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ABSTRACT

An abstract of the dissertation of Sunghan Kim for the Doctor of Philosophy in

Electrical and Computer Engineering presented September 28, 2009.

Title: Tracking Rhythmicity in Biomedical Signals Using Sequential Monte Carlo
Methods

Cyclical patterns are common in signals that originate from natural systems
such as the human body aﬁd man-made machinery. Often these cyclical patterns
are not perfectly periodic. In that case, the signals are called pseudo-periodic
or quasi-periodic and can be modeled as a sum of time-varying sinusoids, whose
frequencies, phases, and amplitudes change slowly over time. Each time-varying
sinusoid represents an individual rhythmical component, called a partial, that can
be characterized by three parameters: frequency, phase, ahd amplitude. Quasi-
periodic signals often contain multiple partials that are harmonically related. In
that case, the frequencies of other partials become exact integer multiples of that
of the slowest partial. These signals are referred to as multi-harmonic signals.
Examples of such signals are electrocardiogram (ECG), arterial blood pressure

(ABP), and human voice.

A Markov process is a mathematical model for a random system whose future

and past states are independent conditional on the present state. Multi-harmonic



signals can be modeled as a stochastic process with the Markov property. The
Markovian representation of multi-harmonic signals enables us to use state-space
tracking methods to continuously estimate the frequencies, phases, and amplitudes

of the partials.

Several research groups have proposed various signal analysis methods such as
hidden Markov Models (HMM), short time Fourier transform (STFT), and Wigner-
Ville distribution to solve this problem. Recently, a few groups of researchers
have proposed Monte Carlo methods which estimate the posterior distribution
of the fundamental frequency in multi-harmonic signals sequentially. However,
multi-harmonic tracking is more challenging than single-frequency tracking, though
the reason for this has not been well understood. The main objectives of this
dissertation are to elucidate the fundamental obstacles to multi-harmonic tracking
and to develop a reliable multi-harmonic tracker that can track cyclical patterns

in multi-harmonic signals.
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Chapter 1

Introduction

1.1 Background

Signals generated by natural systems and man-made machinery exhibit cyclical
patterns. Estimation of these cyclical patterns in signals is essential to analyze the
characteristics of the systems that generate the signals. Signals are called periodic

when they satisfy the condition:
z(t) =z(t+T) (1.1)

where T is a fundamental period of the periodic signal. The periodic signal z(t)
repeats itself every T. Therefore, {a:(t)|7' <t < 7+T} is a complete description
of the signal z(¢) where 7 can have any value. The top plot in Fig. 1.1 shows an
example of a periodic signal whose period T is 1s in the time domain. The inverse

of the fundamental period T is the fundamental frequency f of the signal.

Any periodic signal can be decomposed into a sum of sines and cosines whose
frequencies and amplitudes are constant. This decomposition is called the Fourier

series representation. The Fourier series for a periodic signal z(t) can be written
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in three different forms as follows,

z(t) = i ced 0 (1.2)

= % + ; ay cos [kO(t) + ¢l (1.3)
_ % + 3 " aykcos [kO(t)] + az sin [kO(t)] (1.4)

where 6(t) is equal to 27t/T. (1.2) is called a complex form, (1.3) is called an
angular form, and (1.4) is called a rectangular form. These three forms are in-
terchangeable. For instance, knowing the phases ¢, and amplitudes a; in (1.3)
is equivalent to knowing the coefficients a; , and asy in (1.4). In the rectangular

form, the Fourier coefficients can be computed as,

aip = % / " (t) cos [kB()] (15)
o = % / " (t) sin [k0(0)] (1.6)

However, real signals with cyclical patterns rarely meet the condition (1.1) exactly.

Rather, most signals meet a condition:

o(t) ~ [t +T(2)] (1.7)

where ~ represents approzimate equality and T'(t) is a time-varying fundamental
period. Such signals that are not perfectly periodic yet approxzimately periodic
are called pseudo-periodic or quasi-periodic signals. Quasi-periodic signals can be

modeled as a linear combination of time-varying sinusoids. Each time-varying
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sinusoid represents an individual rhythmical component, partial, which can be
completely characterized by its frequency, phase, and amplitude. In contrast to
Fourier series these parameters are not necessarily constant. The sum-of-sinusoids

model can be written as,

aoz(t) + Z a1,x(t) cos [0 (2)] + azk(t) sin [ (2)] (1.8)
k=1

z(t). =

where ao(t), a1x(t), ask(t), and Ty(t) are time-varying parameters. The instanta-

neous phase 6, (t) can be written as,

Hk(t):/0t27r/Tk(T) dr (1.9)
=/0 27 fi(7) dr (1.10)

Since observed signals are commonly contaminated by noise, a more complete

model can be expressed as follows,

2(t) = s(t) + n(t) (1.11)
- a—OZ(Q + Z a1 (t) cos [Bx(t)] + as k() sin [0, (t)] + n(2) (1.12)

where n(t) is an additive noise.

The term periodic is not appropriate to refer to these cyclical patterns in
quasi-periodic signals because the signals are not exactly periodic. Instead, rhyth-
micity refers to the cyclical pattern that can be represented as a linear combination
of time-varying sinusoids, i.e. partials. Rhythmicity tracking, then, is continuous

estimation of the frequencies, phases, and amplitudes of the partials.
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Rhythmical signals can be categorized in various ways. One way to do so is
to study how the partials in the signals are related. In some cases, there could be
only one partial. In other cases, there could be multiple partials that are related to
one another through some nonlinearity. A special case arises when a quasi-periodic
signal contains multiple partials and they are harmonically related. This type of

signal is called a multi-harmonic signal, which can be expressed as follows,

xz(t) = s(t) + n(t) (1.13)

ot
2

e

~—r

+ ) a1 k(t) cos [kB(2)] + as(t) sin [kO(2)] + n(t) (1.14)
where (t) can be written as,

o(t) = /0 on /T (r) dr (1.15)
=/0 2nf(r)dr (1.16)

The frequencies of other partials in the multi-harmonic signal are exact integer
multiples of the slowest partial’s frequency. This slowest partial is called the fun-
damental partial and its frequency called the fundamental frequency. The other
partials in the signal are referred to as harmonic partials and their frequencies
called harmonic frequencies. A harmonic set refers to the fundamental and har-
monic partials as a whole and the number of harmonic sets in the signal is not
limited to one. When there is more than one harmonic set, the signal is called
a maultiple harmonic set signal. The harmonic sets in the multiple harmonic set
signal can be independent of each other or related with each other through non-

linearity such as amplitude or frequency modulation. A two harmonic set signal,
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whose harmonic sets are independent of each other, can be expressed as,

z(t) =s(t) + n(t)

t)

ao(

Z a1 (t) cos [k01(t)] + azk(t) sin [kO(¢)] +
k=1

NGEIS

as i (t) cos [kOs(t)] + aqr(t) sin [k02(t)] + n(t)

ES
Il

1

where 6,(t) and 65(t) can be written as,

0t)= [ en/Ti0)ar
_ /0t27rf1(t)d‘r

)= [ 2m/T0)ar
_ /Ot om folt) dr

(1.17)

(1.18)

(1.19)

(1.20)

where f1(t) and fa(t) are the fundamental frequencies of the first and second

harmonic sets, respectively.

So far, signals have been assumed to be continuous-time. However, these

days continuous-time signals are converted to discrete-time signals to be stored

in a digital format and signal processing is performed digitally. The conversion

process of continuous-time signals into discrete-time signals is called sampling.

While continuous-time signals are a function of a continuous time argument ¢,

discrete-time signals are a function of discrete integers n. Discrete-time signals

are a sequence of quantities or values and each value is called a sample. Each

sample of discrete-time signals is evenly spaced in the time domain and this time
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space between samples is called a sampling period T,. The reciprocal of the sam-
pling period is called a sampling frequency f;. Discrete-time signals alone do not
provide any information on the sampling frequency, but it can be calculated when
both continuous-time and discrete-time signals are available. When the continuous

signal (t) in (1.14) is sampled at f;, the sampling result &, can be expressed as,

T, = 8, +n, (1.21)
= % + Z a1k cos (k6,) + as k., sin (k6,) + n, (1.22)
k=1

where 8,, can be written as,

.=y 2n (1.23)

(1.24)

Two plots in Fig. 1.1 compare periodic and quasi-periodic signals in the time
domain. The signals are synthetically generated based on the signal models in (1.4)
and (1.14) with three harmonic partials. In the top plot, the period T of the signal
is 1s. Therefore, the signal repeats itself exactly every 1s. In the bottom plot the
period T of the signal is approximately 1s and the magnitude of the signal changes
slowly. A spectrogram is an image that shows how the spectral density of a signal
changes over time. They are also known as sonograms or voicegrams. Two plots
in Fig. 1.2 compare the spectrograms of the periodic and quasi-periodic signals.
They illustrate the constant and slowly changing fundamental frequencies of the
periodic and quasi-period signals, respectively. The signal shown in Fig. 1.1 is the

first 10s of the entire 60s signal whose spectrogram is shown in Fig. 1.2.
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Figure 1.1: Periodic versus quasi-periodic signals in the time domain.
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Figure 1.2: Spectrograms of the periodic and quasi-periodic signals, whose first
10 s period is shown in Fig. 1.1.
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1.2 Significance

1.2.1 Conventional versus Proposed Methods

Many techniques have been proposed for frequency tracking in quasi-periodic sig-
nals. One may be tempted to apply one of the frequency tracking techniques to
multi-harmonic tracking by having each partial tracked separately and combining
the results. It is also possible to estimate the fundamental partial alone first then
other harmonic partials since their frequencies are integer multiples of the funda-
mental frequency. However, it is sub-optimal to extend those frequency tracking
techniques to multi-harmonic tracking because frequency tracking techniques are
not capable of taking the harmonic relationship between the partials into account.
Multi-harmonic tracking methods track the fundamental partial along with its har-
monic partials simultaneously considering their harmonic relationship. A major
advantage of multi-harmonic tracking over individual frequency tracking is that
the fundamental frequency estimate becomes more accurate and has less variation
since multi-harmonic tracking techniques take advantage of the variation in the

harmonic frequencies.

There are a few techniques being used for the purpose of multi-harmonic
tracking. They include time-frequency distributions (TFDs) [1,2], adaptive fre-
quency estimation methods [3], pitch detection algorithm (PDAs) [4,5], and state-
space model based algorithms [6,7]. However, some of them (PDAs) are only capa-
ble of tracking the fundamental frequency and others (TFDs) do not take advantage
of the harmonic relationship between the partials. Many of those techniques rely
on the local stationarity assumption of the signals, which means that they estimate

the frequencies and amplitudes of the partials on a segment-by-segment basis not a
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sample-by-sample basis. In contrast, the state-space model based multi-harmonic
tracking algorithms can track the frequencies and amplitudes of the partials on a
sample-by-sample basis and take into account the harmonic relationship between
the partials. A newly proposed multi-harmonic tracking method is a state-space
model based technique. It is not only capable of what other state-space model
based methods such as the extended Kalman filter based tracker can do, but also
superior to them because it properly addresses major problems in multi-harmonic
tracking due to the harmonic relationship between the partials. The new method

is more robust to noise and provides more complete and accurate estimates.

1.2.2 Applications

There are many multi-harmonic applications. One example is heart rate tracking
in electrocardiograms (ECGs). This is a good example of a quasi-periodic signal
with many harmonic partials. The ECG is a recording of the electrical activity
of the heart over time. The fundamental frequency of ECG is the heart rate.
Accurate estimation of the heart rate is critical to diagnose abnormal rhythms of
the heart caused by conductive tissue damage or abnormal dissolved salt level.
The heart rate in ECG signals is typically estimated utilizing time-domain beat
detection algorithms where the inverse of beat-to-beat intervals is the estimate
of the heart rate. However, the accuracy of beat detection is greatly affected
by noise level. Alternatively, the heart rate in ECG signals can be done in the
frequency domain. It can be a challenging task because it is not uncommon that
the harmonic partials have more power than the fundamental partials. Multi-
harmonic tracking methods based on the sum-of-sinusoids model are an appropriate

tool for continuous estimation of the heart rate in ECG signals. Two plots in Fig.
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1.3 show a synthetic example of the extended Kalman filter (EKF) based multi-
harmonic tracker (top) that fails to track the partials in an electrocardiogram
(ECG) signal and the newly proposed multi-harmonic tracker (bottom) that tracks
them accurately. In the top plot, the estimated frequency of the second partial
matches the true frequency of the fundamental partial. This estimation error is due
to the fact that the EKF-based tracker cannot handle the harmonic relationship
between the partials properly. In the bottom plot, the newly proposed tracker
tracks the true fundamental frequency and its harmonics accurately throughout

the entire signal duration.

1.3 Objectives

This dissertation will meet five major objectives. The first one is to develop a new
sequential Monte Carlo (SMC) algorithm for robust and accurate multi-harmonic
tracking. Although the unique challenges in multi-harmonic tracking motivated
development of the new SMC algorithm, it is a much more general tool that can
be applied to other a posteriori distribution estimation problems. The second is
to develop a single rhythmical component tracking algorithm. Single rhythmical
component tracking is a special case of multi-harmonic tracking where the number
of partials is only one. The single rhythmical component tracking algorithm is
applied to tremor tracking in binary spike trains. The third is to develop a single
harmonic set tracking algorithm. Its application is tracking the heart rate in ECGs.
Robust heart rate tracking in ECGs is challenging because real ECG signals are
often contaminated by severe noise due to medical interventions and/or mechanical

system interferences. The proposed multi-harmonic tracking algorithm can track
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(b) Proposed multi-harmonic tracker
Figure 1.3: Estimated frequencies using (a) the EKF-based multi-harmonic tracker

and (b) the new multi-harmonic tracker on top of the spectrogram of the synthetic
ECG signal.
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the heart rate robustly even when such severe noise is present in the signals. The
fourth is to develop an amplitude modulated harmonic set tracking algorithm.
Here, the signal of interest is modeled to have two multi-harmonic sets that interact
with each other through amplitude modulation. One assumption is made that the
fundamental frequency of the first harmonic set is constant and known. The main
goal, then, is to estimate the degree of the amplitude modulation of the second
harmonic set due to the first one. Its application is to track the heart rate and pulse
pressure variation (PPV) index of arterial blood pressure (ABP) signals recorded
from subjects on full respiratory support. The PPV index is a critical parameter to
monitor fluid responsiveness in the operating room and critical care settings. The
final objective is to develop a multiple harmonic set tracking algorithm. Multiple
harmonic set tracking is the most challenging multi-harmonic tracking case, where
the number of multi-harmonic sets is more than one and the fundamental frequency
of each harmonic set is unknown and time-varying. Its application is to track the
heart rate, respiratory rate, and PPV index of ABP signals recorded from subjects

with spontaneous breathing. Here the number of multi-harmonic sets is two.

1.4 Overview

The rest of the dissertation consists of nine chapters: literature review, problem
definition, contributions, new particle filtering method, single rhythmical compo-
nent tracking, single harmonic set tracking, amplitude modulated harmonic set
tracking, multiple harmonic set tracking, and summary and conclusions. Chap-
ter 2 (literature review) reviews traditional and latest frequency/multi-harmonic

tracking algorithms. They are categorized into six large groﬁps mainly based on
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technologies.

Chapter 3 (problem definition) defines the rhythmicity tracking problem as
continuous posterior distribution estimation. Within the posterior distribution es-
timation framework it will be shown that in multi-harmonic tracking the posterior
distribution of the fundamental frequency is multi-modal, which is the reason that

traditional frequency tracking techniques often fail.

Chapter 4 (contributions) lists specific goals and contributions of the disser-

tation.

Chapter 5 (new particle filtering method) describes details of two versions
of the new particle filtering technique and other conventional variants of particle

filters.

Chapter 6 (single rhythmical component tracking) discusses a practical ap-
plication of the single rhythmical component tracking case. The application is
tracking tremorous activity exhibited in neuronal signals of subjects with move-

ment disorders such as Parkinson’s disease (PD) and essential tremor (ET).

Chapter 7 (single harmonic set tracking) discusses a practical application of
the single harmonic set tracking case, which is tracking the heart rate in electro-

cardiograms (ECG).

Chapter 8 (amplitude modulated harmonic set tracking) discusses a practi-
cal application of the amplitude modulated harmonic set tracking case, which is
tracking the pulse pressure variation (PPV) index of arterial blood pressure (ABP)

signals under mechanical ventilation.

Chapter 9 (multiple harmonic set tracking) discusses a practical application
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of the multiple harmonic set tracking case. The application is tracking the pulse
pressure variation (PPV) index of arterial blood pressure (ABP) signals of spon-
taneously breathing subjects.

Chapter 10 (summary and conclusions) summarizes and concludes the entire
dissertation.

Appendix A provides the notational conventions used throughout this dis-

sertation.



Chapter 2

Literature Review

Accurate detection of rhythmical components (single-frequency or multi-harmonics)
in observed signals has been an important task in various applications such as
speech analysis, communication, seismic analysis, and target tracking/identification.
There are various technologies available in the literature. Some of them are devel-
oped for specific types of signals while others are more generally applicable. Some
of them are quite heuristic while others are principled or based on models with
clear assumptions. The scope of frequency/multi-harmonic detection/tracking
is too wide to cover completely. However, the frequency/multi-harmonic detec-

tion/tracking problem can be divided into five groups as follows,

1. Fixed single-frequency with fixed amplitude

2. Fixed single-frequency with time-varying amplitude

3. Time-varying single rhythmical component with fixed amplitude

4. Time-varying single rhythmical component with time-varying amplitude

5. Time-varying multi-harmonic components with time-varying frequency and

amplitude
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Depending on whether quantities of interest are fixed or time-varying these can
be treated as an estimation or tracking problem. Although the categorization
above is helpful to grasp the scope of frequency detection and tracking problems,
it is not easy to match each frequency detection/tracking technique with one of
those categories. For this reason, this chapter is organized based on the tracking
methodology. One exception is that several distinct methods are grouped under the
category of pitch detection algorithms (PDAs). Although each of those methods
utilizes distinct technologies, they are specifically developed in the context of pitch
detection. They share some common assumptions such as a local stationarity
of signals. Although the review does not cover all techniques available in the
literature, it includes most common frequency/multi-harmonic detection/tracking

methods at the time of writing.

2.1 Zero-crossing method

A zero-crossing method is the simplest way to detect the frequency of rhythmical
components in narrow-band signals. This method is applicable when the amplitude
of rhythmical components in the signal is assumed to be known or not of interest.
Let’s assume that a signal of interest is narrow-banded and locally stationary.
Since it is a narrow-band signal, a simple sinusoidal model can describe it well as

follows,

' Yn = sin(2w fnTy) + v,
1

=57 (2.1)
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where n is a discrete time index, y, a signal sample (observation or measurement),
N the number of samples within a short time period, T, a sample interval, f the
estimate frequency, and T the mean interval between zero-crossings within the

time period, 0 <n < N.

A good example of the zero-crossing method application is seismic trace
analysis. Since seismic signals are narrow-band, one can estimate the vibration-
frequency of seismic activities, which is proportional to the inverse of zero-crossing
intervals, using the zero-crossing method. Allen introduced an automatic earth-
quake recognition and timing program on a single seismic trace based on the zero-
crossing algorithm [8]. The generic zero-crossing method, however, is sensitive
to noise and cannot measure the intensity (amplitude) of rhythmical activities

recorded in the signal.

