
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

10-26-2007

Ultra Reliable Computing Systems Ultra Reliable Computing Systems

Chong Ho Lee
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lee, Chong Ho, "Ultra Reliable Computing Systems" (2007). Dissertations and Theses. Paper 6156.

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F6156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
mailto:pdxscholar@pdx.edu

ULTRA RELIABLE COMPUTING SYSTEMS

by

CHONG HO LEE

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
©2007

ULTRA RELIABLE COMPUTING SYSTEMS

by

CHONG HO LEE

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
©2007

DISSERTATION APPROVAL

The abstract and dissertation of Chong Ho Lee for the Doctor of Philosophy in

Electrical and Computer Engineering were presented October 26, 2007 and accepted

by the dissertation committee and the doctoral program.

COMMITTEE APPROVALS:
Douglas V./Hall, Chair

Marelr A. Perkowski

Xiaoyu Song
V.

Dan Hammerstrom

Jong Sung Kim
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROVAL:
Malgorz^ta ChrzanowsJca-Jeske, Director
Electrical and Computer Engineering
Ph.D. Program

DISSERTATION APPROVAL

The abstract and dissertation of Chong Ho Lee for the Doctor of Philosophy in

Electrical and Computer Engineering were presented October 26, 2007 and accepted

by the dissertation committee and the doctoral program.

COMMITTEE APPROVALS:

Dan Hammerstrom

Jong Sung Kim
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROVAL:
Malgor a-Jeske, Director
Electric and Computer Engineering
Ph.D. Program

ABSTRACT

An abstract of the dissertation of Chong Ho Lee for the Doctor of Philosophy in

Electrical and Computer Engineering presented October 26, 2007.

Title: Ultra Reliable Computing Systems

For high security and safety applications as well as general purpose applications,

it is necessary to have ultra reliable computing systems. This dissertation describes our

system of self-testable and self-repairable digital devices, especially, EPLDs

(Electrically Programmable Logic Devices). In addition to significantly improving the

reliability of digital systems, our self-healing and re-configurable system design with

added repair capability can also provide higher yields, lower testing costs, and faster

time-to-market for the semiconductor industry.

The digital system in our approach is composed of blocks, which realize

combinational and sequential circuits using GALs (Generic Array Logic Devices).

We describe three techniques for fault-locating and fault-repairing in these devices.

The methodology we used for evaluation of these methods and a comparison with

devices that have no self-repair capability was simulation of the self-repair algorithms.

Our simulations show that the lifetime for a GAL-based EPLD that uses our multiple

self-repairing methods is longer than the lifetime of a GAL-based EPLD that uses a

single self-repair method or no self-repair method. Specifically, our work

demonstrates that the lifetime of a GAL can be increased by adding extra columns in

ABSTRACT

An abstract of the dissertation of Chong Ho Lee for the Doctor of Philosophy in

Electrical and Computer Engineering presented October 26, 2007.

Title: Ultra Reliable Computing Systems

For high security and safety applications as well as general purpose applications,

it is necessary to have ultra reliable computing systems. This dissertation describes our

system of self-testable and self-repairable digital devices, especially, EPLDs

(Electrically Programmable Logic Devices). In addition to significantly improving the

reliability of digital systems, our self-healing and re-configurable system design with

added repair capability can also provide higher yields, lower testing costs, and faster

time-to-market for the semiconductor industry.

The digital system in our approach is composed of blocks, which realize

combinational and sequential circuits using GALs (Generic Array Logic Devices).

We describe three techniques for fault-locating and fault-repairing in these devices.

The methodology we used for evaluation of these methods and a comparison with

devices that have no self-repair capability was simulation of the self-repair algorithms.

Our simulations show that the lifetime for a GAL-based EPLD that uses our multiple

self-repairing methods is longer than the lifetime of a GAL-based EPLD that uses a

single self-repair method or no self-repair method. Specifically, our work

demonstrates that the lifetime of a GAL can be increased by adding extra columns in

2

the AND array of a GAL and extra output ORs in a GAL. It also gives information on

how many extra columns and extra ORs a GAL needs and which self-repairing

method should be used to guarantee a given lifetime. Thus, we can estimate an ideal

point, where the maximum reliability can be reached with the minimum cost.

2

the AND array of a GAL and extra output ORs in a GAL. It also gives information on

how many extra columns and extra ORs a GAL needs and which self-repairing

method should be used to guarantee a given lifetime. Thus, we can estimate an ideal

point, where the maximum reliability can be reached with the minimum cost.

ACKNOWLEDGMENTS

As I finish up the doctoral program, I realized that this program is more than just

a process for becoming a doctor in engineering. I feel that the philosophy I have

come to understand in this lengthy program is what is really important in life, as the

word philosophy in Ph. D., may indicate.

I am truly grateful for this day where I have finally reached the point of writing

this acknowledgment after countless hours of research, development, and verification,

but this dissertation could not have been completed without the support of many

people. My utmost gratitude goes to the ones mentioned here.

First of all, I would like to thank my parents whose endless support from near and

far allowed me to be the best student and engineer that I could have been, and get here

where all my hard effort is finally being printed. The first ones I want to share this

moment with are my mother and late father, Dr. Min Jae Lee, who would have been

the happiest and the proudest of my achievement.

ACKNOWLEDGMENTS

As I finish up the doctoral program, I realized that this program is more than just

a process for becoming a doctor in engineering. I feel that the philosophy I have

come to understand in this lengthy program is what is really important in life, as the

word philosophy in Ph.D., may indicate.

I am truly grateful for this day where I have finally reached the point of writing

this acknowledgment after countless hours of research, development, and verification,

but this dissertation could not have been completed without the support of many

people. My utmost gratitude goes to the ones mentioned here.

First of all, I would like to thank my parents whose endless support from near and

far allowed me to be the best student and engineer that I could have been, and get here

where all my hard effort is finally being printed. The first ones I want to share this

moment with are my mother and late father, Dr. Min Jae Lee, who would have been

the happiest and the proudest of my achievement.

ii

My family who patiently supported me through the long and arduous process. I

regret not being able to spend more time with my little prince, Daniel H. Lee, who

stayed strong and persevered with me, and even gave encouragements at times.

There are no words that can express my appreciation for his support.

My advisor, Professor Douglas V. Hall, whose teachings gave me insights that are

applicable to academic and practical world. He was a teacher in the class, an advisor

in the program, and a father figure in life. He guided me with such integrity all the

way to the end of the program. He taught me the true meaning of being an engineer,

and was a great role model in life.

Professor Marek A. Perkowski who suggested the topic and provided many ideas

and guidance. It truly was an honor and an unforgettable experience to learn from a

professor of his stature and knowledge. He taught with much passion and strict rules,

but always treated students warm-heartedly.

Professor Xiaoyu Song who did not hesitate to provide physical and mental

support. He always helped me in difficult situations almost as a friend, and

encouraged me to believe that I can complete the program.

11

My family who patiently supported me through the long and arduous process. I

regret not being able to spend more time with my little prince, Daniel H. Lee, who

stayed strong and persevered with me, and even gave encouragements at times.

There are no words that can express my appreciation for his support.

My advisor, Professor Douglas V. Hall, whose teachings gave me insights that are

applicable to academic and practical world. He was a teacher in the class, an advisor

in the program, and a father figure in life. He guided me with such integrity all the

way to the end of the program. He taught me the true meaning of being an engineer,

and was a great role model in life.

Professor Marek A. Perkowski who suggested the topic and provided many ideas

and guidance. It truly was an honor and an unforgettable experience to learn from a

professor of his stature and knowledge. He taught with much passion and strict rules,

but always treated students warm-heartedly.

Professor Xiaoyu Song who did not hesitate to provide physical and mental

support. He always helped me in difficult situations almost as a friend, and

encouraged me to believe that I can complete the program.

It was an honor to have Professor Dan Hammerstrom and Professor Jong Sung

Kim as the approval committee members. The points they made in the process will

be a tremendous help to completing the thesis.

I will always be grateful for the Assistant Director of International Affairs, Ms.

Christina Luther, for her kindness and dedication to guide me through the complicated

international student rules and forms.

I would like to share this accomplishment with everyone who supported and

waited for this day by my side, especially Mr. Tae Kun Woo and Mr. Hank Lee for

their help in the simulation process, which was an integral part of the study.

Finally, I had many difficulties in finding reference materials directly related to

this study, but I hope that this paper can be a useful reference to any related studies in

the future.

111

It was an honor to have Professor Dan Hammerstrom and Professor Jong Sung

Kim as the approval committee members. The points they made in the process will

be a tremendous help to completing the thesis.

I will always be grateful for the Assistant Director of International Affairs, Ms.

Christina Luther, for her kindness and dedication to guide me through the complicated

international student rules and forms.

I would like to share this accomplishment with everyone who supported and

waited for this day by my side, especially Mr. Tae Kun Woo and Mr. Hank Lee for

their help in the simulation process, which was an integral part of the study.

Finally, I had many difficulties in finding reference materials directly related to

this study, but I hope that this paper can be a useful reference to any related studies in

the future.

Table of contents

ACKNOWLEDGMENTS... i

List of Tables...ix

List of Figures...xi

1. Introduction...1

1.1. M o tiv a tio n s a n d Re a l P r o b l e m s .. 2

1.1.1. Two-level Regular-Structured Programmable Logic Devices......................2

1.1.2. Memories.. 6

1.2. D o m a in o f t h e W o r k .. 10

1.2.1. General Research Objectives...11

1.2.1.1. Purposes and Goals...11

1.2.1.2. Hypotheses...16

1.2.2. Contributions and Applications... 17

1.3. O u t l in e ... 19

2. Prerequisites for the Self-Repair Technology... 21

2 .1 . In t r o d u c t io n to P L D s ..21

V

2.1.1. What is PLD? .. 21

2.1.2. Types o f PLDs.. 22

2.1.3. PAL.. 24

2.1.4. GALs Structure..26

2.2. P r o g r a m m in g T e c h n o l o g y ..30

2.2.1. Fusible Link..30

2.2.2. E2CMOS Programming Technology... 31

2.2.3. PLDs ’Programming Procedure..33

3. Previous Work on Self-Test and Self-Repair.. 36

3 .1 . S e l f -H e a l in g M e m o r ie s ...3 6

3.1.1. Introduction to Memories; SRAM, DRAM, and Flash Memory................ 37

3.1.1.1. SRAM.. 37

3.1.1.2. DRAM... 37

3.1.1.3. Flash Memory... 38

3.1.2. Research on the BISTAR Embedded Memories: Trends and Products 39

3.1.2.1. Why BIST... 40

3.1.2.2. Redundancy and Repair.. 45

vi

3 .1 .2 .3 . S e lf-T estin g and S elf-R ep a ir in g A lg o r ith m s ...47

3 .1 .2 .4 . T he ST A R (S e lf-T est and R epair) S R A M E m b ed d ed M e m o r y 4 9

4. Self-Testing and Self-Repairing EPLDs... 51

4 .1 . D e s ig n M e t h o d o l o g y o f S e l f -R e pa ir a b l e G A L s ... 52

4.1.1. Fault Model and Assumptions..53

4.1.2. Design Architecture... 57

4.1.3. Test Generation and Fault Diagnosis/Location..67

4.2. S e l f -R e pa ir in g M e t h o d o l o g ie s ... 76

4.2.1. Column Replacement with Extra Columns.. 76

4.2.2. Column Re-Use with Extra Columns..80

4 .2 .2 .1 . C o lu m n -C olu m n R e -U se w ith E xtra C o lu m n s... 81

4 .2 .2 .2 . C ell-C o lu m n R e -U se w ith Extra C o lu m n s... 86

4.2.3. Integration o f the Column Repair Methods...91

4.2.4. Replacement and Re-use with Extra OR-gates... 93

5. Self-Testing and Self-Repairing Switching Circuit... 95

5 .1 . H a r d w a r e D e s ig n M e c h a n is m o f t h e S e l f-R e pa ir a b l e S w it c h in g

C ir c u it ...98

5.1.1. Fault Model and Assumptions...98

5.1.2. Design Architecture..101

5.1.3. Test Generation and Fault Diagnosis/Location.. 112

5.2. S w it c h in g C ir c u i t S e l f - R e p a ir in g M e t h o d o l o g i e s ..121

5.2.1. Line Replacement with Extra Lines..121

6. New Hardware Prototype and Simulator for the Ultra Reliable Computing
Systems..127

6 .1 . A n a l y s is a n d Sy n t h e s is o f th e H a r d w ir e d T e st a n d t h e D ia g n o s is

A l g o r it h m ...127

6 .2 . In t r o d u c t io n t o t h e C o m p u t e r -B a s e d S im u l a t o r .. 140

7. Evaluation and Analysis of the Simulation Results for the Ultra Reliable
Computing Systems...164

7 .1 . A s s u m p t io n s a n d Fa il u r e Ra t e s ... 164

7 .2 . E v a l u a t io n a n d A n a l y s is o f t h e S im u l a t io n R e s u l t s167

7 .3 . H a r d w a r e O v e r h e a d a n d Pe r f o r m a n c e ...180

7.3.1. Extra OR-Gate...187

7.3.2. Extra Line on Switching Circuits...191

7.3.3. Performance by Available OR- Gate... 195

viii

7.3.4. FPGA and ASIC Design... 199

8. Conclusions and Future Works.............. 206

BIBLIOGRAPHY... 213

List of Tables

Table 7.1 Average Looping Times of Simulating the Replacement Methodology 168

Table 7.2 Average Looping Time of Simulating the Column-Column Re-Use Only. 170

Table 7.3 Average Looping Time of Simulating the Cell-Column Re-Use Only 171

Table 7.4 Average Looping Time of Simulating the Column-Column Re-Use and

Replacement..174

Table 7.5 Average Looping Time of Simulating the Cell-Column Re-Use and

Replacement..175

Table 7.6 Generic Components..181

Table 7.7 GAL Components...182

Table 7.8 OLMC’s OR-gate Combination Chart..183

Table 7.9 Area Overhead and Ratio..184

Table 7.10 Performance of a Self-Repairable GAL using Column Replacement

Method..185

Table 7.11 Performance of a Self-Repairable GAL using Cell-Column Re-Use Method

& Replacement Method..186

X

Table 7.12 Average Looping Time of Simulating the Cell-Column Re-Use and

Replacement... 188

Table 7.13 Performance Comparison of GALs with Extra OR-Gates and with Extra

Columns... 189

Table 7.14 Average Looping Time of SC with 1 and 2 Extra Lines........................... 192

Table 7.15 SC Components..193

Table 7.16 SC Overhead Cell Count..194

Table 7.17 Performance of SC using Extra Line..194

Table 7.18 GAL Overhead -Total Cell Count..196

Table 7.19 GAL Overhead Ratio (Based on the Basic Prototype Proposed)............. 197

Table 7.20 SC Looping Time Variance on Number of Unused OR-Gates on GAL... 198

Table 7.21 GAL Overhead Ratio (against a Generic Chipset, GAL)......................... 199

Table 7.22 Comparing Data of FPGA and ASIC Simulation with Extra ORs...........200

Table 7.23 Prototype of FPGA and ASIC’s Comparison to a Generic System..........202

Table 7.24 Unused Extra OR-Gate Efficiency.. 204

List of Figures

Figure 2.1 Simplified Notation for Input Lines of an AND Gate.................................22

Figure 2.2 Basic Structure of a PROM.. 23

Figure 2.3 Basic Structure of a PLA.. 23

Figure 2.4 Basic Structure of a PAL/GAL... 24

Figure 2.5 Simplified Logic Diagram of a PAL.. 26

Figure 2.6 A Programmed Simple Logic Function in a GAL.......................................27

Figure 2.7 Structure of the GAL16V8... 29

Figure 2.8 (a) Non-Programmed State and (b) Programmed State in Basic Structure of

an OR-Array... 30

Figure 2.9 (a) Non-Programmed State and (b) Programmed State in Basic Structure of

anAND-Array.. 31

Figure 2.10 E2CMOS Cell... 32

Figure 2.11 PLDs’ Programming Procedure... 35

Figure 3.1 The BIST Augmented Architecture.. 43

Figure 3.2. BIST Architecture with Column Repair.. 46

xii

Figure 3.3. STAR Memory System... 50

Figure 4.1 Example of a Logic Diagram Notation...57

Figure 4.2 Cellular Array of EPLDs/Memory in a System; controlled by a FLFRP

(Fault-Locating/Fault-Repairing Processor) to repair faults in each

EPLD/memory... 58

Figure 4.3 Design Architecture for Self-Repairable GAL..60

Figure 4.4 Inner Structure of the Block... 62

Figure 4.5 Structure of MAP and SAP Arrays... 64

Figure 4.6 Structure of the NC Register.. 65

Figure 4.7 Generation of the Test Vector Set/Storing Scanning Results into the SAP. 70

Figure 4.8 Comparator Operation for Finding Faults on a Circuit without Faults 73

Figure 4.9 Fault Diagnosis/Location of an Example with Faults.................................75

Figure 4.10 A Column Replacement Method Example of Multiple Faults..................78

Figure 4.11 An Example of the Column-Column Re-Use with Multiple Faults 83

Figure 4.12 An Example of the Cell-Column Re-Use with Multiple Faults................89

Figure 5.1 Design Architecture for the Ultra Reliable Computing System with Self-

Repairable GAL Module and Self-Repairable Switching Circuit Block...... 103

Figure 5.2 Inner Structure of the Switching Circuit Block...106

Figure 5.3 Structure of MSCI Array...107

Figure 5.4 Structure of the NSC Register...108

Figure 5.5 Structure of the NR Register... I l l

Figure 5.6 Structure of the MCIR Register..112

Figure 5.7 General Concept of an Example without Faults....................................... 115

Figure 5.8 Generation of the Test Vector Set/Storing Scanning Results into SCR7 ..116

Figure 5.9 Comparator Operation for Finding Faults on an SC without Faults......... 118

Figure 5.10 Fault Diagnosis/Location of an Example with Faults............................. 120

Figure 5.11 A Line Replacement Method Example of Multiple Faults without a Faulty

OR.. 124

Figure 5.12 A Line Replacement Method Example with a Faulty OR....................... 126

Figure 6.1 Overall Process...129

Figure 6.2 GAL and SC Generation...131

Figure 6.3 System Lifetime Generation...133

xiv

Figure 6.4 Fault Generation Simulation...135

Figure 6.5 System Diagnosis Process ..137

Figure 6.6 Simulator Reset Process..139

Figure 6.7 Initial Screen of the Simulator..141

Figure 6.8 Creating GAL Options..141

Figure 6.9 Initial MAP and SAP..143

Figure 6.10 Added Faults...143

Figure 6.11 Simulation Configuration..144

Figure 6.12 Simulation Result..145

Figure 6.13 Initial Screen of the Replacement Method..146

Figure 6.14 Replacement Method Result...147

Figure 6.15 Initial Screen of Column Re-Use with Extra Columns Method............. 148

Figure 6.16 Column-Re-Use with Extra Columns Method Result............................. 149

Figure 6.17 Initial Screen of Cell Re-Use Method...150

Figure 6.18 Cell Re-Use Method Result..152

Figure 6.19 Extra OR-gate Initial Screen...153

XV

Figure 6.20 Extra OR-gate Result..154

Figure 6.21 Switching Circuit Initial Screen..155

Figure 6.22 SC 2...156

Figure 6.23 SC 3... ...157

Figure 6.24 SC Final...158

Figure 6.25 ASIC Initial Screen...159

Figure 6.26 ASIC 2...160

Figure 6.27 FPGA Initial..161

Figure 6.28 FPGA 2..162

Figure 6.29 Typical Simulation Result...163

Figure 7.1 Comparison of Average Looping Time for All Methodologies with the Fault

Limit less than or equal to 5 and 0.05% Failure Rate................................... 177

Figure 7.2 Comparison of Average Looping Time for All Methodologies with the Fault

Limit less than or equal to 5 and 5.00% Failure Rate................................... 177

Figure 7.3 Comparison of Average Looping Time for All Methodologies with the Fault

Limit less than or equal to 10 and 5.00% Failure Rate................................. 178

xvi

Figure 7.4 Comparison of Average Looping Time for All Methodologies with the Fault

Limit less than or equal to 10 and 5.00% Failure Rate................................. 178

Figure 7.5 Comparison of Average Looping Time for All Methodologies with the Fault

Limit less than or equal to 20 and 5.00% Failure Rate................................. 179

Figure 7.6 Comparison of Average Looping Time for All Methodologies with the Fault

Limit less than or equal to 20 and 5.00% Failure Rate................................. 179

Figure 7.7 Performance Ratio/Overhead Ratio of Increased OR-Gate vs. Columns. 190

Figure 7.8 Available OR-Gate and Performance Increase (One Line: No Extra Line &

Two Lines: 1 Extra Line in each Pin-to-Pin Connection)............................. 198

1. Introduction

Post-fabrication self-repair of digital circuits that have to work in adverse

conditions such as increased cosmic radiation is not a new idea. Refer to the research

of the “Hundred Year Spacecraft” in NASA [1] for instance. However, such circuits

have not been built in VLSI and so far not much has been published on the subject,

except in the area of memories. Although the self-repair problem is already

important to current technologies, it will become a necessity when the next scientific

revolution of “molecular engineering” or “nanotechnology” creates molecular

computers [2,3,4,5] that will be implanted in the human body. In high reliability

applications such as these, a circuit should not only test itself but also repair itself as

quickly as possible.

There has been a very little research on diagnosis-based self-repair at the logic

level. There are a few existing publications presenting various ideas for PLA

(Programmable Logic Array) and PLA-based circuits [6,7,8,9,10,11]. However, to

our knowledge, the circuits analyzed by other authors were not designed nor even

simulated for reliability analysis. We want to systematically develop designs for self­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

repair methodologies on levels of systems, blocks, and logic/layout, with the minimum

overhead.

1.1. Motivations and Real Problems

This section describes the reasons why we need to research self-testable and self-

repairable digital devices according to regular-structured programmable logic device’s

realm as well as memories based on EEPROM (Electrically Erasable Programmable

Read Only Memory) technology. Also introduced here are the realistic problems in

today’s world of technology.

1.1.1. Two-level Regular-Structured Programmable Logic Devices

• GALs; AND-OR Based Arrays

PLDs (Programmable Logic Devices) have become extremely popular in modem

systems since they can be reprogrammed simply and inexpensively without making

time-consuming PCB (Printed Circuit Board) changes as was required by earlier

3

designs that used random logic ICs [12,13,14], The following citation evaluates the

PLD market [25]:

Market for PLDs heats up: (from Semiconductor Business News, Nov. 1997)

• Industry revenue in PLDs was expected to grow 22.7percent in 1997 to $2.26

billion, compared to $1.84 billion in 1996.

• In new market forecast update, the research company predicted world wide

sales o f user programming logic devices will increase by a 23.2 percent

compound annual growth rate, reaching $5.24 billion in 2001.

PLDs use various programming technologies such as fusible link, E2CMOS, and

others. PLDs allow easy implementation of a variety of logic circuits using EDA

(Electronic Design Automation) tools. However, as the complexity of digital devices

increases and the chips’ geometry shrinks, the probability of developing faulty

components (input/output lines, and product terms) also increases as components age

[15].

Thus, in-circuit testing of PLDs, especially PLAs (Programmable Logic Array),

has become of primary importance and has attracted the attention of large research

4

community [6,7,8,9,10,11]. In high-reliability applications, the circuit should test

itself in real-time and repair itself as early as possible. This requires special logic

built into a chip to make it easily testable and diagnosable as well as self-repairable by

means of hardware re-programmability. If the high-reliability and quick in-field

repair of a digital system is of the primary importance, and a system with only self-

testing is not sufficient, then the addition of a self-repairing system would be highly

desirable. As far as we know, nothing has been previously published on self-repair

of PLDs such as GALs or similar devices.

Computers and other digital systems are subject to any number of faults caused by

inadequate quality control during manufacturing, the wear and tear of normal

operation, and other. Failures occur in CMOS due to manufacturing defects and due

to wear out mechanisms whose effects accumulate over time [22], External

disturbances such as heat, radiation, and electrical and mechanical stress also increase

the failure rate [22],

The failure rate and yield calculation of digital ICs has been surveyed in order to

understand better the real problem; actually how and which faults are likely to occur in

5

the real world. Particularly, failure rate of EEPROM is concerned, since our first

target model, GAL, uses EEPROM technology with E CMOS cells in a programmable

AND array. Memories are particularly sensitive to aging as a function of cycling.

Now, we refer to the Early Failure Rate (PPM; Parts Per Million devices or DPM;

Defects Per Million devices from 0 year to 1 year) and the Long Term Failure Rate

(FIT; Failures In Time from 0 year to 10 years) from data provided by National

Semiconductor Corporation. Early failure rates were calculated at 60% confidence

using the Chi-Square distribution. Long term failure rates were calculated at 60%

confidence using the Arrhenious equation at 0.7eV activation energy and derating the

stress temperature to an application temperature of 55°C [23,24]. The data used to

calculate the failure rates were obtained from high temperature operating life tests

(OPL) performed on product qualification and long term audit (LTA) programs during

the period from May 4, 1998 to May 4, 1999 [23]:

0.35pm CMOS: Early Failure Rate = 194 PPM, FITs = 4.66 %

0.50pm CMOS: Early Failure Rate = 141 PPM, FITs = 14.34 %

EEPROM: Early Failure Rate = 489 PPM, FITs = 5.07 %

6

The values of the PPM and FIT of EEPROM shown above suggest that it is

reasonable to invest in a repair mechanism. These data are used to simulate our

repair algorithm of the first project in order to get practical and useful information in

Chapter 6 and Chapter 7.

1.1.2. Memories

Memory is a big part of any system, and is critical for building a system, today.

According to San Jose-based Gartner Dataquest, by 2005, 70 % of the chip’s surface

will be memory [34], While the embedded microprocessor and DSP (Digital Signal

Processing) cores are essential in defining the system architecture, embedded memory

is key to ensure design manufacturability at cost-effective levels. However, we note

that memory is a magnet for defects during IC manufacturing because it has twice the

defect densities that logic design has [34], With design productivity doubling only

every 39 months, a “design gap” has opened [35]. Design reuse and the availability

of semiconductor IP (Intellectual Property) is being cited as the only way to close this

gap so that silicon is not underutilized and products are not late to market [35].

7

The inspection result from [37] shows a fairly high failure rate of DRAM with

0.35pm design rules; the ratio of electrical failures caused by detected defects is 57%,

and the results obtained on DRAMs (Dynamic Random Access Memories) can be

accurately extrapolated to ASIC (Application Specific Integrated Circuit) products.

Gaitonde [38] describes a methodology to accurately predict the probability of fatal

faults and yield in array-based ASICs using the DEFAM (DEtect to FAult Mapper);

the yield is around 65% under 95% transistor utilization in both the traditional yield

estimation and the circuit-based yield estimation, and in 50% transistor utilization,

yield based on traditional estimates is 70% and circuit-based yield is 75%. The yield

simulator VLASIC (VLSI LAyout Simulation for Integrated Circuits) has been

developed for determining functional yield in [39].

Memories are particularly sensitive to aging as a function of cycling. Failure

analysis is important in the case of high performance systems, such as air and space

assets, where usage of EEPROM [40] is high. The aging process is difficult to study,

as it requires observation times of the order of the lifetime of the systems. It has

been common practice to rely on the thermal stress as a way to accelerate the aging

8

process, thus enabling experimental measurements in a typical laboratory time scale.

On average software changes in an F/A-18 type asset are implemented every 18-24

months, and during these changes, the EEPROM memory banks of the on-board

computers are programmed without avionics removal through a nose wire harness.

During these changes when many memory failures are observed, the verification

of performance of the on-board EEPROM devices is needed. The typical failure

rates of the EEPROM with respect to the aging problem or wear out over time, under

testing of large number of EEPROMs, are 4.35 errors per million device cycles with

first error occurring after around 200,000 cycles. The problem of EEPROM in an

abnormal condition such as a military temperature range is discussed in [41]. The

gate oxide wear out failures and the difference between defect rates in predicted level

and in actual level are discussed in [42] and [43], respectively.

When we consider only stand-alone memory, EEPROM, it is a useful device and

stores nonvolatile data. However, it suffers from a serious deficiency that is absent in

other nonvolatile storage devices. For instance, a magnetic disk has no limit on the

number of erase/write cycles for a location, but the finite number of erase/write cycles

9

for any byte location in EEPROM often limits the disk’s performance and utility.

Today’s technology limits the most commonly used EEPROMs to 100,000 to 1 million

erase/write cycles because the erase function degrades the oxide barrier on the silicon

and eventually leads to failure [36]. If one byte is erased and written per second in

for example, a personal-safety monitor system or full date-and-time stamp system, the

location exceeds its endurance rating in 100,000 to 1 million sec, or approximately

27.7 to 277 hours. Thus, the useful life of the equipment containing this device is to

three and one half to 35 days at 8 hours per day of usage [36]. In other words, this

device must have self-repairing capability so that the lifetime can be extended. This

nonvolatile memory, especially Flash memory, is used in many real life applications;

BIOS (Basic Input/Output System), digital cellular phones, digital cameras, LAN

(Local Area Network), PC cards for notebook computers, digital set-top boxes,

embedded controllers, and other devices.

