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ABSTRACT 

An abstract of the dissertation of Sunghan Kim for the Doctor of Philosophy in 

Electrical and Computer Engineering presented September 28, 2009. 

Title: Tracking Rhythmicity in Biomedical Signals Using Sequential Monte Carlo 

Methods 

Cyclical patterns are common in signals that originate from natural systems 

such as the human body and man-made machinery. Often these cyclical patterns 

are not perfectly periodic. In that case, the signals are called pseudo-periodic 

or quasi-periodic and can be modeled as a sum of time-varying sinusoids, whose 

frequencies, phases, and amplitudes change slowly over time. Each time-varying 

sinusoid represents an individual rhythmical component, called a partial, that can 

be characterized by three parameters: frequency, phase, and amplitude. Quasi­

periodic signals often contain multiple partials that are harmonically related. In 

that case, the frequencies of other partials become exact integer multiples of that 

of the slowest partial. These signals are referred to as multi-harmonic signals. 

Examples of such signals are electrocardiogram (ECG), arterial blood pressure 

(ABP), and human voice. 

A Markov process is a mathematical model for a random system whose future 

and past states are independent conditional on the present state. Multi-harmonic 
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signals can be modeled as a stochastic process with the Markov property. The 

Markovian representation of multi-harmonic signals enables us to use state-space 

tracking methods to continuously estimate the frequencies, phases, and amplitudes 

of the partials. 

Several research groups have proposed various signal analysis methods such as 

hidden Markov Models (HMM), short time Fourier transform (STFT), and Wigner­

Ville distribution to solve this problem. Recently, a few groups of researchers 

have proposed Monte Carlo methods which estimate the posterior distribution 

of the fundamental frequency in multi-harmonic signals sequentially. However, 

multi-harmonic tracking is more challenging than single-frequency tracking, though 

the reason for this has not been well understood. The main objectives of this 

dissertation are to elucidate the fundamental obstacles to multi-harmonic tracking 

and to develop a reliable multi-harmonic tracker that can track cyclical patterns 

in multi-harmonic signals. 
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Chapter 1 

Introduction 

1.1 Background 

Signals generated by natural systems and man-made machinery exhibit cyclical 

patterns. Estimation of these cyclical patterns in signals is essential to analyze the 

characteristics of the systems that generate the signals. Signals are called periodic 

when they satisfy the condition: 

x(t) = x(t + T) (1.1) 

where T is a fundamental period of the periodic signal. The periodic signal x(t) 

repeats itself every T. Therefore, {x(t)IT < t < T + T} is a complete description 

of the signal x(t) where T can have any value. The top plot in Fig. 1.1 shows an 

example of a periodic signal whose period T is 1 s in the time domain. The inverse 

of the fundamental period T is the fundamental frequency f of the signal. 

Any periodic signal can be decomposed into a sum of sines and cosines whose 

frequencies and amplitudes are constant. This decomposition is called the Fourier 

series representation. The Fourier series for a periodic signal x(t) can be written 
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in three different forms as follows, 

00 

x(t) = L ckeik0(t) 

k=-oo 
00 

= ~o + L ak cos [k0(t) + <Pk] 

k=l 
00 

= ~o + L a1,k cos [k0(t)] + a2,k sin [k0(t)] 
k=l 

2 

(1.2) 

(1.3) 

(1.4) 

where 0(t) is equal to 21rt/T. (1.2) is called a complex form, (1.3) is called an 

angular form, and (1.4) is called a rectangular form. These three forms are in­

terchangeable. For instance, knowing the phases <Pk and amplitudes ak in (1.3) 

is equivalent to knowing the coefficients a1,k and a2,k in (1.4). In the rectangular 

form, the Fourier coefficients can be computed as, 

l it+T 
a1,k = ;: t x(t) cos [k0(t)] dt (1.5) 

l it+T 
a2,k = ;: t x(t) sin [k0(t)] dt (1.6) 

However, real signals with cyclical patterns rarely meet the condition (1.1) exactly. 

Rather, most signals meet a condition: 

x(t) ~ x [t + T(t)] (1.7) 

where ~ represents approximate equality and T(t) is a time-varying fundamental 

period. Such signals that are not perfectly periodic yet approximately periodic 

are called pseudo-periodic or quasi-periodic signals. Quasi-periodic signals can be 

modeled as a linear combination of time-varying sinusoids. Each time-varying 
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sinusoid represents an individual rhythmical component, partial, which can be 

completely characterized by its frequency, phase, and amplitude. In contrast to 

Fourier series these parameters are not necessarily constant. The sum-of-sinusoids 

model can be written as, 

x(t) = ao~t) + f a1,k(t) cos [0k(t)] + a2,k(t) sin [0k(t)] (1.8) 
k=l 

where a0 (t), a1,k(t), a2,k(t), and Tk(t) are time-varying parameters. The instanta­

neous phase 0k(t) can be written as, 

0k(t) = 1t 21r/n(r) dr 

= 1t 21rfk(r) dr 

(1.9) 

(1.10) 

Since observed signals are commonly contaminated by noise, a more complete 

model can be expressed as follows, 

x(t) = s(t) + n(t) 

= aojt) + f a 1,k(t) cos [0k(t)] + a2,k(t) sin [0k(t)] + n(t) 
k=l 

where n(t) is an additive noise. 

(1.11) 

(1.12) 

The term periodic is not appropriate to refer to these cyclical patterns in 

quasi-periodic signals because the signals are not exactly periodic. Instead, rhyth­

micity refers to the cyclical pattern that can be represented as a linear combination 

of time-varying sinusoids, i.e. partials. Rhythmicity tracking, then, is continuous 

estimation of the frequencies, phases, and amplitudes of the partials. 
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Rhythmical signals can be categorized in various ways. One way to do so is 

to study how the partials in the signals are related. In some cases, there could be 

only one partial. In other cases, there could be multiple partials that are related to 

one another through some nonlinearity. A special case arises when a quasi-periodic 

signal contains multiple partials and they are harmonically related. This type of 

signal is called a multi-harmonic signal, which can be expressed as follows, 

x(t) = s(t) + n(t) 

= ao?) + f a 1,k(t) cos [k0(t)] + a2,k(t) sin [k0(t)] + n(t) 
k=l 

where 0(t) can be written as, 

0(t) = 1t 27r /T( T) dT 

= 1t 21rf(T) dT 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

The frequencies of other partials in the multi-harmonic signal are exact integer 

multiples of the slowest partial's frequency. This slowest partial is called the fun­

damental partial and its frequency called the fundamental frequency. The other 

partials in the signal are referred to as harmonic partials and their frequencies 

called harmonic frequencies. A harmonic set refers to the fundamental and har­

monic partials as a whole and the number of harmonic sets in the signal is not 

limited to one. When there is more than one harmonic set, the signal is called 

a multiple harmonic set signal. The harmonic sets in the multiple harmonic set 

signal can be independent of each other or related with each other through non­

linearity such as amplitude or frequency modulation. A two harmonic set signal, 
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whose harmonic sets are independent of each other, can be expressed as, 

x(t) =s(t) + n(t) 

= ao~t) + f a1,k(t) cos [k01(t)] + a2,k(t) sin [k01 (t)] + 
k=l 

00 

L a3,k(t) cos [k02(t)] + a4,k(t) sin [k02(t)] + n(t) 
k=l 

where 01(t) and 02(t) can be written as, 

01(t) = 1t 21r/T1(t) dT 

= 1t 21rfi(t)dT 

02(t) = 1t 21r /T2(t) dT 

= 1t 27f h(t) dT 

5 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

where fi(t) and h(t) are the fundamental frequencies of the first and second 

harmonic sets, respectively. 

So far, signals have been assumed to be continuous-time. However, these 

days continuous-time signals are converted to discrete-time signals to be stored 

in a digital format and signal processing is performed digitally. The conversion 

process of continuous-time signals into discrete-time signals is called sampling. 

While continuous-time signals are a function of a continuous time argument t, 

discrete-time signals are a function of discrete integers n. Discrete-time signals 

are a sequence of quantities or values and each value is called a sample. Each 

sample of discrete-time signals is evenly spaced in the time domain and this time 



CHAPTER 1. INTRODUCTION 6 

space between samples is called a sampling period Ts. The reciprocal of the sam­

pling period is called a sampling frequency ls• Discrete-time signals alone do not 

provide any information on the sampling frequency, but it can be calculated when 

both continuous-time and discrete-time signals are available. When the continuous 

signal x(t) in (1.14) is sampled at ls, the sampling result Xn can be expressed as, 

00 

= a;,n + L a1,k,n cos (k0n) + a2,k,n sin (k0n) + nn 
k=l 

where Bn can be written as, 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

Two plots in Fig. 1.1 compare periodic and quasi-periodic signals in the time 

domain. The signals are synthetically generated based on the signal models in (1.4) 

and (1.14) with three harmonic partials. In the top plot, the period T of the signal 

is 1 s. Therefore, the signal repeats itself exactly every 1 s. In the bottom plot the 

period T of the signal is approximately 1 s and the magnitude of the signal changes 

slowly. A spectrogram is an image that shows how the spectral density of a signal 

changes over time. They are also known as sonograms or voicegrams. Two plots 

in Fig. 1.2 compare the spectrograms of the periodic and quasi-periodic signals. 

They illustrate the constant and slowly changing fundamental frequencies of the 

periodic and quasi-period signals, respectively. The signal shown in Fig. 1.1 is the 

first 10 s of the entire 60 s signal whose spectrogram is shown in Fig. 1.2. 
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(b) Example of a quasi-periodic signal with three partials 

Figure 1.1: Periodic versus quasi-periodic signals in the time domain. 
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Figure 1.2: Spectrograms of the periodic and quasi-periodic signals, whose first 
10 s period is shown in Fig. 1. 1. 
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1.2 Significance 

1.2.1 Conventional versus Proposed Methods 

Many techniques have been proposed for frequency tracking in quasi-periodic sig­

nals. One may be tempted to apply one of the frequency tracking techniques to 

multi-harmonic tracking by having each partial tracked separately and combining 

the results. It is also possible to estimate the fundamental partial alone first then 

other harmonic partials since their frequencies are integer multiples of the funda­

mental frequency. However, it is sub-optimal to extend those frequency tracking 

techniques to multi-harmonic tracking because frequency tracking techniques are 

not capable of taking the harmonic relationship between the partials into account. 

Multi-harmonic tracking methods track the fundamental partial along with its har­

monic partials simultaneously considering their harmonic relationship. A major 

advantage of multi-harmonic tracking over individual frequency tracking is that 

the fundamental frequency estimate becomes more accurate and has less variation 

since multi-harmonic tracking techniques take advantage of the variation in the 

harmonic frequencies. 

There are a few techniques being used for the purpose of multi-harmonic 

tracking. They include time-frequency distributions (TFDs) [1, 2], adaptive fre­

quency estimation methods [3], pitch detection algorithm (PDAs) [4,5], and state­

space model based algorithms [6, 7]. However, some of them (PDAs) are only capa­

ble of tracking the fundamental frequency and others (TFDs) do not take advantage 

of the harmonic relationship between the partials. Many of those techniques rely 

on the local stationarity assumption of the signals, which means that they estimate 

the frequencies and amplitudes of the partials on a segment-by-segment basis not a 
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sample-by-sample basis. In contrast, the state-space model based multi-harmonic 

tracking algorithms can track the frequencies and amplitudes of the partials on a 

sample-by-sample basis and take into account the harmonic relationship between 

the partials. A newly proposed multi-harmonic tracking method is a state-space 

model based technique. It is not only capable of what other state-space model 

based methods such as the extended Kalman filter based tracker can do, but also 

superior to them because it properly addresses major problems in multi-harmonic 

tracking due to the harmonic relationship between the partials. The new method 

is more robust to noise and provides more complete and accurate estimates. 

1.2.2 Applications 

There are many multi-harmonic applications. One example is heart rate tracking 

in electrocardiograms (ECGs). This is a good example of a quasi-periodic signal 

with many harmonic partials. The ECG is a recording of the electrical activity 

of the heart over time. The fundamental frequency of ECG is the heart rate. 

Accurate estimation of the heart rate is critical to diagnose abnormal rhythms of 

the heart caused by conductive tissue damage or abnormal dissolved salt level. 

The heart rate in ECG signals is typically estimated utilizing time-domain beat 

detection algorithms where the inverse of beat-to-beat intervals is the estimate 

of the heart rate. However, the accuracy of beat detection is greatly affected 

by noise level. Alternatively, the heart rate in ECG signals can be done in the 

frequency domain. It can be a challenging task because it is not uncommon that 

the harmonic partials have more power than the fundamental partials. Multi­

harmonic tracking methods based on the sum-of-sinusoids model are an appropriate 

tool for continuous estimation of the heart rate in ECG signals. Two plots in Fig. 
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1.3 show a synthetic example of the extended Kalman filter (EKF) based multi­

harmonic tracker (top) that fails to track the partials in an electrocardiogram 

(ECG) signal and the newly proposed multi-harmonic tracker (bottom) that tracks 

them accurately. In the top plot, the estimated frequency of the second partial 

matches the true frequency of the fundamental partial. This estimation error is due 

to the fact that the EKF-based tracker cannot handle the harmonic relationship 

between the partials properly. In the bottom plot, the newly proposed tracker 

tracks the true fundamental frequency and its harmonics accurately throughout 

the entire signal duration. 

1.3 Objectives 

This dissertation will meet five major objectives. The first one is to develop a new 

sequential Monte Carlo (SMC) algorithm for robust and accurate multi-harmonic 

tracking. Although the unique challenges in multi-harmonic tracking motivated 

development of the new SMC algorithm, it is a much more general tool that can 

be applied to other a posteriori distribution estimation problems. The second is 

to develop a single rhythmical component tracking algorithm. Single rhythmical 

component tracking is a special case of multi-harmonic tracking where the number 

of partials is only one. The single rhythmical component tracking algorithm is 

applied to tremor tracking in binary spike trains. The third is to develop a single 

harmonic set tracking algorithm. Its application is tracking the heart rate in ECGs. 

Robust heart rate tracking in ECGs is challenging because real ECG signals are 

often contaminated by severe noise due to medical interventions and/ or mechanical 

system interferences. The proposed multi-harmonic tracking algorithm can track 
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(a) EKF-based multi-harmonic tracker 
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(b) Proposed multi-harmonic tracker 

Figure 1.3: Estimated frequencies using (a) the EKF-based multi-harmonic tracker 
and (b) the new multi-harmonic tracker on top of the spectrogram of the synthetic 
ECG signal. 
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the heart rate robustly even when such severe noise is present in the signals. The 

fourth is to develop an amplitude modulated harmonic set tracking algorithm. 

Here, the signal of interest is modeled to have two multi-harmonic sets that interact 

with each other through amplitude modulation. One assumption is made that the 

fundamental frequency of the first harmonic set is constant and known. The main 

goal, then, is to estimate the degree of the amplitude modulation of the second 

harmonic set due to the first one. Its application is to track the heart rate and pulse 

pressure variation (PPV) index of arterial blood pressure (ABP) signals recorded 

from subjects on full respiratory support. The PPV index is a critical parameter to 

monitor fluid responsiveness in the operating room and critical care settings. The 

final objective is to develop a multiple harmonic set tracking algorithm. Multiple 

harmonic set tracking is the most challenging multi-harmonic tracking case, where 

the number of multi-harmonic sets is more than one and the fundamental frequency 

of each harmonic set is unknown and time-varying. Its application is to track the 

heart rate, respiratory rate, and PPV index of ABP signals recorded from subjects 

with spontaneous breathing. Here the number of multi-harmonic sets is two. 

1.4 Overview 

The rest of the dissertation consists of nine chapters: literature review, problem 

definition, contributions, new particle filtering method, single rhythmical compo­

nent tracking, single harmonic set tracking, amplitude modulated harmonic set 

tracking, multiple harmonic set tracking, and summary and conclusions. Chap­

ter 2 (literature review) reviews traditional and latest frequency/multi-harmonic 

tracking algorithms. They are categorized into six large groups mainly based on 
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technologies. 

Chapter 3 (problem definition) defines the rhythmicity tracking problem as 

continuous posterior distribution estimation. Within the posterior distribution es­

timation framework it will be shown that in multi-harmonic tracking the posterior 

distribution of the fundamental frequency is multi-modal, which is the reason that 

traditional frequency tracking techniques often fail. 

Chapter 4 (contributions) lists specific goals and contributions of the disser­

tation. 

Chapter 5 (new particle filtering method) describes details of two versions 

of the new particle filtering technique and other conventional variants of particle 

filters. 

Chapter 6 (single rhythmical component tracking) discusses a practical ap­

plication of the single rhythmical component tracking case. The application is 

tracking tremorous activity exhibited in neuronal signals of subjects with move­

ment disorders such as Parkinson's disease (PD) and essential tremor (ET). 

Chapter 7 (single harmonic set tracking) discusses a practical application of 

the single harmonic set tracking case, which is tracking the heart rate in electro­

cardiograms (ECG). 

Chapter 8 ( amplitude modulated harmonic set tracking) discusses a practi­

cal application of the amplitude modulated harmonic set tracking case, which is 

tracking the pulse pressure variation (PPV) index of arterial blood pressure (ABP) 

signals under mechanical ventilation. 

Chapter 9 (multiple harmonic set tracking) discusses a practical application 
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of the multiple harmonic set tracking case. The application is tracking the pulse 

pressure variation (PPV) index of arterial blood pressure (ABP) signals of spon­

taneously breathing subjects. 

Chapter 10 (summary and conclusions) summarizes and concludes the entire 

dissertation. 

Appendix A provides the notational conventions used throughout this dis­

sertation. 



Chapter 2 

Literature Review 

Accurate detection ofrhythmical components (single-frequency or multi-harmonics) 

in observed signals has been an important task in various applications such as 

speech analysis, communication, seismic analysis, and target tracking/identification. 

There are various technologies available in the literature. Some of them are devel­

oped for specific types of signals while others are more generally applicable. Some 

of them are quite heuristic while others are principled or based on models with 

clear assumptions. The scope of frequency /multi-harmonic detection/tracking 

is too wide to cover completely. However, the frequency /multi-harmonic detec­

tion/tracking problem can be divided into five groups as follows, 

1. Fixed single-frequency with fixed amplitude 

2. Fixed single-frequency with time-varying amplitude 

3. Time-varying single rhythmical component with fixed amplitude 

4. Time-varying single rhythmical component with time-varying amplitude 

5. Time-varying multi-harmonic components with time-varying frequency and 

amplitude 
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Depending on whether quantities of interest are fixed or time-varying these can 

be treated as an estimation or tracking problem. Although the categorization 

above is helpful to grasp the scope of frequency detection and tracking problems, 

it is not easy to match each frequency detection/tracking technique with one of 

those categories. For this reason, this chapter is organized based on the tracking 

methodology. One exception is that several distinct methods are grouped under the 

category of pitch detection algorithms (PDAs). Although each of those methods 

utilizes distinct technologies, they are specifically developed in the context of pitch 

detection. They share some common assumptions such as a local stationarity 

of signals. Although the review does not cover all techniques available in the 

literature, it includes most common frequency /multi-harmonic detection/tracking 

methods at the time of writing. 

2.1 Zero-crossing method 

A zero-crossing method is the simplest way to detect the frequency of rhythmical 

components in narrow-band signals. This method is applicable when the amplitude 

of rhythmical components in the signal is assumed to be known or not of interest. 

Let's assume that a signal of interest is narrow-banded and locally stationary. 

Since it is a narrow-band signal, a simple sinusoidal model can describe it well as 

follows, 

Yn = sin(21r fnTs) + Vn, 

1 
f = 2T (2.1) 
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where n is a discrete time index, Yn a signal sample ( observation or measurement), 

N the number of samples within a short time period, T8 a sample interval, f the 

estimate frequency, and T the mean interval between zero-crossings within the 

time period, 0::; n::; N. 

A good example of the zero-crossmg method application is seismic trace 

analysis. Since seismic signals are narrow-band, one can estimate the vibration­

frequency of seismic activities, which is proportional to the inverse of zero-crossing 

intervals, using the zero-crossing method. Allen introduced an automatic earth­

quake recognition and timing program on a single seismic trace based on the zero­

crossing algorithm [8]. The generic zero-crossing method, however, is sensitive 

to noise and cannot measure the intensity (amplitude) of rhythmical activities 

recorded in the signal. 

Several authors have proposed more advanced zero-crossing methods by com­

bining the generic zero-crossing method and other signal processing techniques. 

For example, Lim et al. proposed an automatic method for real-time electroen­

cephalogram (EEG) sleep state analysis [9]. Their method is a combination of 

zero-crossing and peak detection algorithms. Nguyen et al. introduced a frequency 

computation technique for real-time monitoring, control, and protection of power 

systems [10]. They generalized the zero-crossing detection to a level crossing detec­

tion, which is insensitive to amplitude changes and able to track small frequency 

deviations as a fraction of a cycle. Miller utilized the zero-crossing method in 

combination with energy measurements to determine the fundamental frequency 

of speech by segmenting the signal into pitch periods [11]. There are other ex­

amples of applying the variants of the generic zero-crossing method to frequency 

detection problems [12-14]. For example, Rabiner and Schafer proposed averaging 
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the number of zero-crossings over a short period of time to reduce the variance of 

the zero-crossing estimate [15]. 

The advantage of the zero-crossing method over other frequency detection 

and tracking algorithms is computational simplicity. Implementing the zero-crossing 

based frequency detector on hardware only requires comparator circuits and coun­

ters. However, the zero-crossing method itself cannot measure the amplitude of 

rhythmical components unless other energy measurement methods are combined 

with it. More importantly, harmonic structures buried in the signal do not benefit 

it or improve its accuracy since harmonic structures do not meet the narrow-banded 

signal assumption that the zero-crossing method is based on. 

2.2 Angle Difference Estimator 

The basic notion of the angle difference estimator is, simply, that the derivative of 

the continuous angle ¢(t) is the continuous instantaneous frequency f(t): 

f(t) = 2_ d</J(t). 
21r dt 

(2.2) 

An important issue to address before discussing how to implement the angle dif­

ference estimator is how to define the differentiation operation in discrete time, 

since all signals throughout this dissertation are assumed to be discrete-time sig­

nals sampled at a proper frequency fs- One solution is to convolve the angle with 

a finite impulse response (FIR) differentiator dn as defined in [16]: 

(2.3) 
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where * denotes the time-domain convolution operation. However, it is common 

to approximate this differentiation operation with a simple differencing operation 

since the differencing operation (FIR filtering) is the simplest case of performing 

the time-domain convolution. There are several ways to define the discrete-time 

difference operation as follows, 

A 1 
f n,l = 27f ( </Jn - </Jn-1) 

A 1 
f n,2 = 27f ( </Jn+1 - </Jn) 

A 1 
f n,3 = 41f ( </Jn+1 - </Jn-1) 

(2.4) 

(2.5) 

(2.6) 

Third definition j n,3 is preferable to the others because it yields zero group delay 

[17, 18]. 

The first step to develop the angle difference estimator is to obtain the ana­

lytic signal associated with the observed signal Yn using the discrete-time Hilbert 

transform. The analytic signal Zn is a complex-valued version of a real-valued 

signal Yn where the negative frequency components of the Fourier transform of Yn 

are discarded. It can be expressed as, 

(2.7) 

where H[·] denotes the discrete-time Hilbert transform. Assuming that an cos( </Jn) 

is a good model for the observed signal Yn, the phase between the real and imag­

inary parts of Zn is </Jn since Zn = aneJ</Jn [17]. The second step is to model the 
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instantaneous angle as a discrete-time polynomial of arbitrary order as given, 

(2.8) 

Then, by definition the estimate of the discrete-time frequency is, 

M 
A - 1 ~ p-1 

fn -
2

7r LP(Jpn . 
p=l 

(2.9) 

Now, there are two formulae (2.6) and (2.9) for the discrete-time frequency. The 

third step is to set an equation as follows and obtain its solution, 

(2.10) 

where the values of coefficients aP are pre-determined based on the order N of 

the discrete-time differencing operation [18]. There are more advanced techniques 

to reduce the variance of the angle difference estimator by proper filtering and 

smoothing [19]. 

No matter how accurate the angle difference estimate can be, it is not ap­

plicable to the multi-harmonic tracking problem for several reasons. First, it can­

not take advantage of harmonic structures to improve its performance. Second, 

the amplitudes of rhythmical components have to be estimated separately using 

other techniques. Third, the estimate is on the frame-by-frame basis not sample­

by-sample basis. In addition to all of these issues there is a more fundamental 

problem using the angle difference estimation technique. In order to apply the 

Hilbert transform to the signal, Yn, it should meet the necessary conditions dis-
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cussed in [17]. Otherwise the instantaneous angle </>n is susceptible to error. I 

demonstrated that the Hilbert transform itself introduces spurious noise in the 

angle when the signal does not meet the necessary conditions [20]. 

2.3 Time-Frequency Distributions (TFDs) 

Over the last 60 years many researchers have tried to devise useful tools to de­

scribe the changes of a nonstationary signal's power density in time- and frequency­

domains simultaneously. The spectrogram or short-time Fourier transform (STFT) 

is currently the most common tool to study time-varying spectral contents of sig­

nals. However, it has an inevitable weakness that is the trade-off between the 

time- and frequency-domain resolutions. In order to achieve a better frequency­

domain resolution, the length of frames should be large, which results in a poor 

time-domain resolution. The time-domain resolution can be improved by using 

short-length frames. But this results in a poor frequency-domain resolution. This 

trade-off could be a minor issue when the spectral contents of the nonstationary 

signal change slowly. However, when the spectral contents of the nonstationary 

signal change rapidly, the spectrogram cannot capture the rapid change of the 

spectral contents appropriately. For example, the speech signal is highly nonlinear 

and its spectral component changes rapidly. The spectrogram or STFT is not a 

suitable tool to analyze the speech signal. 

These unique characteristics of speech signals motivated the early study of 

time-frequency distributions (TFDs) [21]. TFDs estimate the frequency distribu­

tion of the signal at a given time and calculate the fraction of the energy in a 

certain frequency or time-range. In the 1930's, Wigner studied the statistics of 
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quantum mechanics [22]. Based on his work, Gabor, Ville, and Page separately 

developed the early version of TFDs in the 194O's and 5O's [23-25]. The prevalent 

form of the early version of TFDs is called the Wigner- Ville distribution. It can 

be written as follows, 

(2.11) 

where * represents a complex conjugate operation. The Wigner-Ville distribution 

can be interpreted as the short time Fourier transform of the signal's autocorre­

lation. Although the Wigner-Ville distribution has been a common tool for the 

time-frequency domain analysis for many years, the Wigner-Ville distribution in­

troduces the spurious peaks, which are not related with real spectrum contents 

of the signal [26]. Cohen introduced a more general form of the Wigner-Ville 

distribution, which can be written as follows, 

p(t, w) = 
4
~2 J J J s* ( u -1T) e-

10
te-j

7
wej

0u¢(0, r)s ( u + 1r) dudrd0 

(2.12) 

where ef>(0, r) is a user-defined function or kernel [27]. According to Cohen's TFD 

formula the Wigner-Ville distribution is a special case of this general form, which 

can be obtained by substituting ef>( 0, T) with 1. Cohen has summarized what kind 

of a kernel ef>( 0, T) is required to obtain different types of TFDs [28]. 

Many research groups have put their effort into utilizing the TFDs to analyze 

nonstationary signals. In the early 198O's, for example, Claasen et al. discussed the 

properties of the original Wigner distribution as a tool for continuous and discrete 

time-frequency signal analysis [29, 30]. Especially in [31] they studied the relation-
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ship between the Wigner distribution and other time-frequency signal transforms 

such as spectrograms. They pointed out that spectrograms are a weighted version 

in time and frequency of the Wigner distribution. They also demonstrated that 

one can interpret the spectral analysis method in terms of the Wigner distribution. 

Later, Cohen categorized the applications of the TFDs into three groups [28]. The 

first subject is to use the TFDs to reveal meaningful information that other meth­

ods cannot. For example, the TFDs can capture more rapid transients in speech 

signals than the spectrogram. The second subject is to capture a certain property 

of the signal's time-frequency content that can be well represented by a given TFD, 

although the TFD may not be a good choice to study other properties of the signal. 

The last subject is to use the TFDs as "a carrier of the information of a signal". In 

this case, it doesn't matter whether the TFDs are the good representation of the 

time-frequency energy density. For example, Boashash utilized the Wigner-Ville 

distribution as a pattern recognition tool [32, 33]. The early work of Boashash was 

probably the first attempt to use the Wigner-Ville distribution for real applica­

tions [34]. He studied the instantaneous frequency of a signal reflected from the 

ground using the Wigner-Ville distribution to calculate the attenuation coefficients 

of the ground. Janse and Kaizer used the Wigner-Ville distribution for the design of 

loudspeakers, where the non-stationarity of signals must be handled properly [35]. 

Chester et al. pointed out that a usual discrete Fourier transform is not a good 

tool to represent some frequency domain attributes of human speech [36]. They 

presented an important discrete Wigner distribution to uncover these frequency­

domain attributes of human speech. Chester and Wilbur discussed theoretical and 

implementation aspects of a band-selectable discrete Wigner distribution for signal 

analysis [37]. In the same year, Martin and Flandrin proposed a general class of 
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spectral estimators of the Wigner-Ville spectrum of nonstationary processes [38]. 