Several authors have proposed more advanced zero-crossing methods by com-
bining the generic zero-crossing method and other signal processing techniques.
For example, Lim et al. proposed an automatic method for real-time electroen-
cephalogram (EEG) sleep state analysis [9]. Their method is a combination of
zero-crossing and peak detection algorithms. Nguyen et al. introduced a frequency
computation technique for real-time monitoring, control, and protection of power
systems [10]. They generalized the zero-crossing detection to a level crossing detec-
tion, which is insensitive to amplitude changes and able to track small frequency
deviations as a fraction of a cycle. Miller utilized the zero-crossing method in
combination with energy measurements to determine the fundamental frequency
of speech by segmenting the signal into pitch periods [11]. There are other ex-
amples of applying the variants of the generic zero-crossing method to frequency

detection problems [12-14]. For example, Rabiner and Schafer proposed averaging
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the number of zero-crossings over a short period of time to reduce the variance of

the zero-crossing estimate [15].

The advantage of the zero-crossing method over other frequency detection
and tracking algorithms is computational simplicity. Implementing the zero-crossing
based frequency detector on hardware only requires comparator circuits and coun-
ters. However, the zero-crossing method itself cannot measure the amplitude of
rhythmical components unless other energy measurement methods are combined
with it. More importantly, harmonic structures buried in the signal do not benefit
it or improve its accuracy since harmonic structures do not meet the narrow-banded

signal assumption that the zero-crossing method is based on.

2.2 Angle Difference Estimator

The basic notion of the angle difference estimator is, simply, that the derivative of
the continuous angle ¢(¢) is the continuous instantaneous frequency f(t):

£t) = 5220,

T or dt (2.2)

An important issue to address before discussing how to implement the angle dif-
ference estimator is how to define the differentiation operation in discrete time,
since all signals throughout this dissertation are assumed to be discrete-time sig-
nals sampled at a proper frequency f;. One solution is to convolve the angle with

a finite impulse response (FIR) differentiator d,, as defined in [16]:

1
fn = %d)n * dn (23)
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where * denotes the time-domain convolution operation. However, it is common
to approximate this differentiation operation with a simple differencing operation
since the differencing operation (FIR filtering) is the simplest case of performing
the time-domain convolution. There are several ways to define the discrete-time

difference operation as follows,

fn,l = % (d)n - ¢n—1) (24)
fn,? = % (¢n—|—1 - ¢n) (25)
fn,3 - 211;_‘_‘ (¢n-|—1 - ¢n—1) (26)

Third definition fn’g is preferable to the others because it yields zero group delay
[17,18).

The first step to develop the angle difference estimator is to obtain the ana-
lytic signal associated with the observed signal y,, using the discrete-time Hilbert
transform. The analytic signal z, is a complex-valued version of a real-valued
signal y, where the negative frequency components of the Fourier transform of v,

are discarded. It can be expressed as,

Zp = Yn + ]H[yn] (2'7)

where H[-] denotes the discrete-time Hilbert transform. Assuming that a, cos(¢,)
is a good model for the observed signal y,, the phase between the real and imag-

inary parts of z, is ¢, since z, = a,e’®" [17]. The second step is to model the
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instantaneous angle as a discrete-time polynomial of arbitrary order as given,

M
bn =) B’ (2.8)
p=0

Then, by definition the estimate of the discrete-time frequency is,
LM
: -1
Fo=5- ;pﬂpn . (2.9)

Now, there are two formulae (2.6) and (2.9) for the discrete-time frequency. The
third step is to set an equation as follows and obtain its solution,

N
fn= o ap¢n+p = o Zpﬁpnp— (2-10)
== p=1
where the values of coefficients «,, are pre-determined based on the order N of
the discrete-time differencing operation [18]. There are more advanced techniques
to reduce the variance of the angle difference estimator by proper filtering and

smoothing [19].

No matter how accurate the angle difference estimate can be, it is not ap-
plicable to the multi-harmonic tracking problem for several reasons. First, it can-
not take advantage of harmonic structures to improve its performance. Second,
the amplitudes of rhythmical components have to be estimated separately using
other techniques. Third, the estimate is on the frame-by-frame basis not sample-
by-sample basis. In addition to all of these issues there is a more fundamental
problem using the angle difference estimation technique. In order to apply the

Hilbert transform to the signal, y,, it should meet the necessary conditions dis-
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cussed in [17]. Otherwise the instantaneous angle ¢, is susceptible to error. I
demonstrated that the Hilbert transform itself introduces spurious noise in the

angle when the signal does not meet the necessary conditions [20].

2.3 Time-Frequency Distributions (TFDs)

Over the last 60 years many researchers have tried to devise useful tools to de-
scribe the changes of a nonstationary signal’s power density in time- and frequency-
domains simultaneously. The spectrogram or short-time Fourier transform (STFT)
is currently the most common tool to study time-varying spectral contents of sig-
nals. However, it has an inevitable weakness that is the trade-off between the
time- and frequency-domain resolutions. In order to achieve a better frequency-
domain resolution, the length of frames should be large, which results in a poor
time-domain resolution. The time-domain resolution can be improved by using
short-length frames. But this results in a poor frequency-domain resolution. This
trade-off could be a minor issue when the spectral contents of the nonstationary
signal change slowly. However, when the spectral contents of the nonstationary
signal change rapidly, the spectrogram cannot capture the rapid change of the
spectral contents appropriately. For example, the speech signal is highly nonlinear
and its spectral component changes rapidly. The spectrogram or STFT is not a

suitable tool to analyze the speech signal.

These unique characteristics of speech signals motivated the early study of
time-frequency distributions (TFDs) [21]. TFDs estimate the frequency distribu-
tion of the signal at a given time and calculate the fraction of the energy in a

certain frequency or time-range. In the 1930’s, Wigner studied the statistics of
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quantum mechanics [22]. Based on his work, Gabor, Ville, and Page separately
developed the early version of TFDs in the 1940’s and 50’s [23-25]. The prevalent
form of the early version of TFDs is called the Wigner-Ville distribution. It can

be written as follows,

1 : 1
w(t,w) = %/s* (t - §T) e 7s (t-l— 57’) dr (2.11)

where * represents a complex conjugate operation. The Wigner-Ville distribution
can be interpreted as the short time Fourier transform of the signal’s autocorre-
lation. Although the Wigner-Ville distribution has been a common tool for the
time-frequency domain analysis for many years, the Wigner-Ville distribution in-
troduces the spurious peaks, which are not related with real spectrum contents
of the signal [26]. Cohen introduced a more general form of the Wigner-Ville

distribution, which can be written as follows,

1 1 . o 1
—_ * _ = —j0t ,—jTw jOu -
p(t,w) e ///s (u 27’) e I%e Il (0, T)s <u + 27) dudrdé

(2.12)

where ¢(6, 7) is a user-defined function or kernel [27]. According to Cohen’s TFD
formula the Wigner-Ville distribution is a special case of this general form, which
can be obtained by substituting ¢(6, 7) with 1. Cohen has summarized what kind

of a kernel ¢(0, 7) is required to obtain different types of TFDs [28].

Many research groups have put their effort into utilizing the TFDs to analyze
nonstationary signals. In the early 1980’s, for example, Claasen et al. discussed the
properties of the original Wigner distribution as a tool for continuous and discrete

time-frequency signal analysis [29,30]. Especially in [31] they studied the relation-
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ship between the Wigner distribution and other time-frequency signal transforms
such as spectrograms. They pointed out that spectrograms are a weighted version
in time and frequency of the Wigner distribution. They also demonstrated that
one can interpret the spectral analysis method in terms of the Wigner distribution.
Later, Cohen categorized the applications of the TFDs into three groups [28]. The
first subject is to use the TFDs to reveal meaningful information that other meth-
ods cannot. For example, the TFDs can capture more rapid transients in speech
signals than the spectrogram. The second subject is to capture a certain property
of the signal’s time-frequency content that can be well represented by a given TFD,
although the TFD may not be a good choice to study other properties of the signal.
The last subject is to use the TFDs as “a carrier of the information of a signal”. In
this case, it doesn’t matter whether the TFDs are the good representation of the
time-frequency energy density. For example, Boashash utilized the Wigner-Ville
distribution as a pattern recognition tool [32,33]. The early work of Boashash was
probably the first attempt to use the Wigner-Ville distribution for real applica-
tions [34]. He studied the instantaneous frequency of a signal reflected from the
ground using the Wigner-Ville distribution to calculate the attenuation coefficients
of the ground. Janse and Kaizer used the Wigner-Ville distribution for the design of
loudspeakers, where the non-stationarity of signals must be handled properly [35].
Chester et al. pointed out that a usual discrete Fourier transform is not a good
tool to represent some frequency domain attributes of human speech [36]. Théy
presented an important discrete Wigner distribution to uncover these frequency-
domain attributes of human speech. Chester and Wilbur discussed theoretical and
implementation aspects of a band-selectable discrete Wigner distribution for signal

analysis [37]. In the same year, Martin and Flandrin proposed a general class of
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spectral estimators of the Wigner-Ville spectrum of nonstationary processes [38].
By laying the generalized framework for spectral estimation they showed the versa-
tility of the “new pseudo-Wigner estimators.” More recently, Pola et al. performed
a comparative evaluation among classical (FFT-based) and time-frequency dis-
tribution (TFD) spectral estimators [39]. As expected, the TFD-based spectral
estimator was superior to classical (FFT-based) methods when a high time reso-
lution is needed. In order to monitor the heart rate variability (HRV) of subjects
they applied the estimators to real interbeat interval time series, which is an un-
uniformly sampled ECG. The results demonstrated that the TFD-based spectral
estimator can represent the rapid transient of the time series correctly. Chan et
al. applied five time-frequency methods to synthetic and real heart rate signals
to study HRV characteristics [40]. They are the short-time Fourier transform, the
Choi-Williams distribution, the smoothed pseudo Wigner-Ville distribution, the fil-
tering smoothed pseudo Wigner-Ville distribution compensation, and the discrete
wavelet transform. According to their assessment results the filtering smoothed
pseudo Wigner-Ville distribution and the discrete wavelet transform are better
than the rest in terms of minimizing spectrum interference from the transient

component.

There are only a few references in the literature, that utilize TFDs for analy-
sis of multi-harmonic signals [1,2]. For example, Jones et al. proposed an adaptive
time-frequency distribution for the purpose of improving the time-frequency reso-
lution of multi-component signals [41,42]. Zhang et al. proposed a novel adaptive
harmonic Fourier transform for voiced speech signal analysis [2]. Their method has
a better resolution than the classical short-time Fourier transform and minimizes

the cross interferences produced by the Wigner-Ville distribution.
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Despite considerable effort of many investigators to make the TFDs a useful
tool for time-frequency domain analysis of nonstationary signals, there is a main
drawback of using the TFDs for the multi-harmonic component analysis: it is not
trivial to obtain the numerical values of the fundamental frequency and energy
density given the TFDs. Although the TFDs are a good tool to visualize the
transients and transitions of nonstationary signals, extracting the numerical values
of the frequency and energy density correctly out of the TFDs is difficult. Another
issue with the TFDs is that some TFDs, such as the Page distribution, may not
represent actual energy density since the longer a particular frequency is observed,

the larger the energy density becomes at that frequency [28].

2.4 Adaptive Frequency Estimation Methods

There are various adaptive frequency tracking methods in the literature. Some of
them are popular and general while others applicable only for specific applications.
It is not feasible to discuss all of them here. However, it is a reasonable attempt to
categorize those popular adaptive frequency tracking methods into three groups:
adaptive line enhancer (ALE), adaptive notch filtering (ANF), and adaptive comb
filtering (ACF). Although they are devised for different purposes, these adaptive
techniques are based on the least-mean-square (LMS) algorithm introduced by
Widrow and Hoff in 1959 [43]. The LMS algorithm is an adaptive algorithm based
on a gradient-based method of steepest descent, which finds the nearest local min-
imum of a given function [44]. In the 1970’s Widrow et al. described the principlés
and applications of adaptive noise cancelling, which is a method of estimating

signals corrupted by additive noise or interference [45]. One of the major con-
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tributions of their work is to identify the self-tuning filter and notch filter as the
special cases of the adaptive noise canceler. The self-tuning filter, which can re-
trieve the periodic and stochastic components of a signal, serves as an adaptive
line enhancer. The notch filter, which suppresses an additive undesired sinusoidal
interference, can be realized by an adaptive noise canceler, whose bandwidth is
easy to control. Treichler studied the transient and convergent behavior of the
ALE using an eigenvalue-eigenvector analysis of the ALE impulse response [46].
Around that time Zeidler et al. introduced the ALE for multiple sinusoid retrieval
in uncorrelated white noise [47]. The difference between the ALE and ANF is en-
hancing or suppressing the periodic components of given signals. This difference,
however, is not significant. Rao et al. demonstrated that the ANF can be used
as the ALE with proper configuration of delay taps [48]. They also proposed an
effective way to build an IIR filter that requires only half the number of parameters
in comparison to the ARMA model introduced by Friedlander [49]. Although the
ALE and ANF have been applied for various noise cancelling applications success-
fully [45,50], they are not suitable for harmonic tracking for several reasons. The
first reason is that they are not capable of tracking harmonically related compo-
nents in the signal. There are some papers that propose the ALEs for multiple
sinusoid component retrieval [47,51,52]. However, multiple sinusoid component
retrieval is not the same as multi-harmonic tracking. The second reason, which is
more critical, is that the ALE/ANF may converge to the nearest local minimum
of the performance error surface. In the case of multi-harmonic tracking, the per-
formance error surface has many local minima. Therefore, the ALE/ANF would
not be able to converge to the global minimum unless they are initialized carefully

to be close to the global minimum.
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Adaptive comb filtering is an appropriate method to handle harmonically
related components in the signal. Adaptive comb filters differ from the ALE/ANF
due to their ability to enhance or attenuate multi-harmonic components in the
signal jointly. Comb filters are typically in two general forms: Feed-forward and
feedback forms. The comb filter in the feed-forward form filters out harmonic
components in the signal x,, by delaying x,, by k samples. The difference function

and the Z-domain transfer function of are as follows,

Yn =Ty +Q Ty,

YY) ZF+a
CX(2) T 2k

H(z)

On the other hand, the comb filter in the feedback form retrieves harmonic com-
ponents in the signals @, by delaying ¥y, by k samples. The difference function

and the Z-domain transfer function are as follows,

Yn =Tp + QO Yy

The difference between them can be seen as whether there are either an all-zero

system (feed-forward) or an all-pole system (feedback).

Elliott et al. introduced a simple adaptive comb filter using the least-mean-
square (LMS) algorithm [53]. Soon after his publication, Nehorai proposed an
adaptive comb filter for harmonic signal enhancement with two cascaded parts: one
is for fundamental frequency estimation and the other for harmonic amplitudes and

phases estimation [54]. The fundamental frequency estimation uses the recursive
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maximum likelihood (RML) method while the harmonic amplitudes and phases
estimation the recursive least square (RLS) methods [55]. In the paper he argued
that simulation results indicate that the variances of the estimates are of the same
order of magnitudes as the Cramer-Rao bound (CRB) for sufficiently large data
sets. Veeneman et al. applied a fully adaptive comb filter to enhance block-coded
speech signals corrupted with framing noise caused by discontinuities at the block
boundaries [56]. Their comb filter is advanced to adapt both pitch period and
filter coefficients. There have been several attempts to build more optimal and
efficient comb filters for time-varying harmonic extraction [3,57,58]. More recently
several research groups have implemented the comb filter as an adaptive filter-
bank [59,60]. Especially Sun et al. performed a statistical analysis of a modified

adaptive filter-bank for the estimation of multi-harmonic signals [59).

Jang et al. proposed an adaptive IIR comb filter for harmonic signal can-
cellation [3]. They argue that the proposed comb filtering is more robust than
Nehorai and Poraz’s comb filtering technique [54]. However, the main contribution
of their paper is to recognize local minima problems of notch and comb filters and
demonstrate mathematically that the error surface of the comb filter has multiple
minima. All notch and comb filtering techniques rely on some kind of optimization
methods to search for the best set of fundamental frequencies and the amplitudes
of harmonic components. The local minima problem stems from the fact that
the optimization methods, e.g. least-mean-square (LMS) or recursive least-square
(RLS), cannot handle the multi-harmonic tracking error surface, which has mul-
tiple minima. Although Jang et al. argues that their comb filter is more robust
to this local minima issue than conventional comb filters, they implicitly admit

that the convergence of their comb filter model does rely on the carefully chosen
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initial conditions [3]. Overall, adaptive notch and comb filtering techniques in the

literature require cautious initialization to guarantee the filter’s convergence.

2.5 Pitch Detection Algorithms (PDAs)

One of common multi-harmonic signals is human voice. It is sound made by a
human using his vocal folds, tongue, and lips. The frequency of the fundamental
partial in a sound is called, pitch. The goal of pitch detection algorithms (PDAs)
is to determine the pitch of a quasiperiodic signal such as human voice. Pitch
detection is an essential part of various speech processing systems. It is useful
for speaker recognition, speech instruction to the hearing impaired, and vocoder
(speech analysis-synthesis systems) [61]. In the course of some 40 years, numer-
ous PDAs have been proposed for more accurate and robust pitch detection [62].
But, they are sensitive to noise and interference and limited to particular domains
(speech or song) and their performance becomes unacceptable at low SNRs. The
following summary attempts to cover the most prevalent PDAs rather than the

complete list of them. Additional details are available in [63] or [62].

PDAs are generally categorized into two main classes: time-domain PDAs
and short-term analysis PDAs [64]. The time-domain PDAs include zero-crossing
rate (ZCR) [11], slope event rate, autocorrelation method [4], and the YIN estima-
tor [5] that is based on the difference function. They are simple to understand and
computationally efficient in comparison to short-term analysis PDAs [62]. Those
methods, however, do not take an advantage of the harmonic relationship be-
tween the fundamental and harmonic partials, which provides useful information

to reduce the variance of the frequency estimation. They are only useful for only
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narrow-band signals and susceptible to noise. The short-term analysis PDAs are
based on some type of short-term transformation. In these methods the speech
signal is split up into a series of frames. Each frame is simply a small number of
consecutive samples of the signal, which may overlap with other adjacent frames. A
single frame should be at least as long as two or three complete periods. Although
numerous types of short-term analysis PDAs have been proposed, they belong to
either correlation techniques or frequency-domain analysis [64]. The correlation
techniques include the autocorrelation method and the average magnitude differ-
ence function (AMDF). These techniques measure how similar the speech signal is
to itself at a given time lag (delay). If the signal is periodic or quasi-periodic, the
time lag (delay) on which the measure of the similarity increases will represent the

period of the signal.

The typical frequency-domain analysis is a cepstrum. A cepstrum is the
result of taking the Fourier transform of the logarithmic spectrum of the signal.
The cepstrum is plotted against the quefrency, which is a measure of time (similar
to the time lag). The main idea of the cepstrum is that when the signal contains
harmonic components, the spectrum of the signal itself comes to have several peaks
at the frequencies corresponding to these harmonics and appears to be periodic.
The Fourier transform of the logarithmic spectrum is going to have a large value
at a quefrency which corresponds to the distance between the spectrum peaks.
Overall, the short-term analysis PDAs are computationally more intensive than
the time-domain PDAs. However, they are in general more accurate and more

robust to noise.

Two main sources of errors in PDAs are voicing decision errors and false

pitch estimates due to noise and signal distortion within voiced segments. Under
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bad signal conditions, such as low signal-to-noise ratio (SNR), the performance of
PDAs deteriorates severely. One common solution to noisy pitch estimates is pitch
tracking. Instead of estimating pitches independently based on individual frames,
pitch tracking methods adopt more global searching mechanisms using dynamic
programming (DP) and/or hidden Markov model [63]. Wang et al. proposed
a PDA that searches to find an optimum pitch track using a DP [65]. A few
years earlier Droppo et al. suggested a time-domain MAP pitch tracking method
utilizing two-state hidden Markov model (HMM) [66]. Recently, Tabrikian et al.
proposed a MAP pitch tracking method that significantly outperforms the previous

methods in noisy environments [63].