Also, failure mode analysis of electronic devices is of utmost importance in the

case of high performance systems, such as air and space systems that have a large

amount of memories. It is therefore important to establish the expected lifetime and

10

to understand the failure modes of these components for procurement and maintenance

purposes. With the trend and demand to develop high temperature tolerant

electronics, there is an increasing need for repair methodology not only to assure

performance reliability, but also to qualify commercial off-the-shelf components for

more critical use. This could result in a significant acquisition and maintenance cost

saving. If the repair mechanism is used for testing either during the manufacturing

process or on outgoing products, the test cost will be decreased and the reliability of

the outgoing products will be increased. In other words, it will minimize defect

levels at the production test and thereby promote both the cost efficiency and the

confidence in the reliability of the outgoing products. Therefore, the second main

research target is developing ultra reliable computing systems for high security and

safety applications as well as general purpose applications

1.2. Domain of the Work

This section states the objective of the study and describes the scope of the research.

11

1.2.1. General Research Objectives

The purposes, hypotheses, contributions, and applications of the dissertation are

described in this section.

1.2.1.1. Purposes and Goals

The purpose of this research is to introduce ultra reliable computing systems

based on nonvolatile EEPROM technology; the EPLD (Electrically Programmable

Logic Devices), specially a GAL (Generic Array Logic), and develop a design

methodology including hardware architecture, and the fault-detecting, fault-diagnosing,

fault-locating, and fault-repairing circuitry that allows us detect, diagnose, locate, and

repair automatically of all multiple stuck-at faults in nonvolatile cells and a switching

circuit in a system that we propose in this dissertation.

Purpose of the first project

• Introduce the concept of the self-testable and self-repairable EPLDs for high

security and safety applications.

12

• Prove that a self-repairable GAL will last longer in the field.

• Develop a design methodology (the fault-locating and fault-repairing

architecture with electrically re-configurable GALs); that will allow us to

detect, diagnose, and repair of all multiple stuck-at faults that might occur on

E2CMOS cells in programmable AND plane of a GAL.

• Develop a self-repairing methodology for EPLDs based on our 3 design

architectures;

Column Replacement with extra columns; the respective faulty

elements (E2CMOS cells/cross-points) are replaced with the new ones

(extra columns) by automatic reprogramming of the chip.

Column Re-Use with extra columns; the respective faulty elements

(E2CMOS cells/cross-points) are re-used for columns which have been

already programmed if terms’ personalities would fit the nature of the

existing faults.

13

- OR Replacement with extra columns; the respective faulty ORs are

replaced with the new ones (extra ORs) by automatic reprogramming

of the chip.

Purpose of the second project

• Introduce the concept of the ultra reliable computing systems for high security

and safety applications as well as general purpose applications.

• Prove that the self-healing and re-configurable system design with added repair

capability will last longer in the field and can provide higher yields, lower

testing costs, and faster time-to-market to the semiconductor industry.

• Introduce the concept of a self-testing and the self-repairing switching circuit

based on Demultiplexer structure.

• Develop a design methodology (the fault-locating and fault-repairing

architecture with electrically re-configurable GAL modules and self-testing

and self-repairing switching circuits); that allows us to detect, diagnose, and

repair of all multiple stuck-at faults that might occur on E2CMOS cells in

14

programmable AND plane of a GAL, faulty ORs in a GAL, and faulty lines of

a switching circuit in a system.

• Develop a self-repairing methodology for switching circuits based on our

design architecture; line Replacement with extra lines; the respective faulty

interconnection lines are replaced with the new ones (extra lines) by automatic

reprogramming of the chip.

• Develop an evaluation methodology; Evaluate and analyze all self-repairing

methods and combinations of self-repairing algorithms, Prove that the lifetime

for a GAL-based EPLD that uses our self-repairing methods is longer than the

lifetime of a GAL-based EPLD that uses a single self-repair method or no self-

repair method;

Prove how many extra columns and extra ORs a GAL needs and which

self-repairing method a GAL uses to guarantee a given lifetime.

Prove that our most advanced self-repair algorithm, the cell-column re­

use with extra column and column replacement method, gives the best

results in all the comparisons with our other algorithms.

15

- Demonstrate that the lifetime of a device can be increased by self-repair

capability.

Estimate an ideal point, where the maximum reliability can be reached

with the minimum cost.

• Develop a computer based simulator for implementing our self-testing and

self-repairing hardwired algorithm; Self-repair with redundancy and Self-repair

with no redundancy

Develop a computer based simulator for implementing a micro­

controller, FLFRP (Fault-Locating/Fault-Repairing Processor) that

stores fault location and repair-related data.

- Demonstrate that the lifetime of a GAL can be increased by adding

extra columns in an AND array.

- Demonstrate that the lifetime of a GAL can be increased by adding

extra ORs in an AND array.

- Demonstrate that the lifetime of a switching circuit can be increased by

adding extra lines in a switching circuit.

16

- Introduce the basic concepts of modeling repairable systems as

introductory-level knowledge

- Find how many extra columns a GAL needs to reach a lifetime goal in

terms of simulation looping time until a GAL is not useful any more.

I.2.I.2. Hypotheses

• The following research hypotheses have been formulated;

• There exists a appropriate built-in self-repair circuitry for reliability,

availability, and maintainability

• There exists a efficient self-testing and self-repairing algorithm with no

redundancy

• There exists a computer based simulator to represent a repairable device

accurately and efficiently.

• There exists a general tool to estimate cost-effect factors for self-testing and

self-repairing hardware architecture.

17

1.2.2. Contributions and Applications

• The proposed research will have following contributions and applications;

• Contribute to high security and safety applications with self-repair capability

such as aerospace systems, military systems, and medical instruments.

• Use the self-repairing technique in space, oceanic, and hazardous environments,

where replacement of faulty devices cannot be done manually.

• Contribute to general purpose applications with self-repair capability in many

real life applications; BIOS (Basic Input/Output System), digital cellular

phones, digital cameras, LAN (Local Area Network), PC cards for notebook

computers, digital set-top boxes, embedded controllers, and other devices.

• Contribute to the ultra reliable computing systems which will become a

necessity for next scientific revolution such as nanotechnology.

• Close design gap, faster time-to-market, lower tests cost, and higher yields to

the semiconductor industry.

18

• Contribute our simulator to simulate the self-repair hardware and to verify how

self-repair hardwired algorithms improve the performance of a system in

realistic environment.

• Apply the self-repairing method to a FPGA and be expandable for PLAs or

EXOR PLAs for ESOP, GRM (General Reed-Muller), FPRM (Fixed Polarity

Reed-Muller), and other AND/EXOR canonical forms and AND/EXOR multi­

level circuits.

• Applicable to FPGA (Field Programmable Gate Array) design or ASIC

(Application-Specific Integrated Circuit) design to shrink the design gap more

quickly and affordably by adding redundancy.

• Generalize the stochastic reliable device model and apply it to estimation of

cost-effect values.

19

1.3. Outline

The general statements of the problems are described in Chapter 1. Next chapter

introduces several types of PLDs and GALs structure as well as PLDs’ programming

technology as a prerequisite for our project in this dissertation.

In Chapter 3, the most advanced and related work on memory is described. The

literature for memories is reviewed. Especially, BISTAR embedded memories are

discussed in industrial point of view with a real product in the market. The BIST and

BISR memories from current papers are also examined and evaluated for our project.

In Chapter 4, fault models in the literature are reviewed. Our first project, “self-

repairable EPLDs”, is explained in detail according to several purposes and

contributions; what is the digital system in our approach, and how are the multiple

stuck-at faults detected, diagnosed, located, and repaired using either redundancy or

no redundancy in a GAL. Our fault model, cross-point stuck-at faults in an E2CMOS

cell of a GAL, and assumptions also are in Chapter 4.

In Chapter 5, the main project is stated; the self-healing and re-configurable

system design with added repair capability is described for the ultra reliable

20

computing systems. For high security and safety applications as well as general

purpose applications, a hardware prototype based on EEPROM (Electrically Erasable

Programmable Read Only Memory) technology is also introduced. It is deployed to

design the general fault-repair circuitry for EEPROM-based digital devices.

In Chapter 6, our computer based simulator is introduced, and our hardwired

repairing algorithms are simulated.

In Chapter 7, we analyze and evaluate the simulation results; it demonstrates that

the lifetime of a GAL can be increased by adding extra columns in an AND array of a

GAL and extra ORs in a GAL, and also gives information on how many extra columns

and extra ORs a GAL needs and which self-repairing method a GAL uses to guarantee

a given lifetime. Hardware overhead and performance are also discussed in terms of

the ratio of efficiency versus cost factor. Thus, we can estimate an ideal point, where

the maximum reliability can be reached with the minimum cost.

In Chapter 8, we conclude all the works in this dissertation and discuss potential

future work and trends of the semiconductor industry.

2. Prerequisites for the Self-Repair Technology

This chapter introduces PLDs, especially PAL and GAL, the E2CMOS

programming technology, and the PLDs’ programming procedure.

2.1. Introduction to PLDs

The background of PLDs is briefly explained, and the PAL/GAL, which is our

model of this first project, is described in more detail. The E2CMOS programming

technology and PLDs’ programming procedure are also shown concisely in this sub

section.

2.1.1. What is PLD?

A PLD (Programmable Logic Device) is normally composed of a specific number

of input lines connected through a fixed or programmable array to a set of AND gates,

which are in turn connected to a fixed or programmable array of OR gates [14], The

OR gates provide the output signals from the logic array.

22

Note that a simple array will be used to graphically describe complex PLD

structures: we will use special notation shown below, because a typical PLD has many

inputs, outputs, and product terms. The modified AND input lines, likewise OR input

lines, are also shown to simplify many input lines of an AND gate as in Figure 2.1.

A A B B
A

A

B
B

Figure 2.1 Simplified Notation for Input Lines of an AND Gate

2.1.2. Types of PLDs

There are generally four types of PLDs; PROM (Programmable Read Only

Memory), PLA (Programmable Logic Array), PAL (Programmable Array Logic), and

GAL (Generic Array Logic) [14,44,45].

The PROM has a fixed AND array and a programmable OR array. It is usually

used as memory, and a logic diagram of a PROM is shown in Figure 2.2.

• Fixed

El Programmable

0 0 0 0

f5?! Pi ?! R ?l R ?1 1 \ Outl
12
IS

y 12
?1 R

y 12
?l R

y 12
?1 R

/ _ y
*

Out2K y 12y 12y k . ^ z_ y

Figure 2.2 Basic Structure of a PROM

Ini

In2

0000

Programmable

[S7\ R?! R?l R Outl
12

IS

y 12
Pi

y 12
7\ R

y 12
?l R n Out212y 12 y 12y 12^ U

Figure 2.3 Basic Structure of a PLA

24

Figure 2.3 shows the basic structure of a PLA. The PLA has a programmable

AND array and a programmable OR array. It is invented to improve constraints of a

fixed AND array in a PROM, and can be programmed by users rather than

manufacturers. It is also called to FPLA (Field Programmable Logic Array).

The basic structure of a PAL and a GAL is shown in Figure 2.4.

— • FixedIni

13 Programmable
In2

Outl

Out2

Figure 2.4 Basic Structure of a PAL/GAL

2.1.3. PAL

The Programmable Array Logic (PAL) device is a special case of the PLA. The

PAL is one of today’s most commonly used types of PLDs [12,14,16], It has a fixed

OR array and a programmable AND array, and is the registered trademark of

25

Advanced Micro Devices, Inc. (AMD) in the late 1970’s. The key innovation of the

PAL is the use of fixed OR array and bi-directional input/output pins. The PAL16L8 is

probably the today’s most commonly used combinational PLD structure.

The PAL16L8 has 64 columns (product terms) and 32 rows (inputs), therefore

there are 2048 (64x32) fusible links to be programmed in an AND array. Each of the

64 AND gates in the array has 32 inputs, accommodating 16 variables and their

complements, and each of eight OR gates is associated with output pin in the

PAL16L8. Each product term can be a function of any subset of the 16 inputs. A

simplified logic diagram of a PAL is shown in Figure 2.5. The notation ‘X’ denotes

that the cross-points between each input line and each AND gate is connected with a

fusible link.

26

A
Input

(Rows)
B

B

Product Term
(Columns)

\ / \ /
Fuse Blown

—fDisconnected)

? \ /

\
Fuse Intact

. ^ -^ "(C o n n ec ted)

\

?

?
\ / \ /
/ \ /

X =A B + A B + A B

Figure 2.5 Simplified Logic Diagram of a PAL

2.1.4. GALs Structure

Lattice Semiconductor company introduced GAL devices such as the GAL16V8

in the mid 1980’s. A GAL16V8 has a fixed OR array and a programmable AND array.

The re-programmable array is essentially a grid of conductors forming rows and

columns with an electrically erasable CMOS (E2CMOS) cell at each cross-point,

27

rather than a fuse as in a PAL [16, 17, 18]. The programmed state of a simple logic

function is schematically shown in Figure 2.6.

E2
CM OS

OFF

E2
CM OS

OF!
CMOS

fiZ
CMQS

ON

E2
CM OS

OF!
C M O S

E2
CM OS I— 4

OFF j

E2
CM OS

OFF

X = A B + A B + A B

Figure 2.6 A Programmed Simple Logic Function in a GAL

The GAL16V8 provides 3.5ns maximum propagation delay, 250MHz clocking,

full programmability, low power consumption, and 100 erase/write cycles [16]. Each

column is connected to one input of an AND gate, and each row is connected to an

28

input variable or its complement. Any combination of input variables or complements

can be applied to an AND gate to form any desired product term by programming each

E2CMOS cell to be either ‘ON’ or ‘OFF’. A cell that is ON effectively connects its

corresponding row and column, and a cell that is OFF disconnects the row and column.

The cells can be electrically erased and reprogrammed. A GAL has the programmable

AND array and OLMCs (Output Logic Macro Cells) that contain OR gates and flip-

flops [18]. The E CMOS cell makes our self-repairing methodology possible. Thus,

we choose as our model in this project the GAL16V8, which is a simple low density

PLD.

For the more detailed description of pins and configurations the reader is referred

to a GAL data book from Lattice Semiconductor, Inc. The sixteen primary inputs

which include feedback paths from the OLMC are considered for this project, thus

there are 32 input lines, which come with complements of each input variable, in the

AND array. The eight primary outputs and eight product terms per an OLMC are

considered in our model, thus there are 64 (8X8) product terms in this model.

Therefore, the total number of E2CMOS cells (cross-points) is 2048.

29

i i ; > r>~
a 4 8 12 16 20 24 28

0000

0224

2 O —1>=-
0256-

0480-

0512-

0 7 3 6 -

4 I > —f c c

0768-

0992 -

5 D —Dc
1024-

1248-

« o - c *
1280 -

1504-

2 1 >..
1536-

1760-

* o —o=
1792“

2016 —

9 C3—0=

_ o —I

=<k

OLMC

XOR-2048
AC1-2120

- o - a

-o— OLMC

XOR-2049
AC1-2121

=<P

-S-”
- o -
=<F1

OLMC

XOR-2050
AC1-2122

-{>-r-£23 12

- o —
- o —
- o —

OLMC

XOR-2051
ACl-2123

HO—

OLMC

XOR-2052
AC1-2124

OLMC

XOR-2053
AC1-2125

- N t C T 14

-0-1
- o —

qcCK1

OLMC

XOR-2054
ACt-2126

- j V r f l 13

-o—i

*
OLMC

XOR-2055
AC1-2127

- J > — EZ3 12

— a ii
2191

Figure 2.7 Structure of the GAL16V8

30

2.2. Programming Technology

The PLD has a generalized structure as an array for data inputs and each gate to

program PLDs. The OR arrays can implement logical sums and the AND array can

implement logical products. These arrays use the fusible link or the E2CMOS cell to

make connections between the data input lines and the gate input lines.

2.2.1. Fusible Link

Figure 2.8 and Figure 2.9 schematically show the basic structure and non­

programmed/programmed states of which the PLDs are programmed in an OR array

and an AND array with fusible links.

A

A

B

B

XI X2 X3

1 \ 1

1

X,
1

\
1

(a) Non-programmed

V 0 V.
XI = A + B X2 = A + B X3 = A + S

(b) Programmed

Figure 2.8 (a) Non-Programmed State and (b) Programmed State in Basic Structure of an OR-

Array

31

1

, '% ► i

"> »

v .
Xx.*<1 ' x

►

Q W
X2XI

(a) Non-programmed

X3

A

A

B

B

XI = A B X2 = A B X 3 - A B

(b) Programmed

Figure 2.9 (a) Non-Programmed State and (b) Programmed State in Basic Structure of an AND-

Array

2.2.2. E2CMOS Programming Technology

The E2CMOS technology is based on a combination of CMOS and NMOS

technologies and is used in GALs [45]. The following figure shows an E2CMOS cell

structure.

32

P a ss T ra n sistor
B it L ine

(D a ta Input)
W ord L in e

Su bstrate

F loa tin g Gate"

C o n tro l G ate

C ell G roun d
(G ate Input)Sense T ra n sistor

Figure 2.10 E2CMOS Cell

The cell is programmed by applying a programming pulse to either the control

gate or bit line of a cell that has been selected by a voltage on the word line. During

the programming cycle, applying a voltage to the control gate to make the floating

gate negative first erases the cell. This leaves the sense transistor in the OFF (storing a

1). A write pulse is applied to the bit line of a cell in which a 0 is to be stored. This

will charge the floating gate to a point where the sense transistor is ON (storing a 0).

The bit stored in the cell is read by sensing presence or absence of a small cell current

in the bit line. When a 1 is stored, there is no cell current because the sense transistor

is OFF. If a 0 is stored, there is a small cell current because the sense transistor is ON.

33

Once a bit is stored in a cell, it will remain indefinitely unless the cell is erased or a

new bit is written into the cell. If the E2CMOS is ON, data input can be transmitted to

the gate input (AND gate input of a GAL). If the E2CMOS is OFF, data input cannot

be transmitted to the gate input (AND gate input of a GAL). The bit line (data input)

and the cell ground (gate input) of Figure 2.10 are corresponding to the horizontal line

and vertical line of Figure 2.6, respectively. The word line and the control gate are not

shown in Figure 2.6.

2.2.3. PLDs’ Programming Procedure

Generally, it needs a programming software (a logic compiler), a personal

computer which mounts the software, and the software-driven programmer to program

PLDs. A personal computer should satisfy requirements of software and programmer,

like microprocessor type, memory amount, OS, and etc. ABEL, CUPL, OrCAD-PLD,

LOGiC, PLDesigner, TANGO-PLD, and others can be used as the programming

software. These software packages operate and synthesize the logic designs, transform

these logic designs into intermediate files, produce JEDEC (Joint Electronic Device

34

Engineering Council) files, and simulate and debug these logic designs. The JEDEC

file which has cross-point’s programming information is also called Cell Map or Fuse

Map. Boolean equation, truth table, state machine, schematic, timing waveform,

hardware description, and etc. are used as a method of presenting logic designs to the

programming software. Finally, according to the Fuse Map of JEDEC file, software-

driven programmer implements PLDs after a PLD is put on programmer socket, called

ZIF (Zero Insertion Force) socket.

To implement logic designs on PLDs, designer has to specify them with Boolean

equations or other specifications. The produced input or source file is put on

programming software, and debugged by syntax error checking. These are compiled

and the compiler minimizes the logic. The logic designs are simulated with a set of test

vectors. The programming software provides JEDEC file, and this file is downloaded

into a programmer. The Fuse Map has cross-point information, in a GAL case, it will

tell whether E2CMOS cell is ON or OFF. The flowchart of this procedure is shown in

Figure 10.

35

Start

Modify
Design Specified Logic Circuit

Edit
Input (Source) File into a Computer

Yes
Syntax Error?

No

Compiling Input File &

Minimizing Logic

Simulation

Yes
Design Fault?

y No

Compiler makes JEDEC file (fuse map) &

Downloading into Programmer

Programmer burns Fuse Map Compiler makes

into a PLD Array Documentation File

Figure 2.11 PLDs’ Programming Procedure

3. Previous Work on Self-Test and Self-Repair

3.1. Self-Healing Memories

Most of the research activities on self-repair techniques were focused on FPGA

[65,66,67,68,69]. BIST and BISR schemes have been proposed as potential solutions

to the problem of repairing memories, mainly at the manufacturer level

[70,71,72,73,74,75,76]. Recently, new techniques have been introduced to perform a

memory repair through self-reconfiguration of the addressing space [77,78,79], The

paper [78] considers a column-only repair strategy to simplify the spare allocation

procedure, and the paper [80] introduces on-line BIST RAM architecture based on

cell-only redundant space allocation at the user level. In this section, several types of

memories are described and the self-healing memories are reviewed from the literature.

The self-testing and self-repairing algorithms are examined as well as the hardware

architecture designs. The trend and product of the BISTAR embedded memories are

introduced from the industry in this section.

37

3.1.1. Introduction to Memories; SRAM, DRAM, and Flash Memory

3.1.1.1. SRAM

SRAM is random access memory that retains data bits in its memory as long as

power is being supplied. Unlike dynamic RAM, which stores bits in cells consisting of

a capacitor and a transistor, SRAM does not have to be periodically refreshed. Static

RAM provides faster access to data but is more expensive than DRAM. SRAM is used

for a computer's cache memory and as part of the RAM digital-to-analog converter on

a video card.

3.1.1.2. DRAM

Dynamic random access memory is the most common kind of RAM for personal

computers and workstations. Memory is the network of electrically charged points in

which a computer stores quickly accessible data in the form of Os and Is. Random

access means that the PC processor can access any part of the memory or data storage

space directly rather than having to proceed sequentially from some starting place.

38

DRAM is dynamic in that, unlike SRAM, it needs to have its storage cells refreshed or

given a new electronic charge every few milliseconds. Static RAM does not need

refreshing because it operates on the principle of moving current that is switched in

one of two directions rather than a storage cell that holds a charge in place. DRAM

stores each bit in a storage cell consisting of a capacitor and a transistor. Capacitors

tend to lose their charge rather quickly; thus, the need for recharging.

3.1.1.3. Flash Memory

Flash memory (sometimes called "flash RAM") is a type of constantly powered

nonvolatile memory that can be erased and reprogrammed in units of memory called

blocks. It is a variation of EEPROM that, unlike flash memory, is erased and rewritten

at the byte level, which is slower than flash memory updating. Flash memory is often

used to hold control code such as the basic input/output system (BIOS) in a personal

computer. When BIOS needs to be changed (rewritten), the flash memory can be

written to in block (rather than byte) sizes, making it easy to update. Flash memory

gets its name because the microchip is organized so that a section of memory cells are

39

erased in a single action or "flash." The erasure is caused by Fowler-Nordheim

tunneling in which electrons pierce through a thin dielectric material to remove an

electronic charge from a floating gate associated with each memory cell. Intel offers a

form of flash memory that holds two bits (rather than one) in each memory cell, thus

doubling the capacity of memory without a corresponding increase in price.

3.1.2. Research on the BISTAR Embedded Memories: Trends and

Products

Several parallel processors which have self-repair property based on

processor/switch level reconfiguration have been presented in literature and some of

them have been built [51,52,53]. The research on memory faults has been published in

which the faults were localized and ICs were repaired in the production process by

laser trimming or other techniques. However, laser repair is becoming increasingly

expensive and is requires dedicated expertise. Now, the fuse based hard repair turns

into soft repair, namely Built-In Self-Repair (BISR), which includes the storage of

repair data and controls the soft reconfiguration mechanism. Yervant Zorian said the

40

integrated BIST and self-repair on the chip is becoming more feasible in the growing

numbers of ICs with embedded DRAM and system-level LSI integrated circuits [63].

Today’s large embedded static/dynamic RAM and flash memories are cases in point

[54], A highly reconfigurable Built-In Self-Test, Diagnosis, and Repair (BISTDR)

solution for embedded DRAMs has been deployed by Genesys Testware and is a part

of Memory BIST core. Embedded memories are the most dense components within a

system-on-chip, accounting for up to 90% of its real estate. Memories also the most

sensitive to process defects [55], The following two subsections are mainly described

in [55,64].

3.I.2.I. Why BIST

The complexity of today’s ICs demands that embedded memory testing be taken

further than traditional pass/fail testing. As the geometries of ICs become increasingly

concentrated, new techniques such as diagnostic testing and built-in self-repair must

be implemented into the devices. Many embedded memories are designed with built-

in redundancy, which provides spare rows and columns that can replace failing

41

locations. Redundancy enables the manufacturer to repair a number of otherwise

defective devices to ensure maximum production yield [55].

These issues are being addressed by the use of built-in self-test (BIST). BIST is

the methodology of choice for testing embedded memories within SoC. It offers a

simple and low-cost means to test for failures of embedded memories without

significantly impacting device performance.

While it has been used primarily for production pass/fail testing, BIST can be

extended to provide the diagnostic data required for process monitoring and repair.

Although the area overhead required by the BIST circuitry is increased, designing the

diagnostic circuitry into the BIST provides many advantages in terms of time for both

setup and test [55,56,57]. The overview of memory testing procedures and the BIST

are found in [55,58,59,60,61,62,64].

• BIST advantages

Lower cost of test

Better fault coverage

42

- Possibly shorter test times

- Tests can be performed throughout the operational life of the chip

• BIST disadvantages

Silicon area overhead

- Access time

- Requires the use of extra pins

- Correctness is not assured

• BIST Circuitry

In the basic BIST architecture, each memory is tested by a BIST block that

supplies a series of patterns to the memory, usually march tests or checkerboard

patterns, and then compares the outputs against a set of expected responses. Because

the patterns are highly regular, the outputs from the memories can be compared

directly to the reference data using a comparator. This ensures that an incorrect

response from the memory will be immediately flagged as a test failure.

Two schemes have proven popular. The first uses the BIST circuitry to identify

each failing location and then to serially scan out the fail data. Figure 3.1 illustrates

43

how this process is added to the basic BIST architecture. The BIST controller is

augmented with additional circuitry and has an additional debug enable input (debugz)

and scan output (scan out).

System inputs

Memory
wen

BisLen wen

Data
clock

Datajn
Address

reset
Address

debugz Data out

FaiLfiag

Diagnostic Register Scan_out

Test _done

Figure 3.1 The BIST Augmented Architecture

The BIST controller operates in two modes: production BIST and diagnostic BIST.

In production BIST, the BIST controller performs the default test and quickly

identifies a passing or failing device. The failing devices then are run off-line using the

44

diagnostic BIST mode. In this mode, when the BIST controller detects a mismatch, it

will suspend the application of the test, and the failing data will be serially scanned out

of the controller through the scan out port. The failing data scanned out consists of the

data output from the memory, the address at which the failure occurred, and if required,

the actual operation within the test algorithm being applied. This scheme requires only

two additional ports per BIST controller and an interrupt handling mechanism in the

tester software to detect the failure and capture the fail data. And because only the

failing data is extracted from the device, this method ensures that additional

application time is minimized. The total testing time depends on the number of failures

in the test and may not be identical from device to device. For devices with few

defects such as those manufactured in mature processes, this method is an effective

means of extracting fail data.

A second mechanism makes use of a small diagnostic data bus and repeats the

BIST operation many times to view a different slice of the memory output for each run

[57]. Because the entire memory bit map is captured, a large requirement is placed on

ATE (Automatic Test Equipment) pattern memory, usually resulting in a longer test

45

application time than the scan method. The application time, although longer, is

uniform for each corresponding memory regardless of the defects present. A memory

test option (MTO), if available on the ATE, can relieve the large memory requirements

of the pattern memory [56]. The MTO generates patterns algorithmically and can be

configured to create identical patterns to the BIST and be used as the reference source.

3.I.2.2. Redundancy and Repair

The use of redundancy and repair is not uncommon today, but the process of

repair is tedious because it traditionally has required the use of external lasers. Built-In

Self-Repair goes hand in hand with BIST as it simply takes advantage of the on chip

processor to route around bad memory bits rather than using expensive and slow lasers

to bum out bad memory rows. Typically, only a log of the address locations for each

failure is required. For self-repair, only defective address locations must be logged.

These are decoded on-chip to identify the failing rows or columns.

Figure 3.2 shows architecture for the BIST required to interface with self-repair

(column repair) [55]. On each mismatch, the fail flag latches the address value onto

46

the decoder which identifies the failing column. At the end of the test, the number of

defective columns is compared to those available within the redundancy.

System Inputs

Bist en

clock

reset

debugz

Repair_en

Memory
wen wen

Data
DataJn

Address

I - Address

Data out

BISR

Diagnostic Register

FaiLflag

Overflow

Test _done

Figure 3.2. BIST Architecture with Column Repair

During the repair process, the repair circuitry is loaded with the values of the

columns to be repaired. Once the repair is completed, the BIST is rerun to ensure that

the repair produces a functional device.

47

3.I.2.3. Self-Testing and Self-Repairing Algorithms

The deterministic test algorithms for DRAM chips and Dipilp Bhavsar’s

algorithm are examined in this sub section.