By laying the generalized framework for spectral estimation they showed the versa­

tility of the "new pseudo-Wigner estimators." More recently, Pola et al. performed 

a comparative evaluation among classical (FFT-based) and time-frequency dis­

tribution (TFD) spectral estimators [39]. As expected, the TFD-based spectral 

estimator was superior to classical (FFT-based) methods when a high time reso­

lution is needed. In order to monitor the heart rate variability (HRV) of subjects 

they applied the estimators to real interbeat interval time series, which is an un­

uniformly sampled ECG. The results demonstrated that the TFD-based spectral 

estimator can represent the rapid transient of the time series correctly. Chan et 

al. applied five time-frequency methods to synthetic and real heart rate signals 

to study HRV characteristics [40]. They are the short-time Fourier transform, the 

Choi-Williams distribution, the smoothed pseudo Wigner-Ville distribution, the fil­

tering smoothed pseudo Wigner-Ville distribution compensation, and the discrete 

wavelet transform. According to their assessment results the filtering smoothed 

pseudo Wigner-Ville distribution and the discrete wavelet transform are better 

than the rest in terms of minimizing spectrum interference from the transient 

component. 

There are only a few references in the literature, that utilize TFDs for analy­

sis of multi-harmonic signals [1, 2]. For example, Jones et al. proposed an adaptive 

time-frequency distribution for the purpose of improving the time-frequency reso­

lution of multi-component signals [41,42]. Zhang et al. proposed a novel adaptive 

harmonic Fourier transform for voiced speech signal analysis [2]. Their method has 

a better resolution than the classical short-time Fourier transform and minimizes 

the cross interferences produced by the Wigner-Ville distribution. 
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Despite considerable effort of many investigators to make the TFDs a useful 

tool for time-frequency domain analysis of nonstationary signals, there is a main 

drawback of using the TFDs for the multi-harmonic component analysis: it is not 

trivial to obtain the numerical values of the fundamental frequency and energy 

density given the TFDs. Although the TFDs are a good tool to visualize the 

transients and transitions of nonstationary signals, extracting the numerical values 

of the frequency and energy density correctly out of the TFDs is difficult. Another 

issue with the TFDs is that some TFDs, such as the Page distribution, may not 

represent actual energy density since the longer a particular frequency is observed, 

the larger the energy density becomes at that frequency [28]. 

2.4 Adaptive Frequency Estimation Methods 

There are various adaptive frequency tracking methods in the literature. Some of 

them are popular and general while others applicable only for specific applications. 

It is not feasible to discuss all of them here. However, it is a reasonable attempt to 

categorize those popular adaptive frequency tracking methods into three groups: 

adaptive line enhancer (ALE), adaptive notch filtering (ANF), and adaptive comb 

filtering (ACF). Although they are devised for different purposes, these adaptive 

techniques are based on the least-mean-square (LMS) algorithm introduced by 

Widrow and Hoff in 1959 [43]. The LMS algorithm is an adaptive algorithm based 

on a gradient-based method of steepest descent, which finds the nearest local min­

imum of a given function [44]. In the 1970's Widrow et al. described the principles 

and applications of adaptive noise cancelling, which is a method of estimating 

signals corrupted by additive noise or interference [45]. One of the major con-



CHAPTER 2. LITERATURE REVIEW 27 

tributions of their work is to identify the self-tuning filter and notch filter as the 

special cases of the adaptive noise canceler. The self-tuning filter, which can re­

trieve the periodic and stochastic components of a signal, serves as an adaptive 

line enhancer. The notch filter, which suppresses an additive undesired sinusoidal 

interference, can be realized by an adaptive noise canceler, whose bandwidth is 

easy to control. Treichler studied the transient and convergent behavior of the 

ALE using an eigenvalue-eigenvector analysis of the ALE impulse response [46]. 

Around that time Zeidler et al. introduced the ALE for multiple sinusoid retrieval 

in uncorrelated white noise [47]. The difference between the ALE and ANF is en­

hancing or suppressing the periodic components of given signals. This difference, 

however, is not significant. Rao et al. demonstrated that the ANF can be used 

as the ALE with proper configuration of delay taps [48]. They also proposed an 

effective way to build an IIR filter that requires only half the number of parameters 

in comparison to the ARMA model introduced by Friedlander [49]. Although the 

ALE and ANF have been applied for various noise cancelling applications success­

fully [45, 50], they are not suitable for harmonic tracking for several reasons. The 

first reason is that they are not capable of tracking harmonically related compo­

nents in the signal. There are some papers that propose the ALEs for multiple 

sinusoid component retrieval [47, 51, 52]. However, multiple sinusoid component 

retrieval is not the same as multi-harmonic tracking. The second reason, which is 

more critical, is that the ALE/ ANF may converge to the nearest local minimum 

of the performance error surface. In the case of multi-harmonic tracking, the per­

formance error surface has many local minima. Therefore, the ALE/ ANF would 

not be able to converge to the global minimum unless they are initialized carefully 

to be clrn,e to the global minimum. 
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Adaptive comb filtering is an appropriate method to handle harmonically 

related components in the signal. Adaptive comb filters differ from the ALE/ ANF 

due to their ability to enhance or attenuate multi-harmonic components in the 

signal jointly. Comb filters are typically in two general forms: Feed-forward and 

feedback forms. The comb filter in the feed-forward form filters out harmonic 

components in the signal Xn by delaying Xn by k samples. The difference function 

and the Z-domain transfer function of are as follows, 

Yn = Xn + a Xn-k 

On the other hand, the comb filter in the feedback form retrieves harmonic com­

ponents in the signals Xn by delaying Yn by k samples. The difference function 

and the Z-domain transfer function are as follows, 

Yn = Xn + a Yn-k 

H(z) = Y(z) = 1 
X(z) zk - a· 

The difference between them can be seen as whether there are either an all-zero 

system (feed-forward) or an all-pole system (feedback). 

Elliott et al. introduced a simple adaptive comb filter using the least-mean­

square (LMS) algorithm [53). Soon after his publication, Nehorai proposed an 

adaptive comb filter for harmonic signal enhancement with two cascaded parts: one 

is for fundamental frequency estimation and the other for harmonic amplitudes and 

phases estimation [54]. The fundamental frequency estimation uses the recursive 
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maximum likelihood (RML) method while the harmonic amplitudes and phases 

estimation the recursive least square (RLS) methods [55]. In the paper he argued 

that simulation results indicate that the variances of the estimates are of the same 

order of magnitudes as the Cramer-Rao bound (CRB) for sufficiently large data 

sets. Veeneman et al. applied a fully adaptive comb filter to enhance block-coded 

speech signals corrupted with framing noise caused by discontinuities at the block 

boundaries [56]. Their comb filter is advanced to adapt both pitch period and 

filter coefficients. There have been several attempts to build more optimal and 

efficient comb filters for time-varying harmonic extraction [3,57,58]. More recently 

several research groups have implemented the comb filter as an adaptive filter­

bank [59, 60]. Especially Sun et al. performed a statistical analysis of a modified 

adaptive filter-bank for the estimation of multi-harmonic signals [59]. 

Jang et al. proposed an adaptive IIR comb filter for harmonic signal can­

cellation [3]. They argue that the proposed comb filtering is more robust than 

Nehorai and Poraz's comb filtering technique [54]. However, the main contribution 

of their paper is to recognize local minima problems of notch and comb filters and 

demonstrate mathematically that the error surface of the comb filter has multiple 

minima. All notch and comb filtering techniques rely on some kind of optimization 

methods to search for the best set of fundamental frequencies and the amplitudes 

of harmonic components. The local minima problem stems from the fact that 

the optimization methods, e.g. least-mean-square (LMS) or recursive least-square 

(RLS), cannot handle the multi-harmonic tracking error surface, which has mul­

tiple minima. Although Jang et al. argues that their comb filter is more robust 

to this local minima issue than conventional comb filters, they implicitly admit 

that the convergence of their comb filter model does rely on the carefully chosen 
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initial conditions [3]. Overall, adaptive notch and comb filtering techniques in the 

literature require cautious initialization to guarantee the filter's convergence. 

2.5 Pitch Detection Algorithms (PDAs) 

One of common multi-harmonic signals is human voice. It is sound made by a 

human using his vocal folds, tongue, and lips. The frequency of the fundamental 

partial in a sound is called, pitch. The goal of pitch detection algorithms (PDAs) 

is to determine the pitch of a quasiperiodic signal such as human voice. Pitch 

detection is an essential part of various speech processing systems. It is useful 

for speaker recognition, speech instruction to the hearing impaired, and vocoder 

(speech analysis-synthesis systems) [61]. In the course of some 40 years, numer­

ous PDAs have been proposed for more accurate and robust pitch detection [62]. 

But, they are sensitive to noise and interference and limited to particular domains 

( speech or song) and their performance becomes unacceptable at low SNRs. The 

following summary attempts to cover the most prevalent PDAs rather than the 

complete list of them. Additional details are available in [63] or [62]. 

PDAs are generally categorized into two main classes: time-domain PDAs 

and short-term analysis PDAs [64]. The time-domain PDAs include zero-crossing 

rate (ZCR) [11], slope event rate, autocorrelation method [4], and the YIN estima­

tor [5] that is based on the difference function. They are simple to understand and 

computationally efficient in comparison to short-term analysis PDAs [62]. Those 

methods, however, do not take an advantage of the harmonic relationship be­

tween the fundamental and harmonic partials, which provides useful information 

to reduce the variance of the frequency estimation. They are only useful for only 



CHAPTER 2. LITERATURE REVIEW 31 

narrow-band signals and susceptible to noise. The short-term analysis PDAs are 

based on some type of short-term transformation. In these methods the speech 

signal is split up into a series of frames. Each frame is simply a small number of 

consecutive samples of the signal, which may overlap with other adjacent frames. A 

single frame should be at least as long as two or three complete periods. Although 

numerous types of short-term analysis PDAs have been proposed, they belong to 

either correlation techniques or frequency-domain analysis [64]. The correlation 

techniques include the autocorrelation method and the average magnitude differ­

ence function (AMDF). These techniques measure how similar the speech signal is 

to itself at a given time lag (delay). If the signal is periodic or quasi-periodic, the 

time lag (delay) on which the measure of the similarity increases will represent the 

period of the signal. 

The typical frequency-domain analysis is a cepstrum. A cepstrum is the 

result of taking the Fourier transform of the logarithmic spectrum of the signal. 

The cepstrum is plotted against the quefrency, which is a measure of time (similar 

to the time lag). The main idea of the cepstrum is that when the signal contains 

harmonic components, the spectrum of the signal itself comes to have several peaks 

at the frequencies corresponding to these harmonics and appears to be periodic. 

The Fourier transform of the logarithmic spectrum is going to have a large value 

at a quefrency which corresponds to the distance between the spectrum peaks. 

Overall, the short-term analysis PDAs are computationally more intensive than 

the time-domain PDAs. However, they are in general more accurate and more 

robust to noise. 

Two main sources of errors in PDAs are voicing decision errors and false 

pitch estimates due to noise and signal distortion within voiced segments. Under 
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bad signal conditions, such as low signal-to-noise ratio (SNR), the performance of 

PDAs deteriorates severely. One common solution to noisy pitch estimates is pitch 

tracking. Instead of estimating pitches independently based on individual frames, 

pitch tracking methods adopt more global searching mechanisms using dynamic 

programming (DP) and/or hidden Markov model [63]. Wang et al. proposed 

a PDA that searches to find an optimum pitch track using a DP [65]. A few 

years earlier Droppo et al. suggested a time-domain MAP pitch tracking method 

utilizing two-state hidden Markov model (HMM) [66]. Recently, Tabrikian et al. 

proposed a MAP pitch tracking method that significantly outperforms the previous 

methods in noisy environments [63]. 

There are two main drawbacks of the PDAs. First, they are not as accurate 

as state-space based methods since they are frame-based and have only a discrete 

representation of the frequency possibilities. Second, they can only estimate or 

track the pitch of the quasi-periodic signal without providing any information on 

the amplitudes of the fundamental and harmonic partials. In other words, unless 

the PDAs are combined with other signal processing techniques, they are not an 

appropriate solution to track the fundamental frequency and the amplitudes of its 

harmonics. 

Speech signal representation is a more general topic of speech signal analysis 

than pitch detection. The goal of speech signal representation is to analyze a speech 

signal to obtain its complete characterization, which provides enough information 

based on which one can re-synthesize a quasi periodic portion of the speech signal as 

close as possible. The first step of speech signal representation is to model a glottal 

excitation waveform. Traditionally researchers used multiple impulses or random 

sequences superimposed on periodic pitch pulses to model a glottal excitation 
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waveform [67]. In the early 80's, however, several analysis/synthesis approaches 

were proposed using the sine-wave model [68, 69]. In the mid 80's, McAulay pro­

posed the sinusoidal representation of speech signal as a new approach to this 

problem. McAulay et al. assumed that the excitation is composed of sinusoidal 

components of arbitrary amplitudes, frequencies, and phases [7]. After modeling 

the glottal excitation as a sum of sine waves, which results in the sinusoidal rep­

resentation for speech signal, speech signal representation becomes a problem of 

parameter extraction for amplitudes, frequencies, and phases. The first step of the 

parameter extraction is to break down the speech signal into contiguous sequential 

frames. Then, for each frame, a set of parameters ( amplitudes, frequencies, and 

phases) is selected that minimizes the mean-squared error between the framed Yn 

and synthetic Sn speech signals. This approach is equivalent to a Fourier series 

representation of a periodic signal. In other words, the set of parameters of the 

synthetic speech model can be estimated from the short-time Fourier transform 

(STFT) of the speech signal. This approach, however, is non-recursive imposing a 

heavy computational load and is based on the local stationarity assumption within 

each frame. One frame should also contain several fundamental periods for accu­

rate estimation of the pitch. One hazard of this approach is that the assumption 

of stationarity does not hold within speech regions where both the location and 

the number of peaks change rapidly. McAulay introduced the concept of birth 

and death of sinusoidal components to address this issue. However, his method 

is heuristic and requires additional user-specified parameters that are application­

specific. McAulay's modeling of the glottal excitation as a sum of sine waves was 

ingenious, but his parameter extraction method left a lot of room for improve­

ment in terms of the optimality, efficiency, and robustness. The following sections 
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will discuss alternative methods to extract parameters of the sinusoidal model of 

quasi-periodic signals efficiently and accurately. 

2.6 Continuous State-Space Model Based Algorithms 

A Markov process is a mathematical model for a random system whose future 

and past states are independent conditional on the present state. A Markov pro­

cess is memoryless since the future and past states of the system are independent 

conditional on the present state. A Markov process is a useful signal processing 

tool because many signal processing applications can be modeled as Markov pro­

cesses. After modeling, the main goal is to estimate the state of the system given 

observable measurements that are related to that state through a known model, 

(2.13) 

where Xn is the state vector, Yn is the observation vector, Un is process noise, 

Vn is the measurement noise, f(xn, un) is the process model, and h(xn, vn) is the 

measurement model. The initial state x 0 is assumed to be distributed according 

to a density function 1r0 (x0 ). 

About 50 years ago, Kalman derived a set of equations for efficient recursive 

filtering to optimally estimate the state of linear systems [70]. The system is linear 

when both process and measurement models are linear. A linear system can be 

generally expressed as, 

(2.14) 
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where An is the state-transition matrix, En the input matrix, Cn the output matrix, 

and Dn the measurement noise matrix. However, the state estimation problem 

becomes difficult if either of the process and measurement models are nonlinear. 

The multi-harmonic tracking application is an example of a nonlinear Markov 

process where the process model is nonlinear due to the nonlinear relationship 

between the angles 0n and observed signal Yn· The subsequential sections will 

discuss three popular suboptimal approaches: extended and unscented Kalman 

filtering, hidden-Markov model, and sequential Monte Carlo methods. 

2.6.1 Extended and Unscented Kalman Filtering 

The extended Kalman filter (EKF) and unscented Kalman filter (UKF) rely on lo­

cal linear approximations of nonlinear systems. When the goal is to estimate only 

the frequency of a signal with a single partial, the EKF is equivalent to the digital 

phase-locked loop (PLL) [71, 72]. Schmidt suggested the linearization of a nonlin­

ear system about the current state estimate, which has become the most widely 

used nonlinear state-space estimator, i.e. the extended Kalman filter [73]. In 1990 

Parker et al. applied this extended Kalman filtering technique to estimate the am­

plitudes, frequencies, and phases of the rhythmical signals containing Nh harmonic 

components [7 4]. In many ways the EKF is more powerful and efficient than the 

STFT-based methods that McAulay proposed in [7]. First, it is no longer necessary 

to break down the quasi-periodic signal into contiguous sequential frames. Using 

the EKF one can estimate the state of the system on a sample-by-sample basis. 

Secondly, the EKF does not require the local stationarity of the signal. Thirdly, 

estimation, i.e. parameter extraction, is carried out recursively from time n - l to 
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time n. The state-space model that Parker proposed can be written as follows, 

Nh 

Yn = a1,n cos (0n) + L a1,k,n cos (k0n) + a2,k,n sin (k0n) + Vn 
k=2 

(2.15) 

where Nh is the number of harmonics (assumed known), 0n is the fundamental 

instantaneous angle, a 1,k,n and a 2,k,n are the sinusoidal coefficients, and Vn is white 

Gaussian noise with variance Rv. The recursions for the EKF are available in many 

references [75]. 

Although Parker et al. demonstrated the outstanding performance of the 

EKF estimating the frequency and amplitude of a periodic signal based on simu­

lation study, they missed a very important aspect of the multi-harmonic tracking 

problem. As Jang et al. mathematically proved, the error surface contains several 

local minima in multi-harmonic tracking applications [3]. In other words, the more 

harmonic partials the multi-harmonic signal contains, the more severely the pos­

terior distribution p(xo:nlYo:n) becomes multi-modal, where Yo:n is a sequence of 

observations y0 , ... , Yn· This is problematic since since the EKF relies on local lin­

ear approximations of the system. As a result, the convergence of the EKF heavily 

depends on the initial conditions of the EKF recursions. The EKF is also sensi­

tive to abrupt changes in frequency, signal drops, and artifact, which are common 

in real signals. Therefore, the EKF is not a suitable method for multi-harmonic 

tracking applications. 

2.6.2 Hidden Markov Models (HMMs) 

The basic theory of Markov chains (MCs) and hidden Markov models (HMMs) 

has been known to mathematicians for over 100 years. However, it ~as only a 
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Table 2.1: List of HMM Elements. 
Name 
Length of the observation sequence 
No. of hidden states 
No. of observation symbols 
Hidden states 
Discrete set of possible symbol observations 
Hidden state transition probability distribution 
Observation symbol probability distribution in hidden state j 
Initial state distribution 

Symbol 
T 
N 
M 
Q 
V 
A 
B 
7r 
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few decades ago when people started applying it explicitly to signal processing 

problems. The definition of an HMM is "a doubly stochastic process with an 

underlying stochastic process that is not observable (it is hidden), but can only be 

observed through another set of stochastic processes that produce the sequence of 

observed symbols" [76]. There are eight elements of an HMM which are listed in 

Table 2.1. 

It is common to represent an HMM using a simple notation ,\ = (A, B, 1r) 

where the three distributions, A, B, and 1r, are the most important elements of an 

HMM. The state transition probability distribution, aij = p(qj at n + lJqi at n), 

relates the current hidden state qi at n to the next hidden state qj at n + 1, 

where n is a discrete time index. The observation symbol probability distribution, 

bi(k) = p(vk at nJqi at n), relates the current hidden state qi at n to a symbol vk at 

n. There are three types of problems that can be solved for a given HMM: the first 

is calculating the probability of the observation sequence, the second choosing a 

hidden state sequence, which is "optimal" given the observation sequence, and the 

third tuning the model parameters, { A, B, 1r}, to maximize the probability of the 

observation sequence. The second problem is closely related with the frequency 
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tracking application uncovering the optimal hidden state sequence of the model. 

The hidden state sequence in the frequency tracking application is the frequency 

track. 

Streit et al. demonstrated how the problem of frequency line tracking can 

be formulated in terms of HMMs [77]. In their HMM frequency line tracking al­

gorithm the A matrix represents the likely extent of the frequency fluctuations 

and the B matrix characterizes the statistical relation between the hidden state 

(frequency) at time n and the measurement at time n. A user-specified range 

of frequencies is divided into a finite number of frequency cells, which are hidden 

states of the model. It is important to notice that the measurement takes a form 

of a detection and relies on the fast Fourier transform (FFT) of the signal. If the 

spectral power in a particular frequency cell at time n is larger than that in all 

other frequency cells and exceeds a user-specified threshold D, the cell is claimed 

to be detected and its corresponding index is used as a measurement. Given the 

measurement sequence Z, which is a sequence of cell indices, the goal is to ob­

tain the optimal state sequence Iopt that maximizes p(ZII). This optimal state 

sequence is referred to as the Viterbi track since the optimization is done using 

the Viterbi dynamic programming algorithm [77]. The B matrix is a function of 

the threshold D and SNR. These parameters play a critical role in optimizing the 

HMM frequency line tracker. Although the authors demonstrated that the thresh­

old D can be optimized by solving a nonlinear equation, the equation includes 

other critical parameters to be optimized separately. The HMM frequency line 

tracker requires some user experience for proper optimization. The main weakness 

of the HMM frequency line tracker is that it can only track the frequency of an 

observed sine wave. A few years later, Barrett et al. extended the HMM frequency 
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line tracker so that a newer version of the tracker can track not only the frequency 

but also the amplitude and angle of a noisy sine wave [78]. The main difference 

between the HMM frequency line tracker and frequency/amplitude/angle tracker 

is that the later uses complex FFT data instead of the absolute value of FFT. Ac­

cording to their simulation results the HMM frequency/ amplitude/ angle tracker 

outperformed the HMM frequency line tracker at the expense of increased numer­

ical complexity and computational load. Although there is more recent work on 

the HMM-based frequency tracking [79,80], all HMM-based frequency tracking al­

gorithms are limited to individual frequency tracking applications and not capable 

of tracking harmonically related partials in the signals such as speech, music, or 

various pressure signals. 

A few research groups have proposed HMM-based harmonic/pitch tracking 

methods over the last decade. They modeled the signals of their interest such 

as speech and music signals as a sum of harmonically related sinusoids and used 

HMMs to estimate the smooth fundamental frequency track and the amplitude of 

each harmonic partial [6,63,81]. Deisher et al. modeled the speech signal as a sum 

of weighted sinusoids as follows, 

Nh 

Yn = L ak,n cos ( kwon + </Jk,n) 
k=l 

(2.16) 

where Nh is the number of sinusoids used in the representation and ak,n and <fJk,n 

are the amplitude and angle associated with the kth angular frequency kw0 . They 

applied the HMM-based MMSE estimator to speech corrupted by additive noise, 

i.e. Zn = Yn +vn, to find the harmonic sinusoidal model parameters { ak,n, w0, <fJk,n} 

of each block of clean speech. The first step of the estimation algorithm is to take 
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the discrete Fourier transform (DFT) of a noisy speech block, which is denoted as 

Z. Then, the DFT of a clean speech block, i.e. Y, is estimated using ergodic and 

Gaussian mixture HMMs. Y is an optimal estimator of Y in a sense of MMSE. 

Given Y the maximum likelihood frequency trajectory is calculated using the effi­

cient Viterbi algorithm. Deisher et al. demonstrated reasonable performance of the 

proposed algorithm. Obtaining Y, however, requires training of two autoregressive 

HMMs using clean speech collected from a group of people representing potential 

users and noise from the expected operating environment. This training process 

is cumbersome and specific to certain applications. More recently, Tabrikian et 

al. proposed a maximum a posteriori (MAP) pitch tracking algorithm using har­

monic models based on HMMs. This is more general and computationally more 

efficient than Deisher's algorithm. Their model for the measurement of a given 

voiced frame is slightly different from the previous one and can be written as, 

Nh 
Yn = L a1,k,n cos (kwon) + a2,k,n sin (kwon) + Vn 

k=l 

(2.17) 

where w0 stands for the fundamental angular frequency of the signal and the 

coefficients a 1,k,n and a 2,k,n carry the information on the intensity and angle of 

the kth harmonic of the signal. (2.17), then, can be written in matrix notation as 

follows, 

y = A(w0 )c+v (2.18) 

where c ~ [a1, ... , aNh, b1, ... , bNhf and the matrix A(w0 ) can be partitioned as 
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A (wo) = [Ac (wo) As (wo)]. The elements of A (w0 ) are given by, 

Ac,k,n (wo) = cos (kwon) 

As,k,n (wo) = sin (kwon). 

The maximum likelihood function can be written as, 

P (YI W C u2) = l e-lly-A(wo)cil/(2u~) 
0, 1 

V ( 2)1/2 21ruv 
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(2.19) 

(2.20) 

(2.21) 

Then, the maximum likelihood (ML) estimator can be obtained by maximizing the 

likelihood function in (2.21) with respect to the unknown parameters { w0 , c, u~}­

One thing to notice is that this ML estimator provides only an independent pa­

rameter estimation for each individual frame. Incorporating a priori knowledge on 

the smooth behavior of speech parameters ( especially frequency) over time they 

proposed the MAP estimator of the fundamental frequency track, that uses mea­

surements collected over several frames. The MAP estimator can be implemented 

by using a dynamic programming procedure. 

Most HMMs-based frequency tracking algorithms have been developed ex­

tensively for speech analysis. Although their performance has been improved over 

the last few decades, there are several weaknesses for the algorithms to be applied 

to broader applications. The first weakness is that most HMMs-based frequency 

tracking algorithms require the frequency domain representation of each frame 

such as the DFT as the input of the algorithms. This means that the signal has 

to be segmented by non-overlapping or overlapping frames assuming the local sta­

tionarity within each frame. The duration of individual frames is a limiting factor, 



CHAPTER 2. LITERATURE REVIEW 42 

which controls the trade-off between the frequency- and time-domain resolutions. 

For various applications, where the local stationarity assumption doesn't hold, the 

HMMs-based frequency tracking algorithms may not be appropriate. The second is 

that the HMMs-based frequency tracking algorithms require the locally estimated 

fundamental frequency estimates prior to globally optimal solution. The locally 

estimated fundamental frequency estimates rely on individual frames ignoring the 

prior statistical transition probability density function A. Therefore, this so-called 

measurement track of the locally estimated fundamental frequency estimates is not 

a globally optimal estimate of the true track. The globally optimal estimate of the 

true track, so-called Viterbi track, can be obtained only after the algorithms see 

a large number of frames. In their simulation results Barrett et al. showed the 

difference between the measurement track and Viterbi track clearly [78]. 

2.6.3 Sequential Monte Carlo Methods 

The extended Kalman filter relies on the mean and covariance statistics to repre­

sent the posterior marginal distribution p(xnlYo:n) of the state given a sequence of 

observations Yo:n = {Yo, ... , Yn}, This, however, is a useful summary of the distri­

bution only when the distribution is unimodal. For some nonlinear processes the 

posterior distribution is multi-modal and in these cases the distribution cannot be 

sufficiently described by the mean and covariance statistics. The multi-modal pos­

terior distribution requires a more complete set of statistics to represent all of the 

important features. Monte Carlo methods (MCMs) are a possible alternative [82]. 

MCMs estimate an unknown distribution up to a normalizing constant. Sequential 

Monte Carlo methods (SMCM) carry out this estimation process sequentially ( or 

recursively) to reduce the computation load of the algorithm. 
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In theory the posterior distribution is estimated up to a normalizing constant 

by drawing a sequence of sufficient random samples from the distribution. In 

practice, however, it is not possible to draw independent samples from the posterior 

distribution, p(xo:nlYo:n), that is unknown. The concept of an importance sampling 

needs to be introduced to address this issue. Importance sampling is a technique 

to represent the unknown posterior distribution as a weighted combination of point 

masses, where the independent samples are drawn from a importance distribution, 

q(xo:nlYo:n), which a user can choose. Only one constraint on the choice of the 

importance distribution is that its support must be larger than that of p(xo:nlYo:n)­

The expected value of any statistic of the state can then be estimated as follows, 

Np 

E[ ( )] ~ 1 ~ (i) ( (i) ) g Xo:n ~ N: L wn g Xo:n 
p i=l 

(2.22) 

that converges as O(N~ 1 ) by the law of large numbers. Often, the SMCM are 

referred to as particle filters (PF). The term, "particle", is used to represent the 

random state trajectories Xo:n· A single particle, i, corresponds to the i th random 

state trajectory X6~~. 
Doucet praised the remarkable flexibility and usefulness of Monte Carlo al­

gorithms that have been revolutionizing applied statistics and related fields such 

as bioinformatics and econometrics [83]. Although he tried to provide a complete 

review of MCM in a signal processing context in [83], he left out an important issue 

that needs to be addressed in applying the traditional MCM to many signal pro­

cessing applications such as multi-harmonic tracking. That is the fact that particle 

filters (PFs) are criticized by the computational requirements proportional to the 

number of particles NP needed for reasonable approximations of the posterior dis-
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tributions. This is problematic because the number of particles NP needed scales 

with both the state dimension f and the duration of the observation sequence n 

at the time when the state estimate is needed. In the multi-harmonic tracking 

case the state dimension f increases proportionally to the number of harmonics 

Nh. In order to overcome this curse of dimensionality it is necessary to improve 

upon canonical particle filters (PF). 