There are two main drawbacks of the PDAs. First, they are not as accurate
as state-space based methods since they are frame-based and have only a discrete
representation of the frequency possibilities. Second, they can only estimate or
track the pitch of the quasi-periodic signal without providing any information on
the amplitudes of the fundamental and harmonic partials. In other words, unless
the PDAs are combined with other signal processing techniques, they are not an
appropriate solution to track the fundamental frequency and the amplitudes of its

harmonics.

Speech signal representation is a more general topic of speech signal analysis
than pitch detection. The goal of speech signal representation is to analyze a speech
signal to obtain its complete characterization, which provides enough information
based on which one can re-synthesize a quasiperiodic portion of the speech signal as
close as possible. The first step of speech signal representation is to model a glottal
excitation waveform. Traditionally researchers used multiple impulses or random

sequences superimposed on periodic pitch pulses to model a glottal excitation
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waveform [67]. In the early 80’s, however, several analysis/synthesis approaches
were proposed using the sine-wave model [68,69]. In the mid 80’s, McAulay pro-
posed the sinusoidal representation of speech signal as a new approach to this
problem. McAulay et al. assumed that the excitation is composed of sinusoidal
components of arbitrary amplitudes, frequencies, and phases [7]. After modeling
the glottal excitation as a sum of sine waves, which results in the sinusoidal rep-
resentation for speech signal, speech signal representation becomes a problem of
parameter extraction for amplitudes, frequencies, and phases. The first step of the
parameter extraction is to break down the speech signal into contiguous sequential
frames. Then, for each frame, a set of parameters (amplitudes, frequencies, and
phases) is selected that minimizes the mean-squared error between the framed y,,
and synthetic s, speech signals. This approach is equivalent to a Fourier series
representation of a periodic signal. In other words, the set of parameters of the
synthetic speech model can be estimated from the short-time Fourier transform
(STFT) of the speech signal. This approach, however, is non-recursive imposing a
heavy computational load and is based on the local stationarity assumption within
each frame. One frame should also contain several fundamental periods for accu-
rate estimation of the pitch. One hazard of this approach is that the assumption
of stationarity does not hold within speech regions where both the location and
the number of peaks change rapidly. McAulay introduced the concept of birth
and death of sinusoidal components to address this issue. However, his method
is heuristic and requires additional user-specified parameters that are application-
specific. McAulay’s modeling of the glottal excitation as a sum of sine waves was
ingenious, but his parameter extraction method left a lot of room for improve-

ment in terms of the optimality, efficiency, and robustness. The following sections



CHAPTER 2. LITERATURE REVIEW 34

will discuss alternative methods to extract parameters of the sinusoidal model of

quasi-periodic signals efficiently and accurately.

2.6 Continuous State-Space Model Based Algorithms

A Markov process is a mathematical model for a random system whose future
and past states are independent conditional on the present state. A Markov pro-
cess is memoryless since the future and past states of the system are independent
conditional on the present state. A Markov process is a useful signal processing
tool because many signal processing applications can be modeled as Markov pro-
cesses. After modeling, the main goal is to estimate the state of the system given

observable measurements that are related to that state through a known model,

Tni1 = [Ty, uy) Yn = h(zy, vy,) (2.13)

where x,, is the state vector, vy, is the observation vector, wu, is process noise,
v, is the measurement noise, f(x,,u,) is the process model, and h(z,,v,) is the
measurement model. The initial state x, is assumed to be distributed according

to a density function mg(ay).

About 50 years ago, Kalman derived a set of equations for efficient recursive
filtering to optimally estimate the state of linear systems [70]. The system is linear
when both process and measurement models are linear. A linear system can be

generally expressed as,

Tny1 = Apx, + Bou, Yn = Cpx, + Dyv, (2.14)
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where A, is the state-transition matrix, B, the input matrix, C, the output matrix,
and D, the measurement noise matrix. However, the state estimation problem
becomes difficult if either of the process and measurement models are nonlinear.
The multi-harmonic tracking application is an example of a nonlinear Markov
process where the process model is nonlinear due to the nonlinear relationship
between the angles 8, and observed signal y,. The subsequential sections will
discuss three popular suboptimal approaches: extended and unscented Kalman

filtering, hidden-Markov model, and sequential Monte Carlo methods.

2.6.1 Extended and Unscented Kalman Filtering

The extended Kalman filter (EKF) and unscented Kalman filter (UKF) rely on lo-
cal linear approximations of nonlinear systems. When the goal is to estimate only
the frequency of a signal with a single partial, the EKF is equivalent to the digital
phase-locked loop (PLL) [71,72]. Schmidt suggested the linearization of a nonlin-
ear system about the current state estimate, which has become the most widely
used nonlinear state-space estimator, i.e. the extended Kalman filter [73]. In 1990
Parker et al. applied this extended Kalman filtering technique to estimate the am-
plitudes, frequencies, and phases of the rhythmical signals containing N, harmonic
components [74]. In many ways the EKF is more powerful and efficient than the
STFT-based methods that McAulay proposed in [7]. First, it is no longer necessary
to break down the quasi-periodic signal into contiguous sequential frames. Using
the EKF one can estimate the state of the system on a sample-by-sample basis.
Secondly, the EKF does not require the local stationarity of the signal. Thirdly,

estimation, i.e. parameter extraction, is carried out recursively from time n — 1 to
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time n. The state-space model that Parker proposed can be written as follows,

Ny
Yn = Q15,08 (0,,) + Z a1 kncos (kB,) + asy , sin (k6,,) + v, (2.15)
k=2

where Ny, is the number of harmonics (assumed known), 6, is the fundamental
instantaneous angle, a1 x, and a, ,, are the sinusoidal coefficients, and v,, is white
Gaussian noise with variance R,. The recursions for the EKF are available in many

references [75].

Although Parker et al. demonstrated the outstanding performance of the
EKF estimating the frequency and amplitude of a periodic signal based on simu-
lation study, they missed a very important aspect of the multi-harmonic tracking
problem. As Jang et al. mathematically proved, the error surface contains several
local minima in multi-harmonic tracking applications [3]. In other words, the more
harmonic partials the multi-harmonic signal contains, the more severely the pos-
terior distribution p(xo.n|Yo.n) becomes multi-modal, where Yo.n 18 a sequence of
observations ¥y, . . ., y,. This is problematic since since the EKF relies on local lin-
ear approximations of the system. As a result, the convergence of the EKF heavily
depends on the initial conditions of the EKF recursions. The EKF is also sensi-
tive to abrupt changes in frequency, signal drops, and artifact, which are common
in real signals. Therefore, the EKF is not a suitable method for multi-harmonic

tracking applications.

2.6.2 Hidden Markov Models (HMMs)

The basic theory of Markov chains (MCs) and hidden Markov models (HMMs)

has been known to mathematicians for over 100 years. However, it was only a
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Table 2.1: List of HMM Elements.
Name Symbol
Length of the observation sequence
No. of hidden states
No. of observation symbols
Hidden states
Discrete set of possible symbol observations
Hidden state transition probability distribution
Observation symbol probability distribution in hidden state 5
Initial state distribution

AWE<TOZT=ZH

few decades ago when people started applying it explicitly to signal processing
problems. The definition of an HMM is “a doubly stochastic process with an
underlying stochastic process that is not observable (it is hidden), but can only be
observed through another set of stochastic processes that produce the sequence of
observed symbols” [76]. There are eight elements of an HMM which are listed in
Table 2.1.

It is common to represent an HMM using a simple notation A = (A4, B, )
where the three distributions, A, B, and =, are the most important elements of an
HMM. The state transition probability distribution, a;; = p(g; at n + 1|g; at n),
relates the current hidden state g; at n to the next hidden state ¢; at n + 1,
where n is a discrete time index. The observation symbol probability distribution,
bi(k) = p(vx, at n|g; at n), relates the current hidden state ¢; at n to a symbol vy, at
n. There are three types of problems that can be solved for a given HMM: the first
is calculating the probability of the observation sequence, the second choosing a
hidden state sequence, which is “optimal” given the observation sequence, and the
third tuning the model parameters, {A, B, 7}, to maximize the probability of the

observation sequence. The second problem is closely related with the frequency
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tracking application uncovering the optimal hidden state sequence of the model.
The hidden state sequence in the frequency tracking application is the frequency

track.

Streit et al. demonstrated how the problem of frequency line tracking can
be formulated in terms of HMMs [77]. In their HMM frequency line tracking al-
gorithm the A matrix represents the likely extent of the frequency fluctuations
and the B matrix characterizes the statistical relation between the hidden state
(frequency) at time n and the measurement at time n. A user-specified range
of frequencies is divided into a finite number of frequency cells, which are hidden
states of the model. It is important to notice that the measurement takes a form
of a detection and relies on the fast Fourier transform (FFT) of the signal. If the
spectral power in a particular frequency cell at time n is larger than that in all
other frequency cells and exceeds a user-specified threshold D, the cell is claimed
to be detected and its corresponding index is used as a measurement. Given the
measurement sequence Z, which is a sequence of cell indices, the goal is to ob-
tain the optimal state sequence I,y that maximizes p(Z|I). This optimal state
sequence is referred to as the Viterbi track since the optimization is done using
the Viterbi dynamic programming algorithm [77]. The B matrix is a function of
the threshold D and SNR. These parameters play a critical role in optimizing the
HMM frequency line tracker. Although the authors demonstrated that the thresh-
old D can be optimized by solving a nonlinear equation, the equation includes
other critical parameters to be optimized separately. The HMM frequency line
tracker requires some user experience for proper optimization. The main weakness
of the HMM frequency line tracker is that it can only track the frequency of an

observed sine wave. A few years later, Barrett et al. extended the HMM frequency
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line tracker so that a newer version of the tracker can track not only the frequency
but also the amplitude and angle of a noisy sine wave [78]. The main difference
between the HMM frequency line tracker and frequency/amplitude/angle tracker
is that the later uses complex FFT data instead of the absolute value of FFT. Ac-
cording to their simulation results the HMM frequency/amplitude/angle tracker
outperformed the HMM frequency line tracker at the expense of increased numer-
ical complexity and computational load. Although there is more recent work on
the HMM-based frequency tracking [79,80], all HMM-based frequency tracking al-
gorithms are limited to individual frequency tracking applications and not capable
of tracking harmonically related partials in the signals such as speech, music, or

various pressure signals.

A few research groups have proposed HMM-based harmonic/pitch tracking
methods over the last decade. They modeled the signals of their interest such
as speech and music signals as a sum of harmonically related sinusoids and used
HMMs to estimate the smooth fundamental frequency track and the amplitude of
each harmonic partial [6,63,81]. Deisher et al. modeled the speech signal as a sum

of weighted sinusoids as follows,

Ny

Yo = Z A €08 (kwon + dp.p) (2.16)
k=1

where Ny is the number of sinusoids used in the representation and ain and ¢y,
are the amplitude and angle associated with the k** angular frequency kwo. They
applied the HMM-based MMSE estimator to speech corrupted by additive noise,
l.e. 2, = Y, +y, to find the harmonic sinusoidal model parameters {akn, wo, Pr.n}

of each block of clean speech. The first step of the estimation algorithm is to take
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the discrete Fourier transform (DFT) of a noisy speech block, which is denoted as
Z. Then, the DFT of a clean speech block, i.e. Y, is estimated using ergodic and
Gaussian mixture HMMs. Y is an optimal estimator of Y in a sense of MMSE.
Given Y the maximum likelihood frequency trajectory is calculated using the effi-
cient Viterbi algorithm. Deisher et al. demonstrated reasonable performance of the
proposed algorithm. Obtaining Y, however, requires training of two autoregressive
HMMs using clean speech collected from a group of people representing potential
users and noise from the expected operating environment. This training process
is cumbersome and specific to certain applications. More recently, Tabrikian et
al. proposed a maximum a posteriori (MAP) pitch tracking algorithm using har-
monic models based on HMMs. This is more general and computationally more
efficient than Deisher’s algorithm. Their model for the measurement of a given

voiced frame is slightly different from the previous one and can be written as,

Ny
Yy = Z ay i cos (kwon) + ag g sin (kwon) + v, (2.17)
k=1

where wy stands for the fundamental angular frequency of the signal and the
coefficients a; k., and a,y, carry the information on the intensity and angle of
the k*® harmonic of the signal. (2.17), then, can be written in matrix notation as

follows,
y=A(w))c+v (2.18)

where ¢ £ [a,, ..., an,,by,..., bNh]T and the matrix A(wo) can be partitioned as
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A (wo) = [Ac (wo) As (wo)]- The elements of A (wp) are given by,

Ach,n (w()) = COS (kwon) (219)

Agn (wo) = sin (kwon) . (2.20)

The maximum likelihood function can be written as,

1

~lly—A(wo)d||/ (202
L (221

p (yf‘-"’mca 0'12;) =
Then, the maximum likelihood (ML) estimator can be obtained by maximizing the
likelihood function in (2.21) with respect to the unknown parameters {cy, & 62}.
One thing to notice is that this ML estimator provides only an independent pa-
rameter estimation for each individual frame. Incorporating a priori knowledge on
the smooth behavior of speech parameters (especially frequency) over time they
proposed the MAP estimator of the fundamental frequency track, that uses mea-
surements collected over several frames. The MAP estimator can be implemented

by using a dynamic programming procedure.

Most HMMs-based frequency tracking algorithms have been developed ex-
tensively for speech analysis. Although their performance has been improved over
the last few decades, there are several weaknesses for the algorithms to be applied
to broader applications. The first weakness is that most HMMs-based frequency
tracking algorithms require the frequency domain representation of each frame
such as the DFT as the input of the algorithms. This means that the signal has
to be segmented by non-overlapping or overlapping frames assuming the local sta-

tionarity within each frame. The duration of individual frames is a limiting factor,
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which controls the trade-off between the frequency- and time-domain resolutions.
For various applications, where the local stationarity assumption doesn’t hold, the
HMMs-based frequency tracking algorithms may not be appropriate. The second is
that the HMMs-based frequency tracking algorithms require the locally estimated
fundamental frequency estimates prior to globally optimal solution. The locally
estimated fundamental frequency estimates rely on individual frames ignoring the
prior statistical transition probability density function A. Therefore, this so-called
measurement track of the locally estimated fundamental frequency estimates is not
a globally optimal estimate of the true track. The globally optimal estimate of the
true track, so-called Viterbi track, can be obtained only after the algorithms see
a large number of frames. In their simulation results Barrett et al. showed the

difference between the measurement track and Viterbi track clearly [78].

2.6.3 Sequential Monte Carlo Methods

The extended Kalman filter relies on the mean and covariance statistics to repre-
sent the posterior marginal distribution p(,|yo.,) of the state given a sequence of
observations yo., = {¥o, ..., Yn}. This, however, is a useful summary of the distri-
bution only when the distribution is unimodal. For some nonlinear processes the
posterior distribution is multi-modal and in these cases the distribution cannot be
sufficiently described by the mean and covariance statistics. The multi-modal pos-
terior distribution requires a more complete set of statistics to represent all of the
important features. Monte Carlo methods (MCMs) are a possible alternative [82].
MCMs estimate an unknown distribution up to a normalizing constant. Sequential
Monte Carlo methods (SMCM) carry out this estimation process sequentially (or

recursively) to reduce the computation load of the algorithm.
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In theory the posterior distribution is estimated up to a normalizing constant
by drawing a sequence of sufficient random samples from the distribution. In
practice, however, it is not possible to draw independent samples from the posterior
distribution, p(€.n|Yo.), that is unknown. The concept of an importance sampling
needs to be introduced to address this issue. Importance sampling is a technique
to represent the unknown posterior distribution as a weighted combination of point
masses, where the independent samples are drawn from a importance distribution,
9(To.n|Yo:n), which a user can choose. Only one constraint on the choice of the
importance distribution is that its support must be larger than that of p(zo..|yom)-

The expected value of any statistic of the state can then be estimated as follows,

Blo(@o.)] ~ 3 Zw“ (@) (222)

that converges as (’)( 1) by the law of large numbers. Often, the SMCM are
referred to as particle filters (PF). The term, “particle”, is used to represent the
random state trajectories xo.,. A single particle, i, corresponds to the i*" random

state trajectory :c((fzz

Doucet praised the remarkable flexibility and usefulness of Monte Carlo al-
gorithms that have been revolutionizing applied statistics and related fields such
as bioinformatics and econometrics [83]. Although he tried to provide a complete
review of MCM in a signal processing context in [83], he left out an important issue
that needs to be addressed in applying the traditional MCM to many signal pro-
cessing applications such as multi-harmonic tracking. That is the fact that particle
filters (PF's) are criticized by the computational requirements proportional to the

number of particles N, needed for reasonable approximations of the posterior dis-
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tributions. This is problematic because the number of particles N, needed scales
with both the state dimension ¢ and the duration of the observation sequence n
at the time when the state estimate is needed. In the multi-harmonic tracking
case the state dimension £ increases proportionally to the number of harmonics
Np. In order to overcome this curse of dimensionality it is necessary to improve

upon canonical particle filters (PF').



Chapter 3

Problem Definition

3.1 Stochastic Process

A stochastic process is the counterpart to a deterministic process. For a deter-
ministic process, future evolution is completely known and unique given an initial
condition of the process. In contrast, future evolution of a stochastic process is
not determined or unique due to the indeterminacy of the process. Many paths
of evolutions are possible from the known initial point. A stochastic process is
also referred to as a random process. The randomness of the stochastic process
is described by its probability distribution. The probability distribution has infor-
mation on which one among multiple possible paths is more or less probable. For
example, a sequence of random variables is a realization of a stochastic process in
the case of discrete time. Many different sequences of random variables are possi-
ble as realizations of the discrete time stochastic process. Knowing the probability
distribution of the stochastic process one can only tell how probable it is for a
particular sequence to occur. Many time series can be modeled as stochastic pro-
cesses such as the human voice, stock market fluctuations, seismic signals, acoustic

measurements of machinery vibration, and biomedical data. There are many kinds
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of stochastic processes such as the Bernoulli process, Poisson process, point pro-
cess, Gaussian process, and Markov process. They can be used to model coin
flipping (Bernoulli process), weather prediction (Markov process), and radioactive
decay (Poisson process). In order to choose an appropriate stochastic process prior

knowledge on the characteristics of a phenomenon of interest should be used.

3.2 State-Space Methods

A physical system can be mathematically represented as a set of input, output, and
states related via a set of models, which can be nonlinear and stochastic. States
are unknown variables that represent a system’s condition at a given time. For ex-
ample, in making reinforced glass the temperature between the glass plates cannot
be measured directly although it is a critical variable, i.e. state, that represents
the condition of the manufacture process. The state-space is an imaginary space
consisting of the minimum set of states of a stochastic process that describes a
physical system. The output is a sequence of observed measurements of the sys-
tem. The input is a source that drives the system. In the example of the reinforced
glass manufacture process, the output can be a temperature measured around the
plates and the input is a white Gaussian noise that models the fluctuation in
the temperature. Typically the state-space representation of a system is defined
by two equations: a process and a measurement equation. A general state-space

representation can be written as,

Tpy1 = fn (mna un) s Yn = hn (mm ’Un) (31)
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where w, and v, are inputs, y, an output, , the state of the system at time
n, and the functions f,(-) and h,(-) are the process and measurement models,
respectively. Two functions f,(-) and h,(-) are time-indexed, which means that

the process and measurement models themselves can be time varying.

