.

Origin--- t5—> /\\ - Destination The capacity reduction is 5, which is not the
sum (8) of
Bs the capacity reductions due to only bridge B1

(3) and only bridge B3 (5)

25
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DEEP REINFORCEMENT LEARNING FOR RISK MANAGEMENT

Algorithm development

* The necessity of network-level analysis drastically increases the size of state and
action spaces.

« Therefore, a distributed PPO algorithm was developed to handle large state and
action spaces

Common
l(ay(—;.r S ) Value prediction
S . optiona "
Distributed actors based on system state: plonay. M H[Value Loss LV ]
mg(als) = ‘ ‘an(abls) e o
. . . . b . . YY) Acl‘or _ooo _—.'l
Proximal policy optimization (PPO) algorithm: H Stroan, ...l —
coe| |—p olicy Loss
CLIP — T - coe U PG ~p | CLIP
L*>7(0) = Et[mln(rt(Q)At» Tt,clip(Q»E)At)] 0L : : DL ot
Ttgp\d¢|S 1
rt(e) — 6( tl t) — Layer connections Iheadl
Tlg old (at | St) ——=> Loss computation Asset-level action
Back propagation probabilities
with gradients (softmax layers)

mg(als) = parameterized policy (neural network)

4, = advantage of the action in fime step ¢ FIGURE. DRL architecture and neural network training



DEEP REINFORCEMENT LEARNING FOR RISK MANAGEMENT

Al g 0O rl.l.h m d eve | 0O p me n-l- Input: Algorithm hyperparameters

Output: Actor and critic networks after training
1e3 Initialize 7rq, V4, and data buffer for storing experiences

Ke ras +1L TensorFlow for until maximum number of iterations M do

“" // generate N episodes based on my (parallel processing):
for eachi € [1,N] do

store episodic experiences: {(s;,a;, R;)}

calculate returns G; «— R; + yGyy fort =T -1,T-2,...,0

[
[
end I
[
[

w

N

// assemble training datasets

Strafn — {Si,t 9Vi € []a N],l € [O’ T]}
y{train — {ai,t ,Vi € [l, N],t € [0, T]}
gtruin — {Gi,t ,Vi € [ls N]’t € [0’ T]}

" /7 trainTactor and Critic hetworkS for K steéps — T T /
9,0 < To
0 2 4 6 8 T ke (3, T kT T T T T T
Episodes Te4 calculate value function loss LY (¢) based on Eq. 11 using the
experiences in gtrain and Strain
calculate clipped surrogate loss LEX/F () based on Eq. 12 using the
experiences in Girain, Airains a0d Sirain

_m A

LCC (monetary unit)
Gain Experience

layers Value prediction

(optional) e
- ot 2 coe Value Loss LV
5\(6
System

states |] _ _
(YY) ACfOf’ i oo i
Sf/'ea — —
7 Y _..E Policy Loss
(YY) | | LPG or LCLIP

— [ ayer connections ooe —"E

——= Loss computation \ Asset-level action

Back propagation probabilities

; . d
J (SOﬁmax IayerS) clear data bufter Straina Arrains and gtrain

// conduct one step of gradient descend following an

(
I
I
I
I optimizer
I
I
I
I
I
\

if actor and critic networks share common hidden layers then

[
[
[
[
LTOTAL  [CLIP(g) 4 nIV(g) I
{0, ¢} — {0, ¢} +aVy4LTOTAL :
[
[
[
[

(7 = hyperparameter combining loss; @ = learning rate)