Chapter 3 

Problem Definition 

3.1 Stochastic Process 

A stochastic process is the counterpart to a deterministic process. For a deter­

ministic process, future evolution is completely known and unique given an initial 

condition of the process. In contrast, future evolution of a stochastic process is 

not determined or unique due to the indeterminacy of the process. Many paths 

of evolutions are possible from the known initial point. A stochastic process is 

also referred to as a random process. The randomness of the stochastic process 

is described by its probability distribution. The probability distribution has infor­

mation on which one among multiple possible paths is more or less probable. For 

example, a sequence of random variables is a realization of a stochastic process in 

the case of discrete time. Many different sequences of random variables are possi­

ble as realizations of the discrete time stochastic process. Knowing the probability 

distribution of the stochastic process one can only tell how probable it is for a 

particular sequence to occur. Many time series can be modeled as stochastic pro­

cesses such as the human voice, stock market fluctuations, seismic signals, acoustic 

measurements of machinery vibration, and biomedical data. There are many kinds 
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of stochastic processes such as the Bernoulli process, Poisson process, point pro­

cess, Gaussian process, and Markov process. They can be used to model coin 

flipping (Bernoulli process), weather prediction (Markov process), and radioactive 

decay (Poisson process). In order to choose an appropriate stochastic process prior 

knowledge on the characteristics of a phenomenon of interest should be used. 

3.2 State-Space Methods 

A physical system can be mathematically represented as a set of input, output, and 

states related via a set of models, which can be nonlinear and stochastic. States 

are unknown variables that represent a system's condition at a given time. For ex­

ample, in making reinforced glass the temperature between the glass plates cannot 

be measured directly although it is a critical variable, i.e. state, that represents 

the condition of the manufacture process. The state-space is an imaginary space 

consisting of the minimum set of states of a stochastic process that describes a 

physical system. The output is a sequence of observed measurements of the sys­

tem. The input is a source that drives the system. In the example of the reinforced 

glass manufacture process, the output can be a temperature measured around the 

plates and the input is a white Gaussian noise that models the fluctuation in 

the temperature. Typically the state-space representation of a system is defined 

by two equations: a process and a measurement equation. A general state-space 

representation can be written as, 

(3.1) 
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where Un and Vn are inputs, Yn an output, Xn the state of the system at time 

n, and the functions f n ( ·) and hn ( ·) are the process and measurement models, 

respectively. Two functions fn(·) and hn(·) are time-indexed, which means that 

the process and measurement models themselves can be time varying. 

The goal of state-space tracking is to estimate the unknown state Xn given a 

sequence of measurements Yo:n, where Yo:n represents {Yo, ... , Yn}- The state-space 

representation originated from modern control theory, which utilizes the time­

domain mathematical model of a dynamic system. The state-space representation 

is flexible and versatile since the equations can be nonlinear and stochastic. It 

has been adopted in signal processing and now is a widely used signal processing 

paradigm. However, a set of process and measurement equations is not something 

that is available or given to a user readily. A user has to devise them based on some 

prior domain knowledge of the system. In other words, a modeling step precedes 

an actual application step of state-space tracking. 

3.3 Markov Process 

A Markov process is a special case of stochastic processes, which represents the 

random evolution of a memoryless system. A system is called memoryless when 

its future behavior depends only on the current state of the system. The future of 

a Markov process is independent of the history of the process conditional upon the 

current state. A stochastic process is a Markov process if it satisfies the condition 

below, 

(3.2) 
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► Xn-1 - Xn - Xn+l - -

' ' " " 
Yn-1 Yn Yn+l 

Figure 3.1: Conceptual diagram of Markov processes. 

The index space ( time scale) and state-space are two main elements that char­

acterize Markov processes. There are four types of Markov processes depending 

on the continuity of these two elements: discrete time Markov chains, continuous 

time Markov chains, discrete time Markov processes, and continuous time Markov 

processes. 

Fig. 3.1 illustrates a conceptual diagram of a discrete time Markov process 

where Xn is the current state and Yn the current measurement. An example of a 

Markovian process is the Monopoly game whose next state of the board is deter­

mined completely by the current state and the next roll of the dice. In contrast, 

card games are not Markovian processes since each card represents a memory of 

the past moves. However, Markovian representations are not strictly limited to 

Markovian processes. In some cases, non-Markovian processes can have Marko­

vian representations. Assuming that xis a non-Markovian process, let us define a 

new process z that can be expressed as, 

z(t) = {x(s): s E [a(t), ,B(t)]}. (3.3) 

If the new process z has the Markov property, it becomes a Markovian representa-
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tion of the original process x. This is possible because the concept of the present 

and future can be extended so that they represent intervals in the index space 

( time scale) instead of particular points in the space. For example, a moving aver­

age (MA) time series is a non-Markovian process with a Markovian representation 

because the future state Xn+l depends only on some of current and past states 

Xn, ... , Xn-M+l, where Mis the order of the MA time series. The Markovian rep­

resentation of this non-Markovian process can be obtained by including the states 

in the intervals [n, n - M + 1] into the "current" state. 

3.4 Posterior Distribution and Bayesian Estimation 

A posterior distribution is an important term in rhythmicity tracking within the 

framework of the sum-of-sinusoids model. A posterior distribution, which is de­

noted as p( x IY), is a probability density function that represents a probability 

distribution of what is known about a random variable x taking the observation y 

into account. Simply, the posterior distribution p(xly) is a conditional probability 

distribution of x given y. In contrast, a prior distribution p( x) is a description 

of a variable x in the absence of any data. The likelihood function p(ylx) is a 

probability density function that describes a conditional probability of y given 

x. Let us assume that x is a binary character {O, 1} to send via a channel and 

y a received signal. A prior distribution p( x) describes which character O or 1 

is more or less frequently sent. The frequency of characters to send is a prede­

termined quantity before receiving the actual signal. When a binary character 

{O, 1} is sent via a channel, a receiver receives a signal y that appears to be O or 

1. The likelihood distribution p(ylx) describes what a received signal y is likely 
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to be when the actually sent character is 0 or 1. When the channel is perfect, 

i.e. noise-free, y is the same as x, which means that the receiver does not make 

any mistake with determining which character was originally sent. However, real 

channels are usually noisy, and original characters are altered by channel noise. 

The likelihood distribution p(ylx) represents how severe this alteration of original 

characters is. The posterior distribution p(xly) describes how probable an original 

character is to be O or 1 given a received signal y. For example, when y is -0.85, 

a original character xis probably -1 since p(x = -lly = -0.85) is greater than 

p(x = lly = -0.85). When y is 1.01, x is probably 1 since p(x = lly = 1.1) 

is greater than p(x = -lly = 1.1). The posterior distribution p(xly) is used to 

reason about x given y. 

The posterior distribution p(xly) can be calculated by multiplying a prior 

distribution p(x) and the likelihood distribution p(ylx) via Bayes' theorem as 

follows, 

( I ) p(x)p(ylx) p X y - -------- J~
00

p(x)p(ylx) dx 
(3.4) 

where the denominator is a normalizing constant. When the random variable x 

and the observation y are independent, p(ylx) becomes p(y). Then, the posterior 

distribution p(xly) is equal to a prior p(x ). In this case, knowing y is not helpful to 

estimate x. However, when there is some type ofrelationship between x and y, the 

posterior distribution p(xly) becomes more useful than a prior distribution p(x) in 

reasoning about x. These three distributions, i.e. a prior, posterior, and likelihood, 

are important concepts for understanding estimation methods. There are three 

popular methods of estimation: method of moments, maximum likelihood (ML) 
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estimation, and Bayesian estimation. The method of moments is usually easy to 

implement and yields consistent estimators. However, the estimators are often not 

the best and can be misleading. Generally the maximum likelihood estimation and 

Bayesian estimation are preferred and more accurate than the method of moments. 

There are many similarities between those two estimation methods. The most 

important one is that they utilize the likelihood, prior, and posterior distributions. 

The main difference between them is that the maximum likelihood estimation relies 

only on the likelihood distribution p(ylx) while Bayesian estimation uses the prior 

distribution p(x) and the likelihood distribution p(ylx). The maximum likelihood 

estimation computes the likelihood and finds a parameter value that maximizes it. 

It can be written as, 

(3.5) 

where ML stands for the maximum likelihood and argmax stands for the argument 

of the maximum, that is the value of the given argument x for which the following 

function attains its maximum value. There are two common Bayesian estima­

tion methods depending on the choice of estimation quality measures. The first 

Bayesian estimation is called the minimum mean square error (MMSE) estimation. 

It minimizes the mean square error (MSE), which can be expressed as, 

(3.6) 
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Figure 3.2: Example of the prior, likelihood, and posterior distributions with the 
mean estimate Xmean of x, MAP estimate XMAP, and maximum likelihood estimate 
XML· 

The MMSE estimator can be expressed as, 

XMMSE = E [xly] 

= 1-: xp(xly) dx (3.7) 

The second Bayesian estimation is called the maximum a posteriori (MAP) 

estimation. It minimizes the most probable error by searching for x that maximizes 

the posterior distribution p(xly). It can be expressed as, 

XMAP = argmaxa:p(xly) 

p(x)p(ylx) 
= argmaxa: Joo ( ) ( I ) 

_
00 

p x p y x dx 
(3.8) 
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When the posterior distribution can be approximated as Gaussian, the MMSE es­

timation yields good results. However, if the posterior distribution becomes multi­

modal, XMMSE can be very misleading. Since both the ML and MAP estimation 

methods utilize the likelihood distribution p(ylx ), there is some similarity between 

those methods. For example, if x is evenly distributed, its prior distribution p( x) 

becomes constant. Then, 

XMAP = argmax::c p( x IY) 

p(x)p(ylx) 
= argmax::c Joo ( ) ( I ) 

_
00

p X p y X dx 

c • p(ylx) 
= argmax::c Joo ( I ) 

_
00 

c ·pyx dx 

p(ylx) 

(3.9) 

that is, the MAP estimation becomes identical to the ML estimation. Fig. 3.2 

illustrates an example posterior distribution and the MAP estimation of x. The 

MAP estimation is the most probable value of x given y. Therefore, the MAP es­

timation minimizes the most probable error rather than the expected value of the 

estimation error. 

3.5 Recursive Bayesian Estimation 

The posterior distribution of the entire history of the state given all measurements 

up to current time n can be expressed as p(xo:nlYo:n), where Xo:n is equivalent to 

{ x 0 , ... , Xn}. The marginal posterior distribution p( Xn IYo:n) describes the poste-
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rior distribution of only the current state given all measurements up to current 

time n. No matter which distribution needs to be estimated, it would be very 

inefficient to compute p(xo:nlYo:n) without utilizing previously computed distribu­

tions such as p(xo:n-ilYo:n-1). By adopting the state-space model framework, the 

posterior distribution p(xo:nlYo:n) can be computed by updating p(xo:n-1IY0:n-1)­

Given p(xo:n-ilYo:n-i) and the process model in (3.1), the predicted posterior dis­

tribution p(xo:nlYo:n-l) can be computed since the process model describes how Xn 

propagates from Xn-l· As measurement Yn becomes available, p(xo:nlYo:n) can be 

updated from p(xo:nlYo:n-i) since the measurement model in (3.1) describes how 

Yn is related to Xn. By alternating these prediction and measurement updates one 

can compute the posterior distribution recursively. 

Recursive Bayesian estimation is a Bayesian approach to estimating an un­

known posterior distribution recursively over time using incoming measurements 

and a state-space model. Let us consider a filtering problem where the marginal 

posterior distribution p(xnlYo:n) is of interest. As explained above, this marginal 

posterior distribution can be computed efficiently by updating p(xn-ilYo:n-1). The 

update recursions can be written as follows, 

( I ) P(YnlXn, Yo:n-1)p(xnlYo:n-1) p Xn Yo:n = 
P(YnlYo:n-i) 

P(Ynlxn)p(xnlYo:n-1) 
P(YnlYo:n-1) 

p(xnlYo:n-1) = J p(Xn, Xn-1IY0:n-1) dxn-1 

= J p(xnlXn-1, Yo:n-1)p(Xn-1IY0:n-1) dxn-1 

= J p(xnlXn-1)P(Xn-1IYo:n-i) dxn-1 

(3.10) 

(3.11) 



CHAPTER 3. PROBLEM DEFINITION 55 

where (3.10) is called a measurement update and (3.11) a prediction update. Math­

ematically the recursions are an elegant solution. But, in most cases, the prediction 

step (integral) is impossible or very difficult to evaluate analytically. The following 

section discusses an alternative way. 

3.6 Monte Carlo Methods 

Monte Carlo methods (MCMs) refer to a class of computational algorithms that 

rely on repeated random sampling to compute integrals that are impossible or 

difficult to evaluate analytically. Let us consider a distribution g( x), whose integral 

is difficult to evaluate analytically. Its integral can be written as, 

(3.12) 

When x lies in a high dimension, evaluating the integral becomes more challenging. 

M CMs first factorize g ( x) as follows, 

g(x) = f(x)1r(x) 

where 1r(x) is a probability density function (PDF), that is, 

1r(x) 2: 0 

j 1r(x)dx = l. 

(3.13) 

(3.14) 
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If N » l independent samples are drawn from 1r( x), the integral I can be estimated 

as a sum of those samples. It can be expressed as, 

I= j g(x)dx 

= j f(x)1r(x) dx 

= E [f(x)] 
N 

iN = ! L f (x(i)), 
i=l 

(3.15) 

(3.16) 

where IN is an unbiased estimate of I, which almost surely converges to I as N 

increases. The error variance does not increase as the dimension of x increases. 

However, drawing samples from the PDF 1r(x) may not be always easy because 

a closed-form mathematical expression for 1r(x) may not exist and 1r(x) can be 

evaluated only numerically for specific values of x. Therefore, it is necessary 

to define another probability density function (PDF) q(x), from which random 

samples can be drawn. Any arbitrary probability density function (PDF) can be 

the importance density q(x) as long as its support is larger than the PDF 1r(x)'s 

and independent random samples can be drawn from it. That is, 

I= j f(x)1r(x) dx 

= J f(x) :~:? q(x) dx 

N (i) 

IA = 2_ ""'f( (i))1r(x ) 
N N {;;:t x q(xCi)) 

N 

= ! I: 1 (x(i))w(x(i)) 
i=l 

(3.17) 

(3.18) 
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where w(x(i)) is an unnormalized weight of the ith sample. Since the sum of the 

unnormalized weights is N, 

N L w(x(i)) = N (3.19) 
i=l 

the estimate f N can be rewritten as follows, 

(3.20) 

where w(x(i)) is a normalized weight of the ith sample. The PDF q(x) is called 

an importance density and the sampling scheme described above is referred to as 

importance sampling. 

3. 7 Sequential Monte Carlo Methods 

Sequential Monte Carlo methods (SMCMs) are better known as particle filters, 

which are a technique to estimate a sequence of unknown variables recursively 

over time. SMCMs are an alternative to the extended or unscented Kalman fil­

ter (EKF /UKF) with the advantage of approaching the optimal Bayesian estimate 

when the number of samples is large enough. Also, SMCMs have considerable merit 

over the EKF /UKF if the posterior distribution of interest has several modes of 
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comparable amplitude [84]. Many research groups have demonstrated the suit­

ability and versatility of SMCMs for various applications such as positioning and 

navigation [85], tracking [86-88], blind equalization [83], fault detection [89], com­

puter vision [90], and speech recognition [91]. 

SMCMs assume that the state Xn and measurement Yn can be modeled as the 

first-order Markov process as shown in (3.1). Therefore, P(Ynlxn) and p(Xn+ilxn) 

can be computed as measurement Yn becomes available. However, SMCMs cannot 

be directly applied to this state-space model because there is no means to draw 

independent random samples directly from the posterior distribution p (xo:nlYo:n)­

The importance sampling scheme introduced in Section 3.6 can be adopted to 

enable random sampling. By weighting the random samples drawn from the im­

portance density q(xo:nlYo:n) appropriately, the posterior distribution p (xo:nlYo:n) 

can be represented as a weighted combination of point masses, i.e. f(a/i)) in (3.18). 

Then, the expected value of any statistic of the state variable Xo:n can be estimated 

as follows, 

E [g(xo:n)] =Jg (xo:n) P (xo:nlYo:n) dxo:n 

Np _ (i) 
~ ~ Wn (-(i)) 
~ {=:_ I:f,;1 W~) g Xo:n 

Np 

= L w~)g ( xg~) (3.21) 
i=l 

where E is the expectation operator, NP the number of random samples, and 

xg~ the i th random state trajectory, and w~i) the i th importance weight of the 

corresponding state trajectory. The random state trajectories are often referred 

to as particles. Here, a state refers to a set of random samples drawn from the 
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importance density, corresponding state variables, and an estimate of output Yn­
Then, a state trajectory, i.e. particle, represents a history of state evolution through 

time. In other words, one particle xg~ represents the entire record of how the state 

has evolved from the beginning n = 0. 

SMCMs can be seen as an implementation of importance sampling by up­

dating the weights w(x~)) in (3.21) to compute the estimate of the posterior dis­

tribution p(xo:nlYo:n) upon the arrival of measurement Yn given p(xo:n-1IY0:n-1)­

As mentioned earlier, any arbitrary probability density function (PDF) can be the 

importance density q (xo:nlYo:n) as long as its support is larger than the posterior 

distribution p (xo:nlYo:n) and independent random samples can be drawn from it. 

However, in SMCMs, the importance density q (xo:nlYo:n) needs to satisfy one more 

condition as follows, 

n 

= q(xolYo) IT q(xklxo:k-l, Yo:k) (3.22) 
k=l 

Then, the weight w(x~)) can be updated sequentially as follows, 

(3.23) 

Since P(Ynlx~)) and p(x~) jx~~1) can be known upon the arrival of measurement 

Yn using the state-space model in (3.1), the current weight w(x~)) can be up-
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dated readily from the previous weight w(x~~ 1 ) after computing the importance 

density q(xnlxo:n-1, Yo:n)- The ideal importance density is the posterior distribu­

tion itself, i.e. p(xnlxo:n-l, Yo:n)- The posterior distribution is ideal since using 

it as the importance density yields the minimum variance estimate of E [g(xo:n)]. 

However, the analytical evaluation of the ideal importance density is not possible 

since it is the posterior distribution itself that needs to be estimated. Although 

the optimal importance density can be obtained for a special case, usually it can 

be only approximated [92]. The simplest approximation is to use the prior distri­

bution p(xnlXn-1) as the importance density q(xnlxo:n-1, Yo:n)- Then, the weight 

recursion is simplified as, 

(3.24) 

Particle filters that are implemented hereafter are based on this approximation of 

the importance density. 

3.8 Rhythmicity Tracking as Posterior Distribution Estimation 

Quasi-periodic signals can be modeled as a sum of time-varying sinusoids, which 

represent rhythmical components, i.e. partials, of the signals. The goal of rhyth­

micity tracking in quasi-periodic signals, then, is to estimate the frequencies, 

phases, and amplitudes (parameters in (1.12)) of those partials sequentially. This 

sum-of-sinusoids model of a quasi-periodic signal can be integrated into a state­

space representation of a physical system that generates the signal. In rhythmicity 

tracking of quasi-periodic signals the sum-of-sinusoids model is the measurement 

equation where Yn is a contaminated signal sample at time n, Xn a vector of fre-
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quencies and sinusoid coefficients of the rhythmical components, and Vn additive 

measurement noise. The main goal in the state-space model approach to rhyth­

micity tracking is to estimate the model parameters as accurately as possible, 

where the measure of "accuracy" may vary with application. However, accurate 

estimation of the model parameters does not point out the fundamental problem 

that we attempt to solve in rhythmicity tracking. It is critical to recognize this 

fundamental problem to properly address important issues in rhythmicity track­

ing. Rhythmicity tracking is essentially continuous estimation of the posterior 

distribution of the frequencies and amplitudes of the rhythmical components, i.e. 

partials, in the signal. Traditional frequency tracking techniques assume that the 

posterior distribution is Gaussian and choose the mean value of the distribution as 

the estimate of frequencies, phases, and amplitudes. Depending on the number of 

rhythmical components and their relationship, however, the Gaussian assumption 

may not hold and the posterior distribution may be multi-modal. In that case, the 

mean is not a good representative of the distribution, and more complete descrip­

tions are necessary to represent its important features. For example, the mean of 

the posterior distribution of the fundamental frequency given a sequence of signal 

samples, that is, 

fn = E[fn] 

= j fnP(fn/Yo:n) df (3.25) 

may be located between modes that correspond to probable frequency values. 

Therefore, a reasonable estimate of the fundamental frequency is the frequency 

value that corresponds to the tallest mode of the distribution, which minimizes 
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the most probable error. This estimate is the maximum a posteriori (MAP) esti­

mate, which 

(3.26) 

Given the frequency value / n the coefficients ( a1,1,n, ... , a1,Nh,n, a2,1,n, ... , a2,Nh,n) 

have a simple linear relationship with the signal. Therefore, the posterior distribu­

tion of partials' phases and amplitudes can be modeled as a Gaussian distribution 

and the optimal solution can be obtained using the Kalman filter technique. How­

ever, the frequency has a nonlinear relationship with the signal through the cosine 

and sine functions. Especially when there are multiple harmonically-related par­

tials, the posterior distribution of the fundamental frequency p(fnlYo:n) becomes 

non-Gaussian and multi-modal. In that case, approximating the posterior distri­

bution as a Gaussian is not adequate [85]. By adopting sequential Monte Carlo 

methods (SMCM), i.e. particle filters, the multi-modality of the posterior distri­

bution of the fundamental frequency can be handled properly. 

The subsequent sections demonstrate the multi-modality of the marginal 

posterior distribution of the fundamental frequency in the multi-harmonic signal, 

discuss weaknesses of the canonical particle filtering technique, and describe the 

statistical signal models for applications included in the dissertation. 

3.9 Multi-modal Posterior Example 

For the sake of illustrating the multiple modes in the posterior distribution, let us 

consider a much simpler case in this section that permits us to calculate the pos-
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terior distribution. In general it is difficult to solve for the posterior distribution 

exactly even if a state space model of the process is known. However, if we use 

the simplifying assumptions that (1) the coefficients and fundamental frequency 

have uniform prior distributions and do not change over time and (2) the mea­

surement noise is Gaussian, then we can solve for the posterior distribution of the 

fundamental frequency with a least squares approach. In this case the observation 

model is, 

Nh 

Yn = f} + L a1,k cos (kwn) + a2,k sin (kwn) + Vn 
k=l 

(3.27) 

where Nh is the number of harmonics (assumed known), w is the angular funda­

mental frequency, fj is the slowly changing signal mean, a 1,k and a 2,k are the fixed 

valued sinusoidal coefficients, and Vn is white Gaussian noise with variance Rv. 

If the fundamental frequency and measurement noise are known, this model is a 

linear function of the signal mean and sinusoidal coefficients. 

We can collect the unknown parameters into a vector, which can be written 

as, 

(3.28) 

Then, the posterior distribution is given by 

( I 
. ) _ P(Yo:nlx; r)p(x) 

p X Yo:n, r - ( ) 
P Yo:n; r 

ex: P(Yo:nlx; r) 

where Yo:n b. (y0 , ... , Yn)- Since we have assume a uniform prior, p(x) = c for 

some constant c, the posterior distribution is the same as the likelihood function. 
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For a specified value of the fundamental frequency, the remaining parameters can 

be estimated by linear least squares, or, equivalently, maximum likelihood. An 

unbiased estimate of the measurement noise variance Ru is then given by 

(3.29) 

where NT is the number of samples. Finally, the posterior distribution of the 

angular frequency w can be obtained as follows 

(3.30) 

Fig. 3.3 shows the estimated posterior distribution evaluated as a function of fre­

quency for a signal with NT = 500 samples, Nh = 5 partials ( 4 harmonic partials), 

the true fundamental frequency 2 Hz, the amplitudes a 1,2k+l and a 2,2k+l equal 1, 

a 1,2k and a 2,2k = 10 equal 10, and a signal-to-noise ratio (SNR) of 3 dB. The am­

plitudes of the even-numbered partials a 1,2k and a 2,2k were chosen to be 10 times 

greater than those of the odd-numbered partials a 1,2k+l and a 2,2k+l to enhance 

the modes that correspond to the sub-harmonics of the fundamental frequency. 

Fig. 3.3 demonstrates that the marginal posterior distribution of the fundamental 

frequency of the multi-harmonic signal is truly multi-modal. 

3.10 Weaknesses of Canonical Particle Filtering 

The approximation (3.21) converges to the true value almost surely as the number 

of particles becomes large enough. There are, however, three major drawbacks in 

using the canonical PFs: two curses of dimensionality and using the mean value 
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Figure 3.3: Logarithmic posterior PDF of the fundamental frequency of a synthetic 
multi-harmonic signal with 5 harmonic partials whose true fundamental frequency 
is 2 Hz. 

to represent multi-modal posterior distributions. The two curses of dimensionality 

are due to the fact that the number of particles Np, for reasonable approximations 

of posterior distribution, scales with both the state dimension£ and duration of the 

observation sequence n at the time the state estimate is needed. The first curse of 

dimensionality related with the state dimension £ can be managed by adopting the 

Rao-Blackwellization of canonical PFs when the state-space model meets certain 

conditions. The Rao-Blackwell theorem shows how to improve upon any given 

estimator by calculating a conditional expected value integrating out an ancillary 

statistic [93]. In particle filtering, the conditional expected value is the nonlinear 

portion of the state-space while the ancillary statistic is the linear portion of it. 

Casella et al. proposed an improvement for sampling schemes such as Accept-
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Reject and Metropolis algorithms by using the entire set of simulated random 

variables, which is the result of applying the Rao-Blackwellization Theorem [94]. 

A few years later, Doucet et al. developed a Rao-Blackwellization based particle 

filtering method that takes advantage of the analytic structure present in a specific 

class of state-space models [92]. 

Suppose that we can partition the state vector, Xn, into the linear x~ and 

nonlinear x~ portions, where the system is linear when the nonlinear portion of 

the state, x~ is known. Then, the state-space models that belong to this class can 

be expressed as follows, 

(3.31) 

(3.32) 

(3.33) 

where Fn(x~) is a time-varying state-transition matrix that is a function of x~ 

and Hn ( x~) is an observation matrix that is also a function of x~. In this case 

the linear Kalman filter recursions can be used to optimally estimate the linear 

portion of the state for each particle, x~,(i). This can dramatically reduce the 

number of particles needed to represent the remaining nonlinear portion of the 

posterior state distribution, p(x~nlYo:n), which is in a smaller dimensional space. 

If the linear process noise u~ and the measurement noise Vn are Gaussian, then 

the conditional linear posterior distribution p(x~:nlYo:n, x~n) is also Gaussian and 

the total posterior distribution is given by 

(3.34) 
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This type of particle filtering is called the Rao-Blackwellized Particle Filter or 

sometimes the marginalized particle filter (MPF) since the nonlinear portion of the 

state space is estimated from the marginal distribution. The MPF leverages the 

traditional Kalman filter to optimally estimate the linear portion of the state and 

reduces the memory and computational requirements by reducing the dimension 

of the state vector that is estimated with a particle filter. Gustafsson et al. have 

surveyed the state of the art in theory and practice of the MPF [95]. 

This, however, does not solve the second curse of dimensionality: the number 

of particles required for accurate estimation of an expected value of the posterior 

distribution still increases exponentially with the duration of the observations n 

at the time the estimate is needed. The relationship between the duration of the 

observation sequence n and the number of particles needed was not clearly iden­

tified until [96]. Gordon et al. pointed out that all of the importance weights w~) 

become very small after a few iterations. This results in a large population of 

particles that contribute very little to the estimate in (2.22). This phenomenon is 

known as, sample degeneracy. Resampling schemes have been proposed to address 

this problem which essentially use a bootstrap filter to sample the posterior dis­

tribution with replacement. This approach is acknowledged as the first successful 

employment of SMCM for nonlinear filtering [97]. However, this approach gener­

ates many duplicate particles of the most probable state trajectories and results in 

less sample diversity, or coverage of the set of all possible state trajectories. This 

is called sample impoverishment. When the true posterior distribution changes 

abruptly or develops a new prominent mode, PFs may take long time or fail to 

lock on to the new prominent mode. 

The third problem is that estimates of expected values (2.22) do not always 
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provide acceptable measures of multi-modal posterior distributions. For example, 

when the posterior distribution is multi-modal, the mean of the distribution may 

be at an improbable state trajectory that is located between modes. In these cases 

an alternative, such as the median or most probable state trajectories may be 

preferred estimates. 

The last two problems can be solved with a variation of canonical particle 

filters developed for maximum a posteriori (MAP) estimation. These produce an 

estimate of the state that approximately maximizes the posterior distribution 

(3.35) 

This is suitable for multi-modal distributions because it essentially selects the 

state estimate as the most prominent mode, which minimizes the most probable 

error. It is, however, not trivial to obtain a MAP estimate from typical particle 

filters that represent the posterior as weighted point masses, i.e. f(x(il) in (3.18). 

The estimate is not equivalent to choosing the state trajectory with the largest 

importance weight, i.e. max w~), because the weights are dependent on both the 

target distribution p(xo:nlYo:n) and the importance distribution q(xo:nlYo:n) that 

the particles are drawn from [97]. However, MAP estimates can be obtained by 

simply selecting the state trajectory with the largest posterior probability 

A ( ( i) I ) Xo:n = argmaxi p Xo:n Yo:n (3.36) 

The second curse of dimensionality can be addressed by combining this approach 

with the Viterbi algorithm [98]. Godsill et al. introduced maximum a posteriori 
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sequence estimation using particle filters for the first time [97, 99]. Although a 

computational cost increases up to N'; per time step as compared to Np for the 

canonical particle filter, this approach increases the total number of candidate 

state trajectories exponentially with time n. Since the MAP state trajectory may 

sequentially choose states from any particle in the population, even particles that 

are in unlikely regions of state space may, in an instant, become relevant and 

contribute to the MAP sequence. This solves the sample degeneracy problem 

by alleviating the need for particle resampling and the sample impoverishment 

problem. Moreover, MAP estimation is more appropriate to represent the most 

probable mode of multi-modal distributions than mean estimation that is typically 

used with the canonical PF. 