A truly random design will surely be much smaller than a deterministic one. It

would be necessary to build a LFSR (Linear Feedback Shift Register) to produce

pseudo-random patterns, but this is much smaller than the counters needed for a

deterministic test. It is also important to note that this would not be a truly random test

but a repeatable test based on the initial seed. The standard methods of data testing is

either to operate in parallel on multiple memory blocks and then check if they concur

on a read, or use a set of known seeds and have a compacted form of the output stored

as reference output values [64,81,82].

Deterministic memory test algorithms fall into two main categories

[64,81,82];

• March Tests:

- A March test is a finite sequence of tests to be preformed on every cell

in the memory array before moving on to the next cell.

48

- All cells of the array are subjected to these same tests and traversed in

order, either forwards or backwards.

- Runs in time ranging from 4n to 17n.

Can cover all address faults, stuck-at faults, coupling faults

(independent), inked coupling faults, transition faults, and transitions

faults linked with coupling faults.

• Neighborhood Pattern Sensitive Tests (NPST):

- A NPSF tests every cell of the memory in relation to its set of 5 or 9

neighboring cells (including the base cell).

- Tests run as long as 195n.

Test covers the class of active, passive, and static neighborhood pattern

sensitive faults.

These include stuck-at faults and all coupling and transitional faults

between physically adjacent memory cells.

49

Bhavsar’s algorithm [83];

• It generates and analyzes the required failure-bitmap information on the fly

during self-test and then automatically repairs and verifies the repaired RAM

arrays.

• It is concept of the condensed maximally repairable sparse failure array.

• It is divide-and-conquer strategy;

- First, partition a large RAM array into small, identical segments

- Second, repair each segment independently of the others.

- Next, provide a spare row and a spare column for each segment.

3.I.2.4. The STAR (Self-Test and Repair) SRAM Embedded

Memory

Virage Logic Corp. claimed development of the industry’s first on-chip self-test

and repair memory solution for the system-on-chip design. This STAR memory

system does not need a expensive ATE and larger-repair tools. Currently, there are

three versions of the STAR SRAM (single port 4Mbit and 512Kbit, and dual port

50

256Kbit). Its test and repair algorithm comes in the form of hardwired logic gates and

will fix as much as 99% of the bad bits in an SRAM [78,84]. The test and repair

architecture takes advantage of redundant rows and columns of memory. There are 4

test and repair logic components; foundry-specific BIST algorithm, built-in self-

diagnostics, repair and redundancy allocation logic, and reconfiguring algorithm for

the row and columns to be topologically efficient. The STAR memory system

architecture is shown in Figure 3.3.

JTAG P 1500
STAR

1149.1 Processor

Fuse

1 MB
STAR
SRAM

Wrapper
1MB
STAR
SRAM

Intelligent
Wrapper

1 MB
STAR
SRAM

Figure 3.3. STAR Memory System

4. Self-Testing and Self-Repairing EPLDs

The concept of the self-testable and the self-repairable EPLDs (GAL-based

structure) for high security and safety applications is described as our first project in

this chapter. We developed the fault-locating and fault-repairing architecture with

electrically re-configurable GALs to allow detection, diagnosis, and repair of all

multiple stuck-at faults that might occur on E2CMOS cells in a programmable AND

plane of a GAL. Three self-repairing methods are presented based on our design

architecture: a column replacement method with extra columns; and two column re­

use methods with extra columns, one using the whole column’s re-use (simply called

column-column re-use) and the other using the only cell’s (E2CMOS cell’s) re-use

(simply called cell-column re-use). In first case the respective faulty elements

•y

(E CMOS cells, also called cross-points) are replaced with the new ones (extra

columns) by automatic reprogramming of the chip. In the latter two respective faulty

<y
elements (E CMOS cells/cross-points) are re-used for whole columns or only cells

which have been already programmed, if a terms’ personalities would fit the nature of

the existing faults. All three self-repairing methods use a FLFRP (Fault-

52

Locating/Fault-Repairing Processor), diagnosis/repair bus and the memory that stores

fault location and repair-related data. In Chapter 7, we propose an evaluation

methodology for this project. Our methodology is based on simulating the self-repair

algorithms. It shows that the lifetime for a GAL-based EPLD that uses our self­

repairing methods is longer than the lifetime of a GAL-based EPLD that uses a single

self-repair method or no self-repair method. It demonstrates that the lifetime of a GAL

can be increased by adding extra columns in an AND array of a GAL, and also gives

information on how many extra columns a GAL needs to guarantee a given lifetime.

Thus, we can estimate an ideal point, where the maximum reliability can be reached

with the minimum cost.

4.1. Design Methodology of Self-Repairable GALs

In this section, we develop a design methodology for self-repairing an E2CMOS

cell in the programmable AND plane of a GAL, describe our fault model and

assumptions, and develop universal test set for detecting and locating faults on each

cross-point (E2CMOS cell) [47, 48, 49].

53

4.1.1. Fault Model and Assumptions

Fault modeling is concerned with the systematic and precise representation of

physical faults in a form suitable for simulation and test generation [19]. Such a

representation usually involves the definition of abstract or logical faults that produce

approximately the same erroneous behavior as the actual physical faults [19]. Good

fault models should be straightforward, accurate, and easy to use. The most widely

used fault model is the stuck-at fault model, which has been used for fault analysis and

test generation in all types of logic circuits [19, 20], While exact coverage figures are

difficult to obtain, substantial empirical evidence shows that for general combinational

or sequential logic circuits implemented with common MOS (Metal Oxide

Semiconductor) or bipolar technologies, the stuck-at fault model provides good

coverage of permanent physical faults [21, 46]. The most dominant failure modes in

CMOS are shorts and opens [22], In a switch-level representation of a CMOS circuit,

MOS transistors are modeled as switches that conditionally transfer signals. The stuck-

open fault model assumes that a faulty transistor never switches on (permanently

disconnected), while a stuck-on fault model assumes that a faulty transistor never

54

switches off (permanently connected) [22], The fault model for the memory cell array

is presented in [21] and [46]; one or more cells are stuck-at 0 or 1. The functional

defect (functional level fault model), which is very useful for describing a wide variety

of faults, is introduced in [46]. Functional defects are those that will cause a functional

failure or degradation in functional performance either immediately or in the short

term [43].

The cross-point stuck-at faults, which are located in E2CMOS cells, are

considered as our fault model because E2CMOS cells of an AND array make up a

large percentage of a GAL and the E2CMOS cells’ array has the same structure as an

EEPROM (Electrically Erasable Programmable Read Only Memory). Each E2CMOS

cell (cross-point) of a programmable AND array of a GAL, which is located between a

vertical line (row, input line) and a horizontal line (column, product term), may be ON

or OFF permanently, caused by an aging problem or by other factors referred to in

Chapter 1. It is called the cross-point stuck-at-1 (simply, s-a-1) if the E2CMOS cell of

a particular cross-point, which should be programmed as OFF, is ON. If the E2CMOS

cell of a particular cross-point, which should be programmed as ON, is OFF, it is

55

called the cross-point stuck-at-0 (simply, s-a-0). Only these faults will be considered in

this first project because we assume that there are no faults found in a GAL after the

manufacturing process. Note that horizontal lines and vertical lines represent product

terms and data inputs, respectively in a data book, but rows will be represented as data

inputs and columns will be used as AND gates product terms in the rest of figures in

the following sections.

The following assumptions will be used for the design, self-repair and evaluation

methodologies. The GAL is initially fault free after manufacturing. The primary

input/output fault does not exist in a GAL, and also every AND gate input line does

not have faults. For GALs, the cross-point stuck-at faults are considered much more

probable than the stuck-at faults in wires. The cross-point faults (s-a-0, s-a-1) as

defined above are only taken into account in this first project. If the E2CMOS cell is

ON, binary data ‘ 1 ’ will be stored in memory, and if the E2CMOS cell is OFF, binary

data ‘O’ will be stored in memory.

In order to replace a faulty column, several extra columns are built into each OR

gate (OLMC) in a GAL. There are at least two E2CMOS cells programmed as ON for

56

a pair of input variables, like A and complement of A. Thus, an AND gate product

term (column) can be discarded safely from the OR gate without changing an OR

function even though the faults are appeared in certain cross-points of that column.

When a fault occurs in a certain column of a particular OLMC, this faulty column can

be replaced with an extra column only in that OLMC. When an E2CMOS cell is OFF,

it can be called ‘programmed as OFF.’ This cell disconnects a primary input from an

AND gate input, and ‘ 1 ’ will be on the AND gate input. It will be described with just

an intersection between a row and a column in a logic diagram. When an E2CMOS

cell is ON, it can be also called ‘programmed as ON’. This cell connects a primary

input to an AND gate input. It is denoted by ‘X’ between rows and columns in a logic

diagram.

57

C M O S Cell "OFF"!

E2 C M O S Cell "ON" |a

a

b

b

a»b + a»F a«b + a»F

Figure 4.1 Example of a Logic Diagram Notation

4.1.2. Design Architecture

The complete digital system in our first approach is shown in Figure 4.2, and it is

a network of blocks realized as separate integrated circuits. Each block is a two-level

realization of a Boolean function, and is realized with a GAL. FSMs (Finite State

Machines) are composed of Boolean Logic and registers located in OLMCs. This

seems to be reasonable since, as the EPLD/FPGA (Field Programmable Gate Array)

58

technology advances, functions and machines of even greater sizes can be

implemented in them. Reprogramming of a GAL serves to replace defective gates in

Data Data

EPU>
Memory

EPLCT
Memory

EPU>
Memory

Comb national
Logic

EPU>
Memory

EPU>
Memory NC

EFU>
Memory

EPU>
Memory

Figure 4.2 Cellular Array of EPLDs/Memory in a System; controlled by a FLFRP (Fault-

Locating/Fault-Repairing Processor) to repair faults in each EPLD/memory

that GAL. The proposed method assumes that when the redundant area to create gates

(i.e. the extra columns) in a block is exhausted and there are no more columns to

replace a newly found defective gate, the controller will signal a global go/no-go

signal. The block can be a single module (a chip, a board) or different modules. In the

59

first case, the module should be replaced, and in the second case, the modules and

their connections should be tested independently. We assume that each block includes

just one self-repairable GAL. Thus, each block has a programmable AND array with

several extra columns and fixed OR (OLMC) plane.

At this point, we consider the problem of getting the maximum usefulness from

each block in a system at the lowest level, when the system degrades over time with

new faults arising in a block that has already been tested in the manufacturing process.

The following figure shows the general scheme of the design architecture for a

self-repairable GAL. It uses extra columns in the AND plane, Scan Registers (SCR1

and SCR2), Diagnosis/Repair Bus, and a FLFRP which has a MAP (Memory AND

Plane), a SAP (State AND Plane), a NC (Next Column) Register, three Scan Registers

(SCR3, SCR4, and SCR5), a Comparator, a Central Fail-Safe Maintenance Controller,

and Data Path/Addressing Unit. The FLFRP can be realized with a micro-controller.

In the normal operation mode, the primary input data are fed into an AND plane

and the product terms of the AND plane are just transparent through the SCR2 into the

OR plane. In the test mode, the SCR1 will have a test vector fed from the controller of

60

the FLFRP. The SCR2 then receives a scanning result corresponding to a test vector

from the SCR1. This result is sent on the Diagnosis/Repair bus to the SAP of the

FLFRP. The Diagnosis/Repair bus is assumed to include control, data, and address bus.

n = # of Inputs (Rows) (n = 32 in a GAL16V8) (Fixed)
k = # of Outputs(OLMCs)(k=8 in a GAL16V8) (Fixed)
m = # of Products Terms (Columns) (m =64 ina GAL16V8) with Extra Columns in a GAL (Variable)
y = # of Products Terms (Columns) (y = 8 in a GAL16V8) with Extra Columns in a OLMC (Variable)

Block 1

Repair Bus

Primary!
Inputs |

Block 2

Primary i
Outputs j

Block j

FLFRP (Fault Location / Fault Repair Processor)

SCR2GAL Programmer

Fixed OLMC Plane (k i m Matrix)

Programmable AND Plane with Extra
Columns (nx m Matrix)

Figure 4.3 Design Architecture for Self-Repairable GAL

61

The bus is serial to decrease the pin-out of the chip. The ‘i’ denotes the number of

primary inputs in an AND plane of a GAL. The ‘n’ denotes the total number of inputs

in an AND plane of a GAL, including feedback and complement of the primary inputs.

The ‘k’ denotes the number of primary outputs in an OR plane of a GAL. The ‘m’

denotes the number of product terms (columns) in a GAL. The ‘y’ denotes the number

of product terms that each OR gate has in an OR (OLMC) plane, thus each OR gate

has the same value of ‘y \ The detailed inner structure of the block is shown in Figure

4.4.

There are ‘n x m’ cross-points, which are programmable with E2CMOS cells in

the AND plane. The ‘n’ is said to be the number of rows (inputs), and the ‘m’ is said to

be the number of columns (product terms). The ‘i (=16)’ includes the feedback input

from the OLMCs, thus the total number of rows (inputs) is 32 (= n). Each bit of the n-

bit SCR1 corresponds to 1 row. The extra column means that there are several extra

product terms in each OR gate of the OR plane of a GAL. We assume that there are the

same number of extra columns in each OR gate, also called the OR group. If there are

8 OR gates in an OLMC plane of a GAL and ‘y’ number of columns, which includes

62

extra columns, in each OR gate of a fixed OR plane, the total number of columns is

‘m’ = ‘8’ x ‘y’ as shown in Figure 4.13. It is the same as the length of the SCR2.

r : Row

c : Coluim Block j

Progranxnable AND Plane with Extra Coluims (n x m Matrix) 8\ = in

 I H H I

Primary
Inputs

r (n-1)
— - — -----------------

r(n=32)
- — - —i H H i I H H IiOQ CuU

n-lr(i-l)
r(i=16)

SCR2

OLMC 1 OLMC 2

Primary i
Outputs !

r M
Fixed Point

Fixed OLMC Plane (k x m Matrix)

Figure 4.4 Inner Structure of the Block

63

The MAP stores original personalities of data being programmed into the AND

array. It is the same as the information of the Fuse Map, thus this MAP is an ‘n’ x ‘m’

matrix. The SAP is exactly the same size array as the MAP. It has information about

the actual state of each cross-point of an AND plane after testing. It will show the state

of stuck-at faults on the cross-points. It includes both the actual state as well as the

stuck-at fault information. It will be compared with the MAP to find and locate faults.

SCR3 and SCR4 load the data column by column from the SAP and the MAP,

respectively. The comparator compares these two data with each other. The

comparison operation can be realized in few ways. We use the ‘minus’ operation.

The SCR4 is subtracted from the SCR3 bit by bit. If the result of subtraction is ‘O’,

then the cross-point, corresponding to that bit is correct which means that it has no

fault. If the result is ‘-1 ’, then it has stuck-at-0 fault, and if the result is ‘1’, then it has

stuck-at-1 fault in the AND plane. An EXOR (Exclusive OR) gate could be used to

detect the existence and location of faults, but it could not tell whether the fault

occurred was stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1). Therefore, the proposed design

uses the ‘minus’ operation circuit instead of the EXOR logic. The MAP and the NC

64

register data will use these compared results to reprogram the AND plane. Due to the

inverters, the SCR5 has the complementary data from the SCR2. Since the SAP should

have exact information of each E CMOS cell (cross-point) after testing, the MAP

should be compared with the SAP that includes the inverted data from the SCR2. This

will be described in more detail in sub section 4.1.3.

The structure of MAP and SAP is shown in Figure 4.5. If a certain bit has ‘1’, the

corresponding cross-point (E2CMOS cell) is ‘ON’, and if a certain bit has ‘O’, the

corresponding cross-point (E CMOS cell) is ‘OFF’.

Inputs c
1

c
2

c
8v-l

c
8y

rl 1 0 1 1
r2 0 1 1 1

r (n -1) 1 0 1 I
r (n = 32) 0 1 1 1
r : Row c : Column 1: ON 0 : OFF 8y = m

Figure 4.5 Structure of MAP and SAP Arrays

65

The NC (Next Column) register informs about the status of each column in each

OR group. As shown in Figure 4.6, each row represents an OR gate, and each column

represents an input of an OR gate.

Primary
Outputs

c
1

c
2

c
y - i

c
y

orl 0 0 l l

or2 -2 0 0 l

iiiiiiiiiii
•

I
i
i
i
i
i
i
i
i
i
i
i
i
i
<
i
i
i
i

i
i
i
i
i
i
i
i
i
i
i
t
i
i
i
i
i
i
i

1
1
1
1
1
1
1
1
1

1
<
i
i
i
I
i
i
i

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

or (k -1) -1 0 i i

or (k = 8) 1 1 i l

0: Column being used 1: AvailbleColumn to replace or re-use

-1: Unavailable Column to replace or re-use -2: Available Column to replace only

c: Column in a OR gate or: OR Group

Figure 4.6 Structure of the NC Register

66

There is ‘y’ number of columns in the NC since each OR gate has ‘y’ number of

columns. There is ‘k’ number of ORs in this NC. In the GAL16V8, ‘k’ will be 8 since

it has 8 OLMCs. The intersection of a row and a column being ‘O’ in the NC means

that the corresponding column of that OR is being used. If it is ‘ 1’, then that column is

useful for reprogramming a new logic function, replacing, or re-using a faulty column.

It can be also considered as an available extra column to repair faulty columns. The ‘-

1 ’ means that the column corresponding to that location of the AND plane can not be

used to repair a faulty column or to reprogram a new logic function. The ‘-2’ means

that if this column becomes faulty, it can only be replaced with an extra column,

because it is assumed that the column was already repaired with the Column Re-Use

method, and thus it can be only repaired with the Column Replacement method rather

than with the Column Re-Use method. This self-repair method will be explained in

section 4.2.

67

4.1.3. Test Generation and Fault Diagnosis/Location

All stuck-at faults, mentioned in section 4.1.1, on cross-points of a GAL can be

determined by a pattern. We have a universal test set for detecting faults. We use well-

known walking 0 technology.

This test vector set, which is provided by the FLFRP, can find whether the fault is

an ‘s-a-0’ or an ‘s-a-1’. It can determine the exact location in which the cross-point is

faulty. All multiple faults of a column in an AND plane can be detected and located by

this test set. The length of a test vector is n bits and the ‘n’ test vectors are needed to

test if there are ‘n’ inputs because only one bit has ‘0’ value in a test vector and it

should affect each row. It detects the faults row by row in the AND plane. The FLFRP

initializes SCR1 to ‘Oil... 11’, and this initial test vector will be shifted ‘n-1’ times

from left to right. In this first test vector, the first bit is only ‘0’ and others are ‘l ’s. The

value of ‘0’ in the first bit is fed into the first row (input), and it will affect the cross-

point that is programmed (connected) as a value of ON. In other words, the result of

this AND gate should be ‘O’, but if the output of this AND gate is a ‘ 1 ’, it will be a s-a-

0 fault. On the other hand, the value of ‘0’ fed into the disconnected cross-point does

68

not affect the output of the AND gate. However, if the output of this AND gate is a

value of 0, it will be an s-a-1 fault. Thus, all faults are detected by this universal test

set, and it is shown as follows.

❖ Test Vector Set (Test Pattern)

1 2 3 ... n-1 n (inputs)
0 1 1 . . . 1 1
1 0 1 . . . 1 1
1 1 0 . . . 1 1

1 1 1 . . . 0 1
1 1 1 . . . 1 0

A simple example in which an AND plane has 16 cross-points (4 inputs times 4

columns) is shown in Figure 4.7. The procedure of generating the test set in SCR1,

and next storing the scanning result from SCR2 into the SAP is illustrated as an

animated sequence in this Figure. In Figure 4.7, the symbol ‘X’ denotes a programmed

value of ON in the respective intersection of a row and a column.

This example assumes that there are no faults in the AND plane. The first test

vector ‘0111’ generated by the FLFRP is stored in the SCR1. This vector is fed into

each input line as shown in Figure 4.7. The first bit of the SCR1, ‘0’ cannot affect the

69

output of the first AND gate since the cross-point of cl (the first column) and rl (the

first row/input) is OFF. Thus, the first bit of SCR2 has ‘ 1 The second bit of SCR2 has

‘O’ since the first bit ‘O’ of the SCR1 is fed on the second AND gate according to ON

of the cross-point of c2 and rl, and so on. The scanning result ‘1001’ of the SCR2 is

transmitted through the diagnosis/repair bus to the SCR5 after inverting this data as

shown in Figure 4.7. This inverted data ‘0110’ is stored on the first row of the SAR

70

Test Vector Set

1st 2nd 3rd 4th

"serar “SCHT
c l c2 c3 c4

r l

r3

\ f \ f 0

l
i

i

\
/

f

k ? k
Nf ^

\ \ / ^

\
)

f

k
\

)

f

k *

Lie®:::) V y V V
r-K x r-^ M o I o I i

1 st Test
Vector

cl c2 c3 c4
r l h
r2 1 1 1 T]
r3 1 1 1 1 ii
r4 1 1 1 1 i

"§CR5* "T-- I I I
0 1 1 0

c l c2 c3 c4

r l
r2
r3
r4 ■

\ f Nf 1

0
1

1

J

f

k / k
/ ^

\
)

f

k
\

)

f

k ^
) k ' k 1

'SCrT'

SAP

I TTT
2nd Test
Vector

ICRs
\

0 1 1 0
cl c2 c3 c4

r l 0 1 1 0
r2
r3 1 1 1 1
r4 1 1 1 1rrrr

1 0 0 1
(a) First Step

cl c2 c3 c4 V
“SCrT'

(b) Second Step
SCr i '

r l

r3

1
1
0
1

\ / *k *

f \ f

3rdTest
Vector

l .sap:

V

1 0 1 0

cl c2 c3 c4
r l 0 1 1 0
r2 1 0 0 1
r3
r4 1 1 1 1

t t t t
0 * 0 ■i T ^ O -

r l
r2 •
r3
r4

[w ;]

...SAP....!

r l
r2

r3
r4

"SCR5"'!

cl c2 c3 c4 4

i
i
i

0
h r *s

N f

J ^ k
\ f

J k ✓ k

"S f

J

\ f

/ k

* k S k

r m) j 4th Test i
j Vector i

0 1 0 1------------------- >
cl c2 c3 c4
0 1 1 0
1 0 0 1
0 1 0 1

77 77' /
i 0 l 0 ^ ----------

(c) Third Step (d) Fourth Step

Figure 4.7 Generation of the Test Vector Set/Storing Scanning Results into the SAP

This data ‘0110’ in the SAP is the same as the first one in the MAP since the first

row has no faults. This ‘0110’ is also interpreted as the programmed state of that row.

71

Figure 4.7 shows the procedure of generating the test set and storing the scanning

result into the SAP.

Figure 4.8 illustrates the comparison operation for finding faults in a circuit

without faults. Figure 4.9 shows the fault diagnosis and location of a simple example

with faults. After getting all data in the SAP, these data are compared with the MAP

entries. For the compare operation in Figure 4.8, the SCR4 receives the cl from the

MAP, the SCR3 gets the cl from the SAP, and the cl of the MAP is subtracted from

the cl of the SAP, and so on. As shown in Figure 4.8, all results from this bit-by-bit

‘minus’ operation are ‘0’s, since there are no faults in the AND plane. It also means

that the MAP is exactly the same as the SAP according to all ‘0’s from the comparison

operation. An example of a circuit with some faults is shown in Figure 4.9. The

originally programmed personality of the AND plane is the same as in the previous

example, but there exist multiple faults (s-a-0 faults and s-a-1 faults) in the AND plane

in this case. All multiple faults are diagnosed and located using the same method

explained above.

72

In this case, there are multiple faults in the AND plane. The intersections of c3 &

r2, and c4 & r2 have s-a-1 and s-a-0 faults, respectively. When a test vector ‘1011’ is

inserted from the SCRI, the result ‘0101’ is obtained in the SCR2. The third bit of

SCR2 will be ‘0’ since that cross-point has s-a-1. It means that the second bit of the

test vector, ‘O’, can be transmitted to the third AND gate since that cross-point

(E2CMOS cell) is ON (s-a-1). The fourth bit of SCR2 will be ‘1’ since that cross-point

has s-a-0 which means that the second bit of the test vector, ‘0’ cannot be transmitted

to the fourth AND gate since that cross-point is OFF (s-a-0). Thus the diagnostic result

‘0101’ of the SCR2 is obtained, and it will be inverted to store it into the SAP through

the SCR5. The fault locating process is based on comparisons as shown in Figure 4.8.

73

MAP

cl c2 c3 c4

rl 0 1 1 0

r2 1 0 0 1

r3 0 1 0 1

r4 1 0 1 0

iSC R T i SCR3 SAP MAP

cl c2 c3 c4

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 0

rSAF'K

K J 7

rSCT~!

rl rl

r2 r2

r3 r3

r4 r4

cl c2 c3 c4

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 0

rgatTi i'SCKTi7"'
SAP

Comparator

(a) First Step

1
0
0
1

n/

1
0
0
1
▼-

'n

cl c2 c3 c4

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 0

I SAP h- -rMxn

; [V] — [V]z :|T] j 0 - 0 = 0 1
| 0 “ 0 = 0 I 0 - 0 = 0 i
| 0 - 0 = 0 | 0 - 0 = 0 I

| 0 - 0 = 0 0 - 0 = 0 |
Comparator

(c) Third Step

MAP

cl c2 c3 c4

rl 0 1 1 0

r2 1 0 0 1

r3 0 1 0 1

r4 1 0 1 0

i SCR4
"S'"

- * 1
— > 0
— > 1
— > 0

-Y

rscKTi i

1 <-

cl c2 c3 c4

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 0

rl rl

r2 r2

r3 r3

r4 r4

r s s o -

MAP

cl c2 c3 c4

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 0

iSC R T i i'SCKT! I SAP

c l c2 c3 c4

0 < - 0 1 1 0 rl

1 < - 1 0 0 1 r2

1 < - 0 1 0 1 r3

0 < - 1 0 1 0 r4

'n
—

rsxri- /•

0 - 0= 0 ! 0 - 0=0
0 - 0=01 0 - 0=0
0 - 0=01 0 - 0=0
0 - 0=01 0 - 0=0

Comparator Comparator

(b) Second Step (d) Fourth Step

Figure 4.8 Comparator Operation for Finding Faults on a Circuit without Faults

Note that the faults that are the same type as data programmed in E2CMOS cells

cannot be detected and located. In other words, a s-a-0 fault cannot be detected and

>}

located if the s-a-0 fault occurs in an E CMOS cell programmed as OFF, and a s-a-1

fault cannot be detected and located if the s-a-1 faults occurs in an E2CMOS cell

programmed as ON. It means that the results of the comparisons are all ‘Os’ after the

minus operation since the value on that location of the SAP and the value on that

location of the MAP are the same as ‘0’ and ‘1’ in the s-a-0 fault’s case and the s-a-1

fault’s case, respectively. However, it does not affect the operation of the GAL at all.

The controller needs to obtain this result from the minus operation of the comparator

to update and control the MAP and the NC register. The detailed operation of the

controller is implemented as the computer-based simulation program in our simulator.

It is explained in more detail in Chapter 6 and Chapter 7.

The symbolic notation that will be used in the following examples is the

following:

" S y m b o l N o t a t i o n " i

X P r o g r a m e d into O N (C o n n e c t e d) C r o s s P o i n t

P r o g r a m e d into O F F (D i s c o n n e c t e d) C r o s s P o i n t

© S t u c k at 0 F a u l t y C r o s s P o i n t

©
1__ _____

S t u c k at 1 F a u l t y C r o s s P o i n t

75

Test Vector Set
; SCRI j

cl c2 c3 c4

rl

r3

<x
1st 2nd 3rd 4th

MAP SCR 4

— gVvvy 0
—

:"s c r 3 : r ’SAP"

Test
Vector

m

cl c2 c3 c4

r l 0 1 1 0

r2 1 0 0 1

r3 0 1 0 1

r4 1 0 1 0

1 sf2nd^rd'4th'—'y/v
\ \ n/

i
cl c2 c3 c4

0 1 1 0

1 0 1 0

0 1 1 0

0 1 1 0
A a A A

A

i4r'*
^..Ist

f., 3 r t i \ \

T-.4th\) j

/ I m

> = - < b ^

Comparator

Stuck at 0 Fault

cl cl

Stuck at 1 Fault

c2 c2

0- 0= 0 ! 0 - 0=0
Stuck at 0 Fault

c4 c4

0- 0=0 □ — 0 — 1

0- 0=0 0 — 0 — 1

Stuck at 1 Fault \

0 - 0= 0 ! 0 - 0=01
ll 0-0=01
1 0 - 0 = 0 ^

[^-1^=0* JZI-JZI=II]*J0-JI]=0 JZJ-J0-0
r'SA p-> i"MAP"j S> P 'SA pA i""MAP’l

(a) First Step (b) Second Step

i" S A P > i” MAP j

(c) Third Step

t w T map i

(d) Fourth Step

Figure 4.9 Fault Diagnosis/Location of an Example with Faults

76

4.2. Self-Repairing Methodologies

Three self-repairing methodologies (column replacement method, column-column

re-use method, and cell-column re-use method) are introduced in this section [47, 48,

49]. These methods should be applied after generating all test vectors and creating the

SAP. Extra columns will be used to replace faulty extra ones even if the spare columns

include faults.