The goal of state-space tracking is to estimate the unknown state @, given a
sequence of measurements ¥q.,, where yo.,, represents {yo, . . ., ¥, }. The state-space
representation originated from modern control theory, which utilizes the time-
domain mathematical model of a dynamic system. The state-space representation
is flexible and versatile since the equations can be nonlinear and stochastic. It
has been adopted in signal processing and now is a widely used signal processing
paradigm. However, a set of process and measurement equations is not something
that is available or given to a user readily. A user has to devise them based on some
prior domain knowledge of the system. In other words, a modeling step precedes

an actual application step of state-space tracking.

3.3 Markov Process

A Markov process is a special case of stochastic processes, which represents the
random evolution of a memoryless system. A system is called memoryless when
its future behavior depends only on the current state of the system. The future of
a Markov process is independent of the history of the process conditional upon the
current state. A stochastic process is a Markov process if it satisfies the condition

below,

P (Tnin|®s, Vs < n) = p(Tpyn|zn), VA >0 (3.2)
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Figure 3.1: Conceptual diagram of Markov processes.

The index space (time scale) and state-space are two main elements that char-
acterize Markov processes. There are four types of Markov processes depending
on the continuity of these two elements: discrete time Markov chains, continuous
time Markov chains, discrete time Markov processes, and continuous time Markov

processes.

Fig. 3.1 illustrates a conceptual diagram of a discrete time Markov process
where x,, is the current state and y, the current measurement. An example of a
Markovian process is the Monopoly game whose next state of the board is deter-
mined completely by the current state and the next roll of the dice. In contrast,
card games are not Markovian processes since each card represents a memory of
the past moves. However, Markovian representations are not strictly limited to
Markovian processes. In some cases, non-Markovian processes can have Marko-
vian representations. Assuming that « is a non-Markovian process, let us define a

new process z that can be expressed as,

2(t) = {z(s) : s € [a(t), B()]}- (3.3)

If the new process z has the Markov property, it becomes a Markovian representa-
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tion of the original process . This is possible because the concept of the present
and future can be extended so that they represent intervals in the index space
(time scale) instead of particular points in the space. For example, a moving aver-
age (MA) time series is a non-Markovian process with a Markovian representation
because the future state x,;; depends only on some of current and past states
T, .., Ln—pm+1, Where M is the order of the MA time series. The Markovian rep-
resentation of this non-Markovian process can be obtained by including the states

in the intervals [n,n — M + 1] into the “current” state.

3.4 Posterior Distribution and Bayesian Estimation

A posterior distribution is an important term in rhythmicity tracking within the
framework of the sum-of-sinusoids model. Ai posterior distribution, which is de-
noted as p(x|y), is a probability density function that represents a probability
distribution of what is known about a random variable  taking the observation y
into account. Simply, the posterior distribution p(z|y) is a conditional probability
distribution of = given y. In contrast, a prior distribution p(x) is a description
of a variable  in the absence of any data. The likelihood function p(y|x) is a
probability density function that describes a conditional probability of y given
x. Let us assume that x is a binary character {0,1} to send via a channel and
y a received signal. A prior distribution p(x) describes which character 0 or 1
is more or less frequently sent. The frequency of characters to send is a prede-
termined quantity before receiving the actual signal. When a binary character
{0, 1} is sent via a channel, a receiver receives a signal y that appears to be 0 or

1. The likelihood distribution p(y|a) describes what a received signal y is likely
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to be when the actually sent character is 0 or 1. When the channel is perfect,
i.e. noise-free, y is the same as &, which means that the receiver does not make
any mistake with determining which character was originally sent. However, real
channels are usually noisy, and original characters are altered by channel noise.
The likelihood distribution p(y|x) represents how severe this alteration of original
characters is. The posterior distribution p(x|y) describes how probable an original
character is to be 0 or 1 given a received signal y. For example, when y is —0.85,
a original character « is probably —1 since p(x = —1|y = —0.85) is greater than
p(z = 1ly = —0.85). When y is 1.01, x is probably 1 since p(xz = 1|y = 1.1)
is greater than p(x = —1|y = 1.1). The posterior distribution p(z|y) is used to

reason about x given y.

The posterior distribution p(z|y) can be calculated by multiplying a prior
distribution p(«) and the likelihood distribution p(y|z) via Bayes’ theorem as

follows,

plzly) = = p@)p(y|z) (3.4)

oo P(@)p(y|x) dz
where the denominator is a normalizing constant. When the random variable x
and the observation y are independent, p(y|x) becomes p(y). Then, the posterior
distribution p(x|y) is equal to a prior p(zx). In this case, knowing ¥ is not helpful to
estimate . However, when there is some type of relationship between x and v, the
posterior distribution p(x|y) becomes more useful than a prior distribution p(a) in
reasoning about . These three distributions, i.e. a prior, posterior, and likelihood,
are important concepts for understanding estimation methods. There are three

popular methods of estimation: method of moments, maximum likelihood (ML)
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estimation, and Bayesian estimation. The method of moments is usually easy to
implement and yields consistent estimators. However, the estimators are often not
the best and can be misleading. Generally the maximum likelihood estimation and
Bayesian estimation are preferred and more accurate than the method of moments.
There are many similarities between those two estimation methods. The most
important one is that they utilize the likelihood, prior, and posterior distributions.
The main difference between them is that the maximum likelihood estimation relies
only on the likelihood distribution p(y|x) while Bayesian estimation uses the prior
distribution p(x) and the likelihood distribution p(y|x). The maximum likelihood
estimation computes the likelihood and finds a parameter value that maximizes it.

It can be written as,
Ty, = argmax,, p(y|x) (3.5)

where ML stands for the maximum likelihood and argmax stands for the argument
of the maximum, that is the value of the given argument  for which the following
function attains its maximum value. There are two common Bayesian estima-
tion methods depending on the choice of estimation quality measures. The first
Bayesian estimation is called the minimum mean square error (MMSE) estimation.

It minimizes the mean square error (MSE), which can be expressed as,

MSE =E [(2 — z)?] (3.6)
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Figure 3.2: Example of the prior, likelihood, and posterior distributions with the
mean estimate Tpean of , MAP estimate xyap, and maximum likelihood estimate

LML,

The MMSE estimator can be expressed as,

Evmse = E[z]y] ‘
oo
- [ apaly)as (37
—-—00
The second Bayesian estimation is called the maximum a posteriori (MAP)
estimation. It minimizes the most probable error by searching for & that maximizes

the posterior distribution p(x|y). It can be expressed as,

TMAP = argmax,, p(:l:|y)

p@)(yle)
T p@p(yle) de &)

= argmax
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When the posterior distribution can be approximated as Gaussian, the MMSE es-
timation yields good results. However, if the posterior distribution becomes multi-
modal, Zymsg can be very misleading. Since both the ML and MAP estimation
methods utilize the likelihood distribution p(y|x), there is some similarity between
those methods. For example, if @ is evenly distributed, its prior distribution p(z)

becomes constant. Then,

Tmap = argmax, p(z|y)

_ argmax, p( ) (y|z)
f )p(ylz) dz
= argmax,, (y|:c)
- e f ¢ plylz)d
= ar max (y‘m)
T e T ylx) d
= Gy (3.9)

that is, the MAP estimation becomes identical to the ML estimation. Fig. 3.2
illustrates an example posterior distribution and the MAP estimation of . The
MAP estimation is the most probable value of & given y. Therefore, the MAP es-
timation minimizes the most probable error rather than the expected value of the

estimation error.

3.5 Recursive Bayesian Estimation

The posterior distribution of the entire history of the state given all measurements
up to current time n can be expressed as p(wo:n|yo;n), where xq., is equivalent to

{zo,...,z,}. The marginal posterior distribution p(Zn|Yo.n) describes the poste-
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rior distribution of only the current state given all measurements up to current
time n. No matter which distribution needs to be estimated, it would be very
inefficient to compute p(@o.n|Yo.n) without utilizing previously computed distribu-
tions such as p(Zo.n—1|Yom-1). By adopting the state-space model framework, the
posterior distribution p(%o.n|Yo:n) can be computed by updating P(To:n—1]Yon—_1)-
Given p(Zo.n—1|Yon—1) and the process model in (3.1), the predicted posterior dis-
tribution p(xo.n|Yo.n—1) can be computed since the process model describes how T,
propagates from x,_;. As measurement ¥, becomes available, P(To.n|Yon) can be
updated from p(€o.n|yo.n—1) since the measurement model in (3.1) describes how
Yn is related to x,. By alternating these prediction and measurement updates one

can compute the posterior distribution recursively.

Recursive Bayesian estimation is a Bayesian approach to estimating an un-
known posterior distribution recursively over time using incoming measurements
and a state-space model. Let us consider a filtering problem where the marginal
posterior distribution p(x,|yo.n) is of interest. As explained above, this marginal
posterior distribution can be computed efficiently by updating p(%,_1|Yo.n-1). The

update recursions can be written as follows,

P(@nYom) = P(Yn|Tn, Yo.n—1)P(Tn|Yo:n_1)
p(ynlyO:n—l)
_ P(Yn|Tn)p(@n|yon-1)
p(yn|yo:n_1)

(3.10)
p(mnlyO:n-—l) = p(wn, wn—1|y0:n—1) dwn—l

p(wnlmn—la yO:n—l)p(mn—llyO:n—l) dwn—l

I

I
— — —

p(mn’wn—l)p(wn—lly&n—l) dwn-l (311)
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where (3.10) is called a measurement update and (3.11) a prediction update. Math-
ematically the recursions are an elegant solution. But, in most cases, the prediction
step (integral) is impossible or very difficult to evaluate analytically. The following

section discusses an alternative way.

3.6 Monte Carlo Methods

Monte Carlo methods (MCMs) refer to a class of computational algorithms that
rely on repeated random sampling to compute integrals that are impossible or
difficult to evaluate analytically. Let us consider a distribution g(x), whose integral

is difficult to evaluate analytically. Its integral can be written as,

I=/g(m) dzx (3.12)

When z lies in a high dimension, evaluating the integral becomes more challenging.

MCMs first factorize g(x) as follows,

9(x) = f(z)n () (3.13)

where 7(x) is a probability density function (PDF), that is,

/W(a:) de = 1. (3.14)
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If N > 1 independent samples are drawn from 7 (x), the integral I can be estimated

as a sum of those samples. It can be expressed as,

=E[f(z)] (3.15)

iy = %Z f(z), (3.16)

where Iy is an unbiased estimate of I , which almost surely converges to I as N
increases. The error variance does not increase as the dimension of & increases.
However, drawing samples from the PDF 7 (x) may not be always easy because
a closed-form mathematical expression for 7(x) may not exist and 7(zx) can be
evaluated only numerically for specific values of @. Therefore, it is necessary
to define another probability density function (PDF) ¢(x), from which random
samples can be drawn. Any arbitrary probability density function (PDF) can be
the importance density g(x) as long as its support is larger than the PDF 7(x)’s

and independent random samples can be drawn from it. That is,

- / (@) 22 (@) dae (3.17)

_ 7172 F(@DYid(2®) (3.18)
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where w(x®) is an unnormalized weight of the " sample. Since the sum of the

unnormalized weights is N,
N
> w(@?) =N (3.19)
i=1

the estimate ] ~ can be rewritten as follows,

£@)i(a?)

'2\0
2=
W'Mz

1

o) 2)

[l
M=

1

=.
II

iy w(@®)
SN w0

F@Dw(@x®) (3.20)

i
.Mz

T

I
M=

1

I

k3

where w(z®) is a normalized weight of the " sample. The PDF ¢(z) is called
an importance density and the sampling scheme described above is referred to as

mmportance sampling.

3.7 Sequential Monte Carlo Methods

Sequential Monte Carlo methods (SMCMs) are better known as particle filters,
which are a technique to estimate a sequence of unknown variables recursively
over time. SMCMs are an alternative to the extended or unscented Kalman fil-
ter (EKF/UKF) with the advantage of approaching the optimal Bayesian estimate
when the number of samples is large enough. Also, SMCMs have considerable merit

over the EKF/UKF if the posterior distribution of interest has several modes of
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comparable amplitude [84]. Many research groups have demonstrated the suit-
ability and versatility of SMCMs for various applications such as positioning and
navigation [85], tracking [86-88], blind equalization [83], fault detection [89], com-

puter vision [90], and speech recognition [91].

SMCMs assume that the state x,, and measurement y,, can be modeled as the
first-order Markov process as shown in (3.1). Therefore, p(yn|@,) and p(@,,1|2,)
can be computed as measurement y,, becomes available. However, SMCMs cannot
be directly applied to this state-space model because there is no means to draw
independent random samples directly from the posterior distribution p (€., |Yo.n)-
The importance sampling scheme introduced in Section 3.6 can be adopted to
enable random sampling. By weighting the random samples drawn from the im-
portance density ¢(@o..|¥o.n) appropriately, the posterior distribution p (€., |Yo.n)
can be represented as a weighted combination of point masses, i.e. f(x®) in (3.18).
Then, the expected value of any statistic of the state variable xy., can be estimated

as follows,

E [g(wOZn)] = /g (mO:n) D (wO:nlyO:n) d3"'0:11

N, (i
N D wT(:) . (i(l))
~ N.  ~ (i 0:n
i1 2jm1 Wy

NP
= > wig (24,) (3.21)
=1

where E is the expectation operator, N, the number of random samples, and
:1:(()22L the i*® random state trajectory, and 'wr(f) the i** importance weight of the
corresponding state trajectory. The random state trajectories are often referred

to as particles. Here, a state refers to a set of random samples drawn from the



CHAPTER 3. PROBLEM DEFINITION 99

importance density, corresponding state variables, and an estimate of output #,.
Then, a state trajectory, i.e. particle, represents a history of state evolution through

i)

time. In other words, one particle w( » represents the entire record of how the state

has evolved from the beginning n = 0.

SMCMs can be seen as an implementation of importance sampling by up-
dating the weights w(xn ) ) in (3.21) to compute the estimate of the posterior dis-
tribution p(xo:n|yomn) upon the arrival of measurement y, given D(T0.n-1]Yom_1)-
As mentioned earlier, any arbitrary probability density function (PDF) can be the
importance density g (Zon|yon) as long as its support is larger than the posterior
distribution p (o.,|y0.n) and independent random samples can be drawn from it.
However, in SMCMs, the importance density q (€.,|yo.n) needs to satisfy one more

condition as follows,

Q(xO:nlyO:n) = Q(wnlmo:n—la yO'n)Q(wO:n—llyO:n—l)

q(%olyo) Hq (Zk|Tor—1, Your) (3.22)
k=1

Then, the weight w(mg)) can be updated sequentially as follows,

w(z®) o PAEonYo:n) (m0n|y0n)
( n) (wOnIyOn)
pynlzy))p(\ 1)p(w0n 1| Yon—1)
q(@ >|:c0n 1,y0n>q( Tl 1|Yon-1)
x! m(z)
pnlzp(etlonl) o (3.23)

a(@l |21, You)

1 Z

|z,

Since p(yn[mﬁf)) and p(zy ]a:,(:)_l) can be known upon the arrival of measurement

Yn using the state-space model in (3.1), the current weight 'w(mg)) can be up-
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dated readily from the previous weight w(mfﬁl) after computing the importance
density g(x,|®o.n—1,Yon). The ideal importance density is the posterior distribu-
tion itself, i.e. p(@n|Ton—1,Yon). The posterior distribution is ideal since using
it as the importance density yields the minimum variance estimate of E [g(x¢.,)].
However, the analytical evaluation of the ideal importance density is not possible
since it is the posterior distribution itself that needs to be estimated. Although
the optimal importance density can be obtained for a special case, usually it can
be only approximated [92]. The simplest approximation is to use the prior distri-
bution p(a,|®,—1) as the importance density q(€,|To.n_1,Yo.n). Then, the weight

recursion is simplified as,
w(@l) o plyalew(@;)y). (3:24)

Particle filters that are implemented hereafter are based on this approximation of

the importance density.

3.8 Rhythmicity Tracking as Posterior Distribution Estimation

Quasi-periodic signals can be modeled as a sum of time-varying sinusoids, which
represent rhythmical components, i.e. partials, of the signals. The goal of rhyth-
micity tracking in quasi-periodic signals, then, is to estimate the frequencies,
phases, and amplitudes (parameters in (1.12)) of those partials sequentially. This
sum-of-sinusoids model of a quasi-periodic signal can be integrated into a state-
space representation of a physical system that generates the signal. In rhythmicity
tracking of quasi-periodic signals the sum-of-sinusoids model is the measurement

equation where vy, is a contaminated signal sample at time n, x, a vector of fre-
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quencies and sinusoid coeflicients of the rhythmical components, and v, additive
measurement noise. The main goal in the state-space model approach to rhyth-
micity tracking is to estimate the model parameters as accurately as possible,
where the measure of “accuracy” may vary with application. However, accurate
estimation of the model parameters does not point out the fundamental problem
that we attempt to solve in rhythmicity tracking. It is critical to recognize this
fundamental problem to properly address important issues in rhythmicity track-
ing. Rhythmicity tracking is essentially continuous estimation of the posterior
distribution of the frequencies and amplitudes of the rhythmical components, i.e.
partials, in the signal. Traditional frequency tracking techniques assume that the
posterior distribution is Gaussian and choose the mean value of the distribution as
the estimate of frequencies, phases, and amplitudes. Depending on the number of
rhythmical components and their relationship, however, the Gaussian assumption
may not hold and the posterior distribution may be multi-modal. In that case, the
mean is not a good representative of the distribution, and more complete descrip-
tions are necessary to represent its important features. For example, the mean of
the posterior distribution of the fundamental frequency given a sequence of signal

samples, that is,

fn =E [.fn]
- / Fub(Fultiom) df (3.25)

may be located between modes that correspond to probable frequency values.
Therefore, a reasonable estimate of the fundamental frequency is the frequency

value that corresponds to the tallest mode of the distribution, which minimizes
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the most probable error. This estimate is the maximum a posteriori (MAP) esti-

mate, which

fn = argmaxfp(fn|y0:n) (326)

Given the frequency value f, the coefficients (@11, .., @1,N,n, @210, - - -, Q2N 1)
have a simple linear relationship with the signal. Therefore, the posterior distribu-
tion of partials’ phases and amplitudes can be modeled as a Gaussian distribution
and the optimal solution can be obtained using the Kalman filter technique. How-
ever, the frequency has a nonlinear relationship with the signal through the cosine
and sine functions. Especially when there are multiple harmonically-related par-
tials, the posterior distribution of the fundamental frequency p(f,|yo.n) becomes
non-Gaussian and multi-modal. In that case, approximating the posterior distri-
bution as a Gaussian is not adequate [85]. By adopting sequential Monte Carlo
methods (SMCM), i.e. particle filters, the multi-modality of the posterior distri-

bution of the fundamental frequency can be handled properly.

The subsequent sections demonstrate the multi-modality of the marginal
posterior distribution of the fundamental frequency in the multi-harmonic signal,
discuss weaknesses of the canonical particle filtering technique, and describe the

statistical signal models for applications included in the dissertation.

3.9 Multi-modal Posterior Example

For the sake of illustrating the multiple modes in the posterior distribution, let us

consider a much simpler case in this section that permits us to calculate the pos-
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terior distribution. In general it is difficult to solve for the posterior distribution
exactly even if a state space model of the process is known. However, if we use
the simplifying assumptions that (1) the coefficients and fundamental frequency
have uniform prior distributions and do not change over time and (2) the mea-
surement noise is Gaussian, then we can solve for the posterior distribution of the
fundamental frequency with a least squares approach. In this case the observation

model is,

Nn

Yn =7+ Z a1 cos (kwn) + agy sin (kwn) + v, (3.27)
k=1

where Ny is the number of harmonics (assumed known), w is the angular funda-
mental frequency, ¥ is the slowly changing signal mean, a; ; and ay . are the fixed
valued sinusoidal coefficients, and v, is white Gaussian noise with variance R,.
If the fundamental frequency and measurement noise are known, this model is a

linear function of the signal mean and sinusoidal coefficients.