MAP estimation combined with the marginalized particle filter can address 

all major drawbacks of the canonical particle filter appropriately. Although Hutter 

et al. suggested this approach [100], the recursions have never been derived or im­

plemented. My dissertation will describe a method for combining the advantages 

of marginalized particle filters and MAP particle filters based on the Viterbi algo­

rithm and to demonstrate its versatility in various applications that the traditional 

extended Kalman filter and canonical particle filter are not suitable for. 

The dissertation includes tracking problems in four types of quasi-periodic 

signals: single rhythmical component signal, single harmonic set signal, amplitude­

modulated harmonic set signal, and multiple harmonic set signal. Since we take 

the state-space model approach to these tracking problems, building the statistical 

signal models for them is the first step. The next chapter describes four state-space 

models for the tracking problems and explains how each model can be used in the 

framework of particle filtering to solve practical tracking problems. 



Chapter 4 

Contributions 

This chapter summarizes the main contributions of the dissertation with specific 

applications. There are five main contributions: new particle filtering technique 

development, single rhythmical component tracking, single harmonic set tracking, 

amplitude modulated harmonic set tracking, and multiple harmonic set tracking. 

The first contribution is to develop a new particle filtering algorithm that combines 

the advantages of the marginalized particle filter (MPF) and maximum a posteriori 

particle filter (MAP-PF) based on the Viterbi algorithm. The second contribution 

is to track the instantaneous frequency of a single rhythmical component signal 

using the proposed particle filter. Its application is tracking tremor frequency 

exhibited in binary spike trains. The third contribution is to track the fundamental 

frequency of a single harmonic set signal. Electrocardiogram (ECG) is a typical 

example of a single harmonic set signal. The new particle filter will be used to 

track the heart rate ( fundamental frequency) in EC Gs. The fourth contribution is 

to track the degree of amplitude modulation in an amplitude modulated harmonic 

set signal, where one harmonic set is amplitude-modulated by the other. Tracking 

the pulse pressure variation (PPV) index in arterial blood pressure (ABP) recorded 

from subjects under full respiratory support is an excellent application of amplitude 
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modulated harmonic set tracking. The last contribution is to track the fundamental 

frequencies and the degree of amplitude modulation in a multiple harmonic set 

signal. Its application is tracking the respiratory rate, heart rate, and PPV index 

in ABP signals recorded from spontaneously breathing subjects. 

4.1 New Particle Filtering Technique 

A newly proposed particle filter is called the maximum a posteriori adaptive 

marginalized particle filter (MAM-PF). This is a hybrid particle filtering method 

that leverages the advantages of the maximum a posteriori particle filter (MAP­

PF) and marginalized particle filter (MPF) algorithms. As mentioned previously, 

the canonical PFs suffer from two curses of dimensionality due to the fact that the 

number of particles NP for reasonable approximations of a posteriori distribution 

scales with both the state dimension .€ and duration of the observation sequence 

n. The MPF portion of the new algorithm handles the state dimension .€ effi­

ciently by partitioning the state into the linear and nonlinear portions as shown 

in (3.31)-(3.33). The sequential Monte Carlo method (SMCM) is applied to only 

the nonlinear portion of the state while the linear portion is optimally estimated 

by adopting the linear Kalman filter recursions. The MAP-PF portion of the new 

algorithm addresses the curse of dimensionality related to the duration of the ob­

servation sequence n. The MAP-PF portion of the new algorithm permits the 

particles to densely cover the nonlinear portion of the state space. This prevents 

the sample impoverishment problem that would normally be caused by resam­

pling. The MAP-PF portion of the new algorithm also addresses the issue of how 

to represent of the multi-modal posterior distribution appropriately. Typically, the 
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canonical PFs estimates the state as the mean of the posterior distribution. How­

ever, it is inappropriate when the distribution becomes multi-modal. The MAP-PF 

portion of the new algorithm calculates MAP estimation that corresponds to the 

most probable (tallest) mode of the multi-modal posterior distribution based on 

the Viterbi algorithm. 

One of the critical issues in combining the Viterbi algorithm for MAP es­

timation and the MPF algorithm is accounting for the model error caused by 

evaluating the model at improbable state trajectories. Sample impoverishment 

refers to a phenomenon where all particles collapse to only highly probable state 

trajectories due to resampling. Under that situation, the model is evaluated at 

only highly probable state trajectories and the model error is negligible. However, 

this is not the case when applying the Viterbi algorithm to obtain MAP esti­

mation since the particles cover the nonlinear portion of the state-space densely 

without the sample impoverishment issue. In the case where the likelihood func­

tion p (YnlYo:n- 1 ,x~'(i)) must be evaluated for particles x~,(i) whose values may 

be far away from probable values. Since there is only one true state trajectory and 

the particles cover the state-space densely, most particles become associated with 

improbable state trajectories. Therefore, for most particles x~,(i) the variance of 

measurement prediction residual, i.e. Yn - y~IO:n-l' becomes much larger than the 

measurement noise variance Rv,n· This underestimation of the prediction error 

causes the likelihood function to have a distribution that is too narrow, which in 

turn distorts the posterior distribution and ultimately leads to suboptimal par­

ticle selection. One elegant solution to this problem is to continuously estimate 

the prediction error covariance from the residuals for each particle. The adaptive 

covariance estimation method proposed by Myers is adopted and modified [101]. 
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This is why the new particle filter is called the maximum a posteriori "adaptive" 

marginalized particle filter (MAM-PF). 

Another critical issue in combining the Viterbi algorithm for MAP estimation 

and the MPF algorithm is handling the likelihood function p (YnlYo:n-i,x~,(i)) 

appropriately during the Viterbi process. This likelihood function represents the 

distribution of the prediction error based on all the past measurements Yo:n-I and 

the current nonlinear state x~,(i). This likelihood function can be obtained from 

the linear Kalman filter recursions as, 

( I N,(i)) - ( I AL,(k) N,(i)) p Yn Yo:n-1, Xn - p Yn xnlO:n-1' xn · (4.1) 

It is important to recognize that when the Viterbi algorithm maximizes the likeli­

hood function, it searches for the best (most probable) trajectory over the nonlinear 

P ( xN,(i) lxN,(k)) and linear p (y lxN,(i) xL,(k) ) portions of the state space where n n-1 n n ' nlO:n-1 

k = 1, ... , NP. This means that the MAM-PF algorithm requires that the linear 

Kalman filter recursions be applied NP times for each particle. This is essentially 

so that the maximization over all possible previous trajectories correctly accounts 

for the effect of the linear state estimates on the likelihood function. Applying the 

linear Kalman filter recursions Np times for each particle requires too much com­

putational power and makes the MAM-PF impractical. It is necessary to reduce 

the computational burden of the MAM-PF significantly without compromising its 

performance. 

To summarize, the first contribution is to propose a new particle filter algo­

rithm (MAM-PF) that leverages the advantages of the MAP-PF and MPF algo­

rithms and devise a way to reduce its computational burden greatly with minimal 
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performance loss. 

4.2 Single Rhythmical Component Tracking 

The single rhythmical component signal model (measurement model) can be writ­

ten as, 

( 4.2) 

where 0n is the instantaneous angle of the fundamental frequency fn, ao,n the 

signal trend, a 1,n and a 2,n the sinusoidal coefficients, and Vn a white Gaussian 

noise with variance r v· In this model, the signal Yn is only a nonlinear function 

of the instantaneous angle 0n. Given the instantaneous angle 0n, the state-space 

model is a linear function of the other parameters such as the coefficients a 1,n and 

a 2 ,n and the signal trend Yn· These linear parameters can be estimated optimally 

using the Kalman filtering technique. Since the parameters are not known in 

practical applications, it is common to use a random walk model [74]. That is, 

ao,n+l = llo,n + Ua,n ( 4.3) 

(4.4) 

( 4.5) 

where u. represents a white Gaussian noise with variance qu.. The instantaneous 

angle 0n, however, can be modeled based on some domain knowledge. For the ap­

plications included in the dissertation it is known that the instantaneous frequency 

fn changes slowly within a certain range. Therefore, the instantaneous angle 0n 
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can be modeled as, 

in+l = g [in+ UJ,n] 

fn+l = in+ CX (fn - in) + UJ,n 

0n+1 = 0n + 2n-Tsfn 

75 

( 4.6) 

(4.7) 

(4.8) 

where in is the mean fundamental frequency, Ts is the sampling interval, a is an 

autoregressive (AR) coefficient, and g[·] represents a nonlinear reflecting function 

to account for the limited frequency range. A value of a = l results in a random 

walk model while a = 0 results in a white noise model. The nonlinear reflecting 

function can be expressed as, 

f max - (f - fmax) fmax < f 

g[f] = f fmin < f :S fmax ( 4.9) 

fmin + Umin - f) f :S fmin 

where !min and !max represent the extreme frequency values. 

Single rhythmical component tracking is a special case of the multi-harmonic 

tracking where the number of rhythmical components is one. In this case the 

posterior distribution of the frequency is unimodal. The application of the single 

rhythmical component tracking technique is tracking the frequency and magnitude 

of tremor activity in binary spike trains. Binary spike trains are a sequence of O's 

and l's where l's correspond to a neuronal cell's firing activity. Binary spike trains 

are constructed from microelectrode recordings (ME Rs), which represent electrical 

activities of neuronal cells in the brain. MERs recorded during neurosurgery for 
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subjects with movement disorders such as Parkinson's disease and essential tremor 

often contain pathophysiological rhythmicity. This rhythmicity is exhibited in 

MERs through pulse frequency modulation that causes the fluctuations in the 

mean firing rate of neuronal cells. Physiologically, the rhythmicity is due to local 

synchronization of neuronal cells. It is often called "tremor" because its frequency 

is similar to that of physical tremor of the limbs. It is intermittent and usually 

does not have any harmonic structure. Analyzing the frequency and magnitude 

of tremor in binary spike trains is a critical step for further study to characterize 

the relation of two or more tremor signals [102, 103]. This relationship is often 

referred to as phase coupling, which is an important clue for the origin of tremor 

in movement disorders [104, 105]. 

Hurtado et al. have conducted the most thorough study of tremor signals to 

date [103]. They relied on the Hilbert transform to estimate Gabor's analytical 

signal and to track the tremor frequency of binary spike trains. However, binary 

spike trains rarely meet the condition necessary for this estimation to be accurate. 

More importantly, their method can track only tremor frequency. I developed a 

tremor tracker based on the extended Kalman filter (EKF) [20], which can track 

both the frequency and intensity of tremor in binary spike trains. Since the pos­

terior distribution of the tremor frequency is unimodal in tremor tracking, a new 

tremor tracker based on the proposed particle filtering method may not outper­

form the EKF-based tremor tracker substantially. However, it is still worthwhile. to 

compare the performance of two tremor trackers based on synthetic and real binary 

spike trains. Specially when the tremor suddenly starts and stops, the new tremor 

tracker may be able to lock on to the tremor more quickly than the EKF-based 

one. 
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4.3 Single Harmonic Set '!racking 

The single harmonic set signal model (measurement model) can be written as, 

(4.10) 

where Nh is the number of harmonics or partials (assumed to be known), 0n the 

instantaneous angle of the fundamental frequency f n, ao,n the signal trend, a 1,k,n 

and a 2,k,n the sinusoidal coefficients of the kth partial, and Vn is a white Gaussian 

noise with variance r v· The process models for the sinusoidal coefficients a 1,k,n 

and a 2,k,n, the signal trend ao,n, and the angle 0n are the same as in the single 

rhythmical component signal model in (4.5) and (4.8). 

The single harmonic set signal model in ( 4.10) is a linear function of the 

coefficients a 1,k,n and a 2,k,n and the signal trend ao,n given the instantaneous an­

gle 0n. Therefore, these quantities can be marginalized and calculated optimally 

using a linear Kalman filter. However, the fundamental frequency fn has a non­

linear relationship with the signal Yn and its posterior distribution is multi-modal. 

The particle filtering technique can handle this multi-modality of the distribution 

properly. When the posterior distribution is multi-modal, the MAP estimate is 

generally a more reasonable estimate than the mean estimate since the mean of 

the distribution may be improbable. Therefore, the proposed maximum a posteri­

ori adaptive marginalized particle filter (MAM-PF) is an appropriate method for 

multi-harmonic tracking. 

Its application is tracking the heart rate in ECGs. Most heart rate estimation 

techniques involve beat detection algorithms. The heart rate, then, is defined as the 
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inverse of intervals between detected beats. However, this approach is susceptible 

to noise and does not provide a continuous estimate of the heart rate. More 

critically, it requires a very reliable beat detection algorithm, which is difficult 

to design and implement. In contrast, the MAM-PF multi-harmonic tracker can 

estimate the heart rate in ECGs accurately even when they are contaminated by 

severe noise due to medical interventions and/or the mechanical system. It also 

provides a continuous measure of the heart rate. 

Traditional multi-harmonic tracking techniques such as PDAs often pay at­

tention to only the fundamental component in the signal. However, it is not 

uncommon that the fundamental component in ECGs has less power than higher 

harmonic components. It is, therefore, challenging to estimate the heart rate in 

ECGs using traditional techniques. The MAM-PF multi-harmonic tracker esti­

mates the fundamental frequency, i.e. heart rate, by taking into account the har­

monic relationship between the fundamental and harmonic partials. Therefore, it 

can estimate the heart rate even when the fundamental partial is not present in the 

signal. The MAM-PF multi-harmonic tracker will be compared to the EKF-based 

multi-harmonic tracker using synthetic and real ECG signals. The main purpose 

of this comparison is to demonstrate that the MAM-PF multi-harmonic tracker 

can handle the multi-modality of the posterior distribution of the fundamental 

frequency f than the EKF-based one. 

4.4 Amplitude Modulated Harmonic Set Tracking 

The amplitude-modulated harmonic set signal model is for quasi-periodic sig­

nals containing two harmonic components where one component is amplitude-
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modulated by the other. The amplitude-modulated harmonic set signal model 

( measurement model) can be expressed as, 

NC 
h 

Yn =ao,n + S1,n + L mk,nS2,k,n + Vn 
k=l 

N1,h 

S1,n = L a1,k,n cos (k01,n) + a2,k,n sin (k01,n) 
k=l 

N1,h 

mk,n =l + L a3,k,j,n cos (}01,n) + a4,k,j,n sin (}01,n) 
j=l 

N2,h 

S2,k,n = L a5,k,n cos (k02,n) + a6,k,n sin (k02,n) 
k=l 

( 4.11) 

(4.12) 

(4.13) 

( 4.14) 

where s 1,n and s2,k,n are the first and second harmonic set, mk,n the amplitude 

modulation factor, N1,h a known number of harmonics of the first harmonic set, 

N2,h that of the second harmonic component, 01,n the instantaneous angle of the 

first harmonic component, and 02 ,n the instantaneous angle of the second harmonic 

component. The process models for the sinusoidal coefficients { a 1,k,n, ... , a 6,k,n}, 

the signal trend ao,n, and the instantaneous angle 02,n are the same as in the single 

rhythmical component signal model in (4.5) and (4.8). The instantaneous angle 

01,n is modeled as in (4.15). 

Multi-harmonic tracking is for signals which contain a single set of multi­

harmonics. However, some signals can contain multiple sets of multi-harmonics. 

Multiple sets of multi-harmonics often have a nonlinear interaction with each other. 

One possible nonlinear interaction is amplitude modulation. Here, it is assumed 

that the signal has two multi-harmonic sets and the first harmonic set modulates 

the amplitude of the second. The main goal is to measure the degree of amplitude 

modulation. A secondary goal is to estimate the fundamental frequency of the 
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second harmonic set. 

This problem arises in tracking the pulse pressure variation index (-6.PP) in 

ABP signals recorded under a full mechanical ventilation. The respiratory rate 

is known and constant since patients are under full mechanical ventilation. Since 

the first harmonic set s1,n models the respiratory component, the fundamental 

frequency of the first harmonic set is modeled to be constant. Therefore, the 

instantaneous angle of the first harmonic component 01 ,n can be written as, 

(4.15) 

where fi is equal to the mechanical ventilation rate. 

The pulse pressure variation index in ABP signals simply denotes the degree 

of amplitude modulation of the cardiac component by the respiratory component. 

Numerous studies have shown that the pulse pressure variation -6.PP is one of most 

specific and sensitive predictors of fluid responsiveness in mechanically ventilated 

patients [106]. The current state-of-art in estimating the pulse pressure variation 

index relies on a beat detection algorithm, which is susceptible to noise [107]. In 

this dissertation a novel automatic algorithm is proposed to track the pulse pressure 

variation index continuously without utilizing any beat detection method. 
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4.5 Multiple Harmonic Set Tracking 

The multiple harmonic set signal model (measurement model) can be expressed as 

follows, 

[ 

Ne Nj,h l 
Yn = ao,n + LL a1,j,k,n cos (k0j,n) + a2,j,k,n sin (k0j,n) + Vn 

j=l k=l 

(4.16) 

When Ne is the number of harmonic components, Nj,h the number of harmonics or 

partials of the /h harmonic set, and 0j,n the fundamental angle of the lh harmonic 

set. The process models for a 1,j,k,n, ao,n, and 0j,n are the same as in the single 

rhythmical component signal model in (4.5) and (4.8). 

The number of harmonics Nh may be given or need to be estimated. A simple 

estimation method is using a conservative upper bound on Nh where the excessive 

partials' coefficients will be estimated as nearly zero at a cost of extra variance. If 

some pilot data is available, Nh can be estimated more accurately based on spectral 

analysis of the pilot data. 

Multiple harmonic set tracking is the most general case of multi-harmonic 

tracking. In this case the number of harmonic sets is more than one and the 

fundamental frequency of each harmonic set is unknown and time-varying. The 

type of nonlinear interactions between the multi-harmonics sets is also not lim­

ited to one. For example, two multi-harmonic sets can interact with each other 

through amplitude modulation and frequency modulation. Here it is assumed that 

there are two multi-harmonic sets and the first set modulates the amplitude of 

the second. The dimension of the particle filtering space is two since there are 

two fundamental frequencies to track. Applying the MAM-PF to multiple har-
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monic set tracking is difficult for a couple of reasons. The most critical reason is 

that the computational burden of particle filtering increases exponentially as the 

dimension of particle filtering increases. For instance, if NP particles are needed 

to track only the fundamental frequency of the first harmonic set, the number of 

particles needed to track both the fundamental frequencies of two multiharmonic 

sets is N;, One solution is to partition the multi-dimensional (2-D) space of par­

ticle filtering into two 1-D spaces. Having particles cover two 1-D spaces densely 

is more efficient than having them cover one 2-D space. However, this partition is 

possible only when two fundamental frequencies, fi,n and f 2,n, can be modeled to 

be independent of each other. 

One application is tracking the respiratory component, the cardiac compo­

nent, and the interaction between them in ABP signals recorded from subjects with 

spontaneous breathing. Currently, there are a very limited number of references on 

simultaneous monitoring of those three components in any pressure signals [108]. 

Accurate and simultaneous monitoring of the respiratory rate, the heart rate, and 

their interaction would provide rich information for physicians to diagnose poten­

tial respiratory dysfunction and cardiovascular diseases. The multiple harmonic 

set signal tracker based on the MAM-PF will be a useful tool to achieve this goal. 

The subsequent chapters describe each of the five main contributions: new 

particle filtering technique (Chapter 5), single rhythmical component tracking 

(Chapter 6), single harmonic set tracking (Chapter 7), amplitude modulated har­

monic set tracking (Chapter 8), and multiple harmonic set tracking (Chapter 9). 

The focus of Chapter 5 is to explain the theoretical and technical part of developing 

the new particle filtering method while the rest chapters are focused on explaining 

the clinical importance of the applications and describing methodology for them. 



Chapter 5 

New Particle Filtering Method 

This chapter describes details of two versions of the new particle filtering technique 

and other conventional variants of particle filters. The simulation results based on 

synthetic signals in this chapter also demonstrate the superior performance of the 

new particle filtering technique in comparison to a conventional particle filter, 

which is applicable to the state-space model in (3.31 )-(3.33). 

5.1 Algorithm Development 

Several research groups have used the term "marginalized MAP estimation" to de­

scribe algorithms for various applications such as a fault diagnosis for autonomously 

operating systems [100], state estimation of jump Markov linear systems [109], 

tempo tracking and rhythm quantization in music [110], and detection for Orthog­

onal Frequency Division Modulation (OFDM) systems [111]. Doucet et al. de­

scribed an algorithm that obtains the marginal MAP estimate of the state of a 

Jump Markov Linear System based on Markov chain Monte Carlo (MCMC) meth­

ods [109]. Cemgil et al. discussed the possibility of computing the MAP trajectory 

after integrating out (Rao-Blackwellizing) the hidden variables based on the SMC 
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methods [110]. However, they were aware that Rao-Blackwellization causes cou­

pling between all possible particle trajectories and that the Viterbi algorithm does 

not find the actual MAP trajectory in this case. In order to find the true MAP 

trajectory, they suggested to apply an iterative improvement technique or simu­

lated annealing to the best trajectory obtained by running the Viterbi algorithm, 

though this also only produces an estimate of the optimal MAP trajectory. Yee 

et al. used Rao-Blackwellized SMC methods to develop a MAP detector for re­

alistic orthogonal frequency division multiplexing (OFDM) systems [111]. They 

divided the estimation problem into two stages: marginalization and MAP esti­

mation. They first utilized the marginalized particle filter (MPF) to obtain the 

minimum mean-square-error (MMSE) estimate of encoded symbols and searched 

for the MAP estimate of original symbols based on the MMSE estimate of encoded 

symbols. None of these algorithms can be applied to general stochastic processes 

that can be expressed in the form of (3.31)-(3.33) and asymptotically converges 

to the optimal solution. 

5.1.1 Standard Resampling Particle Filter 

The standard resampling particle filter algorithm incorporates the stratified re­

sampling scheme to overcome the sample degeneracy issue [112]. In the stratified 

resampling scheme, particles are resampled when the estimated number of effective 

particles Ne becomes smaller than a user-specified threshold, Nt. The number of 

effective particles is given by 

1 
Ne=-----

""Np ( (i)) 
2 

L.,i=l Wn 

(5.1) 
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where w~i) is a normalized importance weight of the ith particle and Np is the 

number of particles. The normalized importance weights Wn are calculated at 

each time index from the unnormalized importance weights Wn, which are derived 

from the normalized importance weights from the previous time index Wn-I· Here 

it is assumed that the importance density has been chosen such that it can be 

factored as, 

(5.2) 

so that the importance weights can be calculated recursively as follows, Then, the 

weight update recursion can be written as, 

(5.3) 

where w~i) represents an unnormalized importance weight at time n and w~i~ 1 

a normalized importance weight at time n - l. This recursion is mathemati­

cally sound but cannot be implemented since the marginal importance density 

Qn(xnlxo:n-1, Yo:n) is a quantity that we are trying to obtain. There are several 

ways to estimate the marginal importance density. The most common choice is 

to substitute it with the prior probability given by the process model p(xnlxn_i). 

The weight update recursion in (5.3), then, is simplified as follows, 

( i) (i) (i) 
-(i) _ (i) P(YnlXn )p(Xn lxn-1) 

wn - wn-l (i) (i) 
Qn(Xn lxn-1, Yo:n) 

= W~i~1P(Ynlxt)) (5.4) 
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where the current weight is the previous weight multiplied by the likelihood func­

tion, P(Ynlx~)). The current weight w~/l is normalized as follows, 

- (i) 
(i) _ Wn 

wn - '°'Np _ (j) · 
L..,j Wn 

Algorithm 1 explains the details of the standard resampling PF. 

(5.5) 
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Algorithm 1 Standard Resampling Particle Filter (PF). 
Initialization 

for i = 1, ... , NP do 
Sample xg) ~ 1ro(xolYo) 
Calculate initial importance weights: 

Wbi) = 1ro(xo)P(Yolxg)) 
end for 
for i = 1, ... , NP do 

(i) _ - (i)/ ..;-•Np - (j) 
Wo - Wo L.,,j Wo 

end for 
Sequential Importance Sampling 

for n = l, ... , NT do 
if Ne ~ Nt then 

for i = 1, ... , NP do 
(i) - (i) 

Xn-1 = Xn-1 
end for 

else 
Set k =land T = l/Np 
for i = 1, ... , NP do 

while w~~1 :::; T do 
k=k+l 

end while 
(i) - (k) 

xn-1 = xn-1 
w(i) = l/N 

n-1 

T = T + l/N 
end for 

end if 
for i = 1, ... , NP do 

X-(i) (x~(i)lx(i) ) n ~ qn n n-1, Yo:n 
- (i) (i) P(Ynl:i:~))p(:i:~)lai~~l) 

Wn = wn-1 (-(i)I (i) ) 
Qn :lln :lln-1,Y0:n 

end for 
for i = 1, ... , NP do 

(i) - (i) 
W = Wn 

n "'Np -(j) 
L,j Wn 

end for 
end for 

87 
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5.1.2 Maximum A Posteriori Particle Filter (MAP-PF) 

The MAP-PF utilizes the Viterbi algorithm to provide the MAP sequence esti­

mate of the state. By utilizing the Viterbi algorithm the MAP-PF can avoid 

the sample degeneracy and sample impoverishment problems of the standard PF 

method [97-99]. Therefore, the MAP-PF does not require any resampling scheme, 

which is devised to overcome the sample degeneracy problem but causes the sample 

impoverish problem. 

The MAP-PF algorithm is memory-efficient because at each sample time the 

Viterbi algorithm discards N; - NP possible trajectories and only retains the NP 

most probable ones. Here is how it is done. Each particle is propagated from the 

previous time index n - l to the current time index n according to the marginal 

importance density qn(xnlxn-I, Yo:n)- Then, the MAP-PF searches all possible 

trajectories of each particle for the most probable trajectory, which can be expressed 

as, 

k* = argmax a(k) p (x(i) lx(k) ) 
n-1 n n-1 

k 
(5.6) 

where k* represents the index of the most probable trajectory. Although the 

current particle x~) is propagated from x~~ 1, the MAP-PF treats x~) as if it is 

propagated from x~k]. Among all possible trajectories NP only the most probable 

path survives and the rest NP - l are discarded. Since this searching process 

is repeated for all particles Np, the number of trajectories that are discarded is 

It is important to understand that the MAP-PF does not calculate or track 
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importance weights w~i) for each particle as in the standard resampling PF. The 

reason is that the MAP-PF does not estimate the mean or other moments of 

the state posterior distribution. Instead the MAP-PF simply tracks the posterior 

probability of each state trajectory, which is represented by the coefficient a~). 

Algorithm 2 explains the details of the MAP-PF. 
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Algorithm 2 MAP Particle Filter (MAP-PF). 
Initialization 

for i = 1, ... ,NP do 
Sample x~i) ~ 1ro(x0 ) 

a~i) = 1ro(xg))P(Yolxg)) 

Z
(i) _ x(i) 
0 - 0 

end for 
i* = argmax ag) 

i 

X
A _ x(i*) 

0 - O 

Sequential MAP Estimation 
for n = l, ... , NT do 

for i = 1, ... ,NP do 
(i) (i) (i) 

Xn rv qn(Xn lxn-1, Yo:n) 
end for 
for i = 1, ... , Np do 

k* = argmax a(k) p(x(i) lx(k) ) n-1 n n-1 
k 

(i) _ { (k*) (i)} 
Zo:n - Zo:n-1, Xn 

a/i) = a(k*)p(x(i) lx(k*) )p(y lx(i)) n n-1 n n-1 n n 
end for 
i* = argmax a~) 

i 
A ( i*) 
Xo:n = Zo:n 

end for 

90 
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5.1.3 Marginalized Particle Filter {MPF) 

The marginalized particle filter (MPF) can be applied to special state space models 

in which a portion of the state space is nonlinear and the other portion can be 

modeled as a linear process conditional upon the nonlinear portion of the state 

vector. When this partition can be performed, the linear portion of the state can 

be sequentially estimated using the conventional linear Kalman filter 1;1,nd particle 

filtering can be used to estimate the nonlinear portion of the state vector. There are 

several advantages of using the MPF algorithm when the partitioning of the state 

vector is possible. First, partitioning the state vector reduces the dimensionality of 

the state space where particle filtering needs to be used. Since particle filtering is 

computationally expensive, it is advantageous to limit the use of particle filtering 

to a portion of the entire state space. Secondly, the MPF reduces the variance 

of the posterior distribution estimation by providing an optimal estimate for the 

linear portion of the state space. 