4.2.1. Column Replacement with Extra Columns

The column replacement method starts after obtaining the SAP. First, it finds the

column that has a logic value ‘ 1 ’ in the NC register. The faulty column is copied at the

column location of the MAP corresponding to the column that has logic value ‘ 1 ’ in

the NC register. That column is reprogrammed into the AND plane according to the

MAP, and the faulty column is reprogrammed with all ‘Is’. Therefore, the column that

is reprogrammed with all ‘Is’ cannot affect OR gate function that includes this faulty

column. However, if all cross-points in a certain column are faulty as s-a-0, it cannot

be reprogrammed with all ‘Is’. Thus, it requires that at least one pair of literals of the

77

same variables, for instance A and complement of A, must be reprogrammed as ON

not to affect the OR function. It would be reasonable to have this assumption since it is

extremely rare to have all s-a-0 in a certain column. Finally, the NC register is updated

as ‘-1 ’ for the reprogrammed faulty column with all ‘Is’, and is updated as ‘0’ for the

replaced column. The column replacement method example with multiple faults is

shown in Figure 4.10. There are 4 rows (input lines) and 8 columns (product terms) in

an OR group of an AND plane.

78

c 3 c 4 c 5 c 6 c 7

^. Q Q p ^

o r 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | I 0 I 0 I 0 | 0 | 1 | 1 I 1 I

c l c 2 c 3 c 4 c 5 c 6 c 7 c 8 c l c 2 c 3 c 4 c 5 c 6 c 7 c f

-s e-5 e— --?

-- —3S— —^

6—s€-- —3e—3e-3 e-

k. ^
e——3e— e-5 t-

“. . . . J L__
I L M A P . . . T

c l c 2 c 3 c 4 c 5 c 6 c 7 c 8 ,-'*'*-<1 r l c l c 2 c 3 c 4 c 5 c 6 c 7 c 8

o r l | - 1 I - I I 0 I 0 I 0 I 0 I 1 I 1 I* * 1 - 1 I - 1 I - 1 I 0 I 0 I 0 I 0 | I |

(c) c 3 R e p l a c e w i t h c 7 S t e p

I _ _ U _ i e J e

(d) c 4 R e p l a c

li j_e_d J [__LJU _*_e_ f_u j__j

i t h c 8 S t e p

c l c2 c3 c4 c5 c6 c7 c8 c l c2 c3 c4 c5 c6 c7 c8

r l

r2
r3

r4

S f S f rS
e - s €— 6 —

s

N
k ^
✓ %✓ A

S* V
*

y ? k
N s

>

? k ?

± 4 .

^ Q. >' V S S ?

S r -

\

r l 1 1 1 1 0 1 1 0
f r

r2 1 1 1 1 1 0 0 1

r3 1 1 1 1 0 1 0 1

r4 1 1 1 1 1 0 1 0
N C

c 1 c 2 c3 c4 c5 c6 c7 c8

o r 1 -1 -1 -1 -1 0 0 0 0

{ U sefess {
(e) F in a 1 S ta te

Figure 4.10 A Column Replacement Method Example of Multiple Faults

79

The originally programmed data (data of the MAP) is the same as in the previous

example described in sub section 4.1.3. The symbolic notation is also the same as

before. The numbered dotted box describes the sequence of this method. All cross-

points that have not been programmed are initialized as logic values ‘1’. There are 4

extra columns (c5, c6, cl, and c8) initialized as ‘ 1’ in this example. Thus, the MAP has

logic value ‘ 1 ’ on each location corresponding to those columns. The SAP was already

obtained before applying the self-repairing method; thus it is not shown in this

example. However, it can be described as just actual state of this AND plane, as shown

in the figure. In Figure 4.10 (a), the MAP shows the initial state that is the information

programmed for cl, c2, c3, and c4, and the initial state of extra columns for c5, c6, cl,

and c8. The NC register has initial data which are ‘O’ for cl, c2, c3, and c4 since they

are being used, and are ‘1’ for c5, c6, cl, and c8 since they are available for replacing

faulty columns.

Note that the self-repair should be initiated from a column which is designated as

‘O’ in the NC register. This means that if the stuck-at faults (s-a-0 or s-a-1) occur in a

column that has ‘-1’ or ‘1’ in the NC register, these faults are ignored for self-

80

repairing. In other words, the columns being used are only considered for self-

repairing. If any data of the NC register has been changed in a self-repairing step, the

SAP should be re-generated to compare the MAP updated after all self-repairing

procedures on cl through c8. If the all data of the SAP are the same as the data of the

MAP, the GAL is correct, which means that all the repairing procedures is done and

the life time of the GAL has been increased. Otherwise, the GAL should be diagnosed

and repaired again until the all data of the SAP are the same as the data of the MAP.

4.2.2. Column Re-Use with Extra Columns

The column re-use method actually does not require extra columns, but it is called

“column re-use with extra columns” (or simply column re-use) since it operates on an

AND plane that has in addition some extra columns. There are two column re-use

methods; column-column re-use and cell-column re-use. The cell-column re-use

method has more advanced repairing algorithm than the column-column re-use

method since the cell-column re-use, if possible, exchanges a faulty GAL column with

a column that needs the same programming as supplied by the faulty cell only on the

faulty column while the column-column re-use requires a same programming column

81

as supplied by the whole faulty column to exchange a faulty column. These methods

will be explained in more detail with illustrative examples in the following subsections.

4.2.2.I. Column-Column Re-Use with Extra Columns

For self-repairing of a faulty column, this method first attempts to exchange the

faulty column with a column which is already in use in the OR gate and has

programming the same as that of the faulty column. The column acquired in this

exchange can then be reprogrammed as needed for its new location. This test can be

achieved by comparing the column in the SAP that needs to be exchanged with all

column information in the MAP. For instance, if the data in cl of the SAP is the same

as the data in c4 of the MAP, then these two columns can be exchanged in this method.

It means that original cl data is stored in the c4 location of the MAP, and the original

c4 data is stored in the cl location of the MAP by reprogramming the original cl data

on the location c4 in the AND plane and vice versa. After that, the corresponding cell

(cl) in the NC register will be updated as ‘-2 .’ This is to mark that the column

replacement method should be applied to that column (cl), instead of the column re-

82

use method, if some faults are discovered in this column (cl) in a later test operation

mode.

An example in which multiple faults have occurred in an AND plane is shown in

Figure 4.11. There are 4 rows (input lines) and 8 columns (product terms) in an OR

group of an AND plane. The originally programmed data (data of the MAP) is the

same as in the previous example described in sub section 4.1.3.

All cross-points, which have not been programmed, are initialized as logic value

‘1’. There are 4 extra columns (c5, c6, c7, and c8) initialized as ‘1’. Thus, the MAP

has logic value ‘ 1’ on each location corresponding to those columns. The SAP was

already obtained before applying the self-repairing method; thus it is not shown in this

example. However, it can be described as just the actual state of this AND plane, as

shown in Figure 4.11. In Figure 4.11 (a), the MAP shows the initial state that is the

information programmed for cl, c2, c3, and c4, and the initial state of extra columns

for c5, c6, c7, and c8. The NC register has initial data which are ‘0’ for cl, c2, c3, and

c4 since they are being used, and are ‘1’ for c5, c6, c7, and c8 since they are useful for

replacing or re-using faulty columns.

83

c1 c2 c
✓

3 c4 c5 c5 c7 c8 c1 c2 c3 c4 c5 c6 c7 c8

r2
i-T ii >. { -

r4 > 3 $ - 6 ------* e ? <s—*

V l-. V

e j 6

2IZK£prZogrjijiiZZi [□H£E3 -IZ*IKepnQgrajfiIIi
cl c2 c3 c4 c5 c6 c7 c8 cl c2 c3 c4 c5 c6 c7 c8

rl 0 1 1 0 1 1 1 1 ^ r ? 0 1 1 0 1 1 1 1

r2 1 0 0 1 1 1 1 1 r2 1 0 0 1 1 1 1 1

r3 0 1 0 1 1 1 1 1 r3 1 1 0 0 1 1 1 1

r4 1 0 1 0 1 1 1 1 r4 0 0 1 1 1 1 1 1

LTClE3SlJjm&e“ !
j 3 . Re-used Column |

E i i iE l i

:ra;c:

in&e„:
3 . Re-used Column

cl c2 c3 c4 c5 c6 c7 c8 cl c2 c3 c4 c5 c6 c7 c8

orl 0 0 0 0 1 1 1 1 o?l - 2 0 0 0 1 1 1 1

Sedll] [IHs.e ["meazj [xsSmrj

(a) cl Re-use with c4 Step

cl c2 c3 c4 cS c6 c7 c8

Re-used Column |

(b) c2 Re-use with c3 Step

cl c2 c3 c4 c5 c6 c7 c8

rl

r4

V }

V

J V v

rl

r2

r3 $
r4 ^

[lSlH£(irap!am 31T£CepiiQgi:aLmasqsEiD
cl c2 c3 c4 c5 c6 c7 c8 cl c2 c3 c4 c5 c6 c7 c8

rl 0 1 1 0 1 1 1 1 **' rl* 0 1 1 0 1 1 1 1

r2 1 0 0 1 1 1 1 1 r2 1 0 1 1 0 1 1 1

r3 1 0 1 0 1 1 1 1 r3 1 0 1 0 1 1 1 1

r4 0 1 0 1 1 1 1 1 r4 0 1 1 1 0 1 1 1

["4:
LVJO^files&VJ r.I7LJUsefliri

ir ir iVJS.CV.Z'i
cl c2 c3 c4 c5 c6 c7 c8 A cl c2 c3 c4 c5 c6 c7 c8

orl - 2 orl - 2 - 2 - 1 02 - 2 0 0 1 1 1 1 orl - 2 - 2 - 1 0 0 1 1 1V / v* \ / t v*[::ulea:::i rî Xẑ Tur:: y r..riJ_1a B pa::3 [xteDir]
Re-used Column. i

(c) c3 Replace with c5 Step

Re-used Column

(d) Final State

Figure 4.11 An Example of the Column-Column Re-Use with Multiple Faults

There are multiple faults in an OR group which has 8 product terms, as shown in

this figure. The numbered dotted boxes describe the sequence of the column re-use in

the self-repairing method. Four steps are required to repair the faults in this example.

In Figure 4.11 (a), cl of the SAP stores ‘0110’ since the intersection of cl & r3,

and cl & r4 have s-a-1 and s-a-0 faults, respectively. It can be shown to be different

from the cl of the MAP, ‘0101’. The cl ‘0110’ of the SAP finds which data is the

same as in the MAP. The c4 ‘0110’ of the MAP is found as the same data of the cl

‘0110’ of the SAP. Thus, they can be exchanged in the MAP. The c4 ‘0101’ exchanged

data from cl of the MAP will be programmed in c4 of the AND plane, and the cl

‘0110’ exchanged data from c4 of the MAP will be programmed in cl of the AND

plane. Now, the cl of the MAP has ‘0110’ as the original data for the c4 and the cl has

been re-used for the c4 of the MAP instead of replacing the cl with an extra column,

c5, even though the cl has multiple stuck-at faults. Although the personalities of these

two columns are switched with each other, the function of this OR gate will not be

changed. The cl of the NC register will be updated as ‘-2’ which shows that this

column has been re-used, so that it must be only replaced with a new extra column if

85

this column, cl, becomes faulty again. The same procedure will be done with the c2

‘1001’ of the SAP in Figure 4.11 (b). In this second step, the column c2 has been re­

used with the c3 of the MAP although the s-a-0 fault on the intersection of c2 & r2

cannot be located or even detected since that location of the SAP and the

corresponding MAP cell is the same data as the logic value ‘O’. However, it does not

affect the function of the GAL since this column-column re-use method is looking for

the exact same information with the whole data of the c2 ‘1001’ of the SAP in the

MAP, which means that the c3, l ’O’Ol of the MAP is found as the same data of the c2,

l ’O’Ol of the SAP. In Figure 4.11 (c), the c3 ‘0110’ of the SAP is the same as the cl

‘0110’ of the MAP, but they cannot be exchanged since the cl of the NC register is

marked as ‘-2’. Thus, the c3 ‘1010’ of the MAP, after exchanging with the c2 of the

MAP, must be replaced with a new extra column, c5. The final state is shown in Figure

4.11 (d).

86

4.2.2.2. Cell-Column Re-Use with Extra Columns

In new advanced column re-use method, simply called ‘cell-column re-use’, for

self-repairing of a faulty column, if a faulty column is found, an attempt is first made

to exchange that column with another column that needs the programming found in

the faulty cell of the faulty column rather than the whole column programming in the

faulty column. For instance, if the second cell data in cl (MAP cl has 0101, SAP cl

has 0001) of the SAP is a logic value ‘0’ as a s-a-0 fault, and the second cell data in

c2 (1010) of the MAP is a logic value ‘O’ as an originally programmed data, then these

two columns can be exchanged in this new method since the ‘0’ in the second cell of

SAP cl is the same as the data in second cell of the MAP c2, despite of difference

between whole information, 0001 of the SAP cl and whole data, 1010 of the MAP c2.

This property is the main difference from the previous re-use method. It means that

with this method it is more probable to exchange other columns programmed already.

Consequently, it is likely to save more extra columns. The column gained in this

exchange is then reprogrammed to replace the faulty column. If column re-use is not

possible, the faulty column must be replaced with an extra column built in the OR gate

87

as shown in the column-column re-use. Thus, the corresponding cell (cl) in the NC

register will be updated as ‘-2 ’ to mark that the column replacement method should be

applied to that column (cl), instead of the column re-use method, if some faults are

discovered in this column (cl) in a later test operation mode.

An example in which multiple faults have occurred in an AND plane is shown in

Figure 4.12. There are 4 rows (input lines) and 8 columns (product terms) in an OR

group of an AND plane. The originally programmed data (data of the MAP) and the

faulty information (data of the SAP) is the same as in the previous example described

in sub section 4.1.3 and 4.2.2.1, respectively.

In Figure 4.12 (a), the MAP shows the initial state that is the information

programmed for cl, c2, c3, and c4, and the initial state of extra columns for c5, c6, c7,

and c8. The NC register has initial data which are ‘0’ for cl, c2, c3, and c4 since they

are being used, and are ‘ 1’ for c5, c6, c7, and c8 since they are useful for replacing or

re-using faulty columns.

There are multiple faults in an OR group which has 8 product terms, as shown in

this figure. The numbered dotted boxes describe the sequence of the column re-use in

88

the self-repairing method. Four steps are also required to repair the faults using the

same example in the column-column re-use. However, this method does not use any

extra columns for self-repairing of the faulty columns while the column-column re-use

uses an extra column to repair all faults. In Figure 4.12 (a), cl of the SAP stores ‘0110’

since the intersection of cl & r3, and cl & r4 have s-a-1 and s-a-0 faults, respectively.

It can be shown to be different from the cl of the MAP, ‘0101’. The third (1) and

fourth data (0) in cl ‘0110’ of the SAP finds which data of these locations (3rd and 4th

cell) are the same as in the MAP. The c2 ‘1010’ of the MAP, which has ‘1’ in 3rd cell

and ‘0’ in 4th cell, is found as the same data of the cl ‘0110’ of the SAP, which has ‘1’

in 3rd cell and ‘0’ in 4th cell. Thus, they can be exchanged in the MAP. The c2 ‘0101’

exchanged data from cl of the MAP will be programmed in c2 of the AND plane, and

the cl ‘1010’ exchanged data from c2 of the MAP will be programmed in cl of the

AND plane. Now, the cl of the MAP has ‘1010’ as the original data for the c2 and the

cl has been re-used for the c2 of the MAP. The c2 ‘0101’ cannot be programmed

correctly in c2 of the AND plane because of a s-a-0 fault in 2nd and 3rd cell, and a s-a-

1 fault in 4th cell in c2 ‘1001’ of the SAP.

89

c 1 c 2 c 3 c 4 c 5 c 5 c 7 c 8 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8

J Q J k J
''i rSJ Q P 2 k J k J ̂ J 5?1" ? k J k ^ k.

1-3 Q
r 4

P *:
>3

J Q
£ - 6

P ^ v J
— ^

k J

e - j
k S

e ?
 ̂ r J v

> 3
J Q P ^ k ^

----5
k J k ;

e - 5
k
e

firJIIBSprSgrjijnlli C3SX3XZ3 fllSIII&iirSgrlajnlli

['L '.'l^angs.;

c l c 2 c 3 c 4 c 5 c 6 c 7 c 8 c l c 2 c 3 c 4 c 5 c 6 c 7 c 8

r l O 1 1 0 1 1 1 1 r l I 0 1 0 1 1 1 1

r 2 1 0 0 1 1 1 1 1 r 2 0 1 0 1 1 1 1 1

r 3 0 1 0 1 1 1 1 1 r 3 1 0 0 1 1 1 1 1

r 4 1 0 1 0 1 1 1 1 r 4 0 1 1 0 1 1 1 1

3 . R e - u s e d C o l u m n ! 3 . R e - u s e d C o l u m n

*

r2

r 4

c l c 2 c 3 c 4 c 5 c 6 c 7 c 8 / \ c l c 2 c 3 c 4 c 5 c 6 c 7 c 8

0 0 0 0 1 1 1 1 o r l _2 0 0 0 1 1 1 1

crimes:.] c .U a^ n

(a) c l R e - u s e w i t h c 2 S t e p

c l c 2 c 3 c 4 c 5 c 6 c 7 c 8

R e - u s e d C o l u m n j
(b) c 2 R e - u s e w i t h c 3 S t e p

c l c 2 c 3 c 4 c 5 c 6 c 7 c 8

<
*< V 1 2 k V k p k p k ^

P k. J Q P 2 k p k p k p k "

p

r 2

r 4

-X XU xlV xlU* xlL"* k ^ k s k s k

,-S>»
•K

X + X
kd P k„ J y

tT) C
p

X
S

f X
k ^
^ X

k ^
r x

k P
f X

k
fP P

CIZZIKSpIrfi&rliinlj
c l c 2 c 3 c 4 c 5 c 6 c 7 c 8

a w ::
c l c 2 c 3 c 4 c 5 c 6 c 7 c 8

rT."fec^ange'1
3 . R e - u s e d C o l u m n

r l 1 1 0 0 1 1 1 1 r * " ' '* 1r l 1 1 0 0 1 1 1 1
r 2 0 0 i 1 1 1 1 1 r 2 0 0 1 1 1 1 1 1
r 3 1 0 0 1 1 1 1 1 r 3 1 o 1 0 1 1 1 1
r 4 0 i 1 0 1 1 1 1 r 4 0 1 0 1 1 1 1 1

c l c 2 c 3 c 4 c 5 c 6 c 7 c 8 A c l c 2 c 3 c 4 c 5 c 6 c 7 c 8
- 2 _ 2 0 0 1 1 1 1 o r l - 2 - 2 . 2 0 1 1 1 1

R e - u s e d C o l u m n i >
(c) c 3 R e p l a c e w i t h c 4 S t e p

R e - u s e d C o l u m n
(d) F i n a l S t a t e

Figure 4.12 An Example of the Cell-Column Re-Use with Multiple Faults

90

At this step, this problem is just ignored because only cl is considered if it can be

re-used. The cl of the NC register will be updated as ‘-2’ which shows that this

column has been re-used, so that it must be only replaced with a new extra column if

this column, cl, becomes faulty again. The same procedure will be done with the c2

‘1001’ of the SAP in Figure 4.12 (b). In this second step, the column c2 has been re­

used with the c3 of the MAP with same data in 3rd (0) and 4th (1) of both the SAP c2

and the MAP c3. Although the s-a-0 fault on the intersection of c2 & r2 cannot be

located or even detected since that location of the SAP and the corresponding MAP

cell is the same data as the logic value ‘O’, the c2 can be re-used with the c3 safely.

The c2 programmed incorrectly in the AND plane in previous step has resolved. In

Figure 4.12 (c), the c3 ‘0110’ of the SAP, which has all faulty cells, is the same as the

c4 ‘0110’ of the MAP, thus they are exchanged. Thus, the c4 ‘0101’ of the MAP, after

exchanging with the c3 of the MAP, is reprogrammed in the c4. The final state is

shown in Figure 4.12 (d).

In this method as well as the column-column re-use, the SAP should be re­

generated to compare the MAP updated after all self-repairing procedures on cl

91

through c8 as described in sub section 4.2.1. If data of the re-produced SAP is not the

same as data of the MAP gained finally, the cell-column re-use should be applied into

the GAL with the SAP newly acquired after test generation. Thus, this cell-column re­

use method might have more test and repair time for faulty columns according to

hidden faulty personalities, i.e. a s-a-0 fault occurred in a cell programmed as ‘O’, or a

s-a-1 fault occurred in a cell programmed as ‘1’. On the other hand, this method

facilitates the use of columns being used and reduces the use of extra columns.

4.2.3. Integration of the Column Repair Methods

Since the Column-Column Re-Use with Extra Columns algorithm works within

the Cell-Column Re-Use with Extra Columns algorithm, the algorithms can be divided

into two major types; the Column Re-Use with Extra Columns and Column

Replacement with Extra Columns.

The Column Re-Use with Extra Columns algorithm only uses columns that have

been programmed (previously used) to repair, and the Column Replacement with

Extra Columns algorithm uses columns that has not been programmed (new) to repair.

92

These algorithms run independently and each algorithm does not have an effect on

each other. Thus, the combined algorithms can be used on a system and maximize

the performance.

There are two basic ways to run the integrated algorithm. It can perform the

Replacement method first, and then perform the Re-Use method, or vise versa.

The first method (Replacement first then Re-Use) is not ideal for extending the

usage of each column. The initial state of OR-gates on GALs consists of

programmed columns and extra columns. The columns repaired by Re-Use cannot

be used again because its inability to detect hidden faults. However, the columns

repaired by Replacement can be used again by Re-Use algorithm. Thus, when

Replacement algorithm is used, it must use Replacement algorithm only until all the

extra columns are used. When Re-Use algorithm is used without any extra columns,

the number of columns that can be used to repair is equal to the total number of

columns per OR-gate.

The second method (Re-Use first then Replacement) on the other hand, Re-Use

algorithm can use the existing columns to repair as well as the columns that were used

93

by Replacement repair. In this case, the number of times columns can be used per

OR-gate is: (Used column + Extra column x 2).

An OR-gate with 16 columns (8 original and 8 extra) for example, the first

method yields 16 columns that can be used to repair, and the second method; 8 + 8x2

= 24. The number of column usage per GAL under the same specifications and

circumstances is directly related to a system’s lifetime or performance. In this case,

the second method’s performance value is expected to be 1.5 times better than the first

method’s. For this reason the integrated (combined) algorithm used in this

dissertation is the second method, Re-Use first then Replacement.

4.2.4. Replacement and Re-use with Extra OR-gates

The concept of adding extra OR groups (simply called ORs) in a GAL is

introduced in this section briefly. It is used to replace with ORs and increases the

reliability of the GAL as well as the system with the switching circuit, which has extra

interconnection lines in a system. The initial purpose of adding extra ORs in a GAL

is to implement more reliable system for a GAL itself even though it has large

94

hardware overhead. However, the real objective is that when the line being used and

the extra line in a switching circuit are both defective or when all columns in a AND

plane of a GAL are exhausted, the system must be self-repairable.

This method also uses a FLFRP (Fault-Locating/Fault-Repairing Processor),

diagnosis/repair bus, and the memory that stores fault location and repair-related data.

The NR register shown in Figure 5.5 is used for the actual state of the OR. The size of

each NR corresponding to a particular GAL is the same number of ORs in each GAL.

The detailed procedure of using the extra OR is shown in Chapter 5 since it is

functional with the self-repairable switching circuit.

5. Self-Testing and Self-Repairing Switching Circuit

As initiation into the next problem to broaden the first project, the concept of the

self-testing and the self-repairing switching circuit based on a Demultiplexer structure

is described as our second project. It is used to connect and reconfigure GALs in our

system proposed in Chapter 4 and enhances the effectiveness and the lifetime of the

system together with added ORs (Extra ORs) group in a GAL module. The purpose

of adding switching circuits between GAL modules is to implement larger system

which is too large to fit in a single GAL. At this point, a connection circuit requires

being self-testable and self-repairable since the whole system including an array of

GAL modules is useless if connections between GALs fail.

We develop the fault-locating and fault-repairing architecture with Demultiplexer-

based structure with an AND gate logic to allow detect, diagnose, and repair of all

multiple stuck-at faults that might occur on wires in a switching circuit between GAL

modules. A self-repairing method is presented based on our switching circuit design

architecture; a line replacement method with extra lines (simply called line replace).

This method also uses a FLFRP (Fault-Locating/Fault-Repairing Processor),

96

diagnosis/repair bus, and the memory that stores fault location and repair-related data.

We also propose an evaluation methodology for this project and it is described in

Chapter 6. This methodology is based on simulating the self-repair algorithm.

The switching circuit developed in this chapter is self-testable and self-repairable

for faulty lines with extra lines in a switching circuit between GALs of a system. An

input pin of the switching circuit is connected to an output pin of a GAL and an output

pin of the switching circuit is connected to an input pin of the other GAL through a

line in a switching circuit. The active line in a switching circuit, which means that the

wire is used to connect GALs, is duplicated with spare wires. If the original line is

defective, then the switching circuit will use a spare line. If both an original line and

an extra line are faulty, then the system starts to look for an available OR group at the

GAL connected to the input pin of the switching circuit. The programmed information

(column information) of the OR connected to the faulty input pin of the switching

circuit is replaced with an available OR, an extra OR, in that GAL, and the OR is

marked as unavailable OR, which means that the OR is no more useful. The OR that

has reprogrammed information on the extra OR is rerouted with the switching circuit

97

and it keeps the same output pin connection in the switching circuit. It is that the only

input side of the switching circuit is changed but the output side of the switching

circuit is kept the same connection to the GAL waiting a signal from the switching

circuit. Thus, the function of the whole system can work properly. If an OR of a GAL

connected to the input of a switching circuit is no more useful, which means that the

columns of that OR group are faulty and cannot be repaired using column repair

methods, then the information (column information) of that OR is copied to an extra

OR in that GAL. Even though the connection line in the switching circuit has no fault,

the switching circuit reroutes the connection between GALs since the GAL at the

input side of the switching circuit is malfunctioning.

The fundamental idea of adding the self-testing and self-repairing switching

circuit on the self-repairable GAL structure shows the concept of self-testable and self-

repairable digital devices and a reliable computing system prototype. The concept

may also be applicable to FPGA (Field Programmable Gate Array) design or ASIC

(Application-Specific Integrated Circuit) design to shrink the design gap more quickly

and affordably by adding redundancy. In addition, this self-testing and self-repairing

98

methodology for the switching circuit might maximize the safety and security issues

of the systems in addition to the self-testing and self-repairing methodology for the

EPLDs.

5.1. Hardware Design Mechanism of the Self-Repairable Switching

Circuit

In this section, we develop a design methodology for self-repairing a wire (line) in

the switching circuit between GALs, describe our fault model and assumptions, and

develop universal test set for detecting and locating faults on each interconnection line

in a switching circuit.

5.1.1. Fault Model and Assumptions

The line stuck-at faults, which are located in interconnection wires inside a

switching circuit, are considered as our fault model because lines of a switching circuit

make up a large percentage of a switching circuit as does the E2CMOS cells’ array in a

GAL. The stuck-open fault model, which can be tested with stuck-at fault test, or the

99

bridge fault model, which is more applicable as line width get smaller and covered by

stuck-at fault, could be a fault model for the interconnection wires in a switching

circuit. At this point, we only consider that the signal fed into the input pin of the

switching circuit is transmitted to output pin of the switching circuit correctly. Thus,

we assume that the faults on the interconnection line are covered by stuck-at fault

model since we are interested in the output signal of the switching circuit for go or no

go to next GAL module. Each interconnection line of a switching circuit, which is

located between a Demultiplexer (simply called DEMUX) and an AND gate, may be

ON or OFF permanently, caused by factors referred to in chapter 1. It is called the line

stuck-at-1 (simply, s-a-1) if the interconnection line of a particular route between GAL

modules is stuck at 1 functionally. If the interconnection line of a particular route

between GAL modules is stuck at 0 functionally, it is called the line stuck-at-0 (simply,

s-a-0). Only these faults will be considered in this second project because we assume

that there are no faults found in a switching circuit after the manufacturing process.

The following assumptions will be used for the design, self-repair and evaluation

methodologies for the switching circuit. The switching circuit is initially fault free

100

after manufacturing. The primary input/output and control lines (buffer enable,

DEMUX enable/select) fault do not exist in a switching circuit, and also every logic

gate (DEMUX, AND gate, tri-state buffer) in a switching circuit do not have faults.

For switching circuits in our system, all multiple s-a-0 and s-a-1 faults are detectable

and repairable. The interconnection line faults (s-a-0, s-a-1) as defined above are only

taken into account in this second project.