We can collect the unknown parameters into a vector, which can be written

as,

T= 1Yy a; ...a; bl bk wi - (328)

Then, the posterior distribution is given by

_ P(yon|z; 7)p()

D\Z\Yo.n;T) =
( l " ) p(yO:n;T)
< p(Yon|T;7)
where Yo., £ (Yo,...,Yn). Since we have assume a uniform prior, p(x) = ¢ for

some constant c, the posterior distribution is the same as the likelihood function.
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For a specified value of the fundamental frequency, the remaining parameters can
be estimated by linear least squares, or, equivalently, maximum likelihood. An

unbiased estimate of the measurement noise variance R, is then given by

1 Jr
A — _ A 2
P = TN ;(yn n) (3.29)

where Np is the number of samples. Finally, the posterior distribution of the

angular frequency w can be obtained as follows

P(@|Yon) ~ max p(you|a; 7). (3.30)

Y,ar,0k

Fig. 3.3 shows the estimated posterior distribution evaluated as a function of fre-
quency for a signal with Nt = 500 samples, N, = 5 partials (4 harmonic partials),
the true fundamental frequency 2 Hz, the amplitudes a; 2141 and @g x4 equal 1,
a9 and a9 = 10 equal 10, and a signal-to-noise ratio (SNR) of 3dB. The am-
plitudes of the even-numbered partials a; 9 and as o, were chosen to be 10 times
greater than those of the odd-numbered partials a 9,1 and asor+1 to enhance
the modes that correspond to the sub-harmonics of the fundamental frequency.
Fig. 3.3 demonstrates that the marginal posterior distribution of the fundamental

frequency of the multi-harmonic signal is truly multi-modal.

3.10 Weaknesses of Canonical Particle Filtering

The approximation (3.21) converges to the true value almost surely as the number
of particles becomes large enough. There are, however, three major drawbacks in

using the canonical PFs: two curses of dimensionality and using the mean value
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Figure 3.3: Logarithmic posterior PDF of the fundamental frequency of a synthetic

multi-harmonic signal with 5 harmonic partials whose true fundamental frequency
is 2 Hz.

to represent multi-modal posterior distributions. The two curses of dimensionality
are due to the fact that the number of particles N, for reasonable approximations
of posterior distribution, scales with both the state dimension ¢ and duration of the
observation sequence n at the time the state estimate is needed. The first curse of
dimensionality related with the state dimension £ can be managed by adopting the
Rao-Blackwellization of canonical PFs when the state-space model meets certain
conditions. The Rao-Blackwell theorem shows how to improve upon any given
estimator by calculating a conditional expected value integrating out an ancillary
statistic [93]. In particle filtering, the conditional expected value is the nonlinear
portion of the state-space while the ancillary statistic is the linear portion of it.

Casella et al. proposed an improvement for sampling schemes such as Accept-
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Reject and Metropolis algorithms by using the entire set of simulated random
variables, which is the result of applying the Rao-Blackwellization Theorem [94].
A few years later, Doucet et al. developed a Rao-Blackwellization based particle
filtering method that takes advantage of the analytic structure present in a speciﬁc

class of state-space models [92].

Suppose that we can partition the state vector, x,, into the linear xl and
nonlinear ) portions, where the system is linear when the nonlinear portion of
the state, X is known. Then, the state-space models that belong to this class can

be expressed as follows,

zh = F(eN)zl + ul (3.31)
o)y = folzy, up) (3.32)
Y = Hy(xN)x + v, (3.33)

where F,(x[)) is a time-varying state-transition matrix that is a function of xN
and H,(x)) is an observation matrix that is also a function of zl. In this case
the linear Kalman filter recursions can be used to optimally estimate the linear
portion of the state for each particle, 2™, This can dramatically reduce the
number of particles needed to represent the remaining nonlinear portion of the
posterior state distribution, p(xY, |yo.,), which is in a smaller dimensional space.
If the linear process noise u- and the measurement noise v, are Gaussian, then
the conditional linear posterior distribution p(x§.,|Yo.n, ZY,) is also Gaussian and

the total posterior distribution is given by

p(iBo:n‘yo;n) = p(w(I)J:nlyOZTL’ mONn)p(ngnlyOn) (334)
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This type of particle filtering is called the Rao-Blackwellized Particle Filter or
sometimes the marginalized particle filter (MPF) since the nonlinear portion of the
state space is estimated from the marginal distribution. The MPF leverages the
traditional Kalman filter to optimally estimate the linear portion of the state and
reduces the memory and computational requirements by reducing the dimension
of the state vector that is estimated with a particle filter. Gustafsson et al. have

surveyed the state of the art in theory and practice of the MPF [95].

This, however, does not solve the second curse of dimensionality: the number
of particles required for accurate estimation of an expected value of the posterior
distribution still increases exponentially with the duration of the observations n
at the time the estimate is needed. The relationship between the duration of the
observation sequence n and the number of particles needed was not clearly iden-
tified until [96]. Gordon et al. pointed out that all of the importance weights w
become very small after a few iterations. This results in a large population of
particles that contribute very little to the estimate in (2.22). This phenomenon is
known as, sample degeneracy. Resampling schemes have been proposed to address
this problem which essentially use a bootstrap filter to sample the posterior dis-
tribution with replacement. This approach is acknowledged as the first successful
employment of SMCM for nonlinear filtering [97]. However, this approach gener-
ates many duplicate particles of the most probable state trajectories and results in
less sample diversity, or coverage of the set of all possible state trajectories. This
is called sample impoverishment. When the true posterior distribution changes

abruptly or develops a new prominent mode, PFs may take long time or fail to

lock on to the new prominent mode.

The third problem is that estimates of expected values (2.22) do not always
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provide acceptable measures of multi-modal posterior distributions. For example,
when the posterior distribution is multi-modal, the mean of the distribution may
be at an improbable state trajectory that is located between modes. In these cases
an alternative, such as the median or most probable state trajectories may be

preferred estimates.

The last two problems can be solved with a variation of canonical particle
filters developed for maximum a posteriori (MAP) estimation. These produce an

estimate of the state that approximately maximizes the posterior distribution

*’-%O:n ~ argmaxm(,m p(wO:n’yO:n)~ (335)

This is suitable for multi-modal distributions because it essentially selects the
state estimate as the most prominent mode, which minimizes the most probable
error. It is, however, not trivial to obtain a MAP estimate from typical particle
filters that represent the posterior as weighted point masses, i.e. f(z®) in (3.18).
The estimate is not equivalent to choosing the state trajectory with the largest

), because the weights are dependent on both the

importance weight, i.e. max wff
target distribution p(o.n|y0.n) and the importance distribution q(g.,|yo.n) that
the particles are drawn from [97]. However, MAP estimates can be obtained by

simply selecting the state trajectory with the largest posterior probability
Loy = argma,xip(m(()fMyOm) (3.36)

The second curse of dimensionality can be addressed by combining this approach

with the Viterbi algorithm [98]. Godsill et al. introduced maximum a posteriori
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sequence estimation using particle filters for the first time [97,99]. Although a
computational cost increases up to Ng per time step as compared to N, for the
canonical particle filter, this approach increases the total number of candidate
state trajectories exponentially with time n. Since the MAP state trajectory may
sequentially choose states from any particle in the population, even particles that
are in unlikely regions of state space may, in an instant, become relevant and
contribute to the MAP se.quence. This solves the sample degeneracy problem
by alleviating the need for particle resampling and the sample impoverishment
problem. Moreover, MAP estimation is more appropriate to represent the most
probable mode of multi-modal distributions than mean estimation that is typically

used with the canonical PF.

MAP estimation combined with the marginalized particle filter can address
all major drawbacks of thé canonical particle filter appropriately. Although Hutter
et al. suggested this approach [100], the recursions have never been derived or im-
plemented. My dissertation will describe a method for combining the advantages
of marginalized particle filters and MAP particle filters based on the Viterbi algo-
rithm and to demonstrate its versatility in various applications that the traditional

extended Kalman filter and canonical particle filter are not suitable for.

The dissertation includes tracking problems in four types of quasi-periodic
signals: single rhythmical component signal, single harmonic set signal, amplitude-
modulated harmonic set signal, and multiple harmonic set signal. Since we take
the state-space model approach to these tracking problems, building the statistical
signal models for them is the first step. The next chapter describes four state-space
models for the tracking problems and explains how each model can be used in the

framework of particle filtering to solve practical tracking problems.



Chapter 4

Contributions

This chapter summarizes the main contributions of the dissertation with specific
applications. There are five main contributions: new particle filtering technique
development, single rhythmical component tracking, single harmonic set tracking,
amplitude modulated harmonic set tracking, and multiple harmonic set tracking.
The first contribution is to develop a new particle filtering algorithm that combines
the advantages of the marginalized particle filter (MPF) and maximum a posteriori
particle filter (MAP-PF) based on the Viterbi algorithm. The second contribution
is to track the instantaneous frequency of a single rhythmical component signal
using the proposed particle filter. Its application is tracking tremor frequency
exhibited in binary spike trains. The third contribution is to track the fundamental
frequency of a single harmonic set signal. Electrocardiogram (ECG) is a typical
example of a single harmonic set signal. The new particle filter will be used to
track the heart rate (fundamental frequency) in ECGs. The fourth contribution is
to track the degree of amplitude modulation in an amplitude modulated harmonic
set signal, where one harmonic set is amplitude-modulated by the other. Tracking
the pulse pressure variation (PPV) index in arterial blood pressure (ABP) recorded

from subjects under full respiratory support is an excellent application of amplitude
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modulated harmonic set tracking. The last contribution is to track the fundamental
frequencies and the degree of amplitude modulation in a multiple harmonic set
signal. Its application is tracking the respiratory rate, heart rate, and PPV index

in ABP signals recorded from spontaneously breathing subjects.

4.1 New Particle Filtering Technique

A newly proposed particle filter is called the maximum a posteriori adaptive
marginalized particle filter (MAM-PF). This is a hybrid particle filtering method
that leverages the advantages of the maximum a posteriori particle filter (MAP-
PF) and marginalized particle filter (MPF) algorithms. As mentioned previously,
the canonical PFs suffer from two curses of dimensionality due to the fact that the
number of particles IV, for reasonable approximations of a posterior:i distribution
scales with both the state dimension ¢ and duration of the observation sequence
n. The MPF portion of the new algorithm handles the state dimension ¢ effi-
ciently by partitioning the state into the linear and nonlinear portions as shown
in (3.31)-(3.33). The sequential Monte Carlo method (SMCM) is applied to only
the nonlinear portion of the state while the linear portion is optimally estimated
by adopting the linear Kalman filter recursions. The MAP-PF portion of the new
algorithm addresses the curse of dimensionality related to the duration of the ob-
servation sequence n. The MAP-PF portion of the new algorithm permits the
particles to densely cover the nonlinear portion of the state space. This prevents
the sample impoverishment problem that would normally be caused by resam-
pling. The MAP-PF portion of the new algorithm also addresses the issue of how

to represent of the multi-modal posterior distribution appropriately. Typically, the
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canonical PFs estimates the state as the mean of the posterior distribution. How-
ever, it is inappropriate when the distribution becomes multi-modal. The MAP-PF
portion of the new algorithm calculates MAP estimation that corresponds to the
most probable (tallest) mode of the multi-modal posterior distribution based on

the Viterbi algorithm.

One of the critical issues in combining the Viterbi algorithm for MAP es-
timation and the MPF algorithm is accounting for the model error caused by
evaluating the model at improbable state trajectories. Sample impoverishment
refers to a phenomenon where all particles collapse to only highly probable state
trajectories due to resampling. Under that situation, the model is evaluated at
only highly probable state trajectories and the model error is negligible. However,
this is not the case when applying the Viterbi algorithm to obtain MAP esti-
mation since the particles cover the nonlinear portion of the state-space densely
without the sample impoverishment issue. In the case where the likelihood func-
tion p (yn|y0;n_1, mg’(i)) must be evaluated for particles zn'® whose values may
be far away from probable values. Since there is only one true state trajectory and
the particles cover the state-space densely, most particles become associated with
improbable state trajectories. Therefore, for most particles zn ®) the variance of
measurement prediction residual, i.e. y, — g:l]O:n—l’ becomes much larger than the
measurement noise variance R,,. This underestimation of the prediction error
causes the likelihood function to have a distribution that is too narrow, which in
turn distorts the posterior distribution and ultimately leads to suboptimal par-
ticle selection. One elegant solution to this problem is to continuously estimate
the prediction error covariance from the residuals for each particle. The adaptive

covariance estimation method proposed by Myers is adopted and modified [101].
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This is why the new particle filter is called the maximum a posteriori “adaptive”

marginalized particle filter (MAM-PF).

Another critical issue in combining the Viterbi algorithm for MAP estimation
and the MPF algorithm is handling the likelihood function p (yn|y0:n_1,w71f’(i))
appropriately during the Viterbi process. This likelihood function represents the
distribution of the prediction error based on all the past measurements yq.,_; and

(

the current nonlinear state wg i). This likelihood function can be obtained from

the linear Kalman filter recursions as,

, L,k i
D (ynlyO:n—ly mg’(z)) =p (yn|mn|(();r)b_1) :Bg)(l)) . (41)

It is important to recognize that when the Viterbi algorithm maximizes the likeli-
hood function, it searches for the best (most probable) trajectory over the nonlinear
P (wg(z)m:_(lf)) ahd linear p (ynlazylf ’(i), ﬁ:ﬁu()kg_l) portions of the state space where
k=1,...,Np. This means that the MAM-PF algorithm requires that the linear
Kalman filter recursions be applied NV, times for each particle. This is essentially
so that the maximization over all possible previous trajectories correctly accounts
for the effect of the linear state estimates on the likelihood function. Applying the
linear Kalman filter recursions IV, times for each particle requires too much com-
putational power and makes the MAM-PF impractical. It is necessary to reduce

the computational burden of the MAM-PF significantly without compromising its

performance.

To summarize, the first contribution is to propose a new particle filter algo-
rithm (MAM-PF) that leverages the advantages of the MAP-PF and MPF algo-

rithms and devise a way to reduce its computational burden greatly with minimal
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performance loss.

4.2 Single Rhythmical Component Tracking

The single rthythmical component signal model (measurement model) can be writ-

ten as,

Yn = Qo + @1, 08 (0,) + @z psin (6,) + v, (4.2)

where 6,, is the instantaneous angle of the fundamental frequency f,, aq, the
signal trend, a;, and a,, the sinusoidal coefficients, and v, a white Gaussian
noise with variance r,. In this model, the signal v, is only a nonlinear function
of the instantaneous angle 8,,. Given the instantaneous angle 8,,, the state-space
model is a linear function of the other parameters such as the coefficients a; , and
aszn and the signal trend g,. These linear parameters can be estimated optimally
using the Kalman filtering technique. Since the parameters are not known in

practical applications, it is common to use a random walk model [74]. That is,

apnt+1 = Qop + Ug,n (43)
Q1nt+1 = A1p + WUa,n (44)
A2n+1 = A2y + Ugn (45)

where u. represents a white Gaussian noise with variance ¢q,, . The instantaneous
angle @, however, can be modeled based on some domain knowledge. For the ap-
plications included in the dissertation it is known that the instantaneous frequency

fn changes slowly within a certain range. Therefore, the instantaneous angle 6,
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can be modeled as,

Foi1=9[Fo+us,] (4.6)
fn+1=fn+a(fn_fn)+uf,n (47)
Oni1 = 0, + 21T2 1, (48)

where f, is the mean fundamental frequency, T is the sampling interval, « is an
autoregressive (AR) coefficient, and g[-] represents a nonlinear reflecting function
to account for the limited frequency range. A value of & = 1 results in a random
walk model while o = 0 results in a white noise model. The nonlinear reflecting

function can be expressed as,

fmax_(f_.fmax) fma.x<f
9lfl=q¢ Funin < f < frna (4.9)

\fmin+(fmin_f) fgfm'm

where fiin and frax represent the extreme frequency values.

Single rhythmical component tracking is a special case of the multi-harmonic
tracking where the number of rhythmical components is one. In this case the
posterior distribution of the frequency is unimodal. The application of the single
rhythmical component tracking technique is tracking the frequency and magnitude
of tremor activity in binary spike trains. Binary spike trains are a sequence of 0’s
and 1’s where 1’s correspond to a neuronal cell’s firing activity. Binary spike trains
are constructed from microelectrode recordings (MERs), which represent electrical

activities of neuronal cells in the brain. MERs recorded during neurosurgery for
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subjects with movement disorders such as Parkinson’s disease and essential tremor
often contain pathophysiological rhythmicity. This rhythmicity is exhibited in
MERs through pulse frequency modulation that causes the fluctuations in the
mean firing rate of neuronal cells. Physiologically, the rhythmicity is due to local
synchronization of neuronal cells. It is often called “tremor” because its frequency
is similar to that of physical tremor of the limbs. It is intermittent and usually
does not have any harmonic structure. Analyzing the frequency and magnitude
of tremor in binary spike trains is a critical step for further study to characterize
the relation of two or more tremor signals [102,103]. This relationship is often
referred to as phase coupling, which is an important clue for the origin of tremor

in movement disorders [104, 105].

Hurtado et al. have conducted the most thorough study of tremor signals to
date [103]. They relied on the Hilbert transform to estimate Gabor’s analytical
signal and to track the tremor frequency of binary spike trains. However, binary
spike trains rarely meet the condition necessary for this estimation to be accurate.
More importantly, their method can track only tremor frequency. I developed a
tremor tracker based on the extended Kalman filter (EKF) [20], which can track
both the frequency and intensity of tremor in binary spike trains. Since the pos-
terior distribution of the tremor frequency is unimodal in tremor tracking, a new
tremor tracker based on the proposed particle filtering method may not outper-
form the EKF-based tremor tracker substantially. However, it is still worthwhile to
compare the performance of two tremor trackers based on synthetic and real binary
spike trains. Specially when the tremor suddenly starts and stops, the new tremor
tracker may be able to lock on to the tremor more quickly than the EKF-based

one.
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4.3 Single Harmonic Set Tracking

The single harmonic set signal model (measurement model) can be written as,

Ny

Yo = Qo + Z a1k cos (k6,) + asp,sin (k6,,) | + vy, (4.10)
k=1

where Ny, is the number of harmonics or partials (assumed to be known), @, the
instantaneous angle of the fundamental frequency f,, ao, the signal trend, @,
and @q ., the sinusoidal coefficients of the k'™ partial, and v, is a white Gaussian
noise with variance r,. The process models for the sinusoidal coefficients a; . »
and agn, the signal trend ag,, and the angle 8, are the same as in the single

rhythmical component signal model in (4.5) and (4.8).

The single harmonic set signal model in (4.10) is a linear function of the
coefficients a1, and as s, and the signal trend ag, given the instantaneous an-
gle 8,. Therefore, these quantities can be marginalized and calculated optimally
using a linear Kalman filter. However, the fundamental frequency f, has a non-
linear relationship with the signal y,, and its posterior distribution is multi-modal.
The particle filtering technique can handle this multi-modality of the distribution
properly. When the posterior distribution is multi-modal, the MAP estimate is
generally a more reasonable estimate than the mean estimate since the mean of
the distribution may be improbable. Therefore, the proposed maximum a posteri-
ori adaptive marginalized particle filter (MAM-PF) is an appropriate method for

multi-harmonic tracking.