The main difference between the standard PF algorithm and the MPF al­

gorithm is that the latter has the linear Kalman filter recursions between the 

particle propagation and the weight update steps. On the particle propagation 

step only the nonlinear portion of the state x~,(i) is obtained according to the 

marginal importance density qn(x~,(i)lx~~f, Yo:n). After incorporating this nonlin­

ear state into the state-space model in (3.31)-(3.33) the state-space model becomes 

completely linear with respect to the linear portion of the state x~,(i). Then, its 

filtered quantity x~
1
g~ and predicted quantity x~i?io:n are computed sequentially 

via the Kalman filter recursions. In order to complete the weight update recur­

sion the probability p(y~i) IYo:n-l, x~'(i)) needs to be computed. The probability 
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( (i) I N,(i)) b ·tt P Yn Yo:n-1, Xn can e wn en as, 

P(y(i) !Yo· _ 1 XN,(i)) = p(y jxL,(i) XN,(i)) 
n .n , n n nl0:n-1' n 

N( A (i) R(i) ) ~ YnlO:n-1' e,n 

where 

R(i) = H (xN,(i)) c(i) H (xN,(i))T + R 
e,n n n nl0:n-1 n n v· 

Algorithm 3 explains the details of the MPF. 
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(5.9) 

(5.10) 
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Algorithm 3 Marginalized Particle Filter (MPF). 
Initialization 

for i = 1, ... , NP do 
Sample x~,(i) ~ 1r0 (x~) 
A L,(i) - E [ L,(i) I N,(i)] 
Xo:-1 - Xo Xo 

Initial Weight Calculation: 
wg) = P(Yolx~,(i), x~) 

end for 
Marginalized Sequential Estimation 

for n = 0, ... ,NT do 
if Ne ::; Nt then 

Resample 
end if 
for i = 1, ... , Np do 

Particle Propagation 
N,(i) ( N,(i) I N,(i) ) 

Xn rv qn Xn Xn-1, Yo:n 

Kalman Filtering 
Measurement Update: 

R (i) _ H ( N,(i)) c(i) H ( N,(i))r + R 
e,n - n Xn nl0:n-1 n Xn v 

( 
N,(i))T ( (i) )-l Kn = CnlO:n-lHn Xn Re,n 

Y
A (i) _ H (xN,(i) )xA L,(i) 

n!0:n-1 - n n nl0:n-1 

x~[g~ = x~f6~~-1 + Kn [ Yn - Yiil~:n-1] 

Cn10:n = [ I - KnHn ( x~,(i))] C~J~:n-i 

Time Update: 
AL,(i) _ R ( N,(i))xL,(i) 
Xn+llO:n - n Xn nlO:n 

C (i) r;, ( N,(i))C r;, ( N,(i))T QL 
n+ll0:n = I'n Xn nlO:nI'n Xn + u 

Weight Update 
( I N,(i)) N( A (i) R(i) ) 

p Yn Yo:n-1, Xo:n rv YnlO:n-1' e,n 

( ') (') ( (i)I N,(i)) ( N,(i)I N,(i)) - i i P Yn YO:n-1,illn P illn mn-1 
Wn = Wn-1 N,(i) N,(i) 

end for 
for i = 1, ... , NP do 

(i) - (i) W _ Wn 
n - '<;"'NP -(j) 

L,j Wn 

end for 
end for 

qn(illn lmo,n-1,YO:n) 
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5.1.4 Optimal MAP Adaptive Marginalized PF (MAMPF) 

One can apply the Viterbi algorithm to obtain the MAP state trajectory within the 

canonical particle filter framework [97, 99]. However, the Viterbi algorithm does 

not guarantee the true MAP state trajectory when the state vector is marginalized 

[110]. It has never been described how to obtain the MAP state trajectory with 

the marginalized state vector within the particle filter framework. 

The MAM-PF is a hybrid particle filtering method which leverages the advan­

tages of the MAP-PF and MPF algorithms. The MAP-PF portion of the algorithm 

permits the particles to densely cover the nonlinear portion of the state space. 

While this prevents the sample impoverishment problem that would normally be 

caused by resampling, it also means that the likelihood function p ( Yn IYo:n-l, x~,(i)) 

must be evaluated for particles x~,(i) whose values may be far away from probable 

values. In this case some of the variation in Yn caused by the true underlying state 

would not be accounted for and the residual variance Yn - YnlO:n-l will be much 

larger than the measurement noise Rv,n or the prediction error Re,ri provided by 

the Kalman filter recursions. This underestimation of the prediction error causes 

the likelihood function to have a distribution that is too narrow, which in turn 

distorts the posterior distribution and ultimately leads to suboptimal particle se­

lection. This is a critical problem that has not been addressed previously and only 

occurs when attempting to use both marginalization and MAP estimation with 

the Viterbi algorithm. 

One elegant solution to this problem is to continuously estimate the pre­

diction error covariance from the residuals for each particle. We adopted and 

modified the adaptive covariance estimation method proposed in [101]. To ensure 
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that the estimated covariance matrix is positive semi-definite, we propose using an 

eigenvalue decomposition of the covariance matrix and eliminating all non-positive 

eigenvalues. We denote this operation as [Rl+• 

A second critical issue that occurs in merging marginalization and MAP 

estimation is that the likelihood function p ( Yn I Yo:n-l, x~ ,( i)) must be handled 

carefully because it is only conditioned on the nonlinear portion of the state vector. 

This distribution can be obtained from the Kalman filter recursions, as was done 

for the MPF 

( I N,(i)) - ( I A L,(i) N,(i)) P Yn Yo:n-1, Xn - P Yn XnlO:n-1' Xn 

N( A (i) R(i) ) ~ YnlO:n-1' e,n 

(5.11) 

(5.12) 

However, during the maximization over all past trajectories it is crucial to recognize 

that this includes the linear portion of the state space, x~
1
g~_ 1, unlike the MAP­

PF. Algorithm 4 explains a complete account of the Optimal MAM-PF recursions. 

The covariance coefficient /3 is a user-specified parameter that controls the memory 

of the recursion for first order recursive estimation of the adaptive signal prediction 

error covariance, Ren· 
' 
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Algorithm 4 Optimal MAM-PF. 
Initialization 

for i = 1, ... , NP do 

Sample x~,(i) ~ 1r0 (x~) & x~:'~i = E [ x~,(i) lx~,(i)] 

(i) ( N,(i)) ( I N,(i) L,(i)) & (i) (i) 0 o = 7ro Xo P Yo Xo , Xo Zo = Xo 

end for 
i* = argmax ag) & x0 = x&* 

i 

for n = 1, ... , NT do 
for i = 1, ... , NP do 

Particle Propagation: x~,(i) ~ qn ( x~,(i) Ix~~~, Yn) 

Marginalized Sequential Estimation 
fork= 1, ... ,NP do 

A H ( N,(i)) A L,(k) & A 

YnlO:n-1 = n Xn XnlO:n-1 en= Yn - YnlO:n-1 

R _ [ T H r, N,(i)\ c(k) H r, N,(iJ\ r] 
v,n - enen - n \Xn } nlO:n-1 n \Xn } + 

i:,(i,k) = /3R(k) + (1 - /3)R 
.i Lv,n v,n-1 v,n 

R (k) _ H ( N,(i)) c(k) H ( N,(i)) r + i:,(k) 
e,n - n Xn nlO:n-1 n Xn .LLv,n 

K(k) = c(k) H (xN,(i))T(R(k))-1 
n nlO:n-1 n n e,n 

XL,(k) - A L,(k) _L K(k) [ - A (k) ] 
nlO:n - XnlO:n-i' n Yn YnlO:n-1 

c(k) = [1 - K(k) H (xN,(i))] c(k) 
nlO:n n n n nlO:n-1 
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xL,(i,k) _ D ( N,(i)) A 1,(k) & 0 ci,k) _ R ( N,(i)) c(k) D ( N,(i) \In1 
n+llO:n - I'n Xn XnlO:n n+llO:n- n Xn nlO:nrn Xn ~u 

end for 
MAP Estimation 
k*=argmax o(k) P(Y lxN,(i) xL,(k) ) p(xN,(i)lxN,(k)) 

n-1 n n , nlO:n-1 n n-1 
k 

(i) - (k*) ( I N,(i) A L,(k*) ) ( N,(i) I N,(k*)) 
On - on-1P Yn Xn 'xnlO:n-1 p Xn xn-1 

c(i) = 0 ci,k*) & ilJ}l = f<li,k*) 
n+llO:n n+llO:n ,n ,n 

A L,(i) - A L,(i,k*) & A (i) - [ A L,(k*) N,(i)] T & (i) - [ (k*) A (i)] 
Xn+llO:n - xn+llO:n Xn - xnlO:n , Xn Zo:n - Zo:n-1, Xn 

end for 
Update MAP State Estimate 
"* (i) & A i* 

'l = argmax On Xo:n = Zo:n 
i 

end for 
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5.1.5 Fast MAP Adaptive Marginalized PF (MAMPF) 

A key computational disadvantage of the Optimal MAM-PF algorithm is that the 

linear Kalman filter recursions must be applied NP times for each particle, which 

results in N; Kalman filter recursions for each time update of the state estimate. 

This is necessary to ensure that the maximization over all possible previous trajec­

tories correctly accounts for the effect of the linear state estimates on the likelihood 

function, which is given by p ( Xnlx~,(i), :i:~[6~l-i) for the ith particle. However, in 

most cases the likelihood function does not strongly affect the selection of the pre­

vious trajectory and this term can be eliminated from the MAP estimation step. 

Therefore, the searching step for the most probable trajectory can be simplified as 

follows, 

k* = argmax o/k) P(Y lxN,(i) xL,(k) ) p(xN,(i)lxN,(k)) n-1 n n , nl0:n-1 n n-1 
k 

~ argmax o/k) P(Y lxN,(i) :i:L,(i) ) p(xN,(i)lxN,(k)) n-1 n n , nl0:n-1 n n-1 
k 

= argmax o/k) p (xN,(i) lxN,(k)) . n-1 n n-1 
k 

(5.13) 

(5.14) 

(5.15) 

This approximation sacrifices the asymptotic optimality of the Optimal MAM-PF, 

but substantially reduces the computational burden since the selection of the most 

probable trajectory for a single particle no longer requires Np times of the Kalman 

filter recursions for all possible past trajectories. Rather, the most probable tra­

jectory can be determined before the Kalman filter recursions since (5.15) does not 

. 1· t t t' t AL(k) AL(i) I h d h 1 . reqmre any mear s a e es 1ma es xn[o:n-I or xn[o:n-i · not er wor s, t e se ect10n 

of the most probable trajectory is not affected by new information buried in the 

current measurement Yn· Algorithm 5 explains the details of the Fast MAM-PF. 
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Algorithm 5 Fast MAM-PF. 
Initialization 

for i = 1, ... , Np do 
Sample x~,(i) ~ 1ro(x~) & x~:'~i = E [x~,(i)lx~,(i)] 

(i) ( N,(i)) ( I N,(i) L,(i)) & (i) (i) 0 o = 7ro Xo P Yo Xo , Xo Zo = Xo 

end for 
"* (i) & A i* i = argmax a 0 x 0 = x 0 

i 

for n = l, ... ,NT do 
for i = 1, ... ,NP do 

MAP Estimation 
Particle Propagation 

N,(i) ( N,(i) I N,(i) ) 
Xn ~ qn Xn Xn-1, Yn 

k* = argmax a(k) v(xN,(i) lxN,(k)) n-1 n n-1 
k 

Marginalized Sequential Estimation 
Measurement Update 

A - H ( N,(i)) AL,(k*) & - A 
YnlO:n-1 - n Xn XnlO:n-1 en - Yn - YnlO:n-1 

[ 
T ( N,(i)) (k*) ( N,(i))T] Rv,n = enen-Hn Xn cnlO:n-1Hn Xn + 

A A (k*) 
Rv,n = f3Rv,n-l + (1 - fJ)Rv,n 

R = H ( N,(i)) c(k*) H ( N,(i)) r + o e,n n Xn nlO:n-1 n Xn .LLv,n 

K C (k*) H ( N,(i))T (R )-1 & AL AL,(k*) K 
n = nlO:n-1 n Xn e,n XnlO:n = XnlO:n-1 + nen 

Cn10:n = [1 - KnHn ( x~,(i))] Ci~~:~-l 

Time Update 
-b(i) - D & AL,(i) - R ( N,(i)) AL 

.Lt-v,n - .LLv,n Xn+IIO:n - n Xn XnlO:n 

C (i) D ( N,(i)) C D ( N,(i))T QL 
n+llO:n = I'n Xn nlO:nI'n Xn + u 

(i) (k*) ( I N,(i) A L,(k*) ) ( N,(i) I N,(k*)) 
O'.n = Q'.n-IP Yn Xn , XnlO:n-1 p Xn Xn-1 

A (i) - [AL N,(i)] T & (i) - [ (k*) A (i)] 
Xn - xnlO:n' Xn Zo:n - Zo:n-1, Xn 

end for 
Update MAP State Estimate 
"* (i) & A i* i = argmax O'.n Xo:n = Zo:n 

i 
end for 
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5.2 Particle Filtering Algorithm Comparison 

The previous sections described five different particle filter algorithms: standard 

resampling PF, MAP-PF, MPF, Optimal MAM-PF, and Fast MAM-PF. Among 

them only three algorithms are compared in terms of performance and computa­

tional load. Three PF algorithms include the MPF, Optimal MAM-PF, and Fast 

MAM-PF. The standard PF and MAP-PF algorithms are not considered for the 

comparison since they do not use marginalization to reduce the dimension of the 

nonlinear state where particle filters are used. These offer no advantages over the 

remaining three algorithms that utilize marginalization. 

Multi-harmonic signal tracking is an excellent example where the state can 

be partitioned into the nonlinear and linear portions as in (3.31)-(3.32). The 

signal (measurement) model of the single harmonic set signal ( simplest form of a 

multi-harmonic signal) can be written as, 

Yn =fin+ [t ak,n COS (kBn) + bk,n sin (kBn)l + Vn 
k=l 

(5.16) 

where Nh is the number of harmonics or partials (assumed to be known), Bn the 

instantaneous angle of the fundamental frequency fn, fin the signal trend, ak,n and 

bk,n the sinusoidal coefficients of the kth partial, and Vn is a white Gaussian noise 

with variance r v· 

The nonlinear portion of the state x~ includes the fundamental frequency fn 
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and the instantaneous angle 0n whose process model can be expressed as, 

in+l = g [in+ UJ,n] 

fn+i = in+ CY (fn - in) + UJ,n 

0n+l = 0n + 21rTsfn 

100 

(5.17) 

where in is the mean fundamental frequency, Ts is the sampling interval, a is an 

autoregressive (AR) coefficient, and g[·] represents a nonlinear reflecting function 

to account for the limited frequency range. The linear portion of the state x~ 

includes the sinusoidal coefficients and the signal trend whose process model can 

be written as, 

bk,n+l = bk,n + Ub,n 

Yn+l = Yn + Uy,n· 

(5.18) 

(5.19) 

(5.20) 

In order to compare three particle filter algorithms, I implemented three 

multi-harmonic trackers utilizing those algorithms. All three multi-harmonic track­

ers share the same state-space model described above. Then, those trackers were 

applied to multi-harmonic signals that are synthetically generated based on the 

state-space model. Fig. 5.1 depicts the spectrogram of a synthetically generated 

5 min multi-harmonic signal whose number of harmonics Nh is 10. Table 5.1 sum­

marizes the parameters used to generate the synthetic signals. 

In order to quantify the performance of the multi-harmonic trackers, two per­

formance measures are computed: normalized mean-square-error (NMSE) of the 



CHAPTER 5. NEW PARTICLE FILTERING METHOD 

20 

18 

16 

14 

6 

4 

2 

50 100 150 
Time (s) 

200 

101 

250 300 

Figure 5.1: Spectrogram of a synthetic multi-harmonic signal with 10 harmonic 
partials. 

Table 5.1: List of user-specified parameters to generate synthetic multi-harmonic 
signals. 

Name Symbol Value 
Number of harmonics Nh 10 
Sampling frequency ls 40Hz 
Signal duration l 5min 
Number of samples NT 12,000 
Signal-to-noise ratio SNR lOdB 
Fundamental mean frequency w 3n 
Frequency coefficient a 0.99 
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predicted signal and mean-square-error of the frequency estimate (FMSE). NMSE 

measures how accurately the state estimates describe the original signal while 

FMSE represents the accuracy of the fundamental frequency estimation alone. 

For real signals FMSE typically cannot be computed since it requires knowledge 

of the true state which is unknown. NMSE of signal estimation ranges from O to 

inf. When its value is below 1, the tracker does a better job than a simple signal 

mean estimator. If its value is greater than 1, the tracker performs worse than 

estimating the signal to be equal to the signal mean. NMSE can be computed as 

follows, 

"NT ( A )2 
NMSE = L..,n=l Yn - Yn 

°"NT ( ~ )2 
L.,n=l Yn -Yn 

(5.21) 

where Yn represents the signal mean. FMSE can be written as follows, 

(5.22) 

whose unit is Hz2
• This will be reported as ✓FMSE since its unit is Hz. 

Two plots in Fig. 5.2 depict ✓FMSE (top) and NMSE (bottom) of the 

three multi-harmonic trackers versus relative simulation times. The trackers used 

the same number of particles Np= 100. The Optimal MAM-PF multi-harmonic 

tracker substantially outperformed the MPF multi-harmonic tracker in terms of 

both performance measures. The main reason that the MPF tracker has a substan­

tially larger ✓FMSE than the Optimal MAM-PF tracker is that the MPF tracker 

loses track of the true fundamental frequency occasionally and tracks one of the 

subharmonics, which correspond to the local maxima in the posterior distribution 
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Figure 5.2: (a) ✓FMSE versus simulation time. (b) NMSE versus simulation 
time. The horizontal lines represent the mean values while the vertical bars the 
one-standard-deviation ranges around the means. 
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shown in 3.3. The Optimal MAM-PF tracker is less likely to track the subharmon­

ics erroneously than the MPF tracker since the particles of the Optimal MAM-PF 

are distributed through the entire fundamental frequency range and do not suffer 

from sample impoverishment. The erroneous fundamental frequency tracking of 

the MPF tracker also causes its NMSE to be slightly greater than 1. The simula­

tion results demonstrate that the Optimal MAM-PF tracker performs substantially 

better than the MPF tracker. However, the issue is that the computational burden 

of the Optimal MAM-PF is much greater than that of the MPF. Fig. 5.2 shows 

that the Optimal MAM-PF tracker requires approximately 125 times more simu­

lation time than the MPF tracker does. This may be unbearable in many cases 

considering that the MPF algorithm itself is already computationally expensive. 

In contrast, the Fast MAM-PF tracker requires only 1.6 times more simulation 

time than the MPF tracker does while its performance is comparable to the Op­

timal MAM-PF in terms of both FMSE and NMSE. This result is in line with 

the fact that the computational burdens of the MPF and MAM-PF algorithms are 

proportional to O(Np) and O(N;), respectively with NP= 100. 

5.3 Summary 

This chapter provides details of the new particle filtering technique, called the 

MAP Adaptive Marginalized PF. The simulation results based on synthetic signals 

clearly demonstrate the superior performance of the new particle filtering technique 

in comparison to a conventional particle filter such as the MPF algorithm. The 

computational burden of the proposed particle filtering technique can be eased 

substantially by approximating the MAP state estimation step without sacrificing 
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its performance. 



Chapter 6 

Single Rhythmical Component Tracking 

This chapter discusses a practical application of the single rhythmical component 

tracking case. The application is tracking tremorous activity exhibited in neuronal 

signals of subjects with movement disorders such as Parkinson's disease (PD) and 

essential tremor (ET). 

6.1 Introduction to the Clinical Problem 

Tremor is one of the most disabling symptoms of many movement disorders such 

as Parkinson's disease (PD) and essential tremor (ET). Each movement disorder 

that causes tremor has a typical range of tremor frequencies that are observed 

in practice. For example, the tremor frequency of essential tremor ranges from 

4-12 Hz [113]. 

Tremor activity can be measured with many types of instrumentation and 

sensors including electroencephalograms (EEG), magnetoencephalograms (MEG), 

electromyograms (EMG), accelerometers, gyroscopes, and microelectrode record­

ings (MER). Most tremor signals are quasi-periodic and nearly sinusoidal. The 

frequency of quasi-periodic tremorous activities in the signals is called the instan-
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taneous tremor frequency (ITF) and the intensity of them called the instantaneous 

tremor amplitude (ITA). 

A number of recent studies have focused on characterizing the relationship of 

two or more tremor signals. In many cases these signals are obtained from different 

types of instrumentation (e.g., MER and EMG). One of the surprising findings 

of these studies is that even when two signals contain significant tremor at the 

same frequency, these signals are not always coherent or phase-coupled [102,103]. 

This suggests that the tremor either originates from multiple sources or that the 

tremor is modulated by uncoupled sources of unknown origin. A few studies have 

also found that the phase-coupling between pairs of tremor signals varies over 

time [103-105, 114]. 

Phase-coupling refers to a phenomenon of synchronization between tremorous 

activities in two signals. In the phase-coupling study, the main goal is to measure 

the degree of this synchronization between two signals' tremorous activities. How­

ever, one of the difficulties with studying phase-coupling is that this signal behavior 

cannot be characterized with traditional signal processing and time series analysis 

techniques that assume that the signals are generated by a linear stochastic process. 

These methods are essentially blind to subtle nonlinear effects, such as intermittent 

phase-coupling. This presents an opportunity for new signal processing methods 

that can estimate how the degree of phase-coupling between pairs of tremor signals 

varies over time. In order to measure the degree of the synchronization between 

tremorous activities, one first needs to segment the signals into tremor-on and 

tremor-off periods based on the tremor strength measurement, which is estimated 

instantaneous tremor amplitude (ITA). This step is called tremor detection. The 

next step is to track the instantaneous tremor frequency (ITF) of the tremor-on 
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periods. It is common to perform the detection and tracking steps separately. 

Neuronal recordings such as microelectrode recordings are an important type 

of signal to study since they are direct recordings of neuronal activities. Neuronal 

recordings are widely modeled as point processes consisting of a series of action 

potentials, or spikes, that are treated as all-or-none events. Most researches believe 

that all of the useful information is conveyed in the timing of these events. So, it 

is common practice to detect spikes in neuronal recordings during the early stages 

of analysis and focus all subsequent analysis on binary spike trains that consist of 

a 1 at the time of each spike occurrence and O elsewhere. Tremor in binary spike 

trains is exhibited through pulse frequency modulation that causes fluctuations in 

the mean firing rate [115]. The magnitude of fluctuations in the mean firing rate 

is the instantaneous tremor amplitude (ITA) and the frequency of the fluctuations 

is the instantaneous tremor frequency (ITF). 

6.2 Summary of Prior Work 

Hurtado et al. conducted the most thorough study of intermittent coupling of 

tremor signals to date [103,105]. They studied the synchronization between tremor­

related activities in single-unit spike trains and EMG, where spike trains were 

recorded from globus pallidus internus (GPi) and EMG from the abductor pol­

licis (APB) in parkinsonian subjects. Prior to the synchronization study, they 

first detected tremor-on periods of the signals relying on traditional time-frequency 

analysis. Their tremor detection algorithm involves setting a threshold for instan­

taneous tremor amplitude (ITA). They selected a threshold value based on visual 

inspection of the signal's spectral components. Then, they applied an ITF tracking 
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method based on the Hilbert transform to tremor-on periods of the signals. The 

Hilbert transform produces an estimate of Gabor's analytic signal. However, spike 

trains rarely meet the conditions necessary for this estimate to be accurate [17]. 

In particular, the representation of spikes as impulses results in a broad signal 

bandwidth that makes it difficult to track a single frequency. My previous work 

demonstrated that the Hilbert transform based ITF tracker does not produce an 

accurate estimate of ITF [20]. In the same work a Kalman filter based ITF tracker 

was proposed and simulation results demonstrated that it outperforms both the 

Hilbert transform based ITF tracker and the spectrogram based ITF tracker. Since 

the ITF has a nonlinear relationship with the signal, the extended Kalman filter 

(EKF) was utilized to implement the proposed ITF tracker, which uses a first-order 

Taylor series approximation around estimates of the current state. More recently, I 

proposed an extended Kalman smoother based tremor tracker, which can track the 

instantaneous tremor amplitude (ITA) and frequency (ITF) simultaneously [116]. 

This chapter describes a new tremor tracker which utilizes the fast maximum 

a posteriori adaptive marginalized particle filter (MAM-PF). While the EKF based 

tremor tracker relies on the local linearization of the current state to handle the 

nonlinear relationship between the signal and the ITF, the MAM-PF based tremor 

tracker applies the particle filtering technique to estimate the ITF and the conven­

tional linear Kalman filter to estimate the ITA. The subsequent sections describe 

the extended Kalman filter based tremor tracker and the MAM-PF based tremor 

tracker and compare the performance of two tremor trackers based on synthetic 

and real spike trains. 
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6.3 Methodology 

6.3.1 Measurement Model 

The fluctuating firing intensity of binary spike trains can be modeled as follows, 

(6.1) 

where 0n is the instantaneous angle of the instantaneous tremor frequency (ITF), 

a 1 n and a 2 n the sinusoidal coefficients, and Vn a white Gaussian noise with vari-, , 

ance rv. This signal model is the same as the single rhythmical component signal 

model shown in (4.2). The instantaneous tremor amplitude (ITA) can be expressed 

in terms of the coefficients, a 1,n and a 2,n, as follows, 

Pn = ar,n + a~,n (6.2) 

where Pn represents the ITA. As mentioned previously, the single rhythmical com­

ponent signal model can be seen as a special case of the single harmonic set signal 

model where the number of harmonics or partials is only 1. 

6.3.2 Process Model 

Given the instantaneous angle 0n, the state-space model is a linear function of the 

other parameters such as the coefficients a 1 n and a 2 n· These linear parameters , , 

can be estimated optimally using the Kalman filtering technique. Since these 

parameters are not known in practical applications, it is common to use a random 
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walk model [74]. That is, 

111 

(6.3) 

(6.4) 

where Ua,n represents a white Gaussian noise with variance qa. The instantaneous 

tremor angle 0n, however, can be modeled based on some domain knowledge. It 

is well known that the instantaneous tremor frequency (ITF) fn changes slowly 

within a certain range [113]. Therefore, the instantaneous tremor angle 0n can be 

modeled as, 

ln+I = g [In+ UJ,n] 

fn+I =In+ a (fn - In)+ UJ,n 

0n+I = 0n + 2n-Tsfn 

(6.5) 

(6.6) 

(6.7) 

where In is the mean tremor frequency, T8 is the sampling interval, a is an au­

toregressive (AR) coefficient, and g[·] represents a nonlinear reflecting function to 

account for the limited frequency range. A value of a = l results in a random 

walk model while a = 0 results in a white noise model. The nonlinear reflecting 

function can be expressed as, 

fmax - (f - fmax) fmax < f 

g[f] = f fmin < f ::=; fmax (6.8) 

fmin + Umin - f) f ::=; fmin 
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where !min and !max represent the possible extreme tremor frequency values. Now, 

The state vector Xn can be written as, 

T 

Xn = [ X1,n X2,n X3,n X4,n] 

[ 0n f n a1,n a2,n] 
T 

6.3.3 Extended Kalman Filter Recursions 

(6.9) 

The Kalman filter recursions consist of the measurement update and time update. 

The measurement update produces the filtered estimates Xnln based on the previous 

predicted estimates Xnln-I and the current measurement Yn· From the filtered 

estimates Xnln the time update produces the predicted estimates Xn+Iln according 

to the state-space model. 

The extended Kalman filter linearizes the nonlinear state-space model, f(xn) 

and h(xn) at different estimates of the state. The Jacobian of f(xn) is evaluated at 

the filtered estimate Xnln and the Jacobian of h(xn) is evaluated at the predicted 

estimate Xnln-I· They can expressed as follows, 

(6.10) 

(6.11) 

where Xnln-R denotes the estimate of the state vector based on the measurements 

Yo:n-R = {Yo, ... , Yn-d- The subsequential sections explain the recursions for the 

EKF in detail. 
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Initialization 

The EKF requires the user to provide an a priori estimate of the state mean and 

state error covariance matrices. These affect how quickly the tracker initially "locks 

in", but do not affect the steady-state performance. For the a priori state mean 

x01 _1 = [O JO O]T was chosen, where J is the mean tremor frequency determined 

by domain knowledge. I chose a diagonal initial state error covariance matrix, 

Pol-I· Section 6.3.5 describes how to estimate the elements of the matrix. 
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EKF Recursions 

The filtered and predicted state estimates can be computed directly from the well­

known EKF recursions, 

re,n = r + HnPnln-1H;, 

Kn= Pnln-1H;,r;,~ 

Ynln-1 = h(xnln-1) 

0 

cos (x1,n1n-1) 

sin (x1,nln-1) 

Xnln = Xnln-1 + Kn (Yn - Ynln-1) 

Pnln = Pnln-1 - Knre,nK;;, 

0 ax2,n1n 0 0 
Fn= 

0 0 1 0 

0 0 0 1 

Pn+Iln = FnPnlnF:f + Q 

Xn+Iln = f( Xnln) 

T 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

( 6.17) 

(6.18) 

(6.19) 

(6.20) 

These recursions produce both the filtered estimates Xnln and the predicted esti­

mates Xnln-I of all the state variables. 
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6.3.4 Fast MAP Adaptive Marginalized Particle Filter Recursions 

The Fast MAM-PF recursions consist of the particle propagation, the conventional 

linear Kalman filter updates, and the MAP state estimation. The state vector Xn 

is partitioned into the nonlinear x~ and linear x~ portions. In this application, 

only the instantaneous tremor angle 0n belongs to x~ and the remaining state 

variables belong to x~, which can be expressed as, 

XN = [0] n n (6.21) 

(6.22) 

Initialization 

The MAM-PF also requires the user to provide an a priori estimate of the state 

mean and state error covariance matrices. For the a priori state mean Xof-l = 

[O J O OJT was chosen, where J is the mean tremor frequency determined by domain 

knowledge. I chose a diagonal initial state error covariance matrix, Pof-l· Section 

6.3.5 describes how to estimate the elements of the matrix. 