In order to replace or reroute a faulty interconnection line, one extra line is built

into each interconnection between an input pin and an output pin in the switching

circuit. There are tri-state buffers to block the faulty interconnection to be transmitted

into the next GAL module. Thus, the output signal is discarded safely from the

switching circuit even though the faults appear in certain interconnection lines of that

switching circuit. When a fault occurs in a certain line of a particular switching circuit,

this faulty line can be replaced or rerouted with an extra line only in that switching

circuit. When the enable signal of a tri-state buffer has logic value ‘O’, the output

signal of the AND has no effect to the next GAL module, and if it has logic value ‘1’,

the output signal of the AND gate operates to transmit to the next GAL module. The

101

information of the tri-state buffer will be stored in the RTB (Register for Tri-State

Buffer) located in the FLFRP described in Chapter 4. The RTB has data to control

AND gate outputs, not shown in Figure 4.11.

5.1.2. Design Architecture

The complete digital system in our second approach is shown in Figure 5.1. The

system is an array of self-repairable GAL modules and self-repairable switching

circuit blocks realized both as separate integrated circuits. It is the same as our first

approach shown in Figure 4.11. Each GAL module is a two-level realization of a

Boolean function, and is realized with a self-testing and self-repairing GAL using

extra columns and extra ORs. Each switching circuit module has DEMUX and AND

gate logic blocks, and has interconnection lines between them with extra lines for

repairing or rerouting the faulty lines. This is our new hardware prototype for the ultra

reliable computing system, and seems to be more reliable and robust system since

every block can be self-testable and self-repairable in the system. The potential

synergy between two self-repairing modules (GAL and switching circuit) makes the

102

system ideal candidate for the EPLD/FPGA technology advances. The proposed

method assumes that when the redundant lines to reroute or replace lines (i.e. the extra

lines) in a switching circuit block are exhausted and there are no more lines to replace

a newly found defective line, the controller will signal a global go/no-go signal. We

assume that the failure of the switching block is less probable than the GAL module.

We assume that each switching block is a single module (a chip, a board) and each

GAL module includes just one self-repairable GAL which has a programmable AND

array with several extra columns and fixed OR (OLMC) plane with extra ORs.

In this stage, we consider the problem of getting the maximum usefulness of the

whole system at the highest level, when the system degrades over time with new faults

arising in a GAL module and a switching block that have already been tested in the

manufacturing process.

The following figure shows the general scheme of the design architecture for a

self-repairable switching circuit as well as our system proposed as a reliable

computing system. It uses extra lines between the DEMUX logic block and the AND

gate, Scan Registers (SCR6 and SCR7), Diagnosis/Repair Bus, and a FLFRP which

103

has a MSCI (Module-Switching Circuit Information), NSC (Next Switching Ciruit),

NR (Next OR), MCIR (Module-Connection Information Reference), NSA (Next State

AND), RD (Register for DEMUX), RB (Register for Buffer), RTB (Register for Tri­

state Buffer), and NDS (Next DEMUX Select), a Comparator, a Central Fail-Safe

Maintenance Controller, and Data Path/Addressing Unit. The FLFRP can be realized

with a micro-controller.

i = # of Primary Inputs of a GM(GAL Module) /# of Outputs of a SC (Switching Circuit)
k = # of Primary Outputs (OLMCs) of a GM (GAL Module) /# of Outputs of a SC (Switching Circuit)

GM 1 SC Block 1 GM 2

AND OR
P P
L L
A A
N N
E E

Primary
Outputs

2k

Self-Repairable
Switching Circuit

2k2
Connections

1
S

* C
* R

2k 7

Primary

Diagnosis /Repair Bus

AND OR
P P
L L
A A
N N
E E

_\

__
_\

. N f
_\

7

__ 1 w

_'

s c
V

~ S SCGM3 Block 3 GM 4 GM j Block j GMj+1

v
7 7

_\

FLFRP
(Fault

Location/Fault
Repair Processoi)

Figure 5.1 Design Architecture for the Ultra Reliable Computing System with Self-Repairable

GAL Module and Self-Repairable Switching Circuit Block

104

In the normal operation mode, the primary output data form a GAL module are

fed into a switching circuit and the connections of the switching circuit are just

transparent through the SCR7 into the next GAL module. In the test mode, the SCR6

will have a test vector fed from the controller of the FLFRP. The SCR7 then receives a

scanning result corresponding to a test vector from the SCR6. The data of SCR6 is

sent to the RD and the scanned result data of SCR7 is sent to the RB through the

Diagnosis/Repair bus. The Diagnosis/Repair bus is assumed to include control, data,

and address bus.

The bus is serial to decrease the pin-out of the chip. The ‘k’ denotes the number of

primary inputs and outputs of a switching circuit, corresponding to the primary outputs

of a GAL and the primary inputs of a next GAL module, respectively. Each primary

input pin of the switching circuit has two DEMUXs and corresponding two AND gates.

First DEMUX connected with an input pin of the switching circuit is corresponding to

first AND gate in each output pin of the switching circuit. Second DEMUX connected

with an input pin of the switching circuit is corresponding to second AND gate in each

output pin of the switching circuit, and so on. That means each DEMUX has 1 input

105

and ‘k’ outputs, and each AND gate has ‘k’ inputs and 1 output to connect into a tri­

state buffer in the switching circuit. Thus, there are ‘2k2’ connection lines, which are

replaceable with faulty lines in the switching circuit. The detailed inner structure of

the switching circuit block is shown in Figure 5.2.

The ‘2k’ is said to be the number of DEMUXs, the number of AND gates, the

number of tri-state buffers in a switching circuit. Each bit of the 2k-bit SCR6 and

SCR7 corresponds to 1 DEMUX and 1 AND gate output, respectively. The extra line

means that there are several extra lines in each input pin of the switching circuit. We

assume that there is one extra line in each input pin of the switching circuit, which

means that only one extra line exists for replacing a faulty line on that input pin. We

assume that the switching circuit should have the same pin-to-pin configuration (the

input pin to output pin connection) as originally programmed system information in a

system. Thus, ‘k-1’ numbers of extra lines in a DEMUX are used for rerouting in case

of a faulty OR, which means that the faulty OR needs to be replaced with an extra OR

since extra columns are exhausted.

106

Switching Circuit Block j

of connections (DEMUX and AND) = 2k'

d l - a l

d l-a3

Primary
Inputs

Primary
Outputs

GALGAL

2 k-1 r 2 k-1

i 2 k - ld3 - a2k-l

r(k=8) r=k

d2k a2k b 2 k

Diagnosis / Repair Bus

Figure 5.2 Inner Structure of the Switching Circuit Block

107

GM1 GM 2 GM/-1 GM IOut
SC 1 SCI SC 2GM 1

GM 2 SC 3 SC 3 SC 4

SC 4GM l-l SC5 SC 5

SC 6 SC 8G M / SC 7

Out GM : Master GAL module fed into a SC SC: Switching Circuit between modules
In GM: GAL module connected by the out GM / = # of GAL modules in a system

Figure 5.3 Structure of MSCI Array

The MSCI stores original connection information between GAL modules in a

system by which switching circuit is being used to connect GALs as show in Figure

5.3. The output GAL module (simply called Out GM) is said to be a master GAL fed

into a switching circuit (simply called SC) and Input GAL module (simply called In

GM) is a GAL module connected by the out GM. In Figure 5.3, SC3 is used to connect

GM2 with both GM1 and GM1-1. T is the number of GAL modules in a system, thus

this MSCI is an T x ‘1’ matrix.

108

PI (row): Primary Input in a SC (Output of a GAL module)

a (column): Connetion lines of an AND gate in a SC

PO: Primary Output of a SC (2 AND gates per a PO)

k = # of primary input/output lines of a SC

PO(l) PO(2) PO(fc)

Out

2Ar-l Ik
PI(1)

PI(2)

0 : Stuck-at fault (s-a-0 or s-a-1) 1 : No Stuck-at fault

Figure 5.4 Structure of the NSC Register

The structure of the NSC is shown in Figure 5.4. It has similar information to the

SAP in case of self-repairable GAL. The NSC informs about the information for the

stuck-at faults. It is updated after testing an SC, depending upon the stuck-at faults (s-

a-0 or s-a-1) or no stuck-at faults. The size of the NSC is the number of inputs in an

SC times the number of AND gates in an SC. It has information about the actual state

of each AND gate of an SC after testing. It will show the state of stuck-at faults on the

109

interconnection lines. It includes both the actual state as well as the stuck-at fault

information. RD will be compared with the RB to find and locate faults using minus

operation. The RD is the same size of the SCR6 and the RB is the same size of the

SCR7. Both RD and RB are not shown in the Figure. The RD is subtracted from the

RB bit by bit and the results are stored in NSA not shown in the Figure. If the result of

subtraction is ‘O’, then the line, corresponding to that bit is correct which means that it

has no fault. If the result is ‘-1 ’, then it has stuck-at-0 fault, and if the result is ‘ 1 ’, then

it has stuck-at-1 fault in a particular line of that AND gate. Thus, the NSA has the

actual state information of lines being connected into an AND gate of an SC. The NSC

is updated by the NSA after detecting and locating faults in lines of an SC. The NSC

shows the state of AND/line, and which AND gate can be useful or which AND gate is

no more useful to keep a connection from a primary input to a primary output as

originally programmed information in an SC. If a particular cell in the NSC is ‘O’, then

the corresponding line of the AND gate has stuck-at fault, either stuck-at 0 or stuck-at

1. If a stuck-at 0 fault has occurred in a particular line, then the whole column of the

NSC, corresponding that line of the AND gate, will be updated as logic value ‘O’. It

110

means that the AND gate is no more useful because of the stuck-at 0 fault. If a stuck-at

1 fault has occurred in a particular line, then only the cell of the NSC, corresponding

that line of the AND gate, will be updated as logic value ‘O’. It means that the AND

gate is still useful for the connection of input pin and output pin programmed in the

SC since the stuck-at 1 fault will not affect to the extra line. This will be described in

more detail with an example in sub section 5.2.1.

The structure of NR is shown in Figure 5.5. If a certain bit has ‘O’, the

corresponding OR in a master GAL is being used, and if a certain bit has ‘-1’, the

corresponding OR in a master GAL is available to replace a faulty OR which means

that the OR is extra OR in the GAL. If a certain bit has ‘1’, the corresponding OR in a

master GAL is unavailable OR to replace faulty one which means that the OR is faulty.

I l l

0 : OR group being used

1 : Available OR to replace
(Extra OR)

-1 : Unavailable OR to replace
(Faulty OR)

Figure 5.5 Structure of the NR Register

The MCIR register informs about the status of connections of each AND gate in

each output pin of an SC. As shown in Figure 5.6, If a certain bit has ‘O’, the

corresponding connection is being used with the AND gate in an SC, and if a certain

bit has ‘-1’, the corresponding connection is available connection with the AND gate

in an SC, which means that the connection line in the SC can be used for the extra line.

If a certain bit has ‘-2’, the corresponding connection is unavailable since that

connection line has stuck-at 0 fault.

OR# Status

OR 1 1

OR 2 0

OR(*-l) 1

OR(*) 1

112

PO(l) PO(2) PO(Jt)

" s S ’
a a a a a a

Out
1 2 3 4 2A-1 2k

Status 0 -2 0 -1 -1 -1

0 : Connnection being used with the AND gate in a SC
-1: Available Connection with the AND gate in a SC
-2: Unavailable Connection with the AND gate in a SC

Figure 5.6 Structure of the MCIR Register

5.1.3. Test Generation and Fault Diagnosis/Location

All stuck-at faults, mentioned in section 5.1.1, on connection lines of an SC can

be determined by a pattern. We have a universal test set for detecting faults.

This test vector set, which is provided by the FLFRP, can find whether the fault is

an ‘s-a-0’ or an ‘s-a-1 ’. It can determine the exact location in which the line is faulty as

stuck-at 1. All multiple faults of lines in an AND gate can be detected by this test set.

The combination of s-a-0 and s-a-1 is not located by this test vector. However, the

detection of the faults is enough for replacing and rerouting faulty ones in case of

stuck-at 0 and 1 combination. The AND gate should be discarded if it has stuck-at 0

fault in any line of an AND gate in an SC. The length of a test vector is 2k (k is

113

number of input pin of an SC) bits and the ‘2’ test vectors are needed to test. It detects

the faults line by line in the SC. The FLFRP initializes SCR6 to ‘111... 11’, and this

initial test vector will detect stuck-at 0 faults on the connection lines in an SC. The

value of ‘Is’ in the SCR6 is fed into the DEMUXs, and it will affect the AND gate

outputs as a value of 1. In other words, the result of this AND gate should be ‘1’, but if

the output of this AND gate is a ‘O’, it will be a s-a-0 fault. On the other hand, the

value of ‘Os’ is fed into the DEMUXs line by line using the select of a DEMUX, but if

the output of this AND gate is a value of 0, it will be a s-a-1 fault. Thus, all multiple

faults are detected and s-a-1 fault is located by this universal test set, and it is shown

as follows.

❖ Test Vector Set (Test Pattern)

1 2 3 ... n-1 2k (k inputs)
1 1 1 . . . 1 1
0 0 0 . . . 0 0

A simple example in which a system has two GMs and 1 SC is shown in Figure

5.7. Each GM has 2 OR group (simply called OR), 2 original programmed columns,

2 extra columns. The SC of this example will be used for the rest of examples in this

114

chapter. It has 2 input pins (12 and 13) and 2 output pins (2 and 3). There are 4

DEMUXs, 4 AND gates, 4 tri-state buffers in the SC. The input pin 12 is connected

to both DEMUX 1 (dl) and DEMUX2 (d2) and connected with output pin 2 through

AND1 (al)/bufferl (bl) and AND1 (al)/bufferl (bl), respectively, likewise input pin

13 and output pin 3 connection. The d2-a2 connection line is an extra connection line

for the dl-al connection line and the d4-a4 connection line is an extra connection line,

for the d3-a3 connection line.

115

Primary Input Pins of a GAL

jE xtra ColumnsExtra Columns

Extra OR Extra OR

Extra Columns J Extra Columns
GM1 GM2

Test Vectors (11...1,00...0)
dl-al

S(0,1) EN Extra Connection Line

P rim ary
Output
Pins of a

G A L /
Switching

C ircuit
Inputs

P rim ary
Input Pins
o f a GAL /
Switching

C ircuit
Outputs

SCR 6 SCR 7S(0,1) EN

w J J E E
« dl-a3

Extra Connection Line

SfO.l) EN

SCICompare

Figure 5.7 General Concept of an Example without Faults

116

The procedure of generating the test set in SCR6, and next storing the scanning

result into the SCR7 is illustrated as an animated sequence in Figure 5.8.

T est V ec to r Set

1st 2nd

1 0

1 0

1 0

1 0

Second T est V ecto rs (0000) an d D E M U X Select (0)

S(0) EN

SCR 6 SCR7

Extra Connection Lin

Extra Switch

(b) Second Step

Figure 5.8 Generation of the Test Vector

F irs t T est V ecto rs (1111) and D E M U X S elect (0)

d l - a l

Si 9) EN
Extra (^opnection Line

SCR 6 SCR 7S(«) EN

, S(0) EN

Si pn
Extra Switch

Compare

(a) F irs t Step

Second T est V ecto rs (0000) an d D E M U X S elect (1)

dl -a l

S (t) EN

SCR 6 SCR 7S i l l EN

i dl - a3 a3 V - jb J >

 . ^ . ^ t H . C wmectinnLii]

d2 -a4 a4 b^> I<

S (l) EN

Extra Switch!S (l) EN

(c) T h ird Step

Set/Storing Scanning Results into SCR7

117

This example assumes that there are no faults in the SC. The first test vector

‘1111’ generated by the FLFRP is stored in the SCR6. This vector is fed into each

connection line as shown in Figure 5.8. If the data bits of the SCR7 has ‘O’, then that

AND gate should be discarded since a line connected to that AND has s-a-0. The

DEMUX select needs to be applied either ‘O’ or ‘1’ since the stuck-at o fault is only

considered in this step. The second test vector ‘0000’ generated by the FLFRP is

stored in the SCR6. If the data bits of the SCR7 has ‘1’, then that particular line should

have s-a-1 fault after applying both logic value ‘0’ and ‘1’ in the DEMUX select. This

is the same as a simple stuck-at fault test in the 2-input AND gate. The scanning result

‘1111’, ‘0000’ of the SCR7 is transmitted through the diagnosis/repair bus to the RB.

118

S C R 6
T e s t

V e c to r

D E M U X

S ele c t

S C R 7
S c a n

R e s u lt

S C R 6
T e s t

V e c to r

D E M U X

S ele c t

C o m p a r a to r

(a) N o S tu c k -a t 0 fau lts

S C R 7
S c a n

R e s u lt

d l 1 0 1 a l d l 0 0/1 0 a l

d2 1 0 1 a2 d2 0 0/1 0 a2

d3 1 0 1 a3 d3 0
X n

0/1 0 a3

d4 1 0 1 a4 d4 0 0/1 0 a 4

C o m p a r a to r

(b) N o S tu c k -a t 1 fa u lts

7
0 — 0 = 0

0 — 0 = 0

0 —

1 0 1 = 1 0 1

0 — 0 = | 0 |

Figure 5.9 Comparator Operation for Finding Faults on an SC without Faults

Figure 5.9 illustrates the comparison operation for finding faults in an SC without

faults. Figure 5.10 shows the fault diagnosis and location of a simple example with

faults. After getting all data in the RB, these data are compared with the RD entries.

For the compare operation in Figure 5.9, the RD receives the data from the SCR6, the

RB gets the data from the SCR7, and the RD is subtracted from RB bit by bit. As

shown in Figure 5.9, all results from this bit-by-bit ‘minus’ operation are ‘0’s, since

119

there are no faults in the connection lines. An example of a circuit with some faults is

shown in Figure 5.10. The SC structure is the same as in the previous example, but

there exist multiple faults (s-a-0 fault and s-a-1 fault) in the lines in this case. All

multiple faults are diagnosed and located using the same method explained above.

In this case, there are multiple faults in the SC. The connection d4-a2 and dl-al

have s-a-0 and s-a-1 faults, respectively. When a test vector ‘1111’ is inserted from the

SCR6, the result ‘1011’ is obtained in the SCR7. The second bit of SCR7 will be ‘0’

since that d4-a2 line has s-a-0. When a test vector ‘0000’ is inserted from the SCR6,

the result ‘1000’ is obtained in the SCR7. The first bit of SCR7 will be ‘1’ since that

dl-al line has s-a-1 when the DEMUX select is 0. It means that the first bit of the test

vector, ‘O’, cannot be transmitted to the first AND gate since that line is s-a-1. The

fault detecting and locating process is based on comparisons as shown in Figure 5.10.

1 2 0

Test Vectors (11...1, 00...0)

, dl - al

d3 - al

S(0, EN
Extra Connection Line

SCR 6 SCR 7
S<0,1) EN

d3 -a3• a» • m
dl -a3

Extra Connection Line

d2 - a4

Extra SwitchS(0,1) EN

Compare

S C R 6 D E M U X S C R 7 S C R 6 D E M U X S C R 7

T e s t V e c t o r S e le c t S c a n R e s u l t T e s t V e c t o r S e le c t S c a n R e s u l t

d l d l 0/1

d 2 d2 0/1

d 3 d3 0/1

d 4 d 4 0/1

Comparator Comparator

(a) Stuck-at 0 fault (b) Stuck-at 1 fault

Figure 5.10 Fault Diagnosis/Location of an Example with Faults

1 2 1

5.2. Switching Circuit Self-Repairing Methodologies

A self-repairing methodology (line replacement method) is introduced in this

section. This method should be applied after generating all test vectors and creating

NSA, NSC, NR, and MCIR.

5.2.1. Line Replacement with Extra Lines

The line replacement method example with multiple faults (s-a-0 and s-a-1) is

shown in Figure 5.11. This example does not have a faulty OR. The dotted boxes

describe the extra devices (extra columns, extra OR, and extra line) in each part (AND

plane of an OR, OR group of a GAL, and SC in a system). In Figure 5.11 (a), the GM1

is connected to GM2 through input pin 12 and output pin 2 (dl-al connection line) in

the SCI. A function of the first OR in GM1 will affect to the function of the first OR

in GM2. Thus, the first bit of the NR has logic value ‘0’ which means that this first OR

of the GM1 is being used. The d2-c2 is an extra line for dl-al line and d4-a4 is an

extra line for d3-a3 in the SCI. There are no faults at first step, thus the NSC has all

logic value Is. The MCIR is initialized as logic value ‘-1’ as available connections

1 2 2

with the AND gate in an SCI. In Figure 5.11 (b), s-a-1 fault is occurred on dl-al line.

The NSA detect s-a-1 fault and update the NSC as logic value ‘O’. The intersection of

13 & al of the NSC has logic value ‘ 1 ’ since the d3-al connection line is still available

even though the dl-al has s-a-1 fault. It is for keeping the pin-to-pin configuration so

that the d3-al line can be used when the first OR is faulty and that OR is replaced with

the second OR in GM1. According to the s-a-1 fault on the dl-al line, that line will be

replaced with the d2-a2 extra line and the second bit of the MCIR is updated as logic

value ‘0’ as being connected. In Figure 5.11 (c), an s-a-0 fault has occurred on the d4-

a2 connection line. Thus, the a2 AND gate cannot be used which means that all inputs

of the a2 should be disconnected. The bl which is tri-state buffer will block the output

signal from the a2 AND gate, then the a2 column of the NSC has all logic value ‘O’.

The second bit of the MCIR is updated as logic value ‘-2’ as every connection through

the a2 is not available. Now, the d2-a2 connection line cannot be used since the a2 is

no more useful. Thus, the extra OR of the GM1 will be used for replacing the original

programmed OR in the GM1 (first OR group) and makes a new connection with the

d3-al connection line. Finally, the SCI keeps the output pin 2 and will not affect to the

123

GM2 function. The MCIR is updated as logic value ‘0’ in the first bit for informing

what the d3-al connection (input pin 13 to output pin 2 connection) is being used. The

NR is updated as logic value ‘-1’ since the first OR in the GM1 is now unavailable.

The line replacement method example with a faulty OR is shown in Figure 5.12.

In this example, there are no faults in the SCI. The MCIR informs that the al is being

used for connecting the GM1 to the GM2 through input pin 12 and output pin 2 of the

SCI with the information of the NR register. If the OR programmed in the GM1 is

faulty even though there are no faults in lines of the SCI, that OR should be replaced

with an extra OR in that GAL, GM1, if an extra OR is available. As shown in Figure

5.12, the OR is replaced with the second OR and rerouted with the d3-al line. The

self-repairing of the system can be done with both extra ORs and extra lines.

124

Primary Input Pins of a GAL

x tra Colum nsr a Colum ns

Frtra 01 r.ara \n

y&ĉ guung

E x tra Connection Line

Input Pins
o f a G A L /
Switching
C r c u i t
O utputs

P in s o fa S C R 6 s * U) E N
G A L /

C irc w t
dl - a- a3

MauauistiuaLMi
K r t r a W i l . - h

NR

OR

NSC H 0

12

13

a l a2 a3 a4

1 1 1 1

1 1 1 1

MCIR

(a) Initial State (No Stuck-at faults ; | 12 |- a l - | 2 | Connection)

.x tra Columns.x tra Colum ns

F.ara OR

fe
fF.ara rnlnmn.s

G M l GM 2

d l - a

E xtra C onnection Line

O utput

Switching

O utputs

d4

SCI

NR NSC

OR

12

13

MCIR

-1 -1 -1 -1

0 0
a l a2 a3 a4

0 1 1

1 1 1

-1 0 -1 -1

(b) Second State (Stuck-at 1 faults in d l - a l line;112 | - a2 - | 2 | Connection)

Figure 5.11 A Line Replacement Method Example of Multiple Faults without a Faulty OR

125

Primary Input Pins of a GAL

.x tra Columns.xtra Columns

Extra 01

J2Ea£dumilL
GM1 GM2

d l - a

IxtraC onnattion Line

P rim ary
Input Pins

O utputs

SCI

(c) Third State (Stuck-at 0 faults in d4-a2 line)
Prim ary Input Pins of a

GAL

r T?I

.x tra Columns.xtra Colui

GM2GM1

d l - a

*
Input

7 Pins o l a
G A L/

Switching
I C ircuit
_ O utputs

Extn :tion Line

Output

Switching
C ircuit
Inputs

- e -

SCI

0 0
a l a2 a3 a4

0 0 I 1

1 0 1 1

NSC

MCIR -1 -2 -1 -I

0 0
al a2 a3 a4

0 0 1 I

0 1 1

MCIR 0 -2 -1 -1

(d) Final State (| 13 | - a l - 1 2 | Connection)

Figure 5.11 Line Replacement Method Example of Multiple Faults without a Faulty OR

(Continued)

126

Primary Input Pins of a GAL

.x tra Columns

GM1 GM 2

d l - a!

Extra Connection Line

d2
I n p u t P i r n

S w i t c h i n g

O u t p u t s

SCI

OR

0 0
a l a2 a3 a4

1 i 1 1

1 l 1 1

0 - I -1 -1

(a) Initial State (No faults in a SC & multiple faults in an AND plane of the GM 1;
I 12 | - a l - | 1 [Connection)

P rim ary Input Pins of a
GAL

.xtra Columns.xtra Colunras
R e p l a c e

N R

OR

G M l c m ;

r-Ut

r^ C im n e c tiim I in,

....
d4

0 0
NSC

12

a l a2 a3 a4

1 1 1 1

1 1 1 1

(b) Final State (Replace first OR group of GM 1 with second OR group of G M l;
113 | - a l - [T] Connection)

MCIR 0 -1 -1 -1

Figure 5.12 A Line Replacement Method Example with a Faulty OR

6. New Hardware Prototype and Simulator for the Ultra

Reliable Computing Systems

This chapter describes the simulator used in this research in depth. In depth

analysis of the simulator’s algorithm structure and its development as well as how the

simulator is used is presented.

6.1. Analysis and Synthesis of the Hardwired Test and the Diagnosis

Algorithm

In order to prove the self-test and self-repair algorithm which is intended for

hardware programming, a software program was created to simulate the hardware.

The objective of the simulator is to verify how each algorithm improves the

performance of a system in realistic environment. The program is made to apply

different failure rate and fault limit to support GALs and SCs of different sizes and

structures. The simulator can also be configured with different size GALs and SCs

for different test cases which may have different sized GALs, and the SCs’ size that

varies with the design of the system.

128

First, the simulator’s flow chart is explained here. The numbers inside the

processes on the flow chart represent the index of the detail flow chart. Processes

without this index number indicate that it is a basic process and has a brief description

inside of the process. The simulator was built using Microsoft Visual Studio 2005 as

the tool and MFC (Microsoft Foundation Classes).

129

R eset and destroy
sim ulator

(3)

Create SRI
(1

'

> sim ulator !
1) iI

r
|

Simulate SRS (
(2) !I

I

1

Get the value for
sim ulation environment,

GAL and SC variables

Result

Yes
Do It again?

No

End

Figure 6.1 Overall Process

After the program is launched, GALs are created first according to the Self-Repair

System (SRS) design, and then the SCs are created if the GALs need to be connected.

Once the algorithm, GAL, and SC’ fault limit and failure rate is set the simulation can

be started. Existing GALs and SCs may be deleted once the result is obtained. Or,

the GALs and SCs can be reconfigured with another data set to be used for another

test. Figure 6.1 illustrates the overall building process of the simulator.

131

Start (1)
(Create SRS simulator)

Get the information for each GALs
- Number of o rgates per a GAL
- Number of extra o rgates per a GAL
- Number of columns per an orgate
- Number of extra columns per an orgate
- Number of row s per a column

GAL data stored
into files Get GAL data to be programmed

by manually

Get the information for each SCs
- Input GAL index to SC
- Output GAL index from SC

Get SC data to be programmed by
manually

Program each GALs

Program each SC s

C reate SC s

C reate GALs

’

Get the environment
- Number of faults limit for
- Failure rate of a GAL
- Number of faults limit for
- Failure rate of a SC
- Number of run times to gc
- Algorithm to repair SRS

’ ---- -------- ---------

ralues for Simulation
iGAL

SC

t an average

Figure 6.2 GAL and SC Generation

132

Figure 6.2 shows the order and how GALs and SCs are created. First, GALs are

created to the specifications and then programmed. The programming can be done

manually or read from a data file such as a JEDEC file. SCs are created after all

GALs are created. An SC is created when a connection between GALs is needed.

Once the index of the input GAL and output GAL is put in the configuration, the size

of the SC is determined by the number of output pins on the input GAL. An SC can

then be programmed manually. After all components are put in place and the

variables (type of algorithm, fault limit, failure rate, and run time) are set, the program

is ready to start the simulation.

133

Start (2)
(Simulate SR S)

No
genera ted faults num ber = 0 ?

Y es

Yes
Is it alive?

No

Yes
RunTimes < Limit?

No

END
(Return Average Lifetime

Increase Lifetime

R estore SR S data with original data Increase RunTimes

Get the average Lifetime
(Lifetime / RunTimes)

Generate Faults into SRS
(Return genera ted faults number)

(2 .1)

Diagnosis SRS
- Find faults
- Repair faults with selected algorithm

(Return result)
(2 .2)

Figure 6.3 System Lifetime Generation

134

Figure 6.3 is a flow chart for generating the lifetime of the SRS. A fault is

generated by the fault limit and the failure rate given to each GAL and SC. If no

fault occurs the lifetime is incremented, and then run the fault generation simulation

again (2.1). If fault occurs, it attempts to diagnose (2.2) and repair with the given

algorithm. If the fault is repaired, it increments the lifetime and goes back to the

fault generation simulation (2.1). If repair is not possible with the given algorithm all

components on the SRS is reset and run again as many times as the specified run time.