Its application is tracking the heart rate in ECGs. Most heart rate estimation

techniques involve beat detection algorithms. The heart rate, then, is defined as the
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inverse of intervals between detected beats. However, this approach is susceptible
to noise and does not provide a continuous estimate of the heart rate. More
critically, it requires a very reliable beat detection algorithm, which is difficult
to design and implement. In contrast, the MAM-PF multi-harmonic tracker can
estimate the heart rate in ECGs accurately even when they are contaminated by
severe noise due to medical interventions and/or the mechanical system. It also

provides a continuous measure of the heart rate.

Traditional multi-harmonic tracking techniques such as PDAs often pay at-
tention to only the fundamental component in the signal. However, it is not
uncommon that the fundamental component in ECGs has less power than higher
harmonic components. It is, therefore, challenging to estimate the heart rate in
ECGs using traditional techniques. The MAM-PF multi-harmonic tracker esti-
mates the fundamental frequency, i.e. heart rate, by taking into account the har-
monic relationship between the fundamental and harmonic partials. Therefore, it
can estimate the heart rate even when the fundamental partial is not present in the
signal. The MAM-PF multi-harmonic tracker will be compared to the EKF-based
multi-harmonic tracker using synthetic and real ECG signals. The main purpose
of this comparison is to demonstrate that the MAM-PF multi-harmonic tracker
can handle the multi-modality of the posterior distribution of the fundamental

frequency f than the EKF-based one.

4.4 Amplitude Modulated Harmonic Set Tracking

The amplitude-modulated harmonic set signal model is for quasi-periodic sig-

nals containing two harmonic components where one component is amplitude-
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modulated by the other. The amplitude-modulated harmonic set signal model

(measurement model) can be expressed as,

Ny
Yn =Gop + 10 + D MinS2jn + Vn (4.11)
k=1
Nin
S1p = Z Q1 kn cos (k01 ,) + Goppnsin (kO ,,) (4.12)
k=1
Nin
M =1+ ) @3nC0S (jO1,n) + G jnsin (j61,0) (4.13)
j=1
Nan
Sokn = Z as k.n cos (kOs ) + ag k. n sin (kOs,,) (4.14)
k=1

where 81, and 8y4, are the first and second harmonic set, my, the amplitude
modulation factor, N;y a known number of harmonics of the first harmonic set,
Ny p that of the second harmonic component, 6, the instantaneous angle of the
first harmonic component, and 6, ,, the instantaneous angle of the second harmonic
component. The process models for the sinusoidal coefficients {@1 tn, - .., @6k n},
the signal trend ag, and the instantaneous angle 6, ,, are the same as in the single
rhythmical component signal model in (4.5) and (4.8). The instantaneous angle

0, ,, is modeled as in (4.15).

Multi-harmonic tracking is for signals which contain a single set of multi-
harmonics. However, some signals can contain multiple sets of multi-harmonics.
Multiple sets of multi-harmonics often have a nonlinear interaction with each other.
One possible nonlinear interaction is amplitude modulation. Here, it is assumed
that the signal has two multi-harmonic sets and the first harmonic set modulates
the amplitude of the second. The main goal is to measure the degree of amplitude

modulation. A secondary goal is to estimate the fundamental frequency of the
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second harmonic set.

This problem arises in tracking the pulse pressure variation index (APP) in
ABP signals recorded under a full mechanical ventilation. The respiratory rate
is known and constant since patients are under full mechanical ventilation. Since
the first harmonic set s;, models the respiratory component, the fundamental
frequency of the first harmonic set is modeled to be constant. Therefore, the

instantaneous angle of the first harmonic component 0, , can be written as,

91771 = 27TTLT'Sf1 (415)

where f; is equal to the mechanical ventilation rate.

The pulse pressure variation index in ABP signals simply denotes the degree
of amplitude modulation of the cardiac component by the respiratory component.
Numerous studies have shown that the pulse pressure variation APP is one of most
specific and sensitive predictors of fluid responsiveness in mechanically ventilated
patients [106]. The current state-of-art in estimating the pulse pressure variation
index relies on a beat detection algorithm, which is susceptible to noise [107]. In
this dissertation a novel automatic algorithm is proposed to track the pulse pressure

variation index continuously without utilizing any beat detection method.
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4.5 Multiple Harmonic Set Tracking

The multiple harmonic set signal model (measurement model) can be expressed as

follows,
N: Njn
Yn = Qop + Z Z a1 kncos (k0 ,) + asjknsin (k6;,)| + v, (4.16)
j=1 k=1

When N, is the number of harmonic components, N; the number of harmonics or
partials of the j*" harmonic set, and 0; » the fundamental angle of the 5*® harmonic
set. The process models for a;;n, @on, and @;, are the same as in the single

rhythmical component signal model in (4.5) and (4.8).

The number of harmonics N, may be given or need to be estimated. A simple
estimation method is using a conservative upper bound on N, where the excessive
partials’ coefficients will be estimated as nearly zero at a cost of extra variance. If
some pilot data is available, N}, can be estimated more accurately based on spectral

analysis of the pilot data.

Multiple harmonic set tracking is the most general case of multi-harmonic
tracking. In this case the number of harmonic sets is more than one and the
fundamental frequency of each harmonic set is unknown and time-varying. The
type of nonlinear interactions between the multi-harmonics sets is also not lim-
ited to one. For example, two multi-harmonic sets can interact with each other
through amplitude modulation and frequency modulation. Here it is assumed that
there are two multi-harmonic sets and the first set modulates the amplitude of
the second. The dimension of the particle filtering space is two since there are

two fundamental frequencies to track. Applying the MAM-PF to multiple har-
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monic set tracking is difficult for a couple of reasons. The most critical reason is
that the computational burden of particle filtering increases exponentially as the
dimension of particle filtering increases. For instance, if N, particles are needed
to track only the fundamental frequency of the first harmonic set, the number of
particles needed to track both the fundamental frequencies of two multiharmonic
sets is Ng. One solution is to partition the multi-dimensional (2-D) space of par-
ticle filtering into two 1-D spaces. Having particles cover two 1-D spaces densely
is more efficient than having them cover one 2-D space. However, this partition is
possible only when two fundamental frequencies, f;, and fa,, can be modeled to

be independent of each other.

One application is tracking the respiratory component, the cardiac compo-
nent, and the interaction between them in ABP signals recorded from subjects with
spontaneous breathing. Currently, there are a very limited number of references on
simultaneous monitoring of those three components in any pressure signals [108].
Accurate and simultaneous monitoring of the respiratory rate, the heart rate, and
their interaction would provide rich information for physicians to diagnose poten-
tial respiratory dysfunction and cardiovascular diseases. The multiple harmonic

set signal tracker based on the MAM-PF will be a useful tool to achieve this goal.

The subsequent chapters describe each of the five main contributions: new
particle filtering technique (Chapter 5), single rhythmical component tracking
(Chapter 6), single harmonic set tracking (Chapter 7), amplitude modulated har-
monic set tracking (Chapter 8), and multiple harmonic set tracking (Chapter 9).
The focus of Chapter 5 is to explain the theoretical and technical part of developing
the new particle filtering method while the rest chapters are focused on explaining

the clinical importance of the applications and describing methodology for them.



Chapter 5

New Particle Filtering Method

This chapter describes details of two versions of the new particle filtering technique
and other conventional variants of particle filters. The simulation results based on
synthetic signals in this chapter also demonstrate the superior performance of the
new particle filtering technique in comparison to a conventional particle filter,

which is applicable to the state-space model in (3.31)—(3.33).

5.1 Algorithm Development

Several research groups have used the term “marginalized MAP estimation” to de-
scribe algorithms for various applications such as a fault diagnosis for autonomously
operating systems [100], state estimation of jump Markov linear systems [109],
tempo tracking and rhythm quantization in music [110], and detection for Orthog-
onal Frequency Division Modulation (OFDM) systems [111]. Doucet et al. de-
scribed an algorithm that obtains the marginal MAP estimate of the state of a
Jump Markov Linear System based on Markov chain Monte Carlo (MCMC) meth-
ods [109].. Cemgil et al. discussed the possibility of computing the MAP trajectory

after integrating out (Rao-Blackwellizing) the hidden variables based on the SMC
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methods [110]. However, they were aware that Rao-Blackwellization causes cou-
pling between all possible particle trajectories and that the Viterbi algorithm does
not find the actual MAP trajectory in this case. In order to find the true MAP
trajectory, they suggested to apply an iterative improvement technique or simu-
lated annealing to the best trajectory obtained by running the Viterbi algorithm,
though this also only produces an estimate of the optimal MAP trajectory. Yee
et al. used Rao-Blackwellized SMC methods to develop a MAP detector for re-
alistic orthogonal frequency division multiplexing (OFDM) systems [111]. They
divided the estimation problem into two stages: marginalization and MAP esti-
mation. They first utilized the marginalized particle filter (MPF) to obtain the
minimum mean-square-error (MMSE) estimate of encoded symbols and searched
for the MAP estimate of original symbols based on the MMSE estimate of encoded
symbols. None of these algorithms can be applied to general stochastic processes
that can be expressed in the form of (3.31)—(3.33) and asymptotically converges

to the optimal solution.

5.1.1 Standard Resampling Particle Filter

The standard resampling particle filter algorithm incorporates the stratified re-
sampling scheme to overcome the sample degeneracy issue [112]. In the stratified
resampling scheme, particles are resampled when the estimated number of effective
particles N, becomes smaller than a user-specified threshold, N;. The number of

effective particles is given by

Ny=—"y (5.1)
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where wg) is a normalized importance weight of the i*" particle and N, is the
number of particles. The normalized importance weights w, are calculated at
each time index from the unnormalized importance weights w,,, which are derived
from the normalized importance weights from the previous time index w,,_;. Here

it is assumed that the importance density has been chosen such that it can be

factored as,

Q(mO:nlyO:n) - Qn(mnlmO:n—la yO:n)q(wO:n—llyO:n—l) (52)

so that the importance weights can be calculated recursively as follows, Then, the

weight update recursion can be written as,

5@ — p® p(yn|mg))p(m£§)|w£:)_1

w,) =w,’, S (5.3)
" dn (331(—:) [m;)—lv yO:n)

where represents an unnormalized importance weight at time n and 'w,(:ll
a normalized importance weight at time m — 1. This recursion is mathemati-
cally sound but cannot be implemented since the marginal importance density
@n(Tn|Zo:n-1, Yon) is & quantity that we are trying to obtain. There are several
ways to estimate the marginal importance density. The most common choice is
to substitute it with the prior probability given by the process model p(x,|z,—1).
The weight update recursion in (5.3), then, is simplified as follows,

o Plyslaen)p(er |z )

21 - -
g (@P12Y ) yom)

= w p(y,|z®) (5.4)

w = w
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where the current weight is the previous weight multiplied by the likelihood func-

tion, p(ynla:,(f)) The current weight %% is normalized as follows,

- (3)
@ _ __Wn
w, = S o) (5.5)
7 n

Algorithm 1 explains the details of the standard resampling PF.
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Algorithm 1 Standard Resampling Particle Filter (PF).

Initialization
fori=1, - ]\7p do
Sample :i:ol ~ mo(Zo|Yo)

Calculate initial 1mp0rtance weights:
W) = mo(ao)p(yol )

end for
for i =1,...,N, do

~ (1 N,
wf —wé/z gl
end for

Sequential Importance Sampling
forn=1,...,Nr do
if N, > N; then

fori=1,...,N, do

=0, =5,

end for
else
Set k=1and 7 =1/N,
fori=1,...,N, do
while 'w( ) <7 do
k= k+1
end while
MO
wil, =1/N
T=7+1/N
end for
end if
fori=1,...,N, do
jg) (~(1)|ws)};y0n2 )
ONENNO p(yn|&n )p(&Er |, |
w,(l) =w,, GO | youm)

end for
fori=1,...,N, do
G _  w®

end for
end for
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5.1.2 Maximum A Posteriori Particle Filter (MAP-PF)

The MAP-PF utilizes the Viterbi algorithm to provide the MAP sequence esti-
mate of the state. By utilizing the Viterbi algorithm the MAP-PF can avoid
the sample degeneracy and sample impoverishment problems of the standard PF
method [97-99]. Therefore, the MAP-PF does not require any resampling scheme,
which is devised to overcome the sample degeneracy problem but causes the sample

impoverish problem.

The MAP-PF algorithm is memory-efficient because at each sample time the
Viterbi algorithm discards Ng — N, possible trajectories and only retains the N,
most probable ones. Here is how it is done. Each particle is propagated from the
previous time index n — 1 to the current time index n according to the marginal
importance density g¢,(®,|Tn_1,¥Yon). Then, the MAP-PF searches all possible
trajectories of each particle for the most probable trajectory, which can be expressed

as,
k* = argmax o' p (mﬁf)lmgc_)l) (5.6)
k

where k* represents the index of the most probable trajectory. Although the

) is propagated from . the MAP-PF treats a:g) as if it is

current particle mﬁf nels

propagated from m;k_*i Among all possible trajectories N, only the most probable
path survives and the rest N, — 1 are discarded. Since this searching process

is repeated for all particles N, the number of trajectories that are discarded is

(N, — 1) N, = N2 — N,

It is important to understand that the MAP-PF does not calculate or track
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importance weights w) for each particle as in the standard resampling PF. The
reason is that the MAP-PF does not estimate the mean or other moments of
the state posterior distribution. Instead the MAP-PF simply tracks the posterior
probability of each state trajectory, which is represented by the coefficient ag).

Algorithm 2 explains the details of the MAP-PF.
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Algorithm 2 MAP Particle Filter (MAP-PF).

Initialization
fori=1,..,N, do
( i)

Sample xy” ~ mo(xo)
:; <ommm%
2y = ‘Eo

end for

t* =ar 0
= argmax o,
i

Zi)() = a:(()z*)
Sequential MAP Estimation
forn=1,...,Nt do

fori=1,..,N, do
z) ~ qn(wn 21, yon)
end for
fori=1,..,N, do
k* = argmex a® p(d |z, )

= (<50, a8

of = ol )p(@? |z )p(yalx)
end for ’
= argma.x aﬁf)
mO n z(() n)
end for
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5.1.3 Marginalized Particle Filter (MPF)

The marginalized particle filter (MPF') can be applied to special state space models
in which a portion of the state space is nonlinear and the other portion can be
modeled as a linear process conditional upon the nonlinearbportion of the state
vector. When this partition can be performed, the linear portion of the state can
be sequentially estimated using the conventional linear Kalman filter and particle
filtering can be used to estimate the nonlinear portion of the state vector. There are
several advantages of using the MPF algorithm when the partitioning of the state
vector is possible. First, partitioning the state vector reduces the dimensionality of
the state space where particle filtering needs to be used. Since particle filtering is
computationally expensive, it is advantageous to limit the use of particle filtering
to a portion of the entire state space. Secondly, the MPF reduces the variance
of the posterior distribution estimation by providing an optimal estimate for the

linear portion of the state space.

The main difference between the standard PF algorithm and the MPF al-
gorithm is that the latter has the linear Kalman filter recursions between the

particle propagation and the weight update steps. On the particle propagation

step only the nonlinear portion of the state zn ®) is obtained according to the

N,(3)

marginal importance density g, a0 , Yon)- After incorporating this nonlin-
Yy n—1>Y

ear state into the state-space model in (3.31)-(3.33) the state-space model becomes

completely linear with respect to the linear portion of the state mk’(i). Then, its

L,(%)

filtered quantity :BEK()IL and predicted quantity x,_ t1j0m

are computed sequentially

via the Kalman filter recursions. In order to complete the weight update recur-

sion the probability p(yr(f)|yo;n_1, mg’(i)) needs to be computed. The probability
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p(yr(f)lyo;n_l, mg’(i)) can be written as,

P Yom—1, 2ND) =yl _, 2N ®)

~ N(gfzzl)()n— 1’ R(el,)n)
where

n|0:n—1 n|0:n—1

RY), = H,(z¥®)ct) = H, (X)) +R,.

n|0n—1"""7

Algorithm 3 explains the details of the MPF.

92

(5.7)

(5.8)
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Algorithm 3 Marginalized Particle Filter (MPF).

Initialization
fori=1,..,N, do
Sample x, NG ~ To(x)
25 = B |ap®)ag®
Initial Weight Calculation:
5 = p(yoleg™”, z)
end for
Marginalized Sequential Estimation
for n=20,..., Nt do
if N, < N, then
Resample
end if
fori=1,..,N, do
Particle Propagatlon
:BN ,(3) ~ g ( N, (1)
n
Kalman Filtering
Measurement Update:

: \T

Rgi>n=H (@) Cp Ha (2207 + R,
T, -1

K Cn|0n 1H (a:N (z)) (R(ez,)n>

NO) _ (8 4 L,(3)
ynZIO:n—l H, (:L'n )wn|01:n—1

~L(1) % L,(3) . (1)
wn|0:n - n]O n—1 + K [yn - yn]O:n—l]

— N, (i (@)
Cn|0n - [I - K H, (il?n ))] Cn]O:n—-l
Time Update:

N,(i
Zn?, Yon)

~L N, (i) aL,(2
mn<i(-11)|077, = Fn (wn (z))mn|(()l')n .
07(3-110 n Fn(w'rlj’(Z))CnIO:nFn(mg’(z))T +Q;

Weight Update '
p(y’n'yOn l’wOrS)) N(yf':])On l’Rgvz%)

B = o . P om v Op(ah V2l )
s n = Woa an(zn g, | youn)
end for
fori=1,...,N, do
‘IUn - Zan,a,gLJ)
7
end for

end for




CHAPTER 5. NEW PARTICLE FILTERING METHOD 94

5.1.4 Optimal MAP Adaptive Marginalized PF (MAMPF)

One can apply the Viterbi algorithm to obtain the MAP state trajectory within the
canonical particle filter framework [97,99]. However, the Viterbi algorithm does
not guarantee the true MAP state trajectory when the state vector is marginalized
[110]. It has never been described how to obtain the MAP state trajectory with

the marginalized state vector within the particle filter framework.

The MAM-PF is a hybrid particle filtering method which leverages the advan-
tages of the MAP-PF and MPF algorithms. The MAP-PF portion of the algorithm
permits the particles to densely cover the nonlinear portion of the state space.
While this prevents the sample impoverishment problem that would normally be
caused by resampling, it also means that the likelihood function p (yn |Yom_1, Th ’(i))
must be evaluated for particles zn® whose values may be far away from probable
values. In this case some of the variation in y, caused by the true underlying state
would not be accounted for and the residual variance y, — Ynjo:n—1 Will be much
larger than the measurement noise R,,, or the prediction error R, provided by
the Kalman filter recursions. This underestimation of the prediction error causes
the likelihood function to have a distribution that is too narrow, which in turn
distorts the posterior distribution and ultimately leads to suboptimal particle se-
lection. This is a critical problem that has not been addressed previously and only
occurs when attempting to use both marginalization and MAP estimation with

the Viterbi algorithm.

One elegant solution to this problem is to continuously estimate the pre-
diction error covariance from the residuals for each particle. We adopted and

modified the adaptive covariance estimation method proposed in [101]. To ensure
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that the estimated covariance matrix is positive semi-definite, we propose using an
eigenvalue decomposition of the covariance matrix and eliminating all non-positive

eigenvalues. We denote this operation as [R], .