Fast MAM-PF Recursions 

The details of the Fast MAM-PF recursions are listed in Algorithm 5 in Chapter 

5. 
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6.3.5 Parameter Selection 

There are several parameters in the measurement (6.1) and process models (6.3)­

(6.7), which need to be specified or estimated. However, most of them can be esti­

mated based on domain knowledge. Tables 6.1 and 6.2 summary the user-specified 

parameters for the EKF and MAM-PF tremor trackers, respectively. Since tracking 

the instantaneous tremor frequency (ITF) is the main goal of the current applica­

tion, the frequency process noise variance qi and the mean frequency process noise 

variance qf are the most critical parameters that affect the performance of tremor 

tracking most. Except for those two parameters, the two tremor trackers share the 

same parameter values. 

The user-specified parameters listed in Tables 6.1 and 6.2 have been optimized 

and used in my previous work [20, 116-119]. Those parameters do not need to be 

optimized for individual spike trains. The set of optimized parameters can be used 

for any spike trains. 

6.3.6 Synthetic Spike Trains with Tremor 

The true ITF of real spike trains can be only estimated. However, it is necessary 

to have spike trains with a known ( or true) ITF to accurately compare the per­

formance of two tremor trackers in Monte Carlo simulations. In [20] McN ames et 

al. described a process for generating synthetic spike trains with a known ITF in 

detail. A spike train is created based on an integrate-and-fire model of a renewal 

process introduced in [120]. The distribution of a parameter T determines the 

regularity of the firing rate, which is explained in [115]. 

Two types of synthetic spike trains were created: Continuous-tremor spike 
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Table 6.1: Summary of user-specified parameters for the EKF tremor tracker. 
Name Symbol Value 
Frequency coefficient a 0.999 
Frequency process noise variance 
Mean Frequency process noise variance 
Amplitudes process noise variance 
Measurement noise variance 
Minimum possible frequency 
Maximum possible frequency 
Mean tremor frequency 
Phase initial 
Frequency initial 
Frequency mean initial 
Amplitudes initial 
Initial phase variance 
Initial frequency variance 
Initial amplitude variance 

qf 

qf 
qa 
r 

fmin 

fmax 
J 
0o 

Jo 
lo 
ao 

q0,O1-1 

qf,Ol-1 
qa,Ol-1 

10 Ts 
0.01 Ts 

var(y)/10 
var(y)/10 

3Hz 
l0Hz 
5Hz 

0 
5Hz 
5Hz 
0.01 
3.28 
4.08 
0.1 

Table 6.2: Summary of user-specified parameters for the Fast MAM-PF tremor 
tracker. ========================== Name Symbol Value 

Number of particles Np le3 
Frequency coefficient a 0.999 
Covariance coefficient {3 0.98 
Frequency process noise variance qf le-4 Ts 
Mean Frequency process noise variance qf le-6 Ts 
Amplitudes process noise variance qa var(y)/10 
Measurement noise variance r var(y)/10 
Min. mean frequency range fmin 3Hz 
Max. mean frequency range fmax l0Hz 
Mean tremor frequency J 5Hz 
Phase initial 0o 0 
Amplitudes initial ao 0.01 
Initial phase variance q0,01-1 3.28 
Initial frequency variance qf,Ol-1 4.08 
Initial amplitude variance qs,Ol-1 0.1 
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Figure 6.1: Spectrogram of an example binary spike train whose tremor is contin­
uous where the thick white line represents the true ITF. 

trains and intermittent-tremor spike trains. Each spike train lasts for 30 s. For 

continuous-tremor spike trains, tremorous activity lasts throughout the signal du­

ration. Fig. 6.1 shows the spectrogram of an example continuous-tremor spike 

train. For intermittent-tremor spike trains, tremorous activity lasts only during 

the first and last 10 s periods. From 10 s to 20 s the firing rate was kept constant, 

which resulted in no tremor. Fig. 6.2 illustrates the spectrogram of an example 

intermittent-tremor spike train. 

6.3. 7 Real Spike Trains with Tremor 

Both the EKF based and MAM-PF based tremor trackers were applied to a binary 

spike train constructed from a microelectrode recording (MER) recorded during 

stereotactic neurosurgery for a subject with Parkinson's disease (PD). Spikes in 
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Figure 6.2: Spectrogram of an example binary spike train whose tremor is inter­
mittent where the thick white line represents the true ITF. 

the MER were detected using an automatic spike detection algorithm described 

in [121]. The duration of this real spike train was also 30 sand the original sampling 

frequency was 22 kHz. 
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6.4 Results and Discussion 

The performance of two tremor trackers was compared by plotting the absolute 

difference between the true tremor frequency and its estimate versus time, where 

the absolute difference can be expressed as, 

(6.23) 

where AFE stands for the absolute frequency error. Fig. 6.3 illustrates the sim­

ulation results based on 100 continuous-tremor spike trains. The thick grey line 

represents the averaged AFEn of the EKF based tremor tracker over the 100 sim­

ulations while the thin black line represents that of the MAM-PF based tremor 

tracker. The shaded areas around the averaged AFEn represent the one standard 

deviation range of the EKF (very light grey) and MAM-PF (light grey) trackers. 

Overall, the averaged AFEn of the MAM-PF based tremor tracker tends to be 

slightly greater than that of the EKF based tremor tracker. The mean values of 

the averaged AFEn over 30 s were 0.36 Hz and 0.34 Hz, for the MAM-PF and EKF 

based tremor trackers respectively. As long as tremor is continuous in spike trains 

and the tremor trackers "lock in" to the true tremor frequency, the EKF based 

tremor tracker tracks the ITF slightly better than the MAM-PF based tremor 

tracker. The reason for better performance is that the EKF can track a single 

mode better than the MAM-PF when the EKF has locked on to the tremor signal. 

However, the performance of the MAM-PF will improve as the number of particles 

used increases. 

Fig. 6.4 shows the simulation results based on 100 intermittent-tremor spike 
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Figure 6.3: AFE versus time for synthetic binary spike trains whose tremor is 
continuous where the line represents the averaged AFE value and the light grey 
area represents one standard deviation range of AFE values over 100 simulations. 
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Figure 6.4: AFE versus time for synthetic binary spike trains whose tremor is 
intermittent where the line represents the averaged AFE value and the light grey 
area represents one standard deviation range of AFE values over 100 simulations. 

trains, where tremor lasts only during the first and last 10 s periods. After the 

absence of tremorous activities between 10 s and 20 s, the MAM-PF based tremor 

tracker locks on to the true tremor frequency within 1 s on average, which is shown 

as the rapid decrease of the averaged AF En after 20 s. However, the EKF based 

tremor tracker takes about 4 s to lock on to the true tremor frequency after 20 s. 

This simulation result demonstrates that the MAM-PF based tremor tracker can 

start tracking tremor quicklier than the EKF based tremor tracker, which is an 

important feature of a tremor tracker since tremorous activities are often intermit­

tent. Fig. 6.5 depicts the averaged ITA, Pn in (6.2), of the 100 intermittent-tremor 

spike trains. During the first 10 s period, the averaged ITA of the MAM-PF based 

tremor tracker tends to be greater than that of the EKF based tremor tracker. 
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Figure 6.5: Tremor intensity versus time for synthetic binary spike trains whose 
tremor is intermittent. 

When tremor is absent during the second 10 s period, the averaged ITAs of both 

tremor trackers rapidly decrease. After the absence of tremor, the averaged ITA 

of the MAM-PF based tremor tracker tends to increase more rapidly than that of 

the EKF based tremor tracker. This simulation result supports the fact that the 

MAM-PF based tremor tracker can detect the presence of tremorous activities in 

spike trains better than the EKF based tremor tracker. 

Fig. 6.6 illustrates the estimated ITFs of the real binary spike train on top 

of its spectrogram. The MAM-PF based tremor tracker takes about 1 s to lock on 

to the tremor frequency while the EKF based tremor tracker takes about 7 s to do 

so. Figs. 6. 7 and 6.8 depict the spectrograms of the prediction error en, which can 
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Figure 6.6: Estimated ITFs on top of the spectrogram of the real spike train from 
a subject with Parkinson's disease (PD). 

be written as, 

en= Yn - YnlO:n-1 (6.24) 

where YnlO:n-l represents the prediction estimate of the spike train Yn· Fig. 6. 7 

shows the 4. 7 Hz residual tremor activity between Os and 6 s. On the other hand, 

Fig. 6.8 shows very little residual tremor activities. 

6.5 Conclusion 

The simulation results based on synthetic and real binary spike trains demonstrate 

that the MAM-PF based tremor tracker can attain lock faster than the EKF and 

that the performance is nearly as good. The ability to lock on to tremor quickly 
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Figure 6.7: Spectrogram of a residual signal with the EKF based tremor tracker. 
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Figure 6.8: Spectrogram of a residual signal with the MAM-PF based tremor 
tracker. 
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is a very important feature of a good tremor tracker since tremorous activities in 

binary spike trains are often intermittent. 



Chapter 7 

Single Harmonic Set Tracking 

This chapter discusses a practical application of the single harmonic set tracking 

case. The application is tracking heart rate in electrocardiograms (ECGs). The 

heart rate tracking method described in this chapter estimates the heart rate in 

ECG signals continuously on a sample-by-sample basis, which is different from 

other conventional heart rate estimation methods that yield one heart rate estimate 

per each cardiac cycle. 

7.1 Introduction to the Clinical Problem 

Heart rate is traditionally defined as the number of heart beats per minute. Al­

though the heart rate can be measured wherever an artery's pulsation is transmit­

ted to the body surface, a special method such as electrocardiography (ECG or 

EKG) is often used to ensure a more precise measure of the heart rate. ECG is a 

recording of the voltage between selectively placed electrodes on the skin, which re­

flects the activity of the heart muscle. Fig. 7.1 depicts a schematic representation 

of a typical ECG signal of one cardiac cycle. A typical ECG recording of a healthy 

cardiac cycle consists of a P wave, a QRS complex, and a T wave. The P wave 
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corresponds to the depolarization of the right atrium. Atrial fibrillation results in 

the absence of the P wave. The QRS complex corresponds to the depolarization 

of the right and left ventricles. It has a much larger amplitude than the P wave 

since the mass of ventricle muscles is greater than that of atrium muscles. The 

careful analysis of the QRS complex can be used to diagnose several heart diseases 

such as myocardial infarction, cardiac arrhythmias, and ventricular hypertrophy. 

The T wave corresponds to the repolarization of the ventricles, which means the 

recovery of the muscles. The size and sign of the T wave can be used to diagnose 

coronary ischemia and hyperkalemia. As shown in Fig. 7.1, the R wave is typically 

the most noticeable wave, which is easy to detect. Therefore, the heart rate can be 

expressed as the number of R waves per minute in an ECG signal. However, the 

heart rate can be computed in relation of R-R intervals ( or inter-beat intervals). 

The R-R interval refers to the time elapsing between two adjacent R waves in an 

ECG signal. The reciprocal of this R-R interval is often used as the heart rate, 

whose unit is in Hz. 

The heart rate as the reciprocal of the R-R intervals does not remain con­

stant, but rather fluctuates rhythmically for resting healthy subjects. Heart rate 

variability (HRV) refers to these rhythmic variations ( or fluctuations) in the heart 

rate. For medical and diagnostic purposes, monitoring HRV accurately and reli­

ably is an important but challenging task to perform. For resting healthy subjects, 

the heart rate fluctuates due to cardio-acceleration during inspiration and cardio­

deceleration during expiration. Reduced HRV is used as a marker of reduced vagal 

activity. In brain electrophysiology, HRV has been recognized as a marker of nor­

mal functional states such as wakefulness or sleep, or of abnormal states such as 

epilepsy [122]. In the cardiovascular control system study, the analysis of HRV 
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Figure 7 .1: Schematic representation of normal ECG of one cardiac cycle. 

provides a quantitative means of assessing the functioning of the cardiovascular 

control systems [123]. 

Accurate heart rate estimation is a prior step toward HRV analysis. Typi­

cally, the first step of heart rate estimation is detecting the R waves in the ECG 

signal. Then, instead of the ECG signal itself, a series of R-R interval values be­

comes the focus of analysis. The short-time power spectral analysis of this R-R 

interval series reveals a consistent high-frequency component ( ~ 0.25 Hz), which 

is interpreted as a quantitative assessment of respiratory arrhythmia [124]. Other 

low-frequency components about 0.1 Hz and 0.03 Hz have also been noticed, which 

are known as Mayer waves [125]. 

The heart rate as the reciprocal of R-R intervals has a better time resolution 

than the heart rate as the number of heart beats per minute. However, its time 

resolution is limited by the cardiac cycle periods since only one heart rate value 

can be computed per each cardiac cycle. By adopting the state-space model frame-
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work, the heart rate can be computed on a sample-by-sample basis instead of a 

beat-by-beat basis. This high resolution heart rate is called an instantaneous heart 

rate and is expressed in units of Hz. The power spectral analysis of the instan­

taneous heart rate can reveal more precise and reliable frequency contents of the 

heart rate. A few research groups have proposed novel methods to estimate the in­

stantaneous heart rate in ECG signals within state-space methods [126,127]. They 

utilized the Kalman filtering technique to estimate the instantaneous heart rate. 

This chapter proposes an accurate and robust instantaneous heart rate estimation 

method utilizing the Fast MAM-PF technique. 

7.2 Summary of Prior Work 

The heart rate, which is the reciprocal of R-R intervals, will be referred to as the 

traditional heart rate in order to distinguish it from the instantaneous heart rate. 

Computation of the traditional heart rate requires detection of the R waves in 

ECG signals. An algorithm to detect the R waves is called a beat detection algo­

rithm. There are various beat detection algorithms available in the literature and 

commercially [107,124,128,129]. Pan et al. developed a real-time QRS detection 

algorithm of ECG signals, which is based upon digital analyses of slope, amplitude, 

and width [129]. Afonso et al. designed a digital signal processing algorithm to 

detect heartbeats of ECG signals [128]. Their algorithm incorporates a filter bank 

which decomposes the ECG signal into several sub-bands with uniform frequency 

bandwidths. Aboy et al. proposed a more general beat detection algorithm, which 

can be applied to pressure signals [107]. Their algorithm utilizes a filter bank with 

variable cutoff frequencies and spectral estimates of the heart rate. Overall beat 
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detection algorithms are susceptive to noise and prone to any sudden changes in 

QRS morphology. More importantly, the R-R intervals (or inter-beat intervals) 

based on the beat detection result yield the traditional heart rate whose time 

resolution can be improved. 

Ebrahim et al. presented a robust sensor fusion method to estimate the heart 

rate based on the Kalman filter technique in [127]. The main objective of their 

work was to combine heart rate measurements from multiple sensors to obtain 

an estimate of heart rate and a confidence value associated with every heart rate 

estimate. In detail, they evaluated three sensor measurements and the predicted 

estimate of the heart rate, which yield 16 possible hypotheses for the current state 

of the available data. A Kalman filter was applied to the most likely hypothe­

sis to derived the fused estimate. McN ames et al. proposed a novel state-space 

model of cardiovascular signals such as ECG and arterial blood pressure (ABP) 

and described the extended Kalman filter being applied to it for estimation of car­

diovascular parameters such as the heart rate in [126]. Their results demonstrated 

that the extended Kalman filter with the proposed state-space model can be ap­

plied to several important applications such as tracking cardiovascular parameters 

of clinical interest from ABP and pulse oximetry (POX) signals, characterizing the 

intracranial pressure (ICP) pulsatile morphology, and estimating pulse pressure 

variation (PPV) from ABP signals obtained from mechanically ventilated swine. 

In my recent work [117], it was demonstrated that the particle filter is a more 

suitable method than the EKF for the purpose of heart rate tracking in ECG sig­

nals. Chapter 3 also shows that tracking the fundamental frequency (heart rate) 

of a multiharmonic signal ( an ECG signal) can be framed as continuously estimat­

ing the posterior distribution of the fundamental frequency p(f nlYo:n), which is 
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multi-modal and non-Gaussian. Since the Kalman filter assumes the unimodality 

of the posterior distribution, it is prone to estimation errors when applied to the 

multi-harmonic tracking application. 

This chapter describes how to implement the ECG heart rate tracker utilizing 

the Fast MAM-PF and demonstrates the superior performance of the proposed 

heart rate tracker to the conventional MPF based heart rate tracker via Monte 

Carlo simulations. 

7.3 Methodology 

This section describes the state-space model of ECG signals and implementation 

of the Fast MAM-PF and MPF heart rate trackers. 

7.3.1 Measurement Model 

The ECG signal can be modeled as follows, 

where Nh is the number of harmonics or partials due to cardiac activities, ao,n 

the slow signal trend, a 1,k,n and a 2,k,n the sinusoidal coefficients of the kth cardiac 

partial, 0n the instantaneous angle of the heart rate fn, and Vn is white Gaussian 

noise with variance r v· This signal model is the same as the single harmonic set 

signal model shown in (4.10). The number of cardiac partials Nh may be known 

or need to be estimated. A simple method is using a conservative upper bound on 

Nh where the excessive partials' sinusoidal coefficients will be estimated as nearly 
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zero at a cost of extra variance. If some pilot ECG signals are available, Nh can 

be estimated more accurately based on spectral analysis of the pilot signals. 

7.3.2 Process Model 

Given the instantaneous angle 0n, the state-space model is a linear function of the 

signal trend ao,n and the coefficients a1,k,n and a 2,k,n· These linear parameters can 

be estimated optimally using the Kalman filtering technique. These parameters 

can be modeled as a random walk model, which can be expressed as, 

ao,n+l = ao,n + Ua,n 

where Ua,n represents a white Gaussian noise with variance qa. 

(7.2) 

(7.3) 

(7.4) 

The heart rate fn changes slowly within a certain range. Therefore, the 

instantaneous angle 0n of the heart rate fn can be modeled as follows, 

fn+I = 9 [fn + UJ,n] 

fn+I = fn + 0: (fn - fn) + UJ,n 

0n+l = 0n + 21rTsfn 

(7.5) 

(7.6) 

(7.7) 

where f n is the mean heart rate, Ts is the sampling interval, a is an autoregressive 

(AR) coefficient, and g[·] represents a nonlinear reflecting function to account for 

the limited heart rate range. The nonlinear reflecting function can be expressed 
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as, 

fmax - (f - fmax) fmax < f 

g[f] = f fmin < f '.S fmax (7.8) 

fmin + Umin - f) f :S fmin 

where f min and f max represent the possible extreme heart rate values. Now, The 

state vector Xn can be written as, 

T 

Xn = [ X1,n X2,n X3,n X4,n · · · X2Nh+3,n] 

T 

[ 0n fn ao n a11 n • • • a2 Nh n] 
' ' ' ' ' 

which can be partitioned into the nonlinear and linear portions as follows, 

7.3.3 Fast MAM-PF Heart Rate Tracker 

(7.9) 

(7.10) 

(7.11) 

The Fast MAM-PF heart rate tracker utilizes the Fast MAM-PF algorithm to 

continuously estimate the heart rate and morphology of an ECG signal. Since 

the state vector Xn of the ECG signal state-space model is partitioned into the 

nonlinear and linear portions, the Fast MAM-PF algorithm can be directly applied 

to the state-space model to implement the Fast MAM-PF heart rate tracker. The 

details of the Fast MAM-PF recursions are listed in Algorithm 5 in Chapter 5. 

Table 7.1 summarizes user-specified parameter values for the Fast MAM-PF heart 
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Table 7.1: Summary of user-specified parameters for the filters (MAM-PF /MPF). 

rate tracker. 

Name Symbol Value 
Number of particles NP 150/180 
Resampling threshold Nt Np/100 
Number of harmonics Nh 10 
Frequency coefficient 
Covariance coefficient 
Max. mean heart rate 
Min. mean heart rate 
Heart rate variance 
Amplitude variance 
Measurement variance 
Initial phase 
Initial mean heart rate 
Initial heart rate 
Initial amplitudes 

a 
{3 

fmax 
fmin 
QJ 
Qa 

r 
0o 

lo 
Jo 
ao 

0.999 
0.999 
2Hz 
1 Hz 
le-4 

var(y)/100 
var(y)/10 

0 
1 Hz 
1 Hz 
0.01 

7 .3.4 MPF Heart Rate Tracker 

The MPF heart rate tracker utilizes the MPF algorithm to track the heart rate 

and morphology of an ECG signal. Like the Fast MAM-PF algorithm, the MPF 

algorithm can also be applied to the ECG· state-space model without any modi­

fication. The details of the MPF recursions are listed in Algorithm 3 in Chapter 

5. Table 7.1 summarizes user-specified parameter values for the MPF heart rate 

tracker. 
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7.4 Performance Comparison 

7.4.1 Equalizing Computational Load 

The Fast MAM-PF requires more computation than the MPF due to the Viterbi 

algorithm to search for the most probable past path of each particle. In order to 

make a fair comparison between these two filters, I first ran the Fast MAM-PF 

with 150 particles and measured the simulation duration. Then, I ran the MPF 

with various numbers of particles to find the number of particles with which the 

MPF takes the same simulation duration. With 180 particles the simulation time 

of the MPF was equal to that of the Fast MAM-PF. This process approximately 

equalizes the processing time required for each filter for the ECG heart rate tracking 

application discussed in this chapter. 

7.4.2 Synthetic ECG Signals 

The true heart rate of ECG signals can only be estimated. However, it is necessary 

to have ECG signals with a known true heart rate to accurately compare the 

performance of two heart rate trackers in Monte Carlo simulations. For the purpose 

of performance comparison of two trackers, two types of synthetic ECG signals were 

generated. The first type of synthetic ECG signals mimics realistic ECG signals 

whose heart rate and morphology change slowly over time. They were generated 

based on the measurement model shown in (7.1) and process models shown in 

(7.2)-(7. 7). Table 7.2 summarizes the further details of the synthetic ECG signal 

generator. 

The second type of synthetic ECG signals mimics a hypothetic ECG signal 
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Table 7.2: List of user-specified parameters to generate synthetic ECG signals. 
Name Symbol Value 
Number of harmonics Nh 10 
Sampling frequency ls 50 Hz 
Signal duration l 5 min 
Number of samples NT l.5e4 
Signal-to-noise ratio SNR 10 dB 
Heart rate coefficient a 0.999 
Amplitude variance qa 0.l 
Heart rate variance q1 le-4 
Initial mean heart rate / 0 1.5 Hz 
Initial heart rate Jo 1.5 Hz 
Initial amplitude a 0 1 

whose heart rate abruptly changes from 2 Hz to 4 Hz and whose cardiac partials' 

amplitudes remain constant. The purpose of generating this unrealistic ECG signal 

was to contrast the ability of two heart rate trackers to adapt to rapid changes 

in the heart rate. Two trackers were applied to the hypothetical ECG signal 100 

times and the heart rate estimates were averaged over the simulations. 

7.4.3 Real ECG Signal 

Both heart rate trackers were applied to a real electrocardiogram (ECG) signal 

sampled at 500 Hz containing a high level of noise. The goal of this experiment 

was to compare the ability of the trackers to retain track on a noisy signal amid 

realistic signal artifacts such as signal dropouts and medical intervention. The 

ECG signal chosen here is one of the noisiest signals in the MIMIC database [130] 

on PhysioNet [131]. The duration of the ECG signal is 30min. 
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Figure 7.2: Spectrogram of an example synthetic ECG signal with 10 harmonic 
partials. 

7.5 Results and Discussion 

7.5.1 Synthetic Signal 

Fig. 7.2 shows the spectrogram of an exemplary synthetic ECG signal. The to­

tal number of partials was 10 and the mean value of the heart rate was 1.5 Hz. 

Two plots in Fig. 7.3 illustrates the spectrograms of signal estimation residuals 

using the MAM-PF (top) and MPF (bottom) trackers, respectively. In the resid­

ual spectrograms there were not any significant multi-harmonic structures due to 

cardiac activities, which indicates that both trackers were able to track the heart 

rate and its harmonic partials in the synthetic ECG signal almost perfectly. Since 

the signal-to-noise ratio (SNR) of the synthetic ECG signal was 10 dB and noise 

due to signal drops or medical intervention was not simulated, the MPF tracker 
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Figure 7.3: Spectrograms of synthetic ECG signal estimation residuals using (a) 
the Fast MAM-PF and (b) the MPF. 
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performed as well as the MAM-PF tracker. Fig. 7.4 illustrates two trackers' aver­

aged absolute frequency error (AFEn) over 100 simulations. The thick light grey 

line represents the averaged AFEn of the MPF tracker while the thin black line 

represents that of the MAM-PF tracker. The light grey area around the averaged 

AFEn shows the standard deviation of the AFEn over 100 simulations. Fig. 7.4 

demonstrates that there was not any significant performance difference between 

the MAM-PF and MPF trackers since the synthetic ECG signals simulated almost 

noise free ECG signals. 

Fig. 7.5 illustrates the superior performance of the MAM-PF heart rate 

tracker over the MPF heart rate tracker when the heart rate abruptly changes. The 

abrupt change in the heart rate from 2 Hz to 4 Hz results in the sudden change in the 

posterior distribution of the heart rate, that is p(f nlYo:n)- The MPF cannot handle 

this situation since the MPF's particles are densely populated only in a small 

portion of the state space after resampling. In other words, the MPF suffers from 

the sample impoverishment issue. The top plot in Fig. 7.5 shows the spectrogram 

of a synthetic ECG signal whose heart rate abruptly changes from 2 Hz to 4 Hz 

after 60 s. The bottom plot in Fig. 7.5 depicts the averaged heart rate estimates 

over 100 simulations of the MAM-PF (dark grey) and MPF (light grey) heart rate 

trackers. Since the Fast MAM-PF does not rely on the resampling scheme and is 

therefore not prone to the effects of sample impoverishment, the Fast MAM-PF 

heart rate tracker was able to regain its track of the true heart rate 4 Hz while the 

MPF failed completely to regain track. The MPF tracker kept tracking the sub­

harmonic 2 Hz of the true heart rate 4 Hz after 60 s, when the heart rate changed 

from 2 Hz to 4 Hz. 

Four plots in Fig. 7.6 depict the distributions of the particles of the Fast 
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Figure 7.4: Averaged absolute frequency error (AFEn) using the MAM-PF and 
MPF where the light grey area represents the standard deviation of AFEn over 
100 simulations. 

MAM-PF and MPF trackers at time 60 s (left column) and 300 s (right column). 

The green dots in two top plots represent the Fast MAM-PF's particles a while 

the red dots in two bottom plots represent the MPF's particles w. Due to particle 

resampling the MPF's particles w were densely distributed around the true heart 

rate 2 Hz at 60 s. Although the true heart rate became 4 Hz after 60 s, all the 

particles w were still distributed around 2 Hz and did not move to the true heart 

rate 4 Hz until the end of simulation time 300 s. In contrast, the Fast MAM-PF's 

particles a were almost evenly distributed over the entire heart rate range, which 

was 1 Hz-5 Hz in this simulation study. At 60 s only a few particles around the true 

heart rate 2 Hz had large values. At 300 s other particles around the true heart 

rate 4 Hz had large values. Therefore, the Fast MAM-PF tracker was able to track 
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the true heart rate in spite of its abrupt change at 60 s. 

7.5.2 Real Signal 

The top plot in Fig. 7. 7 illustrates the spectrogram of the real ECG signal. It 

shows that the ECG signal was corrupted by noise such as signal drops and med­

ical intervention. The bottom plot in Fig. 7. 7 illustrates the averaged heart rate 

estimates (MPF: white, MAM-PF: grey) over 100 simulations on top of the spec­

trogram of the real ECG signal. Although the ECG signal is quite noisy between 

9 min and 17 min, the averaged heart rate estimate of the MAM-PF heart rate 

tracker remained on top of the true heart rate (thick red band at around 1.5 Hz) 

during the entire duration 30 min of the ECG signal. This simulation result in­

dicates that the MAM-PF heart rate tracker never failed to track the true heart 

rate of the ECG signal over the 100 simulations. In contrast, the averaged heart 

rate estimate of the MPF heart rate tracker deviated from the true heart rate after 

about 12 min. It is important to understand that the mismatch between the true 

heart rate and the averaged heart rate estimate does not indicate that the MPF 

heart rate tracker lost its track of the true heart rate all the time over the 100 

simulations. It rather indicates that the MPF tracker occasionally failed to track 

the true heart rate over the simulations. 

Two plots in Fig. 7.8 depict exemplary cases among the 100 simulations. 