M)
Learn policy

else

0 — 0+ apVeLCHP(0)
¢ — ¢ +agVsLV (9)
(ag and @y = learning rates for actor and critic networks respectively)

end

end



METHODOLOGY OVERVIEW 28

DRL-based risk management of transportation networks

Deterioration models of Structural risk at
bridge elements condition states Yang, D.Y. & Frangopol, D.M., 2020. Life-cycle management
> of deteriorating bridge networks with network-level risk
n N tem reliability analysis. Structural Safety,
Network model and OD gg.u] OC]ISQ(]]] d syste eliability Y Y
pairs of interest ) ’
MDP model at bridge level | | & ——————— !
based on key elements (" Risk-bound \I R(S a S’) _ C(S' a,S ) + Rysr (S) ) Rygr (S)
| method for risk I —> < - 1 WNET 2
I\ assessment ECON FLOW
\ Common
l . .
Multiattribute MDP model optional) o Value prediction \
at network level = - Ggreaﬂ‘ coe %[Value Loss LV
r ________ \ System
| Distributed PPO | states o
algorithm oo
(__ 2eertm_ H—> ol e, Il i
Sf/'eam r u .
Network-level % _"l —>‘ ZS)G!I(;); Ii?Ls}IS:
preservation policy - | | H H
J — [ ayer connections ooo —P'l
T — — on| .
;| Ad hoc refinement and : Foss computation \ Asset-level action
interpretation | Bgck propagat/on probabilities
\ in ) with gradients (softmax layers)




BRIDGE NETWORK EXAMPLE o
Sioux Falls network, South Dakota

« Sioux Falls network with 10 bridges

1 e e was analyzed using the proposed
B1 ] [ BZ] [ Major local roads methOd
3 (4) (5) 6)| s
J U/ Minor local roads .
e Assumptions:
o — All steel girder bridges with different
N numbers of girder elements, inferred from
() bridge dimension
— Structural safety controlled by the condition
state of girder elements
9| — Five generic actions: do-nothing,
maintenance, repair, rehabilitation,
replacement
N  Policy optimization is conducted with
© 3,000 episodes (one ep. = 75 yr)

FIGURE. Idealized bridge network in the — Collectively, 225,000 years of experience
City of Sioux Falls, South Dakota



UNDERSTANDING DRL-BASED POLICY WITH SIOUX FALLS NETWORK

30

Benchmark results from asset-level analysis (Wygr = 0)

Condition  Action Transition probability Cost (USD per Reliability
state element) index
CS1 do- 0.9381 0.0619 0 0 0 0 42
nothing
mainte-  0.9900 0.0100 0 0 0 40
nance
CS2 do- 0.8888 0.11120 0 0 0 35
nothing
mainte-  0.0300 0.9500 0.0200 0 0 40
nance
repair 0.5000 0.4500 0.0500 0 0 320
CS3 do- 0.8712 0.1288 0 0 0 0 3.0
nothing
mainte- 0 0.0300 0.9500 0.0200 0 40
nance
repair 0 0.5000 0.4500 0.0500 0 320
rehabili-  0.5000 0.3000 0.2000 0 0 1280
tation
CS4 do- 0 0 0 0.8888 0.11120 25
nothing
mainte- 0 0 0.0300 0.9500 0.0200 40
nance
repair 0 0 0.5000 0.4500 0.0500 640
rehabili-  0.4000 0.3000 0.2000 0.1000 0 2560
tation
CS5 do- 0 0 0 0 1 0 1.0
nothing
repair 0 0 0 0.9000 0.1000 160
rehabili-  0.4000 0.3000 0.2000 0.1000 0 2560
tation
replace- 1 0 0 0 0 5120
ment
Failure 10240

Probability

TABLE. Transition probabilities of Markov Decision Process

The optimal policy can be determined with exact
dynamic programming algorithms (value iteration
used herein)

— Normalized long-term costs: 0.1971+£0.0372
— Policy and steady-state distribution:

1.0 CS 5: Repair

>~ v- -

CS 4: Maintenance

0.8 Condition States (CS)
CS 3: Maintenance
0.6 css51 0.4%
CS 41 16.7%
0.4 CS 3 25.4%

Cs2

38.8%

0.2
Cs1

18.8%
0.0

0.25
Probability

0 25 50 75 100 125 150 175 200 0.00

Time step



UNDERSTANDING DRL-BASED POLICY WITH SIOUX FALLS NETWORK

Results from network-level analysis based on DRL

TABLE. Normalized long-term costs under different policies

0.40
Case Il Weee=10 Case I Case II Case III
P ONET Element! Network’ Element Network Element Network
0.35 - Mean 0.1971 0.1993 0.2250 0.2053 0.4758 0.2279
4@ Case II: wyer=1 STD 0.0372 0.0372 0.0534 0.0399 0.2896 0.0536
; Monte Carlo results based on (1) element- and (2) network-level policies
(]N) 0.30 - Case I: wyer=0
= Case | (Wyg=0) Casell (wyg=1) Case lll (Wyg=10)
£ » 08
2 0.25 1 S 07
&
E 0.6
0.20 - P ® 0.5
C
T T T T T T T Q 0.4
0 500 1000 1500 2000 2500 3000 3
Training episodes = 03
FIGURE. DRL training process under different % 0.2
weights of network risk (Case | was used to Z o,
fine-tune hyperparameters)
0

Element Network Element Network Element Network



Action probability

UNDERSTANDING DRL-BASED POLICY WITH SIOUX FALLS NETWORK

32

Interpretation of the network-level policies

1.0 1

0.5 A

0.0

1.0 1

0.5 A

0.0

1.0 1

0.5 A

0.0

1.0 1

0.5 A

0.0

1.0 A

0.5 A

0.0

........................................
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FIGURE. Condition-action pairs at the bridge level (Wygr = 0)

Probabilities of taking different actions given CS:

Action 1 Action 2 Action 3 mm Action 4 mmm

Monte Carlo simulation with 6,400
episodes is used for interpretation

 When wygt = 0, DRL delivers similar
policies compared to the element-level
results

* The long-term costs under element- and
network-level policies are almost identical:
0.1993 vs 0.1971

 This similarity verified the effectiveness of
the DRL algorithm in finding near-optimal
policies



UNDERSTANDING DRL-BASED POLICY WITH SIOUX FALLS NETWORK

Action probability

Interpretation of the network-level policies
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Interpretation of the network-level policies
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FIGURE. Condition-action pairs at the bridge level (Wygr = 10)

Probabilities of taking different actions given CS:

Action 1 Action 2 Action 3 mm Action 4 mmm

* As network risk becomes more important
(wnet = 10), more bridges (bridge B2)
require more aggressive maintenance

* Maintenance requirement for bridge B9
becomes even more stringent

* It is still possible to make decisions at the
bridge level, while network risk can be
considered by taking different policies for
different bridges

— This could be network dependent
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EXAMPLE OF STRUCTURAL SYSTEMS

Montgomery bridge, PA
« Composite steel girder bridge
e Constructed in 2005

e L oad case:
— Dead load

— Two HS20 truck loads side-by-side

Bridge drawings: PennDOT
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EXAMPLE OF STRUCTURAL SYSTEMS w

Montgomery bridge, PA
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I EXAMPLE OF STRUCTURAL SYSTEMS v
Montgomery bridge, PA

* Risk management using DRL can
—reduce LCC by half compared to time-based LCM
—reduce LCC by around 20% compared to conventional risk-based LCM
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ICONCLUSIONS

* Why to assess system-level risk:

— Transportation assets are interconnected, and the impact of structural failure may propagate
to other routes in the network

— Failure to capture the interdependence may lead to inaccurate estimation of social risk and
consequently mislead the allocation of usually limited resources

— Conventional preservation policies based solely on minimizing long-term agency cost cannot
always yield satisfactory network performance

 How to manage system-level risk:

— Deep reinforcement learning can achieve objective network-level policy optimization for multi-
attribute, risk-informed infrastructure management

— The proposed policy interpretation method can simultaneously identify critical assets and
formulate optimal policies reflecting asset importance to network performance

 Risk of transportation structures and networks should and could be managed at
the system level!
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