The Average Lifetime is obtained by dividing the lifetime by the run time.

135

S ta r t(2.1)
(G enerate Faults into SR S)

No
Is the random num ber in the GAL failure range?

Yes

G enerate random num ber to create faults into ea ch S C s

No Is the random num ber in the SC failure range?

Yes

Make faults into each SC s
- G et faults num ber by random num ber generator
- G et the position of faults by random num ber generator
- C reate faults into each SC s

Return generated faults number

End
(Return total generated faults)

Add generated faults num ber to
Total generated faults

Add generated fau lts num ber to
Total generated faults

G enerate random num ber to create faults into each GALs

Make faults into each GALs
- G et faults num ber by random num ber generator
- G et the position and the type of faults by random num ber generator
- C reate faults into each GALs (SAP)

Return generated faults num ber

Figure 6.4 Fault Generation Simulation

136

Figure 6.4 is the fault generation simulation flow chart. First, faults are

generated on each GAL. The srand() function is used as the random number

generator and the current system time is used as the seed key. A random number is

generated and if the number falls within the failure rate range then another random

number is generated to determine the number of faults. Another random number is

then generated to determine the fault location and the type of fault. Faults on SC is

generated the same way. If a generated random number does not fall within the fault

range of both GAL and SC, the processor returns 0 and returns the fault number

otherwise.

137

Start (2.2)
(Diagnosis SRS)

T f
Find faults from each GALs

if (M AP-SAP)!=0, then (suit
Check only lor NC*0 and NR»0,-2

• if {igpdinsd, then start from next index.

X
Is there any faults ?

No

Yes

Find faults from each SCs
- Check NSC data for input and output GAL Index.
- If either onginat or extra Irnes have faults, then fault,
• If repaired, then start from next index.

Repair GAL with None Algorithm
Return Dead

Is tim e any faults? No

Repair GAL with Replace Algorithm
■ Find extra column (Only for NC=1)
■ If yes, then replace h with bad column.
Bad column NC —1, extra column NC-0
return Alive.

■ If no, then find extra orgate
■ If yes, replace it with bad orgate.
Bad orgate NR*-1, extra orgate NR=0
If connected to SC, then set the MCIR value
return Alive.
If no, then return Deed

Repair GAL with Reuse Algorithm
(Checking with whole column)

- Find reusable column (Only for NC=0)
Check for MAP and SAP whole column dala

- If yes, men exchange columns
Bad column N O -2
return AHve

-If no, then return Dead

Yes

Is it
ainre ;i ? i

Yes Yes

IS it
-4alives-

\ ? /

No

| Repair SC with None Algorithm
"j-R both have faults, then Return Dead
{ else return Alive

j Repair SC with Any Replace
Algorithm

I - Check extra orgate and all connected
line status.
- Find the line and extra orgate.

1 - If yes, replace it with bad trie and
{exchange orgate data.
{ old a g a te NR=-1, extra orgate NR-0
{ Set the MCIR value
{ return AHve.
- If no, then return Dead

End
(Return Alive)

Reoair GAL with Reuse Algorithm
(Checking with only bad rows)

Find reusable column (Only for NC=0)
Check for MAP and SAP only bad rows data
if yes. then exchange columns
Bad column N O -2
return AHve
R no, then return Dead

Repair GAL with Replace and Reuse Algorithm
(Cheeking with whole column)

■ Repair GAL with Reuse Atgorithm()
(Checking with whole column)
If Alive, then return Alive
return Repair GAL with Replace Algorfthm()

No

Repair GAL with Replace and Reuse Algorithm
(Checking with only bad rows)

■ Repair GAL with Reuse Algorithm()
(Checking with only bad)
If Alive, then return Alive
return Repair GAL with Replace Algorithm!)

y?
End

(ReturnDead)

Figure 6.5 System Diagnosis Process

138

Figure 6.5 is the system diagnosis process. It first detects for faults and then

repairs the fault according to the given algorithm. In a GAL fault is detected by

searching operation in MAP and SAP, and when the fault is detected it is repaired

by the given algorithm. If repair was not possible it returns “Dead” and continues to

search for faults in SC otherwise. In the case where extra line is used, the repair

process begins if both the original and the extra line has faults. When the repair for

both GAL and SC is successful, the process returns “Alive” and returns “Dead”

otherwise. The details of the algorithm can be found in Chapter 4.

139

Start (3)
< Reset and destroy simulator)

End

Delete all GALs
- R elease all taken memories
- R eset all GAL related variables

Reset all simulator
environment

- R elease all taken memories
- R eset all simulator related environment
variables

Delete all SCs
- R elease all taken memories
- R eset all SC related variables

Figure 6.6 Simulator Reset Process

Figure 6.6 shows the SRG reset process. All of the memory used are released,

variables are reset, and the temporary memory for GAL and SC are reset, and then it

prepares for the next simulation.

140

6.2. Introduction to the Computer-Based Simulator

This section briefly explains the usage of the simulator program, and verifies the

legitimacy of the algorithm and the hardware simulation by running the simulation

with the testing vectors of each algorithm. Also described is how modules (GAL and

SC) are tested individually on the simulator. Finally, how FPGA and ASIC type

system is crated in the simulator and how it carries the implementation of what this

research suggests. In the FPGA-like structure, an SC must be placed between GAL

modules. On the other hand, in the ASIC-like structure, a particular GAL module can

be shared by other GAL modules with an SC. Thus, the ASIC-like design type can

reduce the number of SCs in a system design and also the size of each module can be

different from other GALs’ size. However, the ASIC-like design may not be flexible in

designing a system since each module is fixed in terms of extra devices such as extra

columns in an AND plane of a GAL module, extra ORs in a GAL module, or extra

lines in an SC.

141

S elf R e p a ira b le C om pu ting S y s te m S im u la to r

S V SRC System
- f t GALs

A SCs

Figure 6.7 Initial Screen of the Simulator

Figure 6.7 shows the initial screen of the simulator.

To create a GAL, right-click the mouse on the GAL folder and select “Add a

GAL”, and the dialog box appears (Figure 6.8).

Figure 6.8 Creating GAL Options

142

In Figure 6.8, configure the size of GAL and extra devices. “Number of Or-gate

per GAL” is the total number of OR-gates in the GAL, and “Number of Extra OR-

gate” is the number of extra OR-gates out of the total OR-gates. “Number of

Column per OR-gate” represents the total number of columns per OR-gate, and the

Extra Columns are how many of the total columns are used as extra. “Number of

Row per Column” represents the primary input.

Once a GAL is created, the left panel displays the GAL folder with indexed GAL

icons, and the right panel displays the detail information. Each column on the right

panel corresponds to OR-gate index, Column index of the OR-gate, MAP (M), and

SAP (S). Index on column represents input (row) index, and NC represents the

current state of the NC register.

To program the GAL, right-click the GAL to be configured on the left panel and

select “Program GAL”.

Figure 6.9 is the screen of a programmed GAL.

Figure 6.9 Initial MAP and SAP

Click on the GAL icon on the left panel and select “Make Faults into a GAL” to

generate faults.

• fm ^ s H ie ^ e iw a H w
B SRC System M f c M * 5 9 % » r 3 i i i i w r 5 l @ a ^ r a ^ 5 ^ » e e e @ r w * -*

S ~ f t G A LS

SB
' f t SCs

0 0 0 1 1 1 1 o 0
1 1 1 0 0 0 1 1 1 1 0
2 0 0 1 1 0 1 1 1 1 0
3 1 1 0 0 1 1 1 1 0 0
N C O O O O O O O O

m m m a m <

Figure 6.10 Added Faults

144

Figure 6.10 shows the screen of a programmed GAL with fault variables selected.

The example shows 6 faults in Figure 6.10. Faults are indicated by the extra digit on

the SAP column and if the extra digit is 0 it is a “stuck-at 0” fault and 1 is “ stuck-at 1”

fault.

In order to start simulation, the environment variable must be configured. Click

on the SRG System icon and select “Configure...” then Figure 6.11 appears.

Configure GAL’s fault limit, failure rate, SC’s fault limit, failure rate, run time,

algorithm, and whether extra lines will be used or not.

C o n f i g u r e c o n d i t i o n o f s i m u l a t i o n .

1000000

Figure 6.11 Simulation Configuration

145

From the left panel, when SRG System icon is clicked and “Diagnosis” is selected,

chosen algorithm can be verified. The NC registers’ value is also displayed after a

repair by the algorithm.

E f t GALs

as
j | SCs

Q I 1 Q 0 0 G I 1
1 0 0 1 1 1 11 0 10
2 1 1 0 0 1 11 0 10
3 0 10 1 11 0 0 1 1
NC -2 -2 0 0 .T* _2 0 0

• r r r - i

Figure 6.12 Simulation Result

Figure 6.13 is a sample of Replacement method simulation. Shown GAL has 1

OR-gate with 8 columns and 4 primary inputs. 4 of these columns are used as extra.

A total of 6 faults are programmed for this simulation.

a \j> SRC System
3 ' f i GALs

Figure 6.13 Initial Screen of the Replacement Method

147

Figure 6.14 is the result of the simulation run in Figure 6.13. All columns with

faults have been programmed (replaced) to the extra columns and all the faulty

columns are programmed to 1 and disabled as NC value is changed to -1.

Self Repairable Computing System Simulator - SRCSystem

B V ® C System
G - f iG A ls

I SCs

aaaa

t m i m tfsfi w 'l oa»4 «&4 mw -i w a mwhbw hjM w j w
I 1 1
1 1 1
1 1 1
1 1 1
-1 -1 *1

Rady * n p r r ,
Figure 6.14 Replacement Method Result

148

Figure 6.15 shows the Column Re-Use with extra column algorithm test. A GAL

has 1 OR-gate with 8 columns and 4 primary inputs. 4 of the 8 columns are used as

extra columns. Column 0 has ‘stuck-at 1 ’ fault at row 2 and ‘stuck-at O’ fault at row

3. Column 1 has ‘stuck-at 0’ fault at row 1, 2, and ‘stuck-at 1’ fault at row 3.

Column 1 has ‘stuck-at O’ fault at row 1, 2, and ‘stuck-at 1 ’ at row 3. Column 2 has

‘stuck-at O’ fault at row 0, 3, and ‘stuck-at 1’ at row 1 and 2. No fault occurred on

Column3.

'j a ,n tr r «« » * * .4

m s3

w a d w 1 *,v*aiju i u s Vb.w'u« ibah-i»a? 1 I 1 wj iE SRC System
3 GALs
 ̂ 1»- a scs

0 0 01 1 1
2 0 11
2 1 10
NC 0 0

10
11
11
100

0 0 1 1 1 1 1 1 1 0 0 1 0 0 1

Figure 6.15 Initial Screen of Column Re-Use with Extra Columns Method

149

Figure 6.16 is the result o f the Column Re-Use with extra column algorithm repair

simulation run in Figure 6.15.

Column 0 became ‘0110’ after the fault and Re-used with column 3 where the

value was the same, ‘0110’. Column 1 became ‘1001’ after the fault and Re-used

with column 2. However, column 2 did not have a matching column so it used an

extra column to repair. All the faults have been repaired at this point. The result

shows that column 0 and 1 were repaired by re-use and column 2 was repaired by

replacement by using an extra column.

• Sett Repairable Computing System Simulator - SRCSystem

I :I w -1 w *1 m*'lmiHuMAI M m i ' t m > Io.» IS' V System
0 M GALS

SI■■M scs
01
11
10
-2

Figure 6.16 Column-Re-Use with Extra Columns Method Result

150

Figure 6.17 shows the Cell Re-Use with extra column algorithm test. A GAL has

1 OR-gate with 8 columns and 4 primary inputs. 4 of the 8 columns are used as extra

columns. Column 0 has ‘stuck-at 1’ fault at row 2, and ‘stuck-at 0’ at row 3.

Column 1 has ‘stuck-at 0’ fault at row 1 & 2, and ‘stuck-at 1’ fault at row 3. Column

2 has ‘stuck-at 0’ at row 0 & 3, and ‘stuck-at 1 ’ at row 1 & 2. Column has no faults.

B V sf(C sVstHn oft GALs
L-3«

S i scs

0 0 0 1 1 11 1 1 0 10 0 11 1 12 0 11 1 10 0 11 1 1
3 1 10 0 11 1 10 0 0

N C O O O Q O O Q G

Figure 6.17 Initial Screen of Cell Re-Use Method

151

Figure 6.18 shows the result of the repair using the Cell Re-Use with extra

column algorithm shown in Figure 6.17

Column 0 has ‘stuck-at 0’ fault at row 3 and ‘stuck-at 1’ fault at row 2, thus this

column is reused with column 1 which has 1 and 0 at row 2 and 3, respectively. On

the second step, since column 1 is already reused by column 0, the faults on rowl, 2,

and 3 are detected. Thus, the column 1 is reused with column 2 which has matching

data on row 1, 2, and 3.

Since column 2 also exchanged data with column 1, it finds the matching rows on

column 3 for the rows with detected faults, and then reuses with column 3. Column

3 did not have any faults, thus no additional repair is needed. Columns 0, 1, and 2

were reused and the corresponding NC registers are changed to -2, and column 3 is

still usable and no extra column was used.

152

;y- ' .^-A .’■■V-/ ,-: >- • * - -!I l~l i ■ a

Figure 6.18 Cell Re-Use Method Result

Figure 6.19 is a sample test within a GAL using the algorithm with extra OR gates.

The GAL is made up of 2 OR-gates with one of the two being an extra OR-gate.

The OR-gates have 4 columns and no extra columns were used, and each column has

4 primary inputs.

OR-gate 0 has ‘stuck-at 0’ fault at column 0 & row 2, and ‘stuck-at 1’ fault at

column 2 & row 0.

153

F ie Wew Hefc

M J H 1

Figure 6.19 Extra OR-gate Initial Screen

Figure 6.20 is the result of the repair using an extra OR-gate in Figure 6.19

OR-gate 0 is disabled and all the data is replaced on to OR-gate 1. If a system

has extra OR-gates, then the system can be repaired as shown in Figure 6.20, and

improvement on the system performance can be expected.

154

SfIf Repayable GnipufiCr S. ̂ n Sir S“;C5vit-' !. [X
fle few Hefe

DtfHjJkPj3_r
- if SRC System

- fiO L !

J flfisa
0 1 1 1 0 0 0 1
1 I 1 0 0 0 0 0 i
2 1 I i 0 0 0
3 1 1 0 0 1
NC ■1 ■1 -1 ■I •1 •t •1 0 0 0 0

tu f a I 0.0JW A * 10.U1 10.U l(UM ln.24 llU H lOAS llA H I IAS I I IH I LIS I 1.2* I U S I U H I U S

Itewly

Figure 6.20 Extra OR-gate Result

Figure 6.21 is a simulation of a switching circuit repair.

First, 2 GALs with 4 OR-gates and 2 columns on each OR-gate are created.

Each GAL has 2 extra OR-gates and a switching circuit, SC 0 is put in place to

connect GAL 0 and GAL 1. Figure 6.21 shows the connection status of SC 0.

155

MCIR InPin# and MCIR OutPin# show that SC 0 connects GAL 0 and GAL 1.

OR-gate 0 and 1, each are connected using 0 to 0 and 1 to 1 line, and extra OR-gates 2

and 3 are not connected at this point. SC 0’s output pin# 2 and 3 are currently disabled.

11 Self R e p a i r a b l e C o m p u t i n g S v s t e r r S i m u l a t o r S R C v / t f e m

Ffe VK» Hdp

□ H i & ^ 6 : S | t i

B
i SRC System
-fi (As

IilSCs
• B

MULhk: 0 Output GAL W o : 1

I rf tA Q iA i
II

1[a3) 1 * 4) | 2 M 1 2 * 6] | Sftf] I 3 * 6) |
0 1 1

1 1
1 1 1 1 1

1
2

1 I
1 1 1

1 1 1 1 1
1 1 1 1 1

3 1 1 1 1 1 1 1 1

MCIR l i f t * 0 t 2 3
MQRQUPM 0 1 •1 ■1

SCOutPrtt 0 1 2 3
O utPr Status 1 1 0 0

Total Coot 4
R ed Con# 2
EatHCont 2
KJedContt 0

Ready

Figure 6.21 Switching Circuit Initial Screen

156

Two ‘stuck-at 1’ faults are occurred on both the original line and the extra line on

pin 0-to-pin 0 line (simply denoted by 0-to-0) in SC-0. No faults were created on the

GAL.

~ Self R e p a i r a b l e C o i p u t r g S y s t e m S i m u l a t o r - SRCSy>ter. i

Fit ter Hep

DfiSHjl E ?
E | f SRC System

IrpUGALW e*: o OUpul GAL Index: 1

IrfM O u fti W a2l I 1 U I i*q 1 m 1 m 1 w i m 1
0
1

0 0 1
1 1

1 1 1 1 1
1
2 1

1 1
1 1

1 1 1 1 1
1 1 1 1 1

3 1 1 1 1 1 1 1 1

M Q R IrfW 0 1 2 3
MQR O iiP r t 0 1 -1 •1

SCOuPWI 0 1 2 3
OulPin Status t 1 0 0

Total Con# 4
RealCont 2
Extra ConJ 2
KledConB 0

M JH SO H /,.

Figure 6.22 SC 2

157

After the repair algorithm is applied, Figure 6.23 shows that no OR-gates are

disabled on GAL 0, and all the data are moved to OR-gate 2. Faults occurred on line

0 to 0, thus OR-gate 0’s data cannot be sent to SC 0’s output pin#, therefore the data is

moved to OR-gate 2 and starts to use OR-gate 2.

H Sel f R e p a i r a b l e C o m p u t i n g S ' / s t e m S i a d ^ r - S R C Sys t em I . f a , X

Figure 6.23 SC 3

158

Figure 6.24 shows the status of SC 0 after the repair. Observing MCIR input#

and MCIR output#, 0 to 0 line is changed to -2, and discarded, and 2 to 0 line is used.

Because OR-gate 0’s data are moved to OR-gate 2 and SC 0’s line connection is

changed, there is no functional problems on GAL. The 1 to 1 line is keep being used.

If a fault should occur on the line, it can switch to extra line, and if another fault

should occur on the extra line, then extra OR-gate can even be used to repair the fault

on the line if extra OR-gate is available.

y S e lf R e p a ira b le C om pu tin? , System S im u la to r - SRCSystem

F fc fe w Hefc)

D tf fl: *
E SRC System

Z •M GALs

i:
•B

Input GAL Mm: 0 Output GAL Index: 1

InRrAQutRn

Ii

1(a3) 1**4) | 21*5) | 2**6) 1 31*71 1 3efa6l 1
0 0 0

1 i 1 1 1 1 1

2
i i
1 1

1 1 1 1 1
1 1 1 1 1

3 1 1 1 1 1 1 1

MQR IrfWt 0 1 2 3
MQROulPMt •2 t 0 •1

SCOutPh# 0 1 2 3
OulPri Status 1 1 0 0

Total Con# 4
Real Con# 2
Extra Con# 1
KiedCon# 1

Reedy ~IQiSmL /,,

Figure 6.24 SC Final

159

Figure 6.25 and Figure 6.26 shows an ASIC type design with 4 GALs, 2 SCs

designed by the simulator. Each GAL has 8 OR-gate x 8 columns x 32 inputs.

□ Gf BĝStCSyston M et IHj»OCmOrgMe» \h*CKtk*M t

Figure 6.25 ASIC Initial Screen

The SC 0 simultaneously connects GALO & GAL1, and GAL 0 & GAL 2. The

SC 1 connects GAL 1 & GAL 3. The SC 0 has 8 original lines and 8 extra lines

which matches the number of OR-gates on GAL 0. The SC 1 has the same number

of lines as SC 0, and matches the number of OR-gates on GAL 1.

160

''elf Rf,;.:ir;5hie fcc.puMrij Sysf~n Sirnif/itr-r • SRĈŷ feni : * : “ |X
He He* hefe

D g$ B
= SRC System M et 1 tooutunelndet lOufeuBJnoMex 1 NMOOnDuts 1

i f t GALS 0 0 1,2 8

1 °
1 1 3 8

M 3

t ody ■ S h o t /

Figure 6.26 ASIC 2

Figure 6.27 and Figure 6.28 shows a FPGA type design model with 4 GALs, 3

SCs designed by the simulator. Each GAL has 8 OR-gates x 8 columns x 32 inputs.

161

■ ^ SRC System '
; ^ rio , iI 2

[3
: f is ~|o
1

Reidy

Wex j itoO ttroatB I toOfcftBOrqstB I H artC ofcro I NuwOtrtiCcfcwm I N a f l f a w

NJN SCRL ./

Figure 6.27 FPGA Initial

SC 0 and SCI have 8 original lines and 8 extra lines which match the number of

OR-gates on GAL 0. The SC 2 has the same number of lines as SC 0, and matches

the number of OR-gates on GAL 1.

162

Fit tfe* H * |

| D £ B T 1
= ^ SRC System Index tlroAMidex 1 OutnAinelndex 1 ftnOftnouts 1

SfiGAls 0 0 i 8
go 1 0 2 8

3 1 2 I 3 8
| 2
B 3

l l

Ready NUM SOI ;

Figure 6.28 FPGA 2

This is the extent of the description on FPGA and ASIC type design simulation in

this section, however, more detailed performance analysis is presented in Chapter 7.

163

S e lf R e p a i r a b le C o m p u tin g S y s te m S im u la to r • S R C S ystem

Fie View Help

#!!
; ^ SRCSystem

ZfiGAls
So

iSCs

r Curent Simulation Setting -

50
005

N a t e ol Fails M i n a GAL
FaiureRaleofaGAI$):
Algorithm:
N w to o fF a u k M fo a n S C :
F a iie R le o la n S C ft) : 001
Num beioffuiSmestogetaiavaage: 1000000

Replace And Reuse Wlh Whole Cciunv)
5

Reals

Index GALFautdjni GALFainRate 1 S C F a iis tii SCFaiueRate G A L M g SCConfig Algorithm RimTmes A v a a g e t ie T ir ^
0 10 0.05 5 0.01 7/0 8 0 15 7 32 None 1000000 2964]
1 10 0.05 5 0.01 7/0 8 0 15 7 32 Replace Only 1000000 39650 i
2 10 0.05 5 0.01 7/0 8 0 15 7 32 Reuse Only 1000000 13166 T
3 10 0.05 5 0.01 770 8 0 15 7 32 Reuse With... 1000000 2964 d
4 10 0.05 5 0.01 /TO 8 0 15 7 32 Replace And... 1000000 82853 i
5 10 0.05 5 0.01 770 8 0 1 5 7 32 Replace And... 1000000 39650 i
6 20 005 5 0.01 /TO 8 0 15 7 32 None 1000000 2532 1
7 20 0.05 5 0.01 770 8 0 15 7 32 ReplaceOnty 1000000 21482 j
8 20 0.05 5 0.01 m 8 0 15 7 32 Reuse Orly 1000000 7726
9 20 005 5 0.01 7/0 8 0 15 7 32 Reuse With... 1000000 2533 \
10 20 0.05 5 0.01 770 8 0 15 7 32 Replace And... 1000000 44236
11 20 0.05 5 0.01 7/0 8 0 15 7 32 Replace And... 1000000 21482 - i
12 50 0.05 5 0.01 770 8 0 1 5 7 32 None 1000000 2312
13 50 0.05 5 0.01 /70 8 0 1 5 7 32 Replace Only 1000000 9704
14 50 0.05 5 0.01 770 8 0 15 7 32 Reuse Orty 1000000 4201 £
& I

NUM

Figure 6.29 Typical Simulation Result

Figure 6.29 is the final result screen at the end of a simulation. This screen

shows a summary of the GAL and SC’s configuration, algorithm used failure rate, and

fault limit.

7. Evaluation and Analysis of the Simulation Results for the

Ultra Reliable Computing Systems

In this chapter, simulation results are analyzed to evaluate our self-repairing

methods and to prove that our reliable system based on the self-repairable EPLDs,

proposed in this dissertation, will last longer in the field. The simulation program is

programmed using Microsoft Visual Studio 2005 (MFC) and a GAL16V8 [47, 48, 49].

Our computer-based simulator developed for test, diagnosis, and repair, including the

function as a fault processor, is explained in more detail in Chapter 6.

7.1. Assumptions and Failure Rates

Assumptions for our evaluation methodology are the following. Each cross-point

in the AND plane has the same probability of stuck-at faults (s-a-0 and s-a-1)

occurring. Consequently, each column and OR gate has also the same probability of

stuck-at faults to occur. Each interconnection line in a switching circuit has also the

same probability of stuck-at faults (s-a-0 and s-a-1) occurring. The failure of one

cross-point in an AND plane and one line in an SC does not affect the likelihood that

another cross-point and line will fail, respectively. Thus, the failure of one cross-point

165

or one line is assumed to be independent of the failure of another cross-point or line,

respectively. Likewise for columns, ORs, and switching circuit blocks. In GAL

operation without self-repairing, if at least one cross-point stuck-at fault appears in a

column, then that column will be faulty. This means that if at least one column fails in

an OR gate, then that OR gate will be faulty, and if at least one OR gate is faulty in a

GAL, then that section of the GAL is useless. In switching circuit operation without

self-repairing, if at least one line stuck-at fault appears in an interconnection line, then

that line will become faulty. This means that if at least one line fails in an SC, then that

SC will become faulty, and if at least one SC is faulty in a system, then that whole

system is useless even though a GAL module is not faulty. Due to the excessively

large overhead, we do not consider the case when the number of extra columns and the

number of extra ORs are greater than the number of original columns and the number

of original ORs, respectively.

The PPM, 0.05% (489/1,000,000 ~ 0.05%) and FIT, 5.00% (5.07% ~ 5.00%) for

EEPROMs obtained from National Semiconductor Corporation are adopted as the

PPM and the FIT of a GAL module in our simulation. In our simulation, the MAP is

166

'y

generated using 100% AND array utilization; thus all E CMOS cells are programmed

using a random number generator. The connection of lines in an SC is generated with

all GAL modules being used in a system; thus all original lines are programmed using

a random number generator. After creating the description of the MAP and the NSC,

the faults are simulated in an AND array and in an SC by using a random number

generator, respectively; the maximum number of cross-points that have faults at a time

are limited to be less or equal to 5, 10, 20, 50, 100, 1000, and 2048, and the maximum

number of lines of the SC that have faults at a time are limited to be less or equal to 2

and 4. It is assumed that extra columns, extra ORs, and extra lines can also have faults.

The extra columns will be increased in a multiple of 8 since there are 8 OLMCs in a

GAL and each OLMC has the same number of extra columns as in extra ORs. The

extra lines of each pin-to-pin connection will be increased in a multiple of 2 since each

input pin of an SC has only one extra line, corresponding to an output pin of the SC.

The results of the failure rate analysis are only valid under assumption that the

assumed stuck-at fault model adequately represents all physical defects that can occur

in a GAL device and an SC block.

167

7.2. Evaluation and Analysis of the Simulation Results

The same personality being originally programmed in the AND plane is applied

into all self-repairing methodologies according to the number of extra columns. In

other words, 0 number of extra columns’ cases in each method (first rows of the

following tables) are simulated with the same information of the AND plane. All 8

number of extra columns’ cases in each method are simulated with same information

of the AND plane which is the same as the programming of the 0 number of extra

columns case and so on. In short, each case (extra columns 0, 8, 16, 24, 32, 40, 48, 56,

and 64) has same programming information of the AND plane. It allows to evaluate

the effect on the GAL’s lifetime according to self-repairing methods under the same

condition, the same programming data is used in the AND plane. It gives also how

standardize the simulation results for each self-repairing method regardless of

originally programmed data of the AND plane.

Table 7.1 displays average looping time using the column replacement method

until a GAL is useless after running simulation in 1,000,000 times at each case. These

results show that with more extra columns, longer survival times in the field can be

168

obtained (except two cases that the number of faults limit is less than 1000 and 2048

under 5% failure rate of a GAL (FIT)). However, these two cases will be very rare,

even in less than 50 and less than 100 under either 0.05% or 5% failure rate of a GAL.

The results on 0.05% failure rate of a GAL are better than on 5% failure rate of a GAL.

of

Extra

Col.

of Fault Limits

<5 5 10 5 20 5 50 5 100 5 1000 5 2048

0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5%

0 2709 27 2425 24 2300 23 2229 22 2206 22 2187 21 2183 21

8 7537 75 4791 47 3312 33 2572 25 2367 23 2203 22 2191 21

16 14909 149 8796 87 5296 52 3167 31 2624 26 2225 22 2201 22

24 23888 238 13703 137 7873 78 4079 40 2978 29 2254 22 2215 22

32 34163 341 19329 193 10829 108 5298 52 3443 34 2286 22 2231 22

40 45665 456 25563 255 14102 140 6669 66 4048 40 2323 23 2248 22

48 58136 580 32359 323 17629 176 8137 81 4792 47 2365 23 2267 22

56 71271 714 39650 396 21482 214 9704 97 5627 56 2410 24 2287 22

64 85843 855 47384 473 25536 255 11378 113 6479 64 2455 24 2310 23

Table 7.1 Average Looping Times of Simulating the Replacement Methodology

Table 7.2 displays average looping time using column-column re-use method only

until a GAL is useless after running simulation in 1,000,000 times at each case. This

case does not take into account of extra columns since the extra columns are useful

only with the replacement method. However, failure rates applied into the AND plane

169

can be distributed to the extra columns equally as originally programmed columns.