The top plot in Fig. 7.8 shows the spectrogram of the real ECG signal estimation 

residual using the MPF heart rate tracker while the bottom plot illustrates that 

using the MAM-PF heart rate tracker. The estimation residual of the MAM-PF 

heart rate tracker did not show any harmonic structures due to the cardiac activity, 
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Figure 7.5: (a) Spectrogram of the synthetic ECG signal with an abrupt heart rate 
change (b) Averaged heart rate estimates (MPF: light grey, MAM-PF: dark grey). 
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Figure 7.6: Distributions of particles (a) of the Fast MAM-PF and those (w) of 
the MPF (a) a versus frequency at 60 s. (b) a versus frequency at 300 s. ( c) w 
versus frequency at 60 s. ( d) w versus frequency at 300 s. 

which means that the MAM-PF tracker could estimate the ECG signal and the 

heart rate very well. Between 12min and 14min the MAM-PF tracker could not 

estimate the true heart rate correctly due to the high noise level. After 14 min, 

however, the tracker regained its track as the noise level decreased. Contrarily, 

the spectrogram of the estimation residual of the MPF heart rate tracker showed 

the first cardiac partial after 12 min until the end of the signal duration. This was 

because the MPF heart rate tracker lost its track of the true heart rate due to the 

high noise level and never regains its track. After 22 min the second cardiac partial 

was eliminated although the first cardiac partial was not. This situation occurred 
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because the MPF heart rate tracker tracked the true second cardiac partial at 

around 3 Hz as if it were the third cardiac partial. In other words, the heart rate 

estimate of the MPF tracker was about 1 Hz, which is a sub-harmonic of the true 

heart rate 1.5 Hz. 

7.6 Conclusion 

Two heart rate trackers have been implemented based on the conventional MPF 

and proposed Fast MAM-PF. The conventional MPF suffers from sample impover­

ishment resulting from the particle resampling scheme. However, the Fast MAM­

PF is not prone to the effects of sample impoverishment since it relies on the 

Viterbi algorithm to obtain the MAP state estimate. 

The simulation results based on synthetic and real ECG signals demonstrate 

that the Fast MAM-PF is a more suitable method than the MPF for the heart 

rate tracking in ECG signals. Especially when the heart rate changes abruptly or 

the background noise level increases due to signal drops and medical intervention, 

the Fast MAM-PF heart rate tracker outperforms the MPF heart rate tracker. 

Since the computational load of two methods has been equalized as explained in 

7.4.1, the superior performance of the Fast MAM-PF heart rate tracker over the 

MPF heart rate tracker is solely attributable to the Fast MAM-PF algorithm's 

excellency in handling rapid changes in the posterior distribution p(/nlYo:n)-

Chapter 6 compares the MAM-PF against the EKF because the main goal 

was to demonstrate that the MAM-PF can outperform the EKF even when the 

posterior distribution of interest is uni-modal. However, Chapter 7 compares the 

MAM-PF against the conventional MPF instead of the EKF first because the 
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posterior distribution of interest is multi-modal, which causes the EKF to perform 

very poorly, and secondly because the main goal was to demonstrate the superior 

performance of the MAM-PF over the MPF which is one of the conventional PFs 

applicable to the nonlinear state-space model of our interest. 

Tracking nonlinear state-space model parameters is not a trivial task. Spe­

cially when the posterior distribution of nonlinear parameters is multi-modal, it 

becomes more challenging to obtain accurate estimates of those parameters. Al­

though the EKF requires the least computation load, its performance may not be 

satisfactory in estimating those nonlinear parameters because it approximates the 

non-Gaussian or multi-modal posterior distribution of the parameters as a sim­

ple Gaussian distribution. Using the MPF one can obtain the mean estimate of 

the posterior distribution that converges to the true mean value as the number 

of particles used increases. However, when the posterior distribution of interest is 

multi-modal, the mean value may not be an informative quantity to summarize 

the posterior distribution no matter how accurate its estimate is. The MAM-PF is 

one of many variants of the conventional PF technique just as the MPF is. How­

ever, it computes the MAP estimates of nonlinear parameters, which minimize 

the most probable error. The MAP estimate of a nonlinear parameter such as the 

fundamental frequency of a multi-harmonic signal can be very different from the 

mean estimate due to the multi-modality of the posterior distribution. Fig. 7.5 

clearly illustrates a case where the mean estimate of a nonlinear parameter can be 

completely misleading. However, obtaining the MAP estimates of nonlinear pa­

rameters requires heavy computational load. For example, the Optimal MAM-PF 

can require a hundred times of the computational burden than the MPF as shown 

in Fig. 5.2. The Fast MAM-PF technique was devised to ease the heavy computa-
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tional burden so that one can obtain the MAP estimates of nonlinear parameters 

at a reasonable cost. 
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Figure 7.7: (a) Spectrogram of the real ECG signal whose duration is 30min (b) 
Averaged heart rate estimates (MPF: white, MAM-PF: grey) over 100 simulations. 
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Figure 7.8: (a) Spectrogram of ECG signal estimation residuals using the MPF 
tracker (b) Spectrogram of ECG signal estimation residuals using the Fast MAM­
PF tracker. 



Chapter 8 

Amplitude Modulated Harmonic Set Tracking 

This chapter discusses a practical application of the amplitude modulated harmonic 

set tracking case. The application is tracking the pulse pressure variation (PPV) 

index of arterial blood pressure (ABP) signals under mechanical ventilation. 

8.1 Introduction to the Clinical Problem 

In many critical care settings clinicians must decide whether patients should be 

given intravenous fluid boluses and other therapies to improve perfusion. Excessive 

fluid can be damaging by impairing lung function when it decreases oxygen delivery 

to tissues and contributes to organ failure. Insufficient fluid can result in insufficient 

tissue perfusion which can also contribute to organ failure. Determining the best 

course of fluid therapy for a patient is difficult and clinicians have few clinical signs 

to guide them. 

The pulse pressure variation (PPV) index is a measure of the respiratory 

effect on the variation of systemic arterial blood pressure in patients receiving full 

mechanical ventilation. It is a dynamic predictor of increases in cardiac output 

due to an infusion of fluid. Numerous studies have demonstrated that PPV is one 
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of the most sensitive and specific predictors of fluid responsiveness. Specifically, 

PPV has been shown to be useful as a dynamic indicator to guide fluid therapy in 

different patient populations receiving mechanical ventilation [106]. For instance, 

PPV was found to exhibit better performance as a predictor of fluid responsiveness 

in patients before off-pump coronary artery bypass grafting than standard static 

pre-load indices [132]. PPV has also been shown to be useful for predicting and 

assessing the hemodynamic effects of volume expansion and a reliable predictor 

of fluid responsiveness in mechanically ventilated patients with acute circulatory 

failure related to sepsis [133, 134]. Another study concluded that PPV can be 

used to predict whether or not volume expansion will increase cardiac output in 

postoperative patients who have undergone coronary artery bypass grafting [135]. 

A critical review of studies investigating predictive factors of fluid responsiveness 

in intensive care unit patients concluded that PPV and other dynamic parameters 

should be used preferentially to static parameters to predict fluid responsiveness 

[136]. 

The standard method for calculating PPV often requires simultaneous record­

ing of arterial and airway pressure. Pulse pressure (PP) is manually calculated on 

a beat-to-beat basis as the difference between systolic and diastolic arterial pres­

sure. Maximal PP (PP max) and minimal PP (PP min) are calculated over a single 

respiratory cycle, which is determined from the airway pressure signal. Pulse pres­

sure variations PPV are calculated in terms of PP max and PP min and expressed as 

a percentage, 

(
07 ) PPmax - PPmin 

~pp 10 = 100 x (PP pp _ )/2 max+ mm 
(8.1) 
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8.2 Summary of Prior Work 

There are few publicly available algorithms to automatically estimate PPV accu­

rately and reliably. Aboy et al. have previously described a beat detection-based 

PPV algorithm [137]. This algorithm was made publicly available by the authors 

and it has been adopted by Philips Medical Systems. Currently, their PPV index 

is displayed in real-time on the Philips Intellivue MP70 monitors (Intellivue MP70, 

Philips Medical Systems). Its accuracy against the current standard obtained by 

manual annotations were assessed by Cannesson [138]. A limitation of their al­

gorithm adopted by Philips in Intellivue MP70 monitors is that it may not work 

adequately in regions of abrupt hemodynamic changes and this may limit its ap­

plicability in operating room environments. An enhanced automatic algorithm 

for PPV estimation during regions of abrupt hemodynamic changes was recently 

proposed to address this potential limitation [139]. 

The subsequent sections provide a detailed description of the proposed PPV 

index tracking algorithm utilizing the Fast MAM-PF and demonstrates its per­

formance on real ABP signals from the Massachusetts General Hospital (MGH) 

Waveform Database [130] on PhysioNet [131]. Contrary to two empirical algo­

rithms described in [137, 139], the proposed algorithm is the first PPV method 

based on a statistical state-space model for arterial blood pressure signals and op­

timal estimation methods. This powerful framework eliminates the need for the 

use of heuristics and empirical parameter determination. 
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8.3 Algorithm Description 

This section describes the state-space model of ABP signals under full mechan­

ical ventilation and provides the details of the automated PPV index tracking 

algorithm. 

8.3.1 Measurement Model 

The measurement model of the ABP signal under mechanical ventilation is the 

same as those in (4.11)-(4.14). It can be reexpressed as follows, 

NC 
h 

Yn =in + µn + Vn = In + L Pk,nK,k,n + Vn 

k=l 
Nr 

h 

1n = L rl,k,n COS (k0~)+r2,k,n sin (k0~) 
k=l 

K,k,n =C1,k,n COS (k0~) + C2,k,n sin (k0~) 

N{, 

Pk,n =l + L m1,k,j,n cos (j0~) + m2,k,j,n sin (j0~) 
j=l 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

where in is the respiratory signal, µn the amplitude-modulated cardiac signal, 

Pk,n the amplitude modulation factor of the kth cardiac harmonic partial, ,,.,k,n the 

kth cardiac harmonic signal, 0~ the instantaneous respiratory angle, 0~ the instan­

taneous cardiac angle, f~ the instantaneous respiratory rate, Nf
1 

the number of 

respiratory partials, Nh the number of cardiac partials, and Vn the white Gaussian 

measurement noise with variance r. The rationale for this measurement model 

is explained in [140]. The simulation results in the same work demonstrate the 

suitability of the model over the traditional ABP model. 
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8.3.2 Process Model 

The state vector Xn includes the instantaneous respiratory and cardiac angles 0~ 

and 0~, the instantaneous mean cardiac frequency f~, the instantaneous cardiac 

frequency f~, and the sinusoidal coefficients { r.,k,n, c.,k,n, m.,k,j,n}, that represent 

the morphology of the ABP signal. The process model can be expressed as, 

0~+1 =21r(n + l)TsP 

0~+1 =0~ + 21rTsf~ 

f~+l =g [f~ + UJc,n] 

f~+l =f~ + Ct (f~ - f~) + UJc,n 

T.,k,n+l =T.,k,n + Ur,n 

C.,k,n+l =C.,k,n + Uc,n 

m.,k,j,n+l =m.,k,j,n + Urn,n 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

where P is the constant respiratory frequency, f~ the instantaneous cardiac fre­

quency, T8 the sampling period, f~ the instantaneous mean cardiac frequency, a 

the autoregressive coefficient, and Ur,n, Uc,n, and u=,n the process noises with 

variances qr, qc, and q=. Since this process model is for ABP signals of patients 

with full mechanical support, the respiratory frequency p has a known constant 

value. 

8.3.3 ABP Signal Signal Tracking 

The first step toward PPV index tracking is to continuously estimate ABP signal 

parameters of the measurement model shown in (8.2)~(8.5). By applying the Fast 
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Figure 8.1: Top: Original ABP signal (red) and its estimate (green) with auto­
matically computed envelopes (blue). Bottom: Automatically computed PP signal 
(red) and its envelopes (blue). 

MAM-PF directly to the ABP signal state-space model, one can compute the 

MAP estimates of all ABP signal parameters. The details of the Fast MAM-PF 

recursions are listed in Algorithm 5 in Chapter 5. Table 8.1 summarizes user­

specified parameter values for the Fast MAM-PF ABP signal tracker. 

8.3.4 ABP Signal Envelope Estimation 

Given the estimated signal parameters in (8.6)-(8.12), it is possible to estimate the 

upper envelope, eµ,,n, and lower envelope, e£,n, of ABP signals by following steps 
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below, 

NC 
h 

0~ax,n = arg m;x L Pk,n [c1,k,n cos (k0) + C2,k,n sin (k0)] 
k=l 
NC 

h 

0~in,n = arg mJn L Pk,n [c1,k,n cos (k0) + C2,k,n sin (k0)] 
k=l 

Nh 

eµ,n =,n+ L Pk,n,-.,max,k,n 
k=l 

Nh 

ec,n =,n+ L Pk,n,.,min,k,n 
k=l 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

where argmaxx f(x) and argminx f(x) are operators to obtain the value of x for 

which J(x) attains its maximum and minimum values, respectively. The top plot 

in Fig. 8.1 shows a five respiratory cycle period of an ABP signal Yn (thick red), 

its estimate Yn (thin green), and its estimated envelopes eµ,n and ec,n (blue). 

8.3.5 Pulse Pressure Signal Envelope Estimation 

The pulse pressure (PP) signal is the difference between the upper envelope, eµ,n, 

and lower envelope, ec,n, of the ABP signal. This PP signal oscillates roughly at 

the respiratory rate as shown in the bottom plot in Fig. 8.1. This oscillation is due 

to the respiratory effect on the variation of systemic ABP under full ventilation 

support [133]. Within each respiratory cycle PP reaches its maximum (PP max) 

and minimum (PP min) values, which are two critical parameters to compute the 

PPV index. Traditionally, the PP max and PP min values have been computed only 



CHAPTER 8. AMPLITUDE MODULATED HARMONIC SET TRACKING 157 

once per each respiratory cycle. Given the estimated signal parameters in (8.6)~ 

(8.12), however, one can compute the continuous equivalents of PP max and PPmin­

They are the upper, cµ,n, and lower, ce,n, envelopes of the PP signal. The upper 

envelope, cµ,n, is the continuous estimate of PP max and the lower envelope, ce,n, 

that of PP min· The cµ,n and ce,n estimation steps can be written as follows, 

N{. 

{lk,n = L m1,k,j,n cos (j0) + m2,k,j,n sin (j0) 
j=l 

NC 
h 

0:-Uax,n = arg m:x L (1 + t2k,n) (K-max,k,n-K-min,k,n) 
k=l 
NC 

h 

0:-Uin,n = arg mjn L (1 + t2k,n) (K-max,k,n-K-min,k,n) 
k=l 

N{. 

t2max,k,n L m1,k,j,n COS (j0:-Uax,n)+m2,k,j,n sin (}0:-Uax,n) 
j=l 

N{. 

t2min,k,n L m1,k,j,n cos (j0:-Uin,n)+m2,k,j,n sin (}0:-Uin,n) 
j=l 

NC 
h 

€µ,n = L (1 + t2max,k,n) (K-max,k,n-K-min,k,n) 
k=l 
NC 

h 

€£,n = L (1 + t2min,k,n) (K-max,k,n-K-min,k,n) 
k=l 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

where 1 + {lk,n is equal to Pk,n and cµ,n and ce,n are the continuous estimates of 

the PPmax and PPmin, respectively. The blue lines in the bottom plot in Fig. 8.1 

represent the upper, cµ,n, and lower, ce,n, envelopes of the PP signal obtained by 

following the steps described above. 
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Figure 8.2: Automatic PPV index (green) and manual PPV index (red) over the 
entire ABP signal duration (10 minutes). One PPV index measurement is com­
puted from each measurement window, which is a time period of 5 respiratory 
cycles. 

8.3.6 Pulse Pressure Variation Calculation 

Given the €µ,n and ce,n values, it is straightforward to calculate the PPV index. It 

can be computed as follows, 

€max - €min 
PPV(%) =100 x -----

( €max + €min) /2 
(8.26) 

This new PPV index is different from the traditional PPV index described in (8.1) 

because the new one is continuous in time while the traditional one can be obtained 

only once per each respiratory cycle. 
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Figure 8.3: Spectrogram of one of the 26 ABP signals from subjects under full 
ventilation support. 

Fig. 8.2 illustrates an example of the automatically computed continuous 

PPV index (thick green) and the manually obtained discrete PPV index (thin red) 

of a real 10 min ABP signal. Each hollow white dot represents a "discrete" PPV 

index, which can be obtained once per each respiratory cycle. 

8.4 Algorithm Assessment 

8.4.1 Assessment Data 

The Massachusetts General Hospital (MGH) waveform database on PhysioNet is 

a comprehensive collection of electronic recordings of hemodynamic and electro-
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cardiographic waveforms patients in critical care units [130, 131]. It consists of 

recordings from 250 patients representing a broad spectrum of physiologic and 

pathophysiologic states. The typical recording includes arterial blood pressure 

(ABP) signals in addition to seven other types of waveforms. By visually inspect­

ing the spectrogram of ABP signals we identified 26 patients whose respiratory rate 

remained constant at least for 10 consecutive minutes. The constant respiratory 

rate shown in spectrogram was used as an indicator of full respiratory support. 

Fig. 8.3 shows the spectrogram of one of the 26 ABP signals. The total duration 

of the 26 ABP signals was a little over 4 hours ( 260 min). The original sample rate 

is of the signals was 360 Hz, but they were downsampled by a factor of 9, so that 

the final sample rate is was 40 Hz. 

Typically the constant respiratory rate p of subjects under full ventilation 

support is easily accessible medical information since it is precisely controlled 

by the ventilator. However, the MGH database does not provide this informa­

tion. Therefore, the respiratory rate p of each of the 26 ABP signals was esti­

mated by following three steps. First, a given ABP signal was lowpass-filtered at 

1 Hz to remove all cardiac components. Second, multiple synthetic cosine signals 

cos (21rnTsi) were generated by sweeping the frequency i from 0.01 Hz to 1 Hz. Fi­

nally, the cross-correlation between the lowpass-filtered ABP signal and synthetic 

cosine signals was calculated to find the best match and choose the frequency of 

the best matched synthetic cosine signal as the estimate of the constant respiratory 

rate. In this study, it was necessary to perform this offline analysis. However, it 

should be noticed that normally this type of offl.ine analysis would not be necessary 

because pis known. 

The number of cardiac components Ne was 10 and that of respiratory com-
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Table 8.1: Summary of user-specified parameters for the PPV index tracker. 
Name Symbol Value 
No. particles NP 250 
No. cardiac components Ne 10 
No. respiratory components Nr 3 
Minimum heart rate f~in 50 / 60 Hz 
Maximum heart rate f~a:x 150/60 Hz 
Measurement noise variance r var(y) /le3 
Cardiac frequency variance qtc 7e-6 Ts 
Respiratory amplitude variance qa, qb le-5 Ts 
Modulation factor amplitude variance qc, qd le-9 Ts 
Cardiac amplitude variance qe, qt le-6 Ts 
Initial respiratory amplitude ua, ub std(y) /le2 
Initial modulation factor amplitude Uc, ud std(y) /le2 
Initial cardiac amplitude Ue, UJ std(y) 

ponents Nr was 3. The number of particles was 250. Table 8.1 lists the parameter 

values used for the PPV index estimator. 

8.4.2 Manual PPV Annotations {Current Standard) 

The peaks and troughs of the ABP signals were manually detected and the PPV 

indices (current standard) were calculated as defined in (8.1). They are referred to 

as manual PPV indices PPV manu. PPV auto represents PPV indices obtained using 

the proposed PPV index tracking algorithm. 

3 ABP signals out of the 26 ABP signals were excluded from the study 

because it was not possible to annotate their PP signals due to a high noise level 

or abnormal cardiac activity. 
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8.4.3 Statistical Analysis 

5 PPV index measurements were taken per subject separately by 2 min. Each 

PPV index measurement is an averaged value over 5 respiratory cycles. Fig. 8.2 

shows the measurement windows. The proposed PPV index tracking algorithm 

was assessed by calculating the agreement (mean ± standard deviation) between 

PPVauto and PPVmanu measurements and using Bland-Altman analysis. 

A Bland-Altman plot is a statistical visualization method that is often used in 

the assessment of PPV estimation algorithms in order to determine the agreement 

between two different PPV estimates. It has the difference .6.PPV between PPV auto 

and PPV manu measurements on the y-axis and the PPV manu measurements on the 

x-axis. It shows the overall accuracy of estimation and any estimation bias or trend 

versus PPV manu measurements. It is used to compare the standard using manual 

annotations with the proposed automatic estimation algorithm. 

8.5 Results 

Fig. 8.4 depicts the Bland-Altman plot of the 23 subjects. There are 5 PPV 

measurements available per each subject. Most (98%) of PPVauto measurements 

were in agreement with PPV manu measurements within ±5% accuracy, and 100% 

within± 7% accuracy. 

Table 8.2 lists the mean ± standard deviation of 5 PPV manu and PPVauto 

measurements for each subject. The second column is for PPV manu and the third 

column for PPVauto· 
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Figure 8.4: Bland-Altman plot of the 23 subjects. 

8.6 Discussion 

8.6.1 Significance 

•• 

40 

Despite the availability of a commercial device for PPV monitoring, the PICCO 

PPV system (PICCO Pulsion Medical Systems, Munich, Germany), the need for 

additional independent PPV estimation algorithms is significant for several rea­

sons. Some studies have suggested that the PICCO PPV algorithm may not work 

well in certain situations [141 ]. The validation results in other studies indicate 

that the PICCO system may not work well during regions of abrupt hemodynamic 

changes [139]. Secondly, the proposed PPV algorithm is based on a sound sta­

tistical model for ABP signals and it can be implemented and used to accurately 
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Table 8.2: Summary of the mean and standard deviation of the PPV manu and 
PPV auto measurements. 

Subject PPVmanu (%) PPVauto (%) 
1 23.2±1.0 23.6±1.0 
2 23.0±0.3 22.8±1.6 
3 13.7±0.8 14.3±1.2 
4 12.3±1.1 9.1±3.1 
5 36.3±5.9 33.9±6.7 
6 8.7±1.8 9.5±2.0 
7 18.2±2.6 18.8±1.7 
8 6.3±1.3 6.2±0.8 
9 9.6±1.7 7.1±0.8 
10 15.9±0.8 14.8±0.8 
11 5.3±1.0 5.5±0.7 
12 3.1±0.2 4.0±0.3 
13 31.8±1.6 31.5±0.8 
14 15.3±2.8 13.1±1.8 
15 33.9±1.1 34.3±1.8 
16 4.6±1.1 3.4±1.0 
17 20.4±2.3 20.1±2.7 
18 9.8±0.8 11.9±2.2 
19 9.6±2.1 11.2±1.4 
20 11.9±0.5 10.3±1.2 
21 8.7±1.8 11.9±1.9 
22 21.7±1.9 18.9±1.2 
23 20.9±2.1 20.0±0.7 

estimate PPV in data already collected and archived. Finally, a detailed descrip­

tion has been provided to ensure that other researchers and medical manufacturers 

can implement it, use it for research purposes, and independently validate the re­

sults obtained using commercial PPV monitoring systems. 

It is important to note that the proposed algorithm is a completely new design 

from the previously developed algorithm in [137]. The algorithm in [137] was made 

publicly available by the authors and due to its performance has been adopted by 

Philips Medical Systems. Currently, the PPV algorithm is displayed in real-time on 
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the Philips Intelliveu MP70 monitors (Intellivue MP70, Philips Medical Systems) 

and has been used in numerous studies related to PPV and fluid responsiveness. 

Its ability to monitor fluid responsiveness in the operating room and its accuracy 

against the current standard obtained by manual annotations were assessed by 

Cannesson [138]. PPV is considered the best predictor of fluid responsiveness 

in this setting. However, previously it was not possible to conveniently monitor 

this index in the operating room or in the intensive care unit because it had to be 

manually calculated. Thus, the automatic PPV estimation technique has potential 

clinical application for fluid management optimization in the operating room [138]. 

Aboy et al. pointed out that the PPV algorithm adopted by Philips in their 

Intelliveu MP70 monitors may not work adequately in regions of abrupt hemody­

namic changes or significant artifact [139]. 

8.6.2 Algorithm's Advantages 

This chapter describes and assesses a novel automatic algorithm designed to esti­

mate the pulse pressure variation (PPV) index from arterial blood pressure (ABP) 

signals in regions of abrupt hemodynamic changes. The proposed algorithm is 

based on a statistical state-space model for arterial blood pressure signals and 

sequential Monte Carlo estimation methods. 

The major algorithm design difference of the proposed algorithm with respect 

to other published algorithms [137, 139] is the fact that the proposed method 

is based on a statistical state-space model and estimation of the cardiovascular 

pressure signal. The state-space modeling stage results in an algorithm that is 

more robust to hemodynamic changes and artifacts. The statistical state-space 
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Figure 8.5: Top: Original ABP signal (red) with its manually annotated envelopes 
(black) and signal estimate (green) with its automatically computed envelopes 
(purple). Bottom: Manual PPV indices (red) and automatic PPV indices (green) 
where one of the manual PPV indices has an abnormally high value. 

signal model and associated model parameter estimation algorithm automatically 

filter out noise and artifact that cannot be captured with the model. Since the 

statistical signal model is based on cardiovascular physiology and pathophysiology, 

signal features that are not physiological in nature are automatically filtered out. 

Figs. 8.5-8.6 exemplify a case where signal features that are not physiological 

in nature are automatically filtered out resulting in more accurate PPV index esti­

mation than manual annotation. The top plot in Fig. 8.5 illustrates 6 respiratory 

cycles of the ABP signal (red) and its estimate (green). It also shows the manually 

annotated signal envelopes (black) and the automated computed signal envelopes 

(light blue). The bottom plot in Fig. 8.5 depicts the PPV manu and PPY auto over the 
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Figure 8.6: Top: Original ABP signal (red) with its manually annotated envelopes 
(black) and signal estimate (green) with its automatically computed envelopes 
(purple). Bottom: Manual PP signal (red) and automatic PP signal (green) where 
the manual PP signal decreases momentarily due to an irregular and abnormal 
heart beat in the ABP signal. 

same period. Around 399 s, the PPV manu value (red) abruptly increases up to 78% 

while the PPVauto value (green) remains at 20%. Around 403 s, the PPV manu value 

returns to 20%. Fig. 8.6 focuses on the time period marked with the black rectan­

gular box in Fig. 8.5. The top plot in Fig. 8.6 shows that the heart beat between 

398 s and 399 s is irregular and abnormal. As a result, the corresponding PP manu 

shown in the bottom plot reaches a very small minimum value (PP min,manu : 38%) 

between 398 sand 399 s. However, the automatically computed minimum PP value 

(PPmin,auto) over the same period is as high as 70%. This discrepancy between the 

manual annotation and the proposed automatic method results from the capability 
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of the MAM-PF algorithm, which estimates the ABP signal based on the state­

space model. While the original heart beat 398 s and 399 sin Fig. 8.6 is abnormal 

in a physiological sense, the estimated heart beat over the same time period shows 

the physiologically expected morphology and location of the heart beat. 

8.6.3 Study Limitations 

The algorithm's assessment was based on only 23 subjects with pre-recorded ABP 

data. Additionally, for each subject five PPV estimates were used in the assessment 

study. This assessment was designed to be an engineering algorithm validation 

against current standard manual annotations, and not a clinical validation study. 

Consequently, a clinical validation study assessing the ability of the proposed algo­

rithm to monitor fluid responsiveness in the operating room in situations involving 

abrupt hemodynamic changes still needs to be conducted. This would require the 

proposed algorithm to be first adopted as part of a commercial system as was the 

case with our previous automatic PPV algorithm [137]. 

8.7 Summary 

This chapter describes a novel automatic PPV estimation algorithm based on a sta­

tistical state-space model inspired in the underlying cardiovascular and respiratory 

physiology. This algorithm uses the MAM-PF for optimal parameter estimation. 

The assessment results indicate good agreement against the current standard PPV 

(98% within ± 5% of the current standard). The algorithm was designed to work 

during regions of abrupt hemodynamic changes and signal artifact. 



Chapter 9 

Multiple Harmonic Set Tracking 

This chapter discusses a practical application of the multiple harmonic set tracking 

case, where the number of harmonic sets is 2. The application is tracking the pulse 

pressure variation (PPV) index from arterial blood pressure (ABP) signals under 

spontaneously breathing conditions. 

9.1 Introduction to the Clinical Problem 

Chapter 8 describes a novel automatic algorithm designed to estimate the PPV 

index in subjects receiving full mechanical ventilation. As mentioned previously, 

the PPV index is a dynamic predictor of increases in cardiac output due to an 

infusion of fluid, which is one of the most sensitive and specific predictors of fluid 

responsiveness. Michard has shown that the PPV index is a useful dynamic indi­

cator to guide fluid therapy in different patient populations receiving mechanical 

ventilation [106]. 

Accurately predicting the hemodynamic response to volume expansion is im­

portant not only in mechanically ventilated subjects, but it may also have poten­

tial in situations involving spontaneous breathing subjects [142, 143]. Although 
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numerous studies have demonstrated the usefulness of the PPV index as a reliable 

predictor of fluid responsiveness in mechanically ventilated subjects, its usage in 

spontaneously breathing subjects in need of fluid therapy has been discussed only 

in a few studies. Recently, the research community has been paying attention 

to accurate and reliable indices to predict fluid responsiveness in spontaneously 

breathing subjects [144-146]. In their recent study, Dahl et al. have shown that 

PPV can be used as a predictor of fluid responsiveness during spontaneous breath­

ing in animal models [142]. 

Fluid responsiveness prediction in spontaneously breathing subjects is dif­

ficult. Since the swings in intrathoracic pressure are minor during spontaneous 

breathing, dynamic parameters like pulse PPV and systolic pressure variation 

(SPV) are usually small and more difficult to calculate [142]. Additionally, while 

there are currently only a few publicly available algorithms to automatically es­

timate PPV accurately and reliably in the case of mechanically ventilated sub­

jects [137, 139], at the moment there are no automatic algorithms for estimating 

PPV in spontaneously breathing subjects. This has, in part, prevented and made 

difficult research involving the use of PPV during spontaneous breathing. 