A second critical issue that occurs in merging marginalization and MAP
estimation is that the likelihood function p (yn|y0n l,mn’( )) must be handled
carefully because it is only conditioned on the nonlinear portion of the state vector.
This distribution can be obtained from the Kalman filter recursions, as was done

for the MPF

(yn|y0n 1, Ly ’(1)) (yn]mmon 1)37N(l)> (511)

~ N(anOn D R(z) ) (512)

However, during the maximization over all past trajectories it is crucial to recognize
that this includes the linear portion of the state space, a:n“(;n 1» unlike the MAP-
PF. Algorithm 4 explains a complete account of the Optimal MAM-PF recursions.
The covariance coefficient [ is a user-specified parameter that controls the memory

of the recursion for first order recursive estimation of the adaptive signal prediction

error covariance, R, ,.
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Algorithm 4 Optimal MAM-PF.

Initialization
fori=1,..,N, do

Sample zy'” ~ mo(zy) & &5 = E |2h@ |}

ay =m (wg’(i)) p(wolzy ¥, 25 ) & 2 = 2

end for _
i* = argmax o) & &, = x¥
i
forn=1,..., Nr do
fori=1,..,N, do

Particle Propagation: zn'® ~ g, (wN @t (i),yn)
Marginalized Sequential Estimation
fork=1,...,N, do

yn|0:n—1 = Hn (mg,(z)) £|(()k7)l 1 & €n = gniO:n—l

B[t - 1) 1 (ms«iy]
Ry = ’BRvn 1+ (1 -=PB)Ry,
R,(ak% = Hn< N(z)) C1S|3n 1H (mn (1)) n A(;;)L

'—cf, i H ( O)(r)"

+

pLo(k) _ 2L (k) - (k)

wnIO o n|0 n— 1—|_ Kn [ yn[O:n—l]
(k) (k) N, (i) (k)

Cln = |1 - KPH(2N0)|

n[O n n+1{0:n~

iyl;flll:))n F, ( N(l)) alo(k) o R E, (mg,(i))

end for
MAP Estimation

k*—argmax o )1p(yn|wn @) ﬁn|(()]2_1)17< N9 (k))

N ~ k* *
0453)=ai 1p<yn|w @i 1)19( D ))

(@) _ k*) (4,k™)
Cnl+1|0n an-l-lIOn & R"z R’Ulvn

~ L,()
T n|0mn

end for
Update MAP State Estimate
i* = argmax al? & &gy = 2,

end for

n+1j0:n = wnizllli)*zl & ifg) = [aA)L’(I.c*) wgv(z)] & z(z) _ [

z)>+Q
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5.1.5 Fast MAP Adaptive Marginalized PF (MAMPF)

A key computational disadvantage of the Optimal MAM-PF algorithm is that the
linear Kalman filter recursions must be applied NV, times for each particle, which
results in Ng Kalman filter recursions for each time update of the state estimate.
This is necessary to ensure that the maximization over all possible previous trajec-
tories correctly accounts for the effect of the linear state estimates on the likelihood
function, which is given by p (:1:n|:1371;I ’(i), ﬁ:£|(()k7)z—l) for the i*® particle. However, in
most cases the likelihood function does not strongly affect the selection of the pre-
vious trajectory and this term can be eliminated from the MAP estimation step.

Therefore, the searching step for the most probable trajectory can be simplified as

follows,

" k ) ALk )N (R
k™ = arginax agz—)lp (ynla’g’(l)’ mn|é:'r)z—1) p(mg’(l)lwn—(l)) (5.13)
k D AL )1, (k
~ arginax C“;—)ﬂ? (yn|33rlj’(l), mn[élzzz—l) P(mf’“)lwn_(l)) (5.14)
= argmax a® p (asg(l)lms_(lf)) . (5.15)

This approximation sacrifices the asymptotic optimality of the Optimal MAM-PF,
but substantially reduces the computational burden since the selection of the most
probable trajectory for a single particle no longer requires N, times of the Kalman
filter recursions for all possible past trajectories. Rather, the most probable tra-

jectory can be determined before the Kalman filter recursions since (5.15) does not

L,(k)
n|0:n—1

require any linear state estimates & or aA:::K()z)n_l In other words, the selection
of the most probable trajectory is not affected by new information buried in the

current measurement y,. Algorithm 5 explains the details of the Fast MAM-PF.
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Algorithm 5 Fast MAM-PF.

Initialization
fori=1,..,N, do
Sample a:gl’() mo(z)) & & AL(l E[ L’(i)| (@)
al = 7, (mo,( )) (y O gL z)) & 2 = g
end for

i* = argmax o) & & = i)
(2

for n=1,..., Nt do
fori=1,..,N, do
MAP Estimation

Particle Propagation

wg,(i) N,(2)

N,(2)
~ dn (wn |mn 1 yn)
k* = argmax a( )1p( N(l)|wrl\:’_(’f))

Margmallzed Sequential Estimation
Measurement Update

Ynjom—1 = Hy, (wrlj’(i)) ,I:K()k; L & en = Yn — Ynjon—1
Ryn —{ene —H, ( ()) Cfl"“O;L_lH (mrl\f (l)) ]
Ry = BRY), + (1 AR, )
Ren=H,(ah®) cY) 1 (mif(”) +R,,
K= ) (o (e

C'n|0:n = [I - K,H, (:ETI\LI,(Z)>:| Cr(z,r;:)rz—l
Time Update
n = Rv n Af{_}(_zl)m n Fn (wg’(l)> é11;|O:'n
. N\ T
C,(;)Ll|0n =F, (wS,(z)) Chjonfn (mvlj'(z)) +Q;
al) = aff_*)p(ynlivN 0 w,rjlékn)_l) p( Vg )>

& = [:&L Ly (z)] & 20 = [z(()k;)l, mg)]

L,(k*

wnIOn ,+ Kpe,

n|0:n

n|0:n’
end for
Update MAP State Estlmate
¥ = argmax al? & &, = zi.

end for
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5.2 Particle Filtering Algorithm Comparison

The previous sections described five different particle filter algorithms: standard
resampling PF, MAP-PF, MPF, Optimal MAM-PF, and Fast MAM-PF. Among
them only three algorithms are compared in terms of performance and computa-
tional load. Three PF algorithms include the MPF, Optimal MAM-PF, and Fast
MAM-PF. The standard PF and MAP-PF algorithms are not considered for the
comparison since they do not use marginalization to reduce the dimension of the
nonlinear state where particle filters are used. These offer no advantages over the

remaining three algorithms that utilize marginalization.

Multi-harmonic signal tracking is an excellent example where the state can
be partitioned into the nonlinear and linear portions as in (3.31)—(3.32). The
signal (measurement) model of the single harmonic set signal (simplest form of a

multi-harmonic signal) can be written as,

Nn

Yp = Un + Z ayn cos (kOy,) + by nsin (k6,) | + v, (5.16)
k=1

where Ny, is the number of harmonics or partials (assumed to be known), 6, the
instantaneous angle of the fundamental frequency f,, ¥, the signal trend, ay,, and
by the sinusoidal coefficients of the k" partial, and v, is a white Gaussian noise

with variance r,,.

The nonlinear portion of the state !\ includes the fundamental frequency f,
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and the instantaneous angle 8, whose process model can be expressed as,

fn-H =g [fn +uf,n}
Sy = fn +a (.fn - fn) +Usn

0,11 =0, + 21T, f> (5.17)

where f, is the mean fundamental frequency, T is the sampling interval, « is an
autoregressive (AR) coefficient, and g[-] represents a nonlinear reflecting function
to account for the limited frequency range. The linear portion of the state zX
includes the sinusoidal coefficients and the signal trend whose process model can

be written as,

Qi nt+l = Ak + Uan (518)
bint1 = brn + Uy (5.19)
Yn+1 = Yn + Ugn- (520)

In order to compare three particle filter algorithms, I implemented three
multi-harmonic trackers utilizing those algorithms. All three multi-harmonic track-
ers share the same state-space model described above. Then, those trackers were
applied to multi-harmonic signals that are synthetically generated based on the
state-space model. Fig. 5.1 depicts the spectrogram of a synthetically generated
5 min multi-harmonic signal whose number of harmonics IV, is 10. Table 5.1 sum-

marizes the parameters used to generate the synthetic signals.

In order to quantify the performance of the multi-harmonic trackers, two per-

formance measures are computed: normalized mean-square-error (NMSE) of the
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Figure 5.1: Spectrogram of a synthetic multi-harmonic signal with 10 harmonic

partials.

Table 5.1: List of user-specified parameters to generate synthetic multi-harmonic

signals.
Name Symbol Value
Number of harmonics Ny 10
Sampling frequency fs 40 Hz
Signal duration l 5 min
Number of samples Nt 12,000
Signal-to-noise ratio SNR 10dB
Fundamental mean frequency @ 3T

Frequency coefficient o 0.99
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predicted signal and mean-square-error of the frequency estimate (FMSE). NMSE
measures how accurately the state estimates describe the original signal while
FMSE represents the accuracy of the fundamental frequency estimation alone.
For real signals FMSE typically cannot be computed since it requires knowledge
of the true state which is unknown. NMSE of signal estimation ranges from 0 to
inf. When its value is below 1, the tracker does a better job than a simple signal
meén estimator. If its value is greater than 1, the tracker performs worse than
estimating the signal to be equal to the signal mean. NMSE can be computed as

follows,

Nrp ~ N2
n= yn - yn

NMSE = %NTl Ey 5 ;2 (5.21)
n=1\In n

where ¥, represents the signal mean. FMSE can be written as follows,

S (£ £a)

FMSE =
SI No

(5.22)

whose unit is Hz?. This will be reported as vFMSE since its unit is Hz.

Two plots in Fig. 5.2 depict VFMSE (top) and NMSE (bottom) of the
three multi-harmonic trackers versus relative simulation times. The trackers used
the same number of particles N, = 100. The Optimal MAM-PF multi-harmonic
tracker substantially outperformed the MPF multi-harmonic tracker in terms of
both performance measures. The main reason that the MPF tracker has a substan-
tially larger vFMSE than the Optimal MAM-PF tracker is that the MPF tracker
loses track of the true fundamental frequency occasionally and tracks one of the

subharmonics, which correspond to the local maxima in the posterior distribution
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Figure 5.2: (a) vFMSE versus simulation time. (b) NMSE versus simulation
time. The horizontal lines represent the mean values while the vertical bars the
one-standard-deviation ranges around the means.
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shown in 3.3. The Optimal MAM-PF tracker is less likely to track the subharmon-
ics erroneously than the MPF tracker since the particles of the Optimal MAM-PF
are distributed through the entire fundamental frequency range and do not suffer
from sample impoverishment. The erroneous fundamental frequency tracking of
the MPF tracker also causes its NMSE to be slightly greater than 1. The simula-
tion results demonstrate that the Optimal MAM-PF tracker performs substantially
better than the MPF tracker. However, the issue is that the computational burden
of the Optimal MAM-PF is much greater than that of the MPF. Fig. 5.2 shows
that the Optimal MAM-PF tracker requires approximately 125 times more simu-
lation time than the MPF tracker does. This may be unbearable in many cases
considering that the MPF algorithm itself is already computationally expensive.
In contrast, the Fast MAM-PF tracker requires only 1.6 times more simulation
time than the MPF tracker does while its performance is comparable to the Op-
timal MAM-PF in terms of both FMSE and NMSE. This result is in line with
the fact that the computational burdens of the MPF and MAM-PF algorithms are

proportional to O(N,,) and O(N?), respectively with N, = 100.

5.3 Summary

This chapter provides details of the new particle filtering technique, called the
MAP Adaptive Marginalized PF. The simulation results based on synthetic signals
clearly demonstrate the superior performance of the new particle filtering technique
in comparison to a conventional particle filter such as the MPF algorithm. The
computational burden of the proposed particle filtering technique can be eased

substantially by approximating the MAP state estimation step without sacrificing
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its performance.



Chapter 6

Single Rhythmical Component Tracking

This chapter discusses a practical application of the single rhythmical component
tracking case. The application is tracking tremorous activity exhibited in neuronal
signals of subjects with movement disorders such as Parkinson’s disease (PD) and

essential tremor (ET).

6.1 Introduction to the Clinical Problem

Tremor is one of the most disabling symptoms of many movement disorders such
as Parkinson’s disease (PD) and essential tremor (ET). Each movement disorder
that causes tremor has a typical range of tremor frequencies that are observed
in practice. For example, the tremor frequency of essential tremor ranges from

4-12 Hz [113).

Tremor activity can be measured with many types of instrumentation and
sensors including electroencephalograms (EEG), magnetoencephalograms (MEG),
electromyograms (EMG), accelerometers, gyroscopes, and microelectrode record-
ings (MER). Most tremor signals are quasi-periodic and nearly sinusoidal. The

frequency of quasi-periodic tremorous activities in the signals is called the instan-
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taneous tremor frequency (ITF) and the intensity of them called the instantaneous

tremor amplitude (ITA).

A number of recent studies have focused on characterizing the relationship of
two or more tremor signals. In many cases these signals are obtained from different
types of instrumentation (e.g., MER and EMG). One of the surprising findings
of these studies is that even when two signals contain significant tremor at the
same frequency, these signals are not always coherent or phase-coupled [102, 103].
This suggests that the tremor either originates from multiple sources or that the
tremor is modulated by uncoupled sources of unknown origin. A few studies have

also found that the phase-coupling between pairs of tremor signals varies over

time [103-105,114].

Phase-coupling refers to a phenomenon of synchronization between tremorous
activities in two signals. In the phase-coupling study, the main goal is to measure
the degree of this synchronization between two signals’ tremorous activities. How-
ever, one of the difficulties with studying phase-coupling is that this signal behavior
cannot be characterized with traditional signal processing and time series analysis
techniques that assume that the signals are generated by a linear stochastic process.
These methods are essentially blind to subtle nonlinear effects, such as intermittent
phase-coupling. This presents an opportunity for new signal processing methods
that can estimate how the degree of phase-coupling between pairs of tremor signals
varies over time. In order to measure the degree of the synchronization between
tremorous activities, one first needs to segment the signals into tremor-on and
tremor-off periods based on the tremor strength measurement, which is estimated
instantaneous tremor amplitude (ITA). This step is called tremor detection. The

next step is to track the instantaneous tremor frequency (ITF) of the tremor-on
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periods. It is common to perform the detection and tracking steps separately.

Neuronal recordings such as microelectrode recordings are an important type
of signal to study since they are direct recordings of neuronal activities. Neuronal
recordings are widely modeled as point processes consisting of a series of action
potentials, or spikes, that are treated as all-or-none events. Most researches believe
that all of the useful information is conveyed in the timing of these events. So, it
is common practice to detect spikes in neuronal recordings during the early stages
of analysis and focus all subsequent analysis on binary spike trains that consist of
a 1 at the time of each spike occurrence and 0 elsewhere. Tremor in binary spike
trains is exhibited through pulse frequency modulation that causes fluctuations in
the mean firing rate [115]. The magnitude of fluctuations in the mean firing rate
is the instantaneous tremor amplitude (ITA) and the frequency of the fluctuations

is the instantaneous tremor frequency (ITF).

6.2 Summary of Prior Work

Hurtado et al. conducted the most thorough study of intermittent coupling of
tremor signals to date [103,105]. They studied the synchronization between tremor-
related activities in single-unit spike trains and EMG, where spike trains were
recorded from globus pallidus internus (GPi) and EMG from the abductor pol-
licis (APB) in parkinsonian subjects. Prior to the synchronization study, they
first detected tremor-on periods of the signals relying on traditional time-frequency
analysis. Their tremor detection algorithm involves setting a threshold for instan-
taneous tremor amplitude (ITA). They selected a threshold value based on visual

inspection of the signal’s spectral components. Then, they applied an ITF tracking
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method based on the Hilbert transform to tremor-on periods of the signals. The
Hilbert transform produces an estimate of Gabor’s analytic signal. However, spike
trains rarely meet the conditions necessary for this estimate to be accurate [17].
In particular, the representation of spikes as impulses results in a broad signal
bandwidth that makes it difficult to track a single frequency. My previous work
demonstrated that the Hilbert transform based ITF tracker does not produce an
accurate estimate of ITF [20]. In the same work a Kalman filter based ITF tracker
was proposed and simulation results demonstrated that it outperforms both the
Hilbert transform based ITF tracker and the spectrogram based ITF tracker. Since
the ITF has a nonlinear relationship with the signal, the extended Kalman filter
(EKF) was utilized to implement the proposed ITF tracker, which uses a first-order
Taylor series approximation around estimates of the current state. More recently, I
proposed an extended Kalman smoother based tremor tracker, which can track the

instantaneous tremor amplitude (ITA) and fréquency (ITF) simultaneously [116].

This chapter describes a new tremor tracker which utilizes the fast maximum
a posteriort adaptive marginalized particle filter (MAM-PF). While the EKF based
tremor tracker relies on the local linearization of the current state to handle the
nonlinear relationship between the signal and the ITF, the MAM-PF based tremor
tracker applies the particle filtering technique to estimate the ITF and the conven-
tional linear Kalman filter to estimate the ITA. The subsequent sections describe
the extended Kalman filter based tremor tracker and the MAM-PF based tremor
tracker and compare the performance of two tremor trackers based on synthetic

and real spike trains.
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6.3 Methodology

6.3.1 Measurement Model

The fluctuating firing intensity of binary spike trains can be modeled as follows,
Yn = Q1,€08(0,,) + as, sin (0,) + v, (6.1)

where ), is the instantaneous angle of the instantaneous tremor frequency (ITF),
a1, and ag, the sinusoidal coefficients, and v, a white Gaussian noise with vari-
ance 1. This signal model is the same as the single rhythmical component signal
model shown in (4.2). The instantaneous tremor amplitude (ITA) can be expressed

in terms of the coefficients, a; , and as,, as follows,

Pn = \/ a’%,n + a%,n (62)

where p,, represents the ITA. As mentioned previously, the single rhythmical com-
ponent signal model can be seen as a special case of the single harmonic set signal

model where the number of harmonics or partials is only 1.

6.3.2 Process Model

Given the instantaneous angle 6,,, the state-space model is a linear function of the
other parameters such as the coefficients a1, and as,. These linear parameters
can be estimated optimally using the Kalman filtering technique. Since these

parameters are not known in practical applications, it is common to use a random



CHAPTER 6. SINGLE RHYTHMICAL COMPONENT TRACKING 111

walk model [74]. That is,

ain+1 = A1 p + Ugn (63)

Az nty1 = Q2q + Uqn (64)

where u, , represents a white Gaussian noise with variance ¢,. The instantaneous
tremor angle 8,,, however, can be modeled based on some domain knowledge. It
is well known that the instantaneous tremor frequency (ITF) f,, changes slowly
within a certain range [113]. Therefore, the instantaneous tremor angle 8, can be

modeled as,

fo1 =9 [Fa+uj,] (6.5)
Fori=Fota(fuo—Fu) +usn (6.6)
Onir = 0, + 21T f (6.7)

where f, is the mean tremor frequency, 7y is the sampling interval, o is an au-
toregressive (AR) coefficient, and g[-] represents a nonlinear reflecting function to
account for the limited frequency range. A value of o = 1 results in a random
walk model while o = 0 results in a white noise model. The nonlinear reflecting

function can be expressed as,

fmax_(f_fmax) fma.x<f
g[f]: < f fmin<f§fmax (68)

\fmin+(fmin_f) fomin
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where fmin and fmax represent the possible extreme tremor frequency values. Now,
The state vector a, can be written as,

T

Ln = Tin Ton m3,n m4,nj|

T

= |:0n fn Qin a‘2,n:| (69)

6.3.3 Extended Kalman Filter Recursions

The Kalman filter recursions consist of the measurement update and time update.
The measurement update produces the filtered estimates &,, based on the previous
predicted estimates &,,-1 and the current measurement y,. From the filtered
estimates &, the time update produces the predicted estimates &,1), according

to the state-space model.