These results show also that with more extra columns, longer survival times in the

field can be obtained in cases of the number of faults limit less than 5, 10, 20 and 50

under 0.05% failure rate (PPM), and less than 5 only under 5% of a GAL (FIT).

However, overall average looping time in this table is less than the average

looping time of the replacement method except the cases of the number of faults limit

less than 5, 10, and 20 under 0.05% failure rate in case of 0 number of extra columns.

It means that in no extra columns, column-column re-use method is better than the

replacement method for repairing faulty columns. On the other hand, the column-

column re-use has difficulty to find an exact same personality that must be exchanged

with a whole faulty column among columns being used. It shows that it is very

dependable on the number of faults occurred at a time in an AND array rather than the

number of extra columns added.

170

#of

Extra

Col.

of Fault Limits

£ 5 <10 <20 5 50 5 100 5 1000 5 2048

0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5%

0 2708 27 2425 24 2300 22 2229 22 2207 22 2188 21 2183 21

8 2861 28 2496 24 2330 23 2240 22 2212 22 2188 21 2184 21

16 3018 30 2567 25 2362 23 2252 22 2218 22 2189 21 2185 21

24 3184 31 2642 26 2394 23 2265 22 2223 22 2190 21 2184 21

32 3347 33 2719 27 2428 24 2276 22 2229 22 2190 21 2185 21

40 3513 35 2798 27 2461 24 2287 22 2235 22 2191 21 2185 21

48 3683 36 2879 28 2496 24 2299 23 2241 22 2191 21 2185 21

56 3853 38 2964 29 2533 25 2312 23 2246 22 2192 21 2185 21

64 4026 40 3045 30 2569 25 2324 23 2252 22 2192 21 2186 21

Table 7.2 Average Looping Time of Simulating the Coiumn-Column Re-Use Only

Table 7.3 displays average looping time using cell-column re-use method only

until a GAL is useless after running simulation in 1,000,000 times at each case.

Extra columns are not used for repairing faulty columns as the column-column re­

use case and have the same failure rates as the original columns. These results show

also that with more extra columns, longer survival times in the field can be obtained

(except three cases that the number of faults limit is less than 100, 1000, and 2048

under 5% failure rate of a GAL (FIT)).

171

of

Extra

Col.

of Fault Limits

<5 £ 10 £20 £50 £ 100 £ 1000 £2048

0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5%

0 12654 126 7708 77 4864 48 3076 30 2587 25 2222 22 2200 22

8 14074 140 8483 84 5276 52 3226 32 2646 26 2228 22 2202 22

16 15515 155 9272 92 5686 56 3379 33 2710 27 2233 22 2205 22

24 16961 169 10049 100 6101 60 3538 35 2773 27 2237 22 2207 22

32 18401 183 10825 108 6501 65 3702 36 2836 28 2243 22 2210 22

40 19816 198 11619 116 6913 69 3864 38 2903 29 2248 22 2212 22

48 21273 212 12392 124 7333 73 4032 40 2973 29 2252 22 2214 22

56 22654 226 13166 131 7726 77 4201 41 3043 30 2257 22 2217 22

64 24039 241 13934 139 8135 81 4363 43 3119 31 2263 22 2219 22

Table 7.3 Average Looping Time of Simulating the Cell-Column Re-Use Only

There are no linear increases of the lifetime under two cases that the number of

faults limit is less than 1000, and 2048 under 0.05% failure rate of a GAL according to

lots of faulty cells at a time and difficulty of finding a re-usable column. For instance,

in worst case, if all faults occur in a certain column, then it is very hard to find a re­

usable column in that AND array even though comparing only faulty cell locations

with a column being used. In cases of the number of faults limit less than 5, 10, 20, 50,

and 100 under either 0.05% or 5% failure rate of a GAL, the looping time of these

172

cases not using any extra columns (not using the replacement method) is longer than

the looping time of the replacement method using extra columns up to 16 extra

columns. In 0 number of extra columns case, using cell-column re-use method only

(12654, 126; average looping time under the number of fault limits < 5 in Table 7.3

makes a self-repairable GAL last over 4.5 times longer than using only replacement

method (2709, 27; average looping time under the number of fault limits < 5 in Table

7.1) under both 0.05% and 5% failure rate. It means that the cell-column re-use

method itself makes a self-repairable GAL more reliable than the use of the column

replacement method or the use of the column-column re-use method even without any

spare columns. However, in cases adding greater or equal to 24 extra columns under

either 0.05% or 5% failure rate of a GAL, overall average looping time in this table is

less than the average looping time of the replacement method. It means that

replacing faulty columns with extra columns is better than re-using columns being

used for faulty cells in adding more extra columns. It shows the limitation of using

only the cell-column re-use method to have longer lifetime (average looping time) in

all the cases, comparing with the replacement method.

173

Table 7.4 shows the simulation results using a combination of two methods,

column-column re-use method and replacement method. These results are very similar

with the replacement case, which means that the column-column re-use is not much

useful. However, the column-column re-use method makes a GAL more reliable in

cases of the small number of faults and primary inputs (rows) and the large number of

programmed columns being used. The result in this case is little better than on the

Table 7.1, but both table have almost same average looping time.

Table 7.5 displays average looping time using cell-column re-use method and

replacement method until a GAL is useless after running simulation in 1,000,000 times

at each case. These results also show that with more extra columns, longer survival

times in the field can be obtained. The results on 0.05% failure rate of a GAL are

better than on 5% failure rate of a GAL as all other tables. The combination of cell-

column re-use method and replacement method makes a self-repairable GAL most

reliable.

174

of

Extra

Col.

of Fault Limits

<5 £ 10 L <20 £50 £ 100 £1000 £2048

0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5%

0 2708 27 2427 24 2299 22 2228 22 2206 22 2188 21 2183 21

8 7537 75 4793 47 3312 33 2571 25 2367 23 2203 22 2190 21

16 14909 149 8795 87 5297 52 3165 31 2624 26 2226 22 2201 22

24 23890 239 13702 136 7873 78 4080 40 2979 29 2254 22 2215 22

32 34163 341 19331 193 10831 108 5298 52 3442 34 2286 22 2231 22

40 45666 456 25563 255 14100 140 6668 66 4048 40 2323 23 2248 22

48 58135 580 32361 323 17628 176 8136 81 4793 47 2365 23 2267 22

56 71270 714 39650 396 21482 214 9704 97 5627 56 2410 24 2287 22

64 85844 855 47383 473 25535 254 11377 113 6478 64 2456 24 2308 23

Table 7.4 Average Looping Time of Simulating the Column-Column Re-Use and Replacement

In 0 number of extra columns case, using cell-column re-use method (12653, 126)

makes a self-repairable GAL last over 5 times longer than using only replacement

method (2709, 27) in Table 7.1 under both 0.05% and 5% failure rate.

As a result, our new hardware self-repairing algorithm, the cell-column re-use

with extra columns (with the replacement method), is the best solution to self-repair

faulty columns including hidden faulty cells occurred in an AND plane (both

originally programmed columns and extra columns) of a GAL. If the average looping

175

time can be converted to the lifetime of a GAL, it would provide an indication how

many extra columns a GAL should have in order to guarantee certain reliability and

lifetime.

of

Extra

Col.

of Fault Limits

£ 5 <10 <20 £50 <100 < 1000 <2048

0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5%

0 12653 126 7710 77 4866 48 3079 30 2588 25 2222 22 2200 22

8 31147 311 17772 177 10129 101 5129 51 3400 33 2285 22 2230 22

16 50068 499 28078 280 15484 154 7346 73 4443 44 2348 23 2260 22

24 69274 692 38521 385 20983 209 9600 96 5640 56 2413 24 2289 22

32 88973 888 49286 492 26587 265 11897 119 6814 68 2481 24 2321 23

40 108933 1089 60208 602 32326 323 14282 142 8003 80 2555 25 2354 23

48 129496 1295 71466 714 38188 382 16711 167 9229 92 2632 26 2386 23

56 150846 1506 82853 829 44236 442 19167 191 10496 104 2711 27 2422 24

64 171992 1719 94653 945 50346 503 21709 217 11764 117 2795 27 2458 24

Table 7.5 Average Looping Time of Simulating the Cell-Column Re-Use and Replacement

Finally, as shown in Figure 7.1 through Figure 7.6, a self-repairable GAL using

the cell-column re-use method with extra columns (simply called cell re-use) will last

longer than one using the replacement method or no self-repair method in the field.

Figure 7.1 through Figure 7.6 only shows three cases that the number of faults limit is

less or equal to 5, 10, and 20 under both 0.05% and 5% failure rate since for other

cases that the number of faults limit is less or equal to 50, 100, 1000 and 2048, under

both, failure of a GAL will be very rare. The simulation results for the cell-column

re-use method with extra columns are better than the results for the replacement

method in all cases.

A
ve

ra
ge

Lo

op
in

g
Ti

m
e

n
A

ve
ra

ge

Lo
op

in
g

T
im

e

177

0.05% Failure Rate of a GAL with # of Faults <= 5

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000

0
0 8 16 24 32 40 48 56 64

Number of Extra Columns

-None

- Replacement & Cell Reuse

Replacement & Col Reuse

- Replacement Only

-Cell Reuse Only

-Col Reuse Only

7.1 Comparison of Average Looping Time for All Methodologies with the Fault Limit less

than or equal to 5 and 0.05% Failure Rate

5% Failure Rate of a GAL with # of Faults <= 5

16 24 32 40 48 56

Number of Extra Columns

-None

- Replacement & Cell Reuse

Replacement & Col Reuse
- Replacement Only

-Cell Reuse Only

-Col Reuse Only

Figure 7.2 Comparison of Average Looping Time for All Methodologies with the Fault Limit less

than or equal to 5 and 5.00% Failure Rate

178

0.05% Failure Rate of a GAL with # of Faults <=10

100000
90000
80000
70000
60000
50000
40000
30000
20000 ^
10000 l | ^ ^ B H [| H |

0 8 16 24 32 40 48 56 64

Number of Extra Columns

Figure 7.3 Comparison of Average Looping Time for All Methodologies with the Fault Limit less

than or equal to 10 and 5.00% Failure Rate

♦ None

•-*— Replacement & Cell Reuse

Replacement & Col Reuse

—* — Replacement Only

—* — Cell Reuse Only

—• —Col Reuse Only

5% Failure Rate of a GAL with # of Faults <=10

S» 300

16 24 32 40 48

Number of Extra Columns

-None

- Replacement & Cell Reuse

Replacement & Col Reuse

- Replacement Only

-Cell Reuse Only

-Col Reuse Only

Figure 7.4 Comparison of Average Looping Time for All Methodologies with the Fault Limit less

than or equal to 10 and 5.00% Failure Rate

179

0.05% Failure Rate of a GAL with # of Faults <= 20

60000

4>
E

Ui

50000

40000

o 30000 o
«a t
(0
«
I

20000

10000

16 24 32 40 48 56

Number of Extra Columns

-None
Replacement & Cell Reuse

Replacement & Col Reuse
- Replacement Only

- Cell Reuse Only

- Col Reuse Only

Figure 7.5 Comparison of Average Looping Time for All Methodologies with the Fault Limit less

than or equal to 20 and 5.00% Failure Rate

600

5% Failure Rate of a GAL with # of Faults <= 20

b> 400 c

16 24 32 40 48

Number of Extra Columns

-None
- Replacement & Cell Reuse

Replacement & Col Reuse

- Replacement Only

- Cell Reuse Only

-Col Reuse Only

Figure 7.6 Comparison of Average Looping Time for All Methodologies with the Fault Limit less

than or equal to 20 and 5.00% Failure Rate

Column re-use method with extra columns is the same as the replacement method

as shown in Figure 7.1 through Figure 7.6 under both 0.05% and 5% failure rate of a

GAL. Figure 7.1, Figure 7.3, and Figure 7.5 are on different vertical scales from

Figure 7.2, Figure 7.4, and Figure 7.6 respectively. The column re-use algorithm is

most effective when columns in each OR-gate have similar personality or the input

number is small. However, these simulations did not obtain such results. That is

the reason for the performance of the column re-use being so close to the performance

of no algorithm on these graphs.

7.3. Hardware Overhead and Performance

Now, we consider the hardware overhead in a GAL. In the measurement of area

overhead, the LSI Logic Corporation’s 0.5-micron LCA/LEA500K array-based

products are used for synthesis [50]. All area measurements are expressed in cell units,

excluding the interconnection wires. This measurement is separated into two parts, an

AND plane and others (OLMCs, Input/Output Buffers/Inverters, a SCR1 (Serial-In-

Parallel-Out Shift Register), and a SCR2 (Parallel-In-Serial-Out Shift Register)). In

measurement of an AND plane size, each cross-point section consumes 1 cell, i.e.

2048 (32 inputs x 64 columns) cell units are measured for an AND plane in case of no

extra columns. If there are 8 extra columns added in an AND plane, the AND plane

has 2304 (32 inputs x 72 columns) cell units, and so on.

B asic Com ponent Item Cell count

AND Plane (Each
1

cross-point section)

2 input EXOR gate 3

D flip-flop 6

1-of-2 Multiplexer 4

1-of-3 Multiplexer 5

1-of-4 Multiplexer 6

Tri-state buffer 3

Inverter 1

4 input OR gate 3

2 input OR gate 2

4 input AND gate 3

2 input AND gate 2

1 -to-2 DEMUX 4

1-to-4 DEMUX 6

Table 7.6 Generic Components

Table 7.6 is the list of basic components and the cell counts that are used to

represent the hardware overhead cost.

182

OLMC Component Component count Cell count

1-of-2 Multiplexer 2 8

1-of-3 Multiplexer 1 5

1-of-4 Multiplexer 1 6

D flip-flop 1 6

2 input EXOR gate 1 3

Tri-state buffer 1 3

Inverter 1 1

2 input OR gate
K(0[9~10, 12-13, 15-16 input], or

1[8, 11, 14 input])
2*K

4 input OR gate
K(2[8 input], 3[9~11 input], 4[12~14

input], or 5[15—16 input])
3*K

SCR1 Component

D flip-flop Number of primary Input(K) 6*K

SCR2 Component

D flip-flop Total columns of the GAL(K) 6*K

AND Plane Of a GAL

Each cross-point section

Total columns of the GAL(K) *

Primary input numbers of the

GAL(L)

K*L

Other components

I n verter/l n put/Output Number of output(K) *2 + 2 2*K + 2

GAL components

AND Plane 1

OLMC 1

SCR1 1

SCR2 1

Other GAL components 1

Table 7.7 GAL Components

183

Table 7.7 is the list of GAL components. OLMC’s OR-gates combination is

determined by the number of OR-gate’s input as shown in Table 7.8. This table was

designed to minimize the number of OR-gates used in OLMC.

Number of

columns in

an OR-gate

2-input

OR-gate

4-input

OR-gate

8 1 2

9 0 3

10 0 3

11 1 3

12 0 4

13 0 4

14 1 4

15 0 5

16 0 5

Table 7.8 OLMC’s OR-gate Combination Chart

For total area overhead of a GAL, the size of an AND plane is added to the sizes

for OLMCs, Input/Output Buffers/Inverters, a SCR1 (Serial-In-Parallel-Out Shift

Register), and a SCR2 (Parallel-In-Serial-Out Shift Register). For example, if there are

16 extra columns in an AND plane, the GAL has total number of 3602 cell units; 2560

cell units (32 x (64+16), AND plane) + 352 cell units (44 x 8, 8 OLMCs) + 18 cell

184

units (Input/Output Buffers/Inverters) + 192 cell units (6 x 32, 32-bit SCR1) + 480 cell

units (6 x 80, 80-bit SCR2)).

Table 7.9 provides the area overheads and ratios. These calculations have an

acceptable error rate because GAL has a regular structure so that assumption of no

connection overhead is realistic.

The ratios from Table 7.9 will be also used to calculate the reliability/cost defined

as the ratio of looping time divided by the ratio of area overhead at each case.

of Extra Columns # of Cells Ratio

0 2970 1.00

8 3298 1.11

16 3602 1.21

24 3906 1.32

32 4210 1.42

40 4538 1.53

48 4842 1.63

56 5146 1.73

64 5450 1.84

Table 7.9 Area Overhead and Ratio

185

Table 7.10 and Table 7.11 show the performance of a self-repairable GAL using

column replacement only and cell-column re-use & replacement respectively, as a

function of the number of extra columns. These tables represent the ratio of efficiency

versus cost factor, so a larger number represents better performance. Theses results

show that all cases where the number of fault limits are larger than 50 (shown in table

as ^ 50, ^ 100, ^ 1000, and ^ 2048) are not realistic.

of

Extra

Col.

of Fault Limits

<5 <10 <20 <50 <100 < 1000 <2048

0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5%

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 2.52 2.51 1.79 1.77 1.30 1.30 1.04 1.03 0.97 0.95 0.91 0.95 0.91 0.90

16 4.56 4.57 3.00 3.00 1.91 1.87 1.18 1.17 0.98 0.98 0.84 0.87 0.83 0.87

24 6.70 6.70 4.29 4.34 2.60 2.58 1.39 1.38 1.03 1.00 0.78 0.80 0.77 0.80

32 8.87 8.89 5.61 5.66 3.31 3.30 1.67 1.66 1.10 1.09 0.74 0.74 0.72 0.74

40 11.06 11.08 6.92 6.97 4.02 3.99 1.96 1.97 1.20 1.19 0.70 0.72 0.68 0.69

48 13.15 13.16 8.18 8.25 4.70 4.69 2.24 2.26 1.33 1.31 0.66 0.67 0.64 0.64

56 15.14 15.22 9.41 9.50 5.38 5.36 2.51 2.54 1.47 1.47 0.63 0.66 0.60 0.60

64 17.22 17.21 10.62 10.71 6.03 6.03 2.77 2.79 1.60 1.58 0.61 0.62 0.58 0.60

Table 7.10 Performance of a Self-Repairable GAL using Column Replacement Method

186

of

Extra

Col.

of Fault Limits

£ 5 <10 £20 £50 £100 £ 1000 £2048

0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5% 0.05% 5%

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 2.23 2.23 2.09 2.08 1.88 1.90 1.51 1.54 1.19 1.19 0.93 0.90 0.92 0.90

16 3.28 3.28 3.01 3.01 2.63 2.66 1.98 2.01 1.42 1.46 0.87 0.87 0.85 0.83

24 4.16 4.17 3.80 3.80 3.28 3.31 2.37 2.43 1.66 1.70 0.83 0.83 0.79 0.76

32 4.95 4.96 4.50 4.50 3.84 3.88 2.72 2.79 1.85 1.91 0.79 0.77 0.74 0.74

40 5.65 5.67 5.12 5.13 4.36 4.42 3.04 3.11 2.03 2.10 0.75 0.75 0.70 0.69

48 6.27 6.30 5.68 5.68 4.81 4.88 3.33 3.41 2.19 2.25 0.73 0.72 0.66 0.64

56 6.86 6.88 6.19 6.20 5.23 5.30 3.58 3.66 2.33 2.39 0.70 0.71 0.63 0.63

64 7.39 7.41 6.67 6.67 5.62 5.70 3.83 3.93 2.47 2.54 0.68 0.67 0.61 0.59

Table 7.11 Performance of a Self-Repairable GAL using Cell-Column Re-Use Method &

Replacement Method

The case of adding 64 extra columns for the assumption of the number of faults,

less or equal 5 is the most efficient from Table 7.10 (replacement method) both under

the 0.05% failure rate (17.22) and under the 5% failure rate of a GAL (17.21) and

from Table 7.11 (cell-column re-use method with extra columns) both under the 0.05%

failure rate (7.39) and under the 5% failure rate of a GAL (7.41). These performance

values may mislead the readers to think that the column replacement method is better

than the cell-column re-use & replacement method, but these values are measured

187

independent of each other and have no meaning in comparing the two methods’ values.

These values represent how much improvement is added with each additional column

within the method. For example, replacement method’s average looping time went

from 2709 to 85843 (3170% increase) when 64 extra columns are added. Under the

same condition, cell-column re-use with replacement methods values went from 12653

to 171992 (1360% increase). The values on Table 7.10 and Table 7.11 represent the

percentage values, not the average looping time.

The performance of either column-column re-use only or cell-column re-use only

is not taken into account in this sub section since both cases do not use extra columns,

and the efficiency for the column-column re-use with extra columns is not shown

since it is almost same as the result using the replacement method only.

7.3.1. Extra OR-Gate

Algorithm used in this simulation is the cell-column re-use and replacement with

fault limit < 5, and the failure rates set at 0.05% and 0.5%. Each OR-gate in the GAL

is configured with 8 columns with no extra columns, and each column has 32 inputs.

188

The number of OR-gate is then incremented to see what effect this change had on the

system. The result is then used in hardware overhead analysis to find out if the

performance upgrade justifies the additional overhead.

of

Extra

OR-

Gates

of Fault

Limits
#of

Extra

Columns

of Fault Limits

£ 5 5 5

0.05% 5% 0.05% 5%

0 12653 126 0 12653 126

1 14088 141 8 31147 311

2 15523 155 16 50068 499

3 16975 169 24 69274 692

4 18405 184 32 88973 888

5 18471 195 40 108933 1089

6 21249 198 48 129496 1295

7 21434 226 56 150846 1506

8 24162 228 64 171992 1719

Table 7.12 Average Looping Time of Simulating the Cell-Column Re-Use and Replacement

Table 7.12 is the looping time of a GAL with incremented extra OR-gates (left

side of the table). And, the looping time of a GAL with incremented extra columns is

on the right side of the table. The increments on both sides are comparable hardware

189

overhead cost. The looping time was generated from running the simulation

1,000,000 times.

The correlation between the extra OR-gates in GALs found in the simulation

result proved that the increased number of extra OR-gates had a very little effect on

the performance regardless of the algorithm, failure rate, or the fault limit.

#of

Extra

OR-

Gates

of Fault Limits
of

Extra

Columns

of Fault Limits

5 5 <5

0.05% 5% 0.05% 5%

0 1.000 1.000 0 1.000 1.000

1 0.952 0.957 8 2.227 2.233

2 0.909 0.911 16 3.276 3.278

3 0.871 0.870 24 4.160 4.173

4 0.835 0.838 32 4.947 4.958

5 0.747 0.791 40 5.649 5.671

6 0.771 0.721 48 6.271 6.298

7 0.702 0.743 56 6.862 6.880

8 0.718 0.681 64 7.388 7.415

Table 7.13 Performance Comparison of GALs with Extra OR-Gates and with Extra Columns

Table 7.13 shows that the average looping time is increased as the number of OR-

gate is increased, but when compared to the performance of the test set with increased

190

number of extra columns with the equivalent overhead increase, the efficiency value

significantly falls behind increasing only the columns within the OR-gates. The

performance ratio was actually decreased. The Performance ratio/overhead ratio

graph, Figure 7.7, clearly shows that adding extra OR-gate on GALs does not translate

to increase in performance. This result suggests that adding extra columns on OR-

gates is a more effective way of increasing GAL’s performance rather than adding

extra OR-gates on a GAL.

Performance v s . O verhead

8.000

0 .0 0 0

- Increased O r-G ate
ratio

- Increased
C olum ns ratio

2 3 4 5 6 7

Extra D evices

Figure 7.7 Performance Ratio/Overhead Ratio of Increased OR-Gate vs. Columns

191

7.3.2. Extra Line on Switching Circuits

In order to find out the isolated looping time (simulated lifetime) of SCs

(switching circuit), 8-input and 8-output SC is put in the simulation. An SC

commonly consists of lines, and lines have a very low failure rate, compared to

EEPROM based devices. Since having more than two lines is meaningless in terms

of performance enhancement due to the low failure rate on lines, only one extra line is

added to obtain more useful data. The fault limit is set at < 2 and ^ 4, and the failure

rate at 0.01% and 0.10%. Also, two 8 (number of an OR gate per a GAL) x 8

(number of columns per an OR) x 32 (number of inputs) GALs were put in place since

the simulator does not allow having only SCs. The GALs’ failure rate and fault limit

are set to 0, in order to isolate and extract SC related data. The looping time was

generated from running the simulation 1,000,000 times.

The looping time was increased by more than 5 times when an extra line was

added at < 2 fault limits, and more than 3 times at < 4 fault limits.

192

of Extra

Lines

of Fault Limits # of Fault Limits

£ 2 £ 4

0.01% 0.10% 0.01% 0.10%

0 15891 1592 13426 1347

1 80636 8110 51609 5153

Table 7.14 Average Looping Time of SC with 1 and 2 Extra Lines

An SC consists of SCR6, SCR7, and other logic gates. Calculation for each

component cost is listed in Table 7.15. An example calculation is, if a 10-input SC is

used, the overhead calculation would be:

SCR6 (60) + SCR7 (60) + Other Logic Gates for SC (300) = 420

If an extra line is added with above example, the total hardware overhead is 840.

193

SCR6

D flip-flop Number of input(K) 6*K

SCR7

D flip-flop Number of output(K) 6*K

Other logic
gates for SC

Component count Cell count

1-to-2 DEMUX
Number of input(K) * L(0[9~10, 12-13,

15-16 input], or 1 [8, 11, 14 input])
4*K*L

1-to-4 DEMUX

Number of input(K) * M(2[8 input],

3[9—11 input], 4[12~14 input], or

5[15 -1 6 input])

6*K*M

2 input AND

gate

Number of input(K) * J(0[9—10, 12-13,

15-16 input], or 1 [8, 11, 14 input])
2*K*J

4 input AND

gate

Number of input(K) * N(2[8 input],

3[9—11 input], 4[12—14 input], or

5[15—16 input])

3*K*N

Tri-state buffer Number of outputput(K) 3*K

Switching
Circuit
SCR6 Number of lines (n = 1 or n = 2) n*SCR6

SCR7 Number of lines (n = 1 or n = 2) n*SCR7

Other logic

gates for SC
Number of lines (n = 1 or n = 2) n*total

Table 7.15 SC Components

194

Input

of SC 8 9 10 11 12 13 14 15 16

Total

Number

of Lines

1 312 378 420 528 612 663 756 900 960

2 624 756 840 1056 1224 1326 1512 1800 1920

Table 7.16 SC Overhead Cell Count

Table 7.16 is SC hardware overhead table sorted by the number of inputs and lines.

of

Extra

Lines

of Fault

Limits

Of Fault

Limits

<2 <S4

0.05% 5% 0.05% 5%

0 1 1 1 1

1 2.537 2.547 1.922 1.913

Table 7.17 Performance of SC using Extra Line

Table 7.17 shows the increase in performance by adding an extra line, and the

increase was bigger in the lower fault limit setting. This simulation result can assess

the effective value of the extra line.

195

The result in Table 7.14 shows that the extra line improved the looping time by 5

times (Fault Limit = 2) and 4 times (Fault Limit = 4) the result of the set with no extra

line. It also proved that the performance increase ratio is twice the value of the

overhead increase ratio.

7.3.3. Performance by Available OR-Gate

This simulation is to find out the correlation of SCs and extra OR-gates since SCs’

fault occurrence is affected by the OR-gates usage on a GAL. In reality, there exists

unused OR-gates in GALs, and these unused OR-gates can be used as extra OR-gates

in the prototype system of this project. Therefore, it is possible to generate faults on

SC and see how much extra the OR-gate usage has effect on the increase of SC’s

lifetime.

An SC uses OR-gates to repair faults, thus the simulation can also verify if this

increase in SC lifetime influences the lifetime of the whole system. In this

simulation, two 8 x 8 x 32 GALs and an SC connecting these two GALs are created.

The GAL is given fault limit = 0, failure rate = 0%, and the SC is given fault limit = 2

196

and fault rate = 5%. The looping time was generated from running the simulation

1,000,000 times.

Number

of OR-

Gates 8 9 10 11 12 13 14 15 16

Number of

Columns

per an OR-

Gate 2386

8 2962 3464 3998 4564 5162 5792 6454 7148 7874

9 3274 3833 4428 5059 5726 6429 7168 7943 8754

10 3578 4193 4848 5543 6278 7053 7868 8723 9618

11 3898 4571 5288 6049 6854 7703 8596 9533 10514

12 4210 4940 5718 6544 7418 8340 9310 10328 11394

13 4514 5300 6138 7028 7970 8964 10010 11108 12258

14 4834 5678 6578 7534 8546 9614 10738 11918 13154

15 5146 6047 7008 8029 9110 10251 11452 12713 14034

16 5450 6407 7428 8513 9662 10875 12152 13493 14898

Table 7.18 GAL Overhead -Total Cell Count

Table 7.18 shows the hardware overhead of a generic GAL (2386 cell count: 8

OR-gates x 8 columns x 32 inputs) and self-repairable GALs used in this project.