This chapter describes a novel automatic algorithm that can be used to ob­

tain the pulse pressure variation (PPV) index from arterial blood pressure (ABP) 

signals during spontaneous breathing. The proposed algorithm is based on a statis­

tical state-space model for arterial blood pressure signals and the modified version 

of the Fast MAM-PF, called the Dual MAM-PF. The Dual MAM-PF is devised to 

The proposed automatic algorithm's performance is assessed against the cur­

rent standard (manual annotations) using real ABP signals from the Massachusetts 
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General Hospital (MGH) Waveform Database [130] on PhysioNet [131]. 

9.2 Methodology 

This section describes the state-space model of ABP signals of spontaneously 

breathing subjects and provides the details of the automatic PPV index track­

ing algorithm. 

9.2.1 Measurement Model 

The measurement model of the ABP signal with spontaneous breathing activity 

is shown in (9.1)-(9.4), where rn is the respiratory signal, µn the amplitude­

modulated cardiac signal, Pk,n the amplitude modulation factor of the kth cardiac 

harmonic partial, K,k,n the kth cardiac harmonic partial, 0~ the instantaneous respi­

ratory angle, 0~ the instantaneous cardiac angle, f~ the instantaneous respiratory 

rate, Nh the number of respiratory partials, Nh the number of cardiac partials, 

and Vn the white Gaussian measurement noise with variance r. This measurement 

model was also used in Chapter 8. 

NC 
h 

Yn =rn + µn + Vn = fn + L Pk,nK,k,n + Vn 

k=l 
Nr 

h 

rn = L r1,k,n cos (k0~) + r2,k,n sin (k0~) 
k=l 

Nr 
h 

Pk,n =l + L m1,k,j,n cos (j0~) + m2,k,j,n sin (j0~) 
j=l 

NC 
h 

K,k,n = L C1,k,n COS (k0~) + C2,k,n sin (k0~) 
k=l 

(9.1) 

(9.2) 

(9.3) 

(9.4) 
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9.2.2 Process Model 

The state vector Xn includes the instantaneous respiratory 0~ and cardiac 0~ an­

gles, the instantaneous mean respiratory f~ and cardiac f~ frequencies, the in­

stantaneous respiratory f~ and cardiac f~ frequencies, and the sinusoidal coeffi­

cients { r1,k,n, r2,k,n, C1,k,n, C2,k,n, m1,k,n, m2,k,n}, that represent the morphology of 

the ABP signal. The process model can be expressed as, 

0~+1 =0~ + 27rTsf~ 

0~+1 =0~ + 27fTsf~ 

f~+I =g [f~ + Ufr,n] 

f~+l =g [f~ + Ufc,n] 

f~+l =f~ + a (f~ - f~) + Utr,n 

f~+l =f~ + a (f~ - f~) + UJc,n 

T.,k,n+l =T.,k,n + Ur,n 

C.,k,n+I =C.,k,n + Uc,n 

m.,k,n+I =m.,k,n + Urn,n 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

where f~ is the instantaneous respiratory frequency, f~ the instantaneous car­

diac frequency, T8 the sampling period, f~ the instantaneous mean respiratory 

frequency, f~ the instantaneous mean cardiac frequency, a the autoregressive co­

efficient of frequency, and Ur,n, Uc,n, and Urn,n the process noises with variances 

qr, qc, and qrn. In contrast to the case in Chapter 8, the instantaneous respiratory 

frequency f~ is unknown and variable since the current study involves subjects 

with spontaneous breathing activity. The clipping function g[•] limits the range of 
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instantaneous mean frequencies, which can be written as, 

g[f] = f fmin < f :s; fmax (9.14) 

fmin + Umin - f) f :s; fmin• 

The range of instantaneous mean frequencies is assumed to be known as domain 

knowledge. 

9.2.3 Dual Maximum A-Posterior Marginalized PF 

The proposed automated PPV index estimation method requires accurate esti­

mates of the instantaneous respiratory frequency f~, the instantaneous cardiac 

frequency f~, and the morphology of the ABP signal. Although the Fast MAM­

PF based ABP signal tracker is capable of tracking multiple frequencies, there are 

two major issues in using the Fast MAM-PF algorithm as the ABP signal tracker 

for ABP signals of spontaneously breathing subjects. The first issue is that the 

morphology of the signal, which is represented by the sinusoidal coefficients in 

(9.3)-(9.4), does not belong to the linear state any more. Since the modulating 

signal Pk,n is multiplied by the cardiac signal ""k,n, their sinusoidal coefficients c.,k,n 

and m.,k,j,n are nonlinear parameters of the measurement model in (9.1). The Fast 

MAM-PF is applicable only to state-space models whose state vector can be par­

titioned into the linear and nonlinear portions [147]. The second issue is that as 

the dimension of the state, where particle filters are used, increases the number 

of necessary particles to cover the state increases exponentially. As a result, the 

computational burden of the Fast MAM-PF increases exponentially. The portion 
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Algorithm 6 Dual MAM-PF. 
Initialization 
for j = 1, 2 do 

for i = 1, ... , Np do 

S 1 Pj,(i) ( Pj) & A K,(i) E [ K,(i) I P,(i)] amp e x 0 ~ 1r0 x 0 Xo:-I = x 0 x 0 

(i) ( P,(i)) ( I P,(i) K,(i)) & (i) (i) 0 o = 1ro Xo P Yo Xo , Xo Zo = Xo 

end for 
'* (ij) ij,o = argmax aj,o 

ij 

end for 

174 
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of the state space where particle filters are used is called the particle space. Since 

the new ABP signal tracker has to estimate both the instantaneous respiratory 

frequency f~ and the instantaneous cardiac frequency f~, the dimension of the 

particle state becomes 2, which results in a quadruple increase of computational 

burden if the Fast MAM-PF has to be used for the current application. In order 

to address these two major issues a new ABP signal tracker is proposed, which 

utilizes a modified version of the Fast MAM-PF. It is called, the Dual MAM-PF. 

The term "Dual" is borrowed from Dual Kalman filters, in which the state is di­

vided into two portions and each portion is estimated separately assuming that 

the other portion is known and equal to the currently estimate value. While the 

Fast MAM-PF treats a two-dimensional particle space as a whole, the Dual MAM­

PF partitions the two-dimensional particle space into two one-dimensional particle 

spaces assuming independence between two particle space variables, which are the 

instantaneous respiratory frequency f~ and the instantaneous cardiac frequency 

f~-

All ABP signals included in this study were recorded from spontaneously 

breathing subjects. Therefore, the ABP signal tracker has to track both the in­

stantaneous respiratory frequency f~ and the instantaneous cardiac frequency f~ 

along with the signal morphology. 

Suppose that the state vector x can be partitioned as follows, 

(9.15) 

where x~ represents the particle state and x~ the Kalman state. The particle 
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state is the portion of the state where particle filters are used as defined earlier 

while the Kalman state is the portion of the state where extended Kalman filters 

are used. The state variables whose posterior distributions are known to be multi­

modal belong to the particle state while those whose posterior distributions are 

known to be Gaussian or uni-modal belong to the Kalman state. In [147] it was 

demonstrated that the posterior distribution of the instantaneous frequency of 

a multi-harmonic signal is truly multi-modal. Given the state-space model in 

(9.1)-(9.4), instantaneous respiratory frequency f~ and the instantaneous cardiac 

frequency f~ are the particle state variables and the sinusoidal coefficients such 

as r.,k,n, c.,k,n, and rn.,k,j,n are the Kalman state variables. Assuming that the 

particle state variables are independent of each other the particle state x~ can be 

partitioned further as, 

(9.16) 

(9.17) 

(9.18) 

where x~1 and x~2 represent the first and second particle state variables, respec­

tively. This partitioning breaks down a two-dimensional particle space x~ into two 

one-dimensional particle spaces. The total posterior distribution is given by, 

p(Xo:nlYo:n) = p(x~nlYo:n, x[n)p(x[nlYo:n) 

=p( X~n I Yo:n, X~:n) P( X~:~ I Yo:n) P ( x[~ J Yo:n) · 

(9.19) 

(9.20) 
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Algorithm 1 provides a complete description of the Dual MAM-PF algorithm, 

where NT represents the total number of signal samples, NP the number of particles 

for each one-dimensional particle space, j the particle state variable index, and ij 

the particle index of the j th particle state variable. The total number of particles 

used in the Dual MAM-PF algorithm is 2NP in.stead of N;. At each time step 

n the Dual MAM-PF searches for the best trajectory of each particle ij from the 

previous trajectory. This searching step can be written as, 

(9.21) 

(9.22) 

(9.23) 

Given the best trajectory for each particle ij, corresponding Kalman state variables 

xPj,(ij), i.e. sinusoidal coefficients, are updated utilizing the extended Kalman 

filter. Then, the MAP estimate of x~i is obtained based on the value of the 

coefficient oj~~ as follows, 

(9.24) 

(9.25) 

Since there are two groups of particles i 1 and i 2 , we need to select the best estimate 

f h K 1 K . 1 . K,(ii ) d K,(i2 ) o t e a man state vector xn among two potentia estnnates: Xn ,n an Xn ,n • 
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Figure 9.1: Top: Original ABP signal (red) and its estimate (green) with auto­
matically computed envelopes (blue). Bottom: Automatically computed PP signal 
(red) and its envelopes (blue). 

The actual estimate of the Kalman state vector x~ can be selected as follows, 

(9.26) 

(9.27) 

Then, the estimate of the entire state Xn can be expressed as, 

(9.28) 
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9.2.4 ABP Signal Envelope Estimation 

Given the estfrnated signal parameters in (9.5)-(9.13), it is possible to estimate the 

upper envelope, eµ,n, and lower envelope, e£,n, of ABP signals by following steps 

below, 

Nh 

0~a.x,n = arg m:,x L Pk,n [ C1,k,n cos ( k0) + C2,k,n sin ( k0)] 
k=I 
Nh 

0~in,n = arg mJn L Pk,n [ C1,k,n cos ( k0) + C2,k,n sin ( k0)] 
k=I 

Kma.x,k,n =C1,k,n COS ( k0~a.x,n) + C2,k,n sin ( k0~ax,n) 

Nh 

eµ,n =rn+ L Pk,nKma.x,k,n 

k=I 
Nh 

€£,n =rn+ L Pk,nKmin,k,n 

k=I 

(9.29) 

(9.30) 

(9.31) 

(9.32) 

(9.33) 

(9.34) 

where argmaxx f(x) and argminx f(x) are operators to obtain the value of x for 

which f(x) attains its maximum and minimum values, respectively. The top plot 

in Fig. 9.1 shows a five respiratory cycle period of an ABP signal Yn (thick red), its 

estimate fin (thin green), and its estimated envelopes eµ,n and ee,n (blue), which 

are described in (9.33) and (9.34). 

9.2.5 Pulse Pressure Signal Envelope Estimation 

The pulse pressure (PP) signal is the difference between the upper envelope eµ,n 

and lower envelope e£,n of the ABP signal. The bottom plot in Fig. 9.1 shows 

an exemplary PP signal oscillating roughly at the respiratory rate. Within each 
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respiratory cycle PP reaches its maximum (PP max) and minimum (PP min) values, 

which are two critical parameters to compute the PPV index. Given the estimated 

signal parameters in (9.5)-(9.13), one can compute the continuous equivalents of 

PP max and PP min• They are the upper, cµ,n, and lower, ce,n, envelopes of the PP 

signal. The upper envelope cµ,n is the continuous estimate of PP max and the lower 

envelope ee,n that of PP min• The cµ,n and ce,n values can be estimated as described 

below, 

Nr 
h 

llk,n = L m1,k,j,n cos (j0) + m2,k,j,n sin (j0) 
j=l 

Nh 
0:-Uax,n = argmfx L (1 + llk,n) (Kmax,k,n-Kmin,k,n) 

k=l 
Nh 

0:-Uin,n = argmJn L (1 + llk,n) (Kmax,k,n-Kmin,k,n) 
k=l 

Nh 
llmax,k,n L m1,k,j,n COS (j0:-Uax,n)+m2,k,j,n sin (j0:-Uax,n) 

j=l 

Nh 
llmin,k,n L m1,k,j,n COS (j0:-Uin,n)+m2,k,j,n sin (j0:-Uin,n) 

j=l 

Nh 
cµ,n = L (1 + llmax,k,n) (Kmax,k,n-Kmin,k,n) 

k=l 
Nh 

ce,n = L (1 + llmin,k,n) (Kmax,k,n-Kmin,k,n) 
k=l 

(9.35) 

(9.36) 

(9.37) 

(9.38) 

(9.39) 

(9.40) 

(9.41) 

where 1 + llk,n is equal to Pk,n and cµ,n and ce,n are the continuous estimates 

of the PP max and PP min, respectively. The blue lines in the bottom plot in Fig. 

9.1 represent the upper cµ,n and lower ce,n envelopes of the PP signal, which are 

obtained by following the method described above. 



CHAPTER 9. MULTIPLE HARMONIC SET TRACKING 

22 

20 

18 

~ 16 
'-' 
~ 
~ 

'Cl 
i:::: ..... 
> 
i::i... 
i::i... 

14 

12 

10 

8 

6 

H 

llllllllllli!IIAutomatic 
-Manual 

A Measurement Window ( 5 Respiratory Cycles) 

H ~ H 

181 

4c__ ___ __,_ ____ _,__ ____ ..__ ___ ----'-------'---------' 
0 100 200 300 

Time (s) 
400 500 600 

Figure 9.2: Automatic PPV index (green) and manual PPV index (red) over the 
entire ABP signal duration (10 minutes). One PPV index measurement is com­
puted from each measurement window, which is a time period of 5 respiratory 
cycles. 

9.2.6 Pulse Pressure Variation Calculation 

Given the cµ,n and lower cc,n values, it is straightforward to calculate the PPV 

index. It can be computed as follows, 

PPV(%) =100 X €max - €min 

( €max + €min) /2 (9.42) 

This new PPV index is different from the traditional PPV index described in (8.1) 

because the new one is continuous in time while the traditional one can be obtained 

only once per each respiratory cycle. 
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Figure 9.3: Spectrogram of one of the 12 ABP signals recorded from spontaneously 
breathing subjects. 

Fig. 9.2 illustrates an example of the automatically computed continuous 

PPV index (thick green) and the manually obtained discrete PPV index (thin red) 

of a real 10 min ABP signal. Each hollow white dot represents a "discrete" PPV 

index, which can be obtained once per each respiratory cycle. 

9.3 Algorithm Assessment 

9.3.1 Assessment Data 

The Massachusetts General Hospital (MGH) waveform database on PhysioNet is a 

comprehensive collection of electronic recordings of hemodynamic and electrocar­

diographic waveforms subjects in critical care units [130,131]. Among 250 subjects 

12 subjects who breathed spontaneously were identified by visually inspecting the 
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Table 9.1: Summary of user-specified parameters for the PPV index tracker. 
Name Symbol Value 
No. particles 2NP 500 
No. cardiac components Nc 10 
No. respiratory components Nr 3 
Minimum respiratory rate J:nin 6 / 60 Hz 
Maximum respiratory rate f:nax 30 / 60 Hz 
Minimum heart rate f~in 50/60 Hz 
Maximum heart rate f~ax 140/60 Hz 
Measurement noise variance r var(y) /le3 
Respiratory frequency variance qp le-6 Ts 
Cardiac frequency variance qfc le-6 Ts 
Respiratory amplitude variance qa, qb var(y)le-6Ts 
Modulation factor amplitude variance qc, qd var(y) le-8Ts 
Cardiac amplitude variance qe, qf var(y)le-6Ts 
Initial respiratory amplitude Ua, ub std(y) /lel 
Initial modulation factor amplitude Uc, ud std(y) /le3 
Initial cardiac amplitude Ue, u1 std(y)/lel 

spectrogram and time-series of ABP signals. Fig. 9.3 shows the spectrogram of 

one of the 12 ABP signals. Each ABP signal is 10 min long and the total duration 

of the 12 ABP signals was 2 hours. The original sample rate fs of the signals was 

360 Hz, but they were downsampled by a factor of 9, so that the final sample rate 

fs was 40Hz. 

The number of cardiac components Nc was 5 and that of respiratory com­

ponents Nr 2. The total number of particles 2NP was 500. Table 9.1 lists the 

parameter values used for the PPV index estimator. 

9.3.2 Manual PPV Annotations (Current Standard) 

The peaks and troughs of the ABP signals were manually annotated and the PPV 

indices (current standard) were calculated as defined in (8.1). They are referred to 
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as manual PPV indices PPV manu · PPV auto represents PPV indices obtained using 

the proposed PPV index tracking algorithm. 

9.3.3 Statistical Analysis 

The statistical analysis used 5 PPV index measurements for each subject, and 

each measurement was separated by 2 minutes. Each PPV index measurement 

is an averaged value over 5 respiratory cycles. Fig. 9.2 shows the 2 min apart 

measurement periods. The proposed PPV index tracking algorithm was assessed 

by calculating the agreement (mean± standard deviation) between PPVauto and 

PPV manu measurements and using Bland-Altman analysis. 

A Bland-Altman plot is a statistical visualization method that is often used in 

the assessment of PPV estimation algorithms in order to determine the agreement 

between two different PPV estimates. It has the difference ~PPV between PPV auto 

and PPV manu measurements on the y-axis and the PPV manu measurements on the 

x-axis. It shows the overall accuracy of estimation and any estimation bias or 

trend versus PPV manu measurements. The automatic estimation algorithm was 

compared against the current standard (manual annotations) using this Bland­

Altman plot. 

9.4 Results and Discussion 

Fig. 9.4 depicts the Bland-Altman plot of the 12 subjects. There are 5 PPV 

measurements available per each subject. All of PPVauto measurements were in 

agreement with PPV manu measurements within ±3.5% accuracy. 

Table 9.2 lists the mean ± standard deviation of 5 PPVmanu and PPVauto 
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Figure 9.4: Bland-Altman plot of the 12 subjects. 
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measurements for each subject. The second column is for PPV manu and the third 

column for PPVauto· 

9.5 Discussion 

9.5.1 Algorithm's Advantages 

The proposed algorithm is the first automatic method described in the literature 

especially designed to estimate and track the PPV index in situations involving 

spontaneous breathing. It is important to note that the proposed algorithm is 

completely different from the algorithm described in [137], which only worked for 

mechanically ventilated subjects. As mentioned in the previous chapter, the major 

algorithm design difference of the proposed algorithm with respect to previously 
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Table 9.2: Summary of the mean and standard deviation of the PPV manu and 
PPV auto measurements. ========::;:;;:::=:=:;========:=:,;:=,=;:= 

Subject PPV manu (%) PPVauto (%) 
1 9.8±1.0 8.9±1.0 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

32.9±1.5 33.9±2.3 
10.3±1.0 10.6±0.8 
4.6±0.3 3.3±0.3 
10.3±1.1 9.2±1.3 
12.9±2.7 11.3±2.0 
5.9±0.5 6.1±0.5 
12.5±0.8 10.3±1.5 
7.6±1.0 6.7±0.9 
4.8±0.5 5.3±1.3 
6.5±0.8 6.5±0.6 
23.1±1.3 22.8±1.8 

published algorithms [137,139] is the fact that the proposed method is based on a 

statistical state-space model and estimation of the cardiovascular pressure signal. 

The state-space modeling stage results in an algorithm that is more robust to 

hemodynamic changes and artifacts. The statistical state-space signal model and 

associated model parameter estimation algorithm automatically filter out noise 

and artifact that cannot be captured with the model. 

Figs. 9.5-9.6 exemplify a case where signal features that are not physiological 

in nature are automatically filtered out and as a result PPV auto is more reasonable 

than PPV manu· The top plot in Fig. 9.5 illustrates 4 respiratory cycles of the ABP 

signal (red) and its estimate (green). It also shows the manually annotated signal 

envelopes (black) and the automated computed signal envelopes (light blue). The 

bottom plot in Fig. 9.5 depicts the PPV manu and PPVauto over the same period. 

Around at 535 s, the PPV manu value (red) abruptly increases up to 35% while the 

PPVauto value (green) remains at 8%. Around at 540 s, the PPV manu value returns 
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to 8%. Fig. 9.6 focuses on the time period marked with the black rectangular box 

in Fig. 9.5. The top plot in Fig. 9.6 shows that the heart beat between 535 s and 

535.5 s is contaminated by noise and has an abnormal morphology. As a result, the 

corresponding PP manu shown in the bottom plot reaches a large maximum value 

(PP min,manu : 105 mmHg) around at 535 s. However, the automatically computed 

maximum PP value (PP min,auto) at the same time is as low as 83 mmHg. This 

discrepancy between the manual annotation and the proposed automatic method 

results from the capability of the MAM-PF algorithm, which estimates the ABP 

signal based on the state-space model. While the original heart beat between 535 s 

and 535.5 s in Fig. 9.6 is abnormal in a physiological sense, the estimated heart 

beat over the same time period shows the physiologically expected morphology 

and location of the heart beat. 

9.5.2 Study Limitations 

The algorithm's assessment was based on only 12 subjects with pre-recorded ABP 

data. Additionally, for each subject five PPV estimates were used in the assessment 

study. This assessment was designed to be an engineering algorithm validation 

against current standard manual annotations, and not a clinical validation study. 

Consequently, a clinical validation study assessing the ability of the proposed algo­

rithm to monitor fluid responsiveness in the operating room in situations involving 

spontaneously breathing subjects still needs to be conducted. This may require 

the proposed algorithm to be first adopted as part of a commercial system as was 

the case with the previous automatic PPV algorithm in [137]. 
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Figure 9.5: Top: Original ABP signal (red) with its manually annotated envelopes 
(black) and signal estimate (green) with its automatically computed envelopes 
(purple). Bottom: Manual PPV indices (red) and automatic PPV indices (green) 
where one of the manual PPV indices has an abnormally high value. 

9.6 Summary 

This chapter describes the first automatic PPV tracking algorithm for sponta­

neously breathing subjects. This novel algorithms is based on a statistical state­

space model inspired in the underlying cardiovascular and respiratory physiology. 

This algorithm uses the modified version of the MAM-PF technique for optimal 

parameter estimation. The assessment results indicate good agreement against 

the current standard PPV. All of PPV auto measurements were in agreement with 

PPV manu measurements within ±3.5% accuracy. 
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Figure 9.6: Top: Original ABP signal (red) with its manually annotated envelopes 
(black) and signal estimate (green) with its automatically computed envelopes 
(purple). Bottom: Manual PP signal (red) and automatic PP signal (green) where 
the manual PP signal increases momentarily due to a contaminated heart beat in 
the ABP signal. 



Chapter 10 

Summary and Conclusions 

This dissertation explains the background and significance of tracking rhythmicity 

in quasi-periodic signals and summarizes various techniques to tackle this problem, 

that are available in the literature. Chapter 5 summarizes several conventional par­

ticle filtering algorithms and provides the details of the proposed particle filtering 

algorithm, MAM-PF, which overcomes critical issues related with the conventional 

particle filtering algorithms. Chapters 6-9 discuss how the proposed MAM-PF 

algorithm can be applied to four practical biomedical applications. Those appli­

cations are closely related with various clinical problems ranging from monitoring 

tremor for people with Parkinson's disease to guiding physicians as to the best 

fluid therapy for a patient in operating room or critical care environments. 

10.1 Significance of Rhythmicity Tracking 

Rhythmicity refers to the cyclical pattern that can be represented as a linear combi­

nation of time-varying sinusoids, i.e. partials. Rhythmicity tracking is continuous 

estimation of the frequencies, phases, and amplitudes of the partials. When a 

quasi-periodic signal contains harmonically related multiple partials, it is called 
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a multi-harmonic signal. Multi-harmonic signals are very common. Examples 

include the human voice and the electrocardiogram (ECG). The frequencies and 

amplitudes of the multi-harmonic signal's partials are important features of the sig­

nal and it is essential to accurately estimate them for further analysis. There are 

a few techniques in current use for the purpose of multi-harmonic signal tracking. 

However, some of those techniques are only capable of tracking the frequency and 

others do not take advantage of the harmonic relationship between the partials. 

More importantly, most of them rely on the local stationarity assumption of the 

signals. This presents an opportunity for new signal processing methods that can 

accurately estimate the frequency and amplitude of the multi-harmonic signal on 

a sample-by-sample basis and take into account the harmonic relationship between 

the partials. 

10.2 Advantages of the Proposed MAM-PF 

The state-space method is a tool to estimate a valuable but unknown quantity, 

i.e. state, given a sequence of measurements by representing a physical system as 

a mathematical model. When this mathematical model is linear, the conventional 

Kalman filter can be used to optimally estimate the state. However, many systems 

cannot be represented as simple linear state-space models and nonlinearities must 

be addressed to account for the complexity of the systems. Although variants of the 

linear Kalman filter such as the extended or unscented Kalman filter (EKF /UKF) 

have been devised to estimate the state of a nonlinear state-space model, they 

often yield unreliable and inaccurate estimates. The particle filtering technique 

is an alternative to the EKF /UKF and many research groups have demonstrated 
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its suitability and versatility for various applications. During the last two decades 

several variants of the canonical particle filtering technique have been proposed, 

including the marginalized particle filter (MPF) and the maximum a posteriori 

particle filter (MAP-PF). However, they suffer from two critical issues that have 

not been well understood in the literature. The proposed MAM-PF is a hybrid 

particle filtering method that leverages the advantages of the MAP-PF and MPF. 

It is devised to overcome two well known problems of the particle filtering method: 

sample degeneracy and sample impoverishment. A drawback of the MAM-PF is its 

heavy computational load. However, the computational load can be dramatically 

reduced with an approximation that does not substantially affect performance, so 

that the computation burden of the MAM-PF is comparable to that of the MPF. 

10.3 Applications 

The MAM-PF is so versatile that it can be applied to numerous applications. This 

dissertation discusses four practical biomedical applications. Each application in­

volves a unique type of biomedical signal and corresponding state-space model. 

With a carefully set state-space model the MAM-PF algorithm can be utilized 

to estimate and track the signal's valuable parameters such as tremor frequency 

(Chapter 6), heart rate (Chapter 7), and pulse pressure variation (Chapters 8-9). 

For each application, the performance of the MAM-PF algorithm was thoroughly 

assessed against the best current practice using synthetic and real signals. The 

simulation results demonstrate the outstanding performance of the MAM-PF al­

gorithm. The contributions of the dissertation are not merely technical but clinical 

too. Tremor tracking in Chapter 6 is a first step toward studying phase-coupling 
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between two tremorous activities, which is critical in the pathogenesis study of 

movement disorders. Heart rate tracking in Chapter 7 is an important task be­

cause rhythmical heart rate variability (HRV) is a useful quantity for medical and 

diagnostic purposes. Pulse pressure variation (PPV) is a sensitive and specific 

predictor of fluid responsiveness for patients in need of fluid therapy. Determining 

the best of fluid therapy for a patient is difficult and clinicians have few clinical 

signs to guide them. There are few publicly available algorithms that automati­

cally estimate the PPV index accurately and reliably. Especially, the PPV tracking 

algorithm proposed in Chapter 9 is the first automatic method described in the lit­

erature that is specially designed to estimate and track the PPV index in situations 

involving spontaneous breathing. 

10.4 Potential Future Work 

The proposed MAM-PF algorithm can be applied to any state-space model whose 

state can be partitioned into the nonlinear and linear portions. It is advantageous 

especially when the posterior distribution of any of state parameters is known to 

be multi-modal. However, for accurate and reliable estimation, the MAM-PF al­

gorithm requires a sufficient number of particles just like other particle filtering 

techniques and as a result the computational burden can be quite demanding, 

which makes it unpractical for real-time applications. One possible solution is par­

allel computing, which is a form of computation that carries out many calculations 

simultaneously. Currently, the MAM-PF algorithm is implemented in a way that 

at each time index the particles are processed one by one in series. However, using 

parallel computing, the MAM-PF algorithm can be implemented to process sev-
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eral particles in parallel. For example, if 10 particles are processed simultaneously, 

the MAM-PF algorithm becomes 10 times faster. With multi-core processors and 

smart programming the parallel computing based MAM-PF can be implemented 

and may be useful for various real-time applications where the conventional meth­

ods such as the EKF /UKF perform poor or fail. 
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Appendix A 

Notational Conventions 

I have adopted the notation used in [97] with minor modifications. Boldface is 

used to denote random processes, normal face for deterministic parameters and 

functions, upper case letters for matrices, lower case letters for vectors and scalars, 

superscripts in parenthesis for particle indices, upper-case superscripts for nonlin­

ear /linear indication, and subscripts for time indices. The list below summarizes 

the notational conventions. 

• r: random processes 

• d: deterministic parameters and functions 

• M: matrices 

• v: vectors and scalar 

• . ( i): particle indices 

• .N: nonlinear /linear indication 

• •n: time indices 

• w: unnormalized/normalized particle weight 
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• x: state before/after resampling 

A.1 Examples 

• x~,(i): the nonlinear portion of the state vector for the ith state trajectory 

(i.e., particle) at discrete time n 

• w(i): the unnormalized particle weight of the ith particle 

• w ( i): the normalized particle weight of the ith particle 

• x~): the i th particle before resampling 

• x~): the ith particle after resampling 

• fn(x): a time-varying function f that takes a random vector x as its input 

• QM-1
: multiplication of a matric Q and the inverse of a matric M 
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