The extended Kalman filter linearizes the nonlinear state-space model, f{x,,)
and h(x,) at different estimates of the state. The Jacobian of f{z,,) is evaluated at
the filtered estimate &, and the Jacobian of h(x,) is evaluated at the predicted

estimate &,j,—1. They can expressed as follows,

F, = (@) (6.10)
€ w:ﬁ’nln
_ Ohy(x)
Hy= = . (6.11)

where Z,,_, denotes the estimate of the state vector based on the measurements

Yon—t = {Yo,---,Yn_r}. The subsequential sections explain the recursions for the

EKF in detail.
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Initialization

The EKF requires the user to provide an a priori estimate of the state mean and
state error covariance matrices. These affect how quickly the tracker initially “locks
in”, but do not affect the steady-state performance. For the a priori state mean
Eo-1 = [0 fo 0] was chosen, where f is the mean tremor frequency determined
by domain knowledge. I chose a diagonal initial state error covariance matrix,

Po|-1. Section 6.3.5 describes how to estimate the elements of the matrix.
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EKF Recursions

The filtered and predicted state estimates can be computed directly from the well-

known EKF recursions,

_ 1T
_aA:B,n|n—1 sin (:ﬁl,n|n—1) + 5%4,n|n—1 COos (‘il,n|n—1)
0
H, = (6.12)
COS (:i:l,n]n—l)
| sin (-’331,n|n—1) ]
Tem =T+ HnPn|n—1Hg (613)
Ky = Pyn_1H 7o, (6.14)
Qn]n—l = h(:in|n—1) (615)
i’n|n = "-%n|n—1 + K, (yn - yAn|n—1) (616)
Pnln = Lpn—-1 — Knre,nKE (617)
1 27Ts@apmm 0 O
0 aigmm 00
Fn,= (6.18)
0 0 10
0 0 01
i’n-}-lln = f(ii:n[n) (620)

These recursions produce both the filtered estimates &,),, and the predicted esti-

mates &n,—1 of all the state variables.



CHAPTER 6. SINGLE RHYTHMICAL COMPONENT TRACKING 115

6.3.4 Fast MAP Adaptive Marginalized Particle Filter Recursions

The Fast MAM-PF recursions consist of the particle propagation, the conventional
linear Kalman filter updates, and the MAP state estimation. The state vector z,,
is partitioned into the nonlinear Y and linear &% portions. In this application,
only the instantaneous tremor angle @, belongs to ) and the remaining state

variables belong to X, which can be expressed as,

2 = o, (6.21)

n [al,n a2,n:| : (622)

Initialization

The MAM-PF also requires the user to provide an a priori estimate of the state
rﬁean and state error covariance matrices. For the a priori state mean To|-1 =
[0 f 0 0]T was chosen, where f is the mean tremor frequency determined by domain
knowledge. I chose a diagonal initial state error covariance matrix, Fo_;. Section

6.3.5 describes how to estimate the elements of the matrix.

Fast MAM-PF Recursions

The details of the Fast MAM-PF recursions are listed in Algorithm 5 in Chapter
5.
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6.3.5 Parameter Selection

There are several parameters in the measurement (6.1) and process models (6.3)—
(6.7), which need to be specified or estimated. However, most of them can be esti-
mated based on domain knowledge. Tables 6.1 and 6.2 summary the user-specified
parameters for the EKF and MAM-PF tremor trackers, respectively. Since tracking
the instantaneous tremor frequency (ITF) is the main goal of the current applica-
tion, the frequency process noise variance gy and the mean frequency process noise
variance gy are the most critical parameters that affect the performance of tremor
tracking most. Except for those two parameters, the two tremor trackers share the

same parameter values.

The user-specified parameters listed in Tables 6.1 and 6.2 have been optimized
and used in my previous work [20,116-119]. Those parameters do not need to be
optimized for individual spike trains. The set of optimized parameters can be used

for any spike trains.

6.3.6 Synthetic Spike Trains with Tremor

The true ITF of real spike trains can be only estimated. However, it is necessary
to have spike trains with a known (or true) ITF to accurately compare the per-
formance of two tremor trackers in Monte Carlo simulations. In [20] McNames et
al. described a process for generating synthetic spike trains with a known ITF in
detail. A spike train is created based on an integrate-and-fire model of a renewal
process introduced in [120]. The distribution of a parameter 7 determines the

regularity of the firing rate, which is explained in [115].

Two types of synthetic spike trains were created: Continuous-tremor spike
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Table 6.1: Summary of user-specified parameters for the EKF tremor tracker.

Name Symbol Value
Frequency coefficient @ 0.999
Frequency process noise variance qs 10 T
Mean Frequency process noise variance qF 0.01 7
Amplitudes process noise variance % var(y)/10
Measurement noise variance r var(y)/10
Minimum possible frequency frmin 3 Hz
Maximum possible frequency fmax 10Hz
Mean tremor frequency f 5 Hz
Phase initial 6, 0
Frequency initial Jo 5Hz
Frequency mean initial fo 5Hz
Amplitudes initial ag 0.01
Initial phase variance 6,0—1 3.28
Initial frequency variance q7,0-1 4.08
Initial amplitude variance Qa,0/—1 0.1

Table 6.2: Summary of user-specified parameters for the Fast MAM-PF tremor

tracker.

Name Symbol  Value
Number of particles N, le3
Frequency coefficient o 0.999
Covariance coefficient I5] 0.98
Frequency process noise variance qr le-4 T,
Mean Frequency process noise variance q5 le-6 T}
Amplitudes process noise variance da var(y)/10
Measurement noise variance T var(y)/10
Min. mean frequency range Jimin 3Hz
Max. mean frequency range Jimax 10 Hz
Mean tremor frequency f 5Hz
Phase initial 0, 0
Amplitudes initial ay 0.01
Initial phase variance d0,0/-1 3.28
Initial frequency variance qf0/—1 4.08
Initial amplitude variance 5,01 0.1
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Figure 6.1: Spectrogram of an example binary spike train whose tremor is contin-
uous where the thick white line represents the true ITF.

trains and intermittent-tremor spike trains. Each spike train lasts for 30s. For
continuous-tremor spike trains, tremorous activity lasts throughout the signal du-
ration. Fig. 6.1 shows the spectrogram of an example continuous-tremor spike
train. For intermittent-tremor spike trains, tremorous activity lasts only during
the first and last 10s periods. From 10s to 20s the firing rate was kept constant,
which resulted in no tremor. Fig. 6.2 illustrates the spectrogram of an example

intermittent-tremor spike train.

6.3.7 Real Spike Trains with Tremor

Both the EKF based and MAM-PF based tremor trackers were applied to a binary
spike train constructed from a microelectrode recording (MER) recorded during

stereotactic neurosurgery for a subject with Parkinson’s disease (PD). Spikes in
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Figure 6.2: Spectrogram of an example binary spike train whose tremor is inter-
mittent where the thick white line represents the true ITF.

the MER were detected using an automatic spike detection algorithm described
in [121]. The duration of this real spike train was also 30 s and the original sampling

frequency was 22 kHz.
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6.4 Results and Discussion

The performance of two tremor trackers was compared by plotting the absolute
difference between the true tremor frequency and its estimate versus time, where

the absolute difference can be expressed as,

AFEn = fn - fn (623)

where AFE stands for the absolute frequency error. Fig. 6.3 illustrates the sim-
ulation results based on 100 continuous-tremor spike trains. The thick grey line
represents the averaged AFE,, of the EKF based tremor tracker over the 100 sim-
ulations while the thin black line represents that of the MAM-PF based tremor
tracker. The shaded areas around the averaged AFE,, represent the one standard
deviation range of the EKF (very light grey) and MAM-PF (light grey) trackers.
Overall, the averaged AFE, of the MAM-PF based tremor tracker tends to be
slightly greater than that of the EKF based tremor tracker. The mean values of
the averaged AFE,, over 30s were 0.36 Hz and 0.34 Hz, for the MAM-PF and EKF
based tremor trackers respectively. As long as tremor is continuous in spike trains
and the tremor trackers “lock in” to the true tremor frequency, the EKF based
tremor tracker tracks the ITF slightly better than the MAM-PF based tremor
tracker. The reason for better performance is that the EKF can track a single
mode better than the MAM-PF when the EKF has locked on to the tremor signal.
However, the performance of the MAM-PF will improve as the number of particles

used increases.

Fig. 6.4 shows the simulation results based on 100 intermittent-tremor spike
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Figure 6.3: AFE versus time for synthetic binary spike trains whose tremor is
continuous where the line represents the averaged AFE value and the light grey
area represents one standard deviation range of AFE values over 100 simulations.
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Figure 6.4: AFE versus time for synthetic binary spike trains whose tremor is
intermittent where the line represents the averaged AFE value and the light grey
area represents one standard deviation range of AFE values over 100 simulations.
trains, where tremor lasts only during the first and last 10s periods. After the
absence of tremorous activities between 10s and 20s, the MAM-PF based tremor
tracker locks on to the true tremor frequency within 1s on average, which is shown
as the rapid decrease of the averaged AFE,, after 20s. However, the EKF based
tremor tracker takes about 4s to lock on to the true tremor frequency after 20s.
This simulation result demonstrates that the MAM-PF based tremor tracker can
start tracking tremor quicklier than the EKF based tremor tracker, which is an
important feature of a tremor tracker since tremorous activities are often intermit-
tent. Fig. 6.5 depicts the averaged ITA, p, in (6.2), of the 100 intermittent-tremor
spike trains. During the first 10 s period, the averaged ITA of the MAM-PF based

tremor tracker tends to be greater than that of the EKF based tremor tracker.
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Figure 6.5: Tremor intensity versus time for synthetic binary spike trains whose
tremor is intermittent.

When tremor is absent during the second 10s period, the averaged ITAs of both
tremor trackers rapidly decrease. After the absence of tremor, the averaged ITA
of the MAM-PF based tremor tracker tends to increase more rapidly than that of
the EKF based tremor tracker. This simulation result supports the fact that the
MAM-PF based tremor tracker can detect the presence of tremorous activities in

spike trains better than the EKF based tremor tracker.

Fig. 6.6 illustrates the estimated ITFs of the real binary spike train on top
of its spectrogram. The MAM-PF based tremor tracker takes about 1s to lock on
to the tremor frequency while the EKF based tremor tracker takes about 7s to do

so. Figs. 6.7 and 6.8 depict the spectrograms of the prediction error e,,, which can
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Figure 6.6: Estimated ITFs on top of the spectrogram of the real spike train from
a subject with Parkinson’s disease (PD).

be written as,

€n =Yn — yn|0:n—1 (624)

where ¥njo.n—1 represents the prediction estimate of the spike train y,. Fig. 6.7
shows the 4.7 Hz residual tremor activity between 0s and 6s. On the other hand,

Fig. 6.8 shows very little residual tremor activities.

6.5 Conclusion

The simulation results based on synthetic and real binary spike trains demonstrate
that the MAM-PF based tremor tracker can attain lock faster than the EKF and

that the performance is nearly as good. The ability to lock on to tremor quickly
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Figure 6.7: Spectrogram of a residual signal with the EKF based tremor tracker.
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Figure 6.8: Spectrogram of a residual signal with the MAM-PF based tremor
tracker.
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is a very important feature of a good tremor tracker since tremorous activities in

binary spike trains are often intermittent.



Chapter 7

Single Harmonic Set Tracking

This chapter discusses a practical application of the single harmonic set tracking
case. The application is tracking heart rate in electrocardiograms (ECGs). The
heart rate tracking method described in this chapter estimates the heart rate in
ECG signals continuously on a sample-by-sample basis, which is different from
other conventional heart rate estimation methods that yield one heart rate estimate

per each cardiac cycle.

7.1 Introduction to the Clinical Problem

Heart rate is traditionally defined as the number of heart beats per minute. Al-
though the heart rate can be measured wherever an artery’s pulsation is transmit-
ted to the body surface, a special method such as electrocardiography (ECG or
EKG) is often used to ensure a more precise measure of the heart rate. ECG is a
recording of the voltage between selectively placed electrodes on the skin, which re-
flects the activity of the heart muscle. Fig. 7.1 depicts a schematic representation
of a typical ECG signal of one cardiac cycle. A typical ECG recording of a healthy

cardiac cycle consists of a P wave, a QRS complex, and a T wave. The P wave
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corresponds to the depolarization of the right atrium. Atrial fibrillation results in
the absence of the P wave. The QRS complex corresponds to the depolarization
of the right and left ventricles. It has a much larger amplitude than the P wave
since the mass of ventricle muscles is greater than that of atrium muscles. The
careful analysis of the QRS complex can be used to diagnose several heart diseases
such as myocardial infarction, cardiac arrhythmias, and ventricular hypertrophy.
The T wave corresponds to the repolarization of the ventricles, which means the
recovery of the muscles. The size and sign of the T wave can be used to diagnose
coronary ischemia and hyperkalemia. As shown in Fig. 7.1, the R wave is typically
the most noticeable wave, which is easy to detect. Therefore, the heart rate can be
expressed as the number of R waves per minute in an ECG signal. However, the
heart rate can be computed in relation of R-R intervals (or inter-beat intervals).
The R-R interval refers to the time elapsing between two adjacent R waves in an
ECG signal. The reciprocal of this R-R interval is often used as the heart rate,

whose unit is in Hz.

The heart rate as the reciprocal of the R-R intervals does not remain con-
stant, but rather fluctuates rhythmically for resting healthy subjects. Heart rate
variability (HRV) refers to these rhythmic variations (or fluctuations) in the heart
rate. For medical and diagnostic purposes, monitoring HRV accurately and reli-
ably is an important but challenging task to perform. For resting healthy subjects,
the heart rate fluctuates due to cardio-acceleration during inspiration and cardio-
deceleration during expiration. Reduced HRYV is used as a marker of reduced vagal
activity. In brain electrophysiology, HRV has been recognized as a marker of nor-
mal functional states such as wakefulness or sleep, or of abnormal states such as

epilepsy [122]. In the cardiovascular control system study, the analysis of HRV
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Figure 7.1: Schematic representation of normal ECG of one cardiac cycle.

provides a quantitative means of assessing the functioning of the cardiovascular

control systems [123].

Accurate heart rate estimation is a prior step toward HRV analysis. Typi-
cally, the first step of heart rate estimation is detecting the R waves in the ECG
signal. Then, instead of the ECG signal itself, a series of R-R interval values be-
comes the focus of analysis. The short-time power spectral analysis of this R-R
interval series reveals a consistent high-frequency component (~ 0.25Hz), which
is interpreted as a quantitative assessment of respiratory arrhythmia [124]. Other
low-frequency components about 0.1 Hz and 0.03 Hz have also been noticed, which

are known as Mayer waves [125].

The heart rate as the reciprocal of R-R intervals has a better time resolution
than the heart rate as the number of heart beats per minute. However, its time
resolution is limited by the cardiac cycle periods since only one heart rate value

can be computed per each cardiac cycle. By adopting the state-space model frame-
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work, the heart rate can be computed on a sample-by-sample basis instead of a
beat-by-beat basis. This high resolution heart rate is called an instantaneous heart
rate and is expressed in units of Hz. The power spectral analysis of the instan-
taneous heart rate can reveal more precise and reliable frequency contents of the
heart rate. A few research groups have proposed novel methods to estimate the in-
stantaneous heart rate in ECG signals within state-space methods [126,127]. They
utilized the Kalman filtering technique to estimate the instantaneous heart rate.
This chapter proposes an accurate and robust instantaneous heart rate estimation

method utilizing the Fast MAM-PF technique.

7.2 Summary of Prior Work

The heart rate, which is the reciprocal of R-R intervals, will be referred to as the
traditional heart rate in order to distinguish it from the instantaneous heart rate.
Computation of the traditional heart rate requires detection of the R waves in
ECG signals. An algorithm to detect the R waves is called a beat detection algo-
rithm. There are various beat detection algorithms available in the literature and
commercially [107,124,128,129]. Pan et al. developed a real-time QRS detection
algorithm of ECG signals, which is based upon digital analyses of slope, amplitude,
and width [129]. Afonso et al. designed a digital signal processing algorithm to
detect heartbeats of ECG signals [128]. Their algorithm incorporates a filter bank
which decomposes the ECG signal into several sub-bands with uniform frequency
bandwidths. Aboy et al. proposed a more general beat detection algorithm, which
can be applied to pressure signals [107]. Their algorithm utilizes a filter bank with

variable cutoft frequencies and spectral estimates of the heart rate. Overall beat
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detection algorithms are susceptive to noise and prone to any sudden changes in
QRS morphology. More importantly, the R-R intervals (or inter-beat intervals)
based on the beat detection result yield the traditional heart rate whose time

resolution can be improved.

Ebrahim et al. presented a robust sensor fusion method to estimate the heart
rate based on the Kalman filter technique in [127]. The main objective of their
work was to combine heart rate measurements from multiple sensors to obtain
an estimate of heart rate and a confidence value associated with every heart rate
estimate. In detail, they evaluated three sensor measurements and the predicted
estimate of the heart rate, which yield 16 possible hypotheses for the current state
of the available data. A Kalman filter was applied to the most likely hypothe-
sis to deriyed the fused estimate. McNames et al. proposed a novel state-space
model of cardiovascular signals such as ECG and arterial blood pressure (ABP)
and described the extended Kalman filter being applied to it for estimation of car-
diovascular parameters such as the heart rate in [126]. Their results demonstrated
that the extended Kalman filter with the proposed state-space model can be ap-
plied to several important applications such as tracking cardiovascular parameters
of clinical interest from ABP and pulse oximetry (POX) signals, characterizing the
intracranial pressure (ICP) pulsatile morphology, and estimating pulse pressure
variation (PPV) from ABP signals obtained from mechanically ventilated swine.
In my recent work [117], it was demonstrated that the particle filter is a more
suitable method than the EKF for the purpose of heart rate tracking in ECG sig-
nals. Chapter 3 also shows that tracking the fundamental frequency (heart rate)
of a multiharmonic signal (an ECG signal) can be framed as continuously estimat-

ing the posterior distribution of the fundamental frequency p(f.|yo.n), which is
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multi-modal and non-Gaussian. Since the Kalman filter assumes the unimodality
of the posterior distribution, it is prone to estimation errors when applied to the

multi-harmonic tracking application.

‘This chapter describes how to implement the ECG heart rate tracker utilizing
the Fast MAM-PF and demonstrates the superior performance of the proposed
heart rate tracker to the conventional MPF based heart rate tracker via Monte

Carlo simulations.

7.3 Methodology

This section describes the state-space model of ECG signals and implementation

of the Fast MAM-PF and MPF heart rate trackers.

7.3.1 Measurement Model

The ECG signal can be modeled as follows,

Np

Yn = Qop + Z a1k cos (k0,) + asypn,sin (k6,) | + v, (7.1)
k=1

where Ny is the number of harmonics or partials due to cardiac activities, aop
the slow signal trend, a4, and @z, the sinusoidal coefficients of the k" cardiac
partial, 8, the instantaneous angle of the heart rate f,, and v, is white Gaussian
noise with variance r,. This signal model is the same as the single harmonic set
signal model shown in (4.10). The number of cardiac partials N, may be known
or need to be estimated. A simple method is using a conservative upper bound on

Ny where the excessive partials’ sinusoidal coefficients will be estimated as nearly
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zero at a cost of extra variance. If some pilot ECG signals are available, N, can

be estimated more accurately based on spectral analysis of the pilot signals.

7.3.2 Process Model

Given the instantaneous angle @,,, the state-space model is a linear function of the
signal trend ag, and the coeflicients a; 4, and as . These linear parameters can
be estimated optimally using the Kalman filtering technique. These parameters

can be modeled as a random walk model, which can be expressed as,

Qo nt+1 = Qon + Uq,n