197

Number of

OR-Gates 8 9 10 11 12 13 14 15 16

Number of

Columns

per an OR-

Gate

8 1.00 1.17 1.35 1.54 1.74 1.96 2.18 2.41 2.66

9 1.11 1.29 1.49 1.71 1.93 2.17 2.42 2.68 2.96

10 1.21 1.42 1.64 1.87 2.12 2.38 2.66 2.94 3.25

11 1.32 1.54 1.79 2.04 2.31 2.60 2.90 3.22 3.55

12 1.42 1.67 1.93 2.21 2.50 2.82 3.14 3.49 3.85

13 1.52 1.79 2.07 2.37 2.69 3.03 3.38 3.75 4.14

14 1.63 1.92 2.22 2.54 2.89 3.25 3.63 4.02 4.44

15 1.74 2.04 2.37 2.71 3.08 3.46 3.87 4.29 4.74

16 1.84 2.16 2.51 2.87 3.26 3.67 4.10 4.56 5.03

Table 7.19 GAL Overhead Ratio (Based on the Basic Prototype Proposed)

Table 7.19 shows the hardware overhead ratio of GALs based on suggested

prototype: 8 OR-gates x 8 Columns x 32 inputs

The data on Table 7.20 proved that the increase in the number of extra OR-gates

allows the SCs to have more chances to repair its faults, and significantly improves the

SCs lifetime and the system’s performance as shown on Figure 7.8.

198

Number of

Unused OR-

Gates on x8 OR-

Gate in a GAL

Number of Lines

1 2

0 31 162

1 35 175

2 40 192

3 46 213

4 57 246

5 74 294

6 108 383

7 212 624

Table 7.20 SC Looping Time Variance on Number of Unused OR-Gates on GAL

A v a ila b le O R -G ate E ff ic ien cy C om p
x 8 O R -G ate GAL

4.500

4.000

3.500

3.000

2.500
2.000 E ^ ^ ^ B B ^ B1.500

1.000

0.500

0.000
1 2 3 4 5 6 7 8

A v ailab le OR«Gate

Figure 7.8 Available OR-Gate and Performance Increase (One Line: No Extra Line & Two Lines:

1 Extra Line in each Pin-to-Pin Connection)

A v a ila b le O R -G ate E ff ic ie n c y C o m p a r is o n o n
x 8 O R -G ate GAL

A v ailab le OR-G ate

199

7.3.4. FPGA and ASIC Design

One chipset is created on the simulator to compare the two most commonly used

chip structures, FPGA and ASIC. This simulation will also gauge the effect of the

number of extra OR-gates in GALs of the whole system. The looping time will be

generated from running the simulation 1,000,000 times.

• FPGA = GAL (8 x 16 x 32) x 4 + SC x 3

• ASIC = GAL(8 x 16x32) x4 + SC x2

Number

ofOR-

Gates 8 9 10 11 12 13 14 15 16

Number of

Columns per

an OR-Gate 1.00

8 1.24 1.45 1.68 1.91 2.16 2.43 2.70 3.00 3.30

9 1.37 1.61 1.86 2.12 2.40 2.69 3.00 3.33 3.67

10 1.50 1.76 2.03 2.32 2.63 2.96 3.30 3.66 4.03

11 1.63 1.92 2.22 2.54 2.87 3.23 3.60 4.00 4.41

12 1.76 2.07 2.40 2.74 3.11 3.50 3.90 4.33 4.78

13 1.89 2.22 2.57 2.95 3.34 3.76 4.20 4.66 5.14

14 2.03 2.38 2.76 3.16 3.58 4.03 4.50 4.99 5.51

15 2.16 2.53 2.94 3.37 3.82 4.30 4.80 5.33 5.88

16 2.28 2.69 3.11 3.57 4.05 4.56 5.09 5.66 6.24

Table 7.21 GAL Overhead Ratio (against a Generic Chipset, GAL)

200

Table 7.21 is the hardware overhead ratio of GALs based on a generic GAL.

Average Looping

Time (Lifetime)
Hardware Area

Lifetime

Ratio

Hardware

Overhead

Ratio

Performance

Number

Extra

OR-

Gates

Per a

GAL

ASIC FPGA ASIC FPGA ASIC FPGA ASIC FPGA ASIC FPGA

0 905.00 770.00 23048.00 23672.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1028.00 877.00 27140.00 27896.00 1.14 1.14 1.18 1.18 0.96 0.97

2 1154.00 984.00 31392.00 32232.00 1.28 1.28 1.36 1.36 0.94 0.94

3 1275.00 1092.00 36164.00 37220.00 1.41 1.42 1.57 1.57 0.90 0.90

4 1404.00 1200.00 41096.00 42320.00 1.55 1.56 1.78 1.79 0.87 0.87

5 1523.00 1309.00 46152.00 47478.00 1.68 1.70 2.00 2.01 0.84 0.85

6 1643.00 1421.00 51632.00 53144.00 1.82 1.85 2.24 2.25 0.81 0.82

7 1774.00 1526.00 57572.00 59372.00 1.96 1.98 2.50 2.51 0.78 0.79

8 1895.00 1633.00 63432.00 65352.00 2.09 2.12 2.75 2.76 0.76 0.77

Table 7.22 Comparing Data of FPGA and ASIC Simulation with Extra ORs

Each system consists of 4 GALs and 3 Switching Circuits connecting the GALs.

SCs are located in between GALO and GAL1, GALO and GAL2, and GAL1 and

201

GAL3. In order to follow the FPGA design specifications which has a fixed layout, 3

SC must be used. However, ASIC’s more flexible requires only two SCs.

The FPGA and ASIC simulation is not an attempt to simply find out if the self-

repair methods used here can be applied, nor simply achieve comparative analysis on

the performance of the two different types of chipsets.

First, a generic system is built and tested for looping time performance and the

result is 6. This represents the current lifetime on a system that consists of 4 GALs

and an SC connecting the GALs.

The prototype is simulated with increasing OR-gates to attain the value that is

more intuitive and be compared to a generic system. The simulation results with no

extra OR-gates was 905 and 770 for the prototype ASIC and FPGA, respectively.

That is 150 times and 128 times of the looping time of the generic chipset. When the

overhead ratio is added to the comparison, the performance rating is improved by 66

times and 56 times the generic system’s as shown on Table 7.23.

202

Average Looping

Time (Lifetime) Hardware Area

Lifetime

Ratio

Hardware

Overhead

Ratio Performance

Number

Extra

OR-

Gates

Per a

GAL

ASIC FPGA ASIC FPGA ASIC FPGA ASIC FPGA ASIC FPGA

§HHM™m mm■ WmmjillM . 1

0 905.00 770.00 23048.00 23672.00 150.83 128.33 2.28 2.27 66.07 56.43

1 1028.00 877.00 27140.00 27896.00 171.33 146.17 2.69 2.68 63.74 54.53

2 1154.00 984.00 31392.00 32232.00 192.33 164.00 3.11 3.10 61.86 52.96

3 1275.00 1092.00 36164.00 37220.00 212.50 182.00 3.58 3.58 59.32 50.89

4 1404.00 1200.00 41096.00 42320.00 234.00 200.00 4.07 4.07 57.49 49.19

5 1523.00 1309.00 46152.00 47478.00 253.83 218.17 4.57 4.56 55.53 47.83

6 1643.00 1421.00 51632.00 53144.00 273.83 236.83 5.11 5.11 53.54 46.38

7 1774.00 1526.00 57572.00 59372.00 295.67 254.33 5.70 5.70 51.85 44.59

8 1895.00 1633.00 63432.00 65352.00 315.83 272.17 6.28 6.28 50.27 43.35

Table 7.23 Prototype of FPGA and ASIC’s Comparison to a Generic System

It is easily noticed that the looping time is increased when more extra OR-gates

are added, but the performance rating does not increase as much due to the increase in

overhead cost. This means that if looping time of two identical system (one of the

two as a backup) is compared a single system with the number of extra OR-gates that

match the overhead cost of the two systems, the single system outperforms the two

systems method. This brought focus to the importance of the extra OR-gates in the

system. In a complicated system with many connections, the possibility of having

faults to occur in SCs increases, and having the extra OR-gates becomes more

imperative in a system as the extra OR-gates can repair faults on GALs as well as SCs.

Additionally, the necessity of extra GALs becomes less important on small systems or

systems with low failure rate SCs.

204

Average

Looping Time

(Lifetime)

Hardware

Area

Lifetime

Ratio

Hardware

Overhead

Ratio Performance

Number of

Unused OR-

Gates on x8

OR-Gate in a

GAL ASIC FPGA ASIC FPGA ASIC FPGA ASIC FPGA ASIC FPGA

H H H hHHHH
P H |

"B B S !w ■ ■ ■ | | i | | | B

■ B B 1mm j n i■ I
WBBBtB P P■HR ■■■HiM 1

0 905 770 23048 23672 150.83 128.33 2.28 2.27 66.07 56.43

1 953 820 23048 23672 158.83 136.67 2.28 2.27 69.58 60.09

2 1005 874 23048 23672 167.50 145.67 2.28 2.27 73.37 64.05

3 1071 942 23048 23672 178.50 157.00 2.28 2.27 78.19 69.03

4 1149 1027 23048 23672 191.50 171.17 2.28 2.27 83.89 75.26

5 1259 1139 23048 23672 209.83 189.83 2.28 2.27 91.92 83.47

6 1411 1308 23048 23672 235.17 218.00 2.28 2.27 103.01 95.85

7 1676 1598 23048 23672 279.33 266.33 2.28 2.27 122.36 117.10

Table 7.24 Unused Extra OR-Gate Efficiency

Table 7.24 shows the performance of each type based on proportion of

programmed OR-gates. As the proportion of unused extra OR-gate increases, the

prototype’s performance increases. In the best scenario, the prototypes performance

was 122 (ASIC) and 117 (FPGA) times that of a generic system.

205

The final analysis indicates that when the prototype developed in this research

was tested with the best algorithm and was compared to a current generic system, the

performance was improved by 66 (ASIC) and 56 (FPGA) times the generic system’s.

8. Conclusions and Future Works

The design and implementation of the self-testable and self-repairable digital

devices, especially, EPLDs for high security and safety applications as well as general

purpose applications was completed. New hardware prototypes, both FPGA type and

ASIC type, based on EEPROM technology for the ultra reliable computing systems,

which will become a necessity for next scientific revolution such as nanotechnology,

were proposed in this dissertation. This self-healing and re-configurable system design

with added repair capability can provide higher yields, lower testing costs, and faster

time-to-market to the semiconductor industry.

Our first step was gathering information on previous work on this topic and

analyzes the existing technique to extract and filter out what eventually became the

foundation of our research.

One of the most focused technologies in the field of self-repairable studies, GAL

devices, which also is our initial target device, had to be researched in depth. We

developed a design methodology for self-repairing of a GAL which is a type of EPLD.

A fault-locating and fault-repairing architecture with electrically re-configurable

207

GALs was presented. It uses universal test sets, fault-detecting logic, and self­

repairing circuits with spare devices. Our design method allows detecting,

diagnosing, and repairing of all multiple stuck-at faults which may occur on E CMOS

cells in the programmable AND plane. Three self-repairing methodologies for

product terms/columns in the AND plane of a GAL were developed based on our

design architecture; column replacement with extra columns and two variations of

column re-use with extra columns. The “column replacement” method with extra

columns discards each faulty column entirely and replaced it with an extra column.

In contrast, the “column re-use” method, using the whole column (the column-column

re-use), exchanges a faulty GAL column with a column that needs the same

programming as the faulty column, and then reprograms the freed column to replace

the faulty one. In the “column re-use” method, using the only cells (E2CMOS cells)

(the cell-column re-use), the respective faulty elements (E2CMOS cells/cross-points)

were re-used for whole columns or only cells which had been already programmed if

terms’ programming would fit the nature of the existing faults.

208

In addition, a self-repairing methodology for an OR group was also developed to

create more robust and reliable GALs. A faulty OR group in a GAL was discarded

and replaced with an extra OR group in the GAL if the columns in an OR group of a

GAL were entirely faulty, and no more column repair methods were applicable in that

OR group.

The proof of concept and application of the self-testing and the self-repairing

switching circuit based on Demultiplexer structure was also developed in this

dissertation. It was used to connect and reconfigure GALs in our system. It was

also self-testable and self-repairable for faulty lines with extra lines in a switching

circuit between GALs of a system.

Our design methodology (the fault-locating and fault-repairing architecture with

electrically re-configurable GAL modules and self-testing and self-repairing switching

circuits), developed in this dissertation, allows us to detect, diagnose, and repair of all

multiple stuck-at faults that might occur on E2CMOS cells in programmable AND

plane of a GAL, faulty ORs in a GAL, and faulty lines of a switching circuit in

proposed system. We developed a self-repairing methodology for switching circuits

209

based on our design architecture; line Replacement with extra lines; the respective

faulty interconnection lines were replaced with the new ones (extra lines) by automatic

reprogramming of the chip.

According to the extra devices added in our system, even though the power

consumption is considered as one of the limitations, the power will be down when

transistors (extra devices) are not needed or a little added power might be consumed

for the whole system. Another limitation in our design is the reliability of

memories/registers of our system such as MAP/SAP. They are different architecture

from the GAL modules and the switching circuit blocks in the system. The current

memory technology has fault detection and correction techniques such as hamming

code and ECC (Error Correction Code or Error Checking and Correcting) which

allows data that is being read or transmitted to be checked for errors. ECC is

increasingly being designed into data storage. It covers this consideration.

To test our architecture, we designed and developed a flexible simulator. Our

simulator used Microsoft Visual Studio 2005 as the tool and MFC (Microsoft

Foundation Classes) is used for the programming language.

210

In order to evaluate the self-test and self-repair algorithms which are intended for

hardware programming, a software program was created to simulate the hardware.

The objectives of the simulator are to verify how each algorithm improves the

performance of a system in realistic environment. The simulator program allows us

to apply different failure rate and fault limit to support GALs and SCs of different

sizes and structures. The simulator can also be configured with different size GALs

and SCs for different test cases which may have different sized GALs, and the SCs’

size that varies with the design of the system.

We developed the evaluation methodology in this dissertation. It was based on

simulating our self-repair algorithms. We proved that the lifetime for a GAL-based

EPLD that used our self-repairing methods was longer than the lifetime of a GAL-

based EPLD that used a single self-repair method or no self-repair method. It

demonstrated that the lifetime of a GAL was increased by adding extra columns in an

AND array of a GAL and extra ORs in a GAL, and also gave information on how

many extra columns and extra ORs a GAL needed and which self-repairing method a

GAL used to guarantee a given lifetime. Our computer based simulation program

211

demonstrated the basic concepts of modeling repairable systems as introductory-level

knowledge for repairable systems. Our simulator developed in this dissertation can be

used to design more effective and less costly fault-testing and fault-repairing hardware

architecture. It proved that our most advanced self-repair algorithm, the cell-column

re-use with extra column and column replacement method, gave the best results in all

the comparisons with our other self-repairing algorithms. Our computer based

simulator implemented our self-testing and self-repairing hardwired algorithm; Self­

repair with redundancy and Self-repair with no redundancy. Thus, we proposed guide

lines to estimate an ideal point, where the maximum reliability can be reached with the

minimum cost.

212

Future Works

• Extend our self-repairing methodologies into a Fault-Location/Fault-Repair

Processor and memories in our system proposed in this dissertation.

• Develop more advanced hardwired self-testing and self-repairing algorithm

• Enhance our self-healing and re-configurable system design to fit in the

Embedded System applications and Nanotechnology.

• Analyzing variability of lifetimes from our simulation using a math tool such

as MATLAB and SPSS in Statistics.

• Finding an adopted method and making a general formula; induce a

Mathematical Model/Stochastic Model in order to compare with the results

from our simulator.

BIBLIOGRAPHY

[1] A. Avizienis, “Hundred Year Spacecraft,” The First NASA/DoD Workshop on
Evolvable Hardware, pp.233-239, July 1999.

[2] E. Drexler, “Engines of Creation,” Anchor Books, 1986.

[3] G. Tempesti, D. Mange, and A. Stauffer, “A Self-Repairing FPGA Inspired By
Biology,” The Third IEEE International On-Line Testing Workshop, pp. 191-195, 1997.

[4] D. Mange, M. Goeke, D. Madon, A Stauffer, G. Tempesti, and S. Durand,
“Embryonics: A New Family of Coarse-Grained Field-Programmable Gate Array with
Self-Repair and Self-Reproducing Properties,” In Towards Evolvable Hardware,
Springer-Verlag, pp. 197-220, 1996.

[5] D. Mange and A. Stauffer, “Introduction to Embryonics: Towards New Self-
Repairing and Self-Reproducing Hardware Based on Biological-like Properties,”
Artificial Life and Virtual Reality, John Wiley, pp.61-72, 1994.

[6] D. L. Ostapko and S. J. Hong, “Fault Analysis and Test Generation for
Programmable Logic Array (PLA),” IEEE Trans, on Computers, Vol. C-28, No. 9,
pp.617-627, September 1979.

[7] K. S. Ramanatha and N. N. Biswas, “An On-Line Algorithm for the Location of
Cross Point Faults in Programmable Logic Arrays, ’’IEEE Trans, on Computers, Vol.
C-32, No. 5, pp.438-444, May 1983.

[8] J. E. Smith, “Detection of Faults in Programmable Logic Arrays, ’’IEEE Trans, on
Computers, Vol. C-28, No. 11, pp.845-853, November 1979.

214

[9] H. Fujiwara and K. Kinoshita, “A Design of Programmable Logic Array with
Universal Tests,” IEEE Trans, on Computers, Vol. C-30, No. 11, pp.823-829,
November 1981.

[10] W. Daehn and J. Mucha, “A Hardware Approach to Self-Testing of Large
Programmable Logic Arrays,” IEEE Trans, on Computers, Vol. C-30, No. 11, pp.829-
833, November 1981.

[11] R. Treuer, H. Fujiwara, and V. K. Agarwal, “ Implementing a Built-In Self-Test
PLA Design,” IEEE Design and Test, pp.37-48, April 1985.

[12] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems Testing and
Testable Design,” IEEE Press, pp.593-626, 1990.

[13]C. L. Wey and F. Lombardi, “On the Repair of Programmable Logic Arrays,”
IEEE Trans, on Computers, Vol. 9, pp.649-652, 1986.

[14] B. Avi, “A Tour of PLDs,”
http://www.ee.cooper.edu/course vases/past courses/EE 151 /PLD1. 1997.

[15] K. S. Son and D. K. Pradhan, “Design of Programmable Arrays for Testability, ”
1980 IEEE Test Conference, pp.163-166, 1980.

[16] “PLA and FPGA Devices,”
http://www.elec.uq.oz.au/~e3390/Iectures/lectl4/sld002.htm, 1998.

[17] “Sequential Logic Design with PLDs,”
http://www. elec. uq.oz. au/~e3390/lectures/lectl4/sld014. htm. 1998.

[18] “Lattice Semiconductor Corporation, “Lattice Semiconductor Data Book 1996,”
Lattice Semiconductor Corporation, pp.365-392, 1996.

http://www.ee.cooper.edu/course
http://www.elec.uq.oz.au/~e3390/Iectures/lectl4/sld002.htm
http://www

215

[19] J. P. Hayes, “Fault Modeling,” IEEE Design & Test of Computers, pp. 88-95,
April 1985.

[20] W. Maly, “Realistic Fault Modeling for VLSI Testing ” Proc. of the 24th
ACM/IEEE Design Automation Conference, pp. 173-180, 1987.

[21] M. Marinescu, “Simple and Efficient Algorithms for Functional RAM Testing,”
1982 International Test Conference, pp. 236-239, November 1982.

[22] S. C. Ma, “Testing BiCMOS and Dynamic CMOS Logic,” Center for Reliable
Computing Technical Report, No. 95-1, June 1995.

[23] National Semiconductor Corporation, “Quality Network - Failure Rates of Major
Processes at National Semiconductor, National Semiconductor Failure Rate Trends,
and National Semiconductor Reliability,” httv://207.82.57.1O/qualitv/paees. May 1999.

[24] D. Sellers, “Quality and Reliability,” Quality and Reliability Hand Book - Space
Electronics Inc., http://www.spaceelectronics.com/SDacevrod/reliabilitv/qr.htmL June
1999.

[25] J. Worchel, “Market for Programmable Logic Devices Heats,” Semiconductor
Business News, 1997.

[26] U. Kalay, D. V. Hall, and M. A. Perkowski, "Easily Testable Multiple-Valued
Galois Field Sum-of-Products Circuits", Multiple Valued Logic Journal, pp.507-528,
Vol. 5, 2000.

[27] U. Kalay, M. A. Perkowski and D. V. Hall, "A Minimal Universal Test Set for
Self-Test of EXOR-Sum-Of-Products Circuits," IEEE Tr. on Computers, Vol. 49,
pp.267-276, March 2000.

[28] U. Kalay, D. V. Hall, and M. A. Perkowski, "Highly Testable Boolean Rings,"
Proc. ISMVL '99, pp. 17-21 May 1999.

http://www.spaceelectronics.com/SDacevrod/reliabilitv/qr.htmL

216

[29] U. Kalay, N. Venkataramaiah, A. Mishchenko, D. V. Hall, and M. A. Perkowski,
"Highly Testable Finite State Machines Based on EXOR Logic", PACRIM'99 7th
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing,
pp.23-25, August 1999.

[30] A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. A. Perkowski, "A Comprehensive
Approach to Logic Synthesis and Physical Design for Two-Dimensional Logic
Arrays," Proc. DAC'94, pp.321-326 June 1994.

[31] N. Song, and M. A Perkowski, "A New Approach to AND/OR/EXOR
Factorization for Regular Arrays," Proc. 1998 Euromicro, pp.269-276, August 1998.

[32] N. Song, M. A. Perkowski, "A New Design Methodology for Two-Dimensional
Logic Arrays," Proc. of IEEE International Workshop on Logic Synthesis, IWLS '93,
pp.1-17, May 1993.

[33] U. Kalay, M. A. Perkowski, D. V. Hall, B. Steinbach, and S. A. Shahjahan,
"Rectangle Covering Factorization of ESOPs," Proceedings ofRM’99.

[34] A. Kablanian, “Memory is dominating SoC Design,” Electronic News, February
2001 .

[35] V. Ratford, “Moving the Market to Embedded Memory,” Embedded Technology
News, March 2001.

[36] P. Buitenkant, “Overcoming Erase/Write-Endurance Limitations in EEPROMs,”
EDN, pp.95-98, September 2000.

[37] P. Bichebois, “Impact of Physical Defects on the Electrical Working of
Embedded DRAM with 0.35mm Design Rules,” Proceedings of IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 124-130, November
1996.

217

[38] D. D. Gaitonde, W. Maly, and D. M. H. Walker, “Fault Probability Prediction for
Array Based Designs,” Proceedings of IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, pp. 30-47, November 1996.

[39] H. Walker, “VLASIC: A Catastrophic Fault Yield Simulator for Integrated
Circuits,” IEEE Transactions on Computer-Aided Design, Vol. CADS, No. 4, pp. 541-
556, October 1986.

[40] A. Gutierrez, “Batch-Mode Accelerated Reliability Tester for Electronic
Memories (BART),” httv://www. intersci. com/eeprom. htm. June 1999.

[41] E. R. Hnatek and B. R. Wilson, “An Evaluation of the 2816 EEPROM, ” 1982
International Test Conference, PP. 225-235, November 1982.

[42] K. Seshan, T. J. Maloney, and K. J. Wu, “The Quality and Reliability of Intel’s
Quarter Micron Process,” Intel Technology 3rd quarter Journal,
httv://www.intel.co.uk/technolosv/iti/q31998/articles/. July 1998.

[43] F.G. Cockerill, “Quality Control for Production Testing,” 1982 International Test
Conference, pp. 308-314, November 1982.

[44] R. H. Katz, “Contemporary Logic Design.” Benjamin/Cummings Publishing
Company, Inc., pp. 160-172, 1992.

[45] T. L. Floyd, “Digital Fundamentals 6th Edition,” Prentice Hall, pp.344-771, 1997.

[46] R. Nair, S. M. Thatte, and J. A. Abraham, “Efficient Algorithms for Testing
Semiconductor Random-Access Memories, ” IEEE Trans, on Computers, Vol. C-27,
No. 6, pp. 572-576, June 1978.

http://www.intel.co.uk/technolosv/iti/q31998/articles/

218

[47] C. H. Lee, M. A. Perkowski, D. V. Hall, and D. S. Jun, “Self-Repairable EPLDs:
Design, Self-Repair, and Evaluation Methodology,” The Second NASA/DoD
Workshop on Evolvable Hardware, pp. 183-193, July 2000.

[48] C. H. Lee, D. V. Hall, M. A. Perkowski, and D. S. Jun, “Self-Repairable GALs,”
Journal of System Architecture; The EUROMICRO Journal, Vol. 47, Issue 2, pp.l 19-
135, February 2000.

[49] C. H. Lee, M. A. Perkowski, D. V. Hall, and D. S. Jun, “Self-Repairable EPLDs
II: Advanced Self-Repairing Methodology,” The Proceedings of Congress on
Evolutionary Computation 2001, Vol. 1, pp.616-623, May 2001.

[50] LSI Logic Corporation, “LCA/LEA500K Array-Based Products Databook,”
Document DB04-000002-03, Fourth Edition, May 1997.

[51] L. Guerra, M. M. Potkonjak, and J. Rabey, “High Level Synthesis for Efficient
Built-In Self Repair,” International Workshop on Defect and Fault Tolerance in VLSI
Systems, pp.41-48, October 1993.

[52] I. Hong, M. M. Potkonjak, and R. Karri, “Heterogeneous BISR-approach using
System Level Synthesis Flexibility,” Proceedings of the ASP-DAC '98, pp.289-294,
May 1998.

[53] Y. Tang and X. Song, “Diagnosis for Arbitrarily Connected Parallel Computers,”
IEEE Trans. oOn Computer, Vol. 48, No. 7, July 1999.

[54] Y. Zorian, “Yield Improvement and Repair Trade-Off For Large Embedded
Memories,” Proc. Of 3rdDesign, Automation and Test in Europe (DATE 2000),
Invited paper, March 27-30, 2000.

[55] I. Burgess, “Test and Diagnosis of Embedded Memory Using BIST,” EE-
Evaluation Engineering,
Http://www.evaluationengineering.com/archive/articles/0300mem.htm. Feb. 14, 2002.

Http://www.evaluationengineering.com/archive/articles/0300mem.htm

219

[56] A. L. Crouch, “Design-For-Test for Digital ICs and Embedded Core Systems,”
Prentice-Hall PBR, 1999.

[57] A. L. Crouch, M. Mateja, T. L. McLaurin, J. C. Potter, and D. Tran, “The
Testability Features of the 3rd Generation Coldfire Family of Microprocessors,”
Proceedings of the International Test Conference, 1999.

[58] A. V. Goor, “Testing Semiconductor Memories, theory and practice,” 1991.

[59] K. K. Saluja, G. S. Song, K. Kinoshita, “Built-in Self-Testing RAM, A Practical
Alternative,” IEEE Design and Test, pp.42-51, February 1987.

[60] T. Takeshima, et al., “A 55-ns 16-Mb DRAM with Built-in Self Test Function
Using Microprogram ROM,” IEEE Journal of Solid-State Circuits, Vol.25, No.4,
pp.903-909, August 1990.

[61] K. Koike, et al., “A 30ns 64Mb DRAM with Built-in Self-Test and Repair
Function,” IEEE ISSCC, pp. 150, 1992.

[62] P. Mazumder, and J. Patel, “An Efficient Built-in Self Testing for Random-
Access Memory,” IEEE Transactions on Industrial Electronics, Vol.36, No.2, pp.246-
253, May 1989.

[63] J. Robertson, “Self-repairing ICs become feasible with greater integration, say
experts,” Http://www.siliconstrategies.com/stories/7k05bist.htm. February 15, 2002.

[64] D. Barkin, “Built-in Self Test of Dram Chips,”
Http://www.eecs.harvard.edu/cs245/papers/davidh-htrnl. Feb. 2002.

[65] W. Mangione-Smith and B. Hutchings, “Configurable computing: The road
ahead,” Reconfigurable Architectures Workshop, 1997.

Http://www.siliconstrategies.com/stories/7k05bist.htm
Http://www.eecs.harvard.edu/cs245/papers/davidh-htrnl

220

[66] J. Lach, W. Mangione-Smith, and M. Potkonjak, “Efficiently supporting fault-
tolerance in FPGAs,” ACM/SIGDA Sixth int. Symp. Field-Programmable Gate Arrays,
1998.

[67] M.J. Wirthlin and B. L. Hutchings, “A dynamic instruction set computer,” Proc.
IEEE Symp. FPGA’s for Custom Computing Machines, 1995.

[68] E. Tau, D. Chen, and I. Eslick et al., “A first generation DPGA implementation,”
Proc. Third Canadian Workshop on Field-Programmable Devices, pp.138-143, 1995.

[69] R. Bittner and P. Athanas, “Wormhole run-time reconfiguration,” ACM/SIGDA
Sixth int. Symp. Field-Programmable Gate Arrays, 1997.

[70] H. Koile et al., “A 30nsec 64Mb DRAM with built-in self-test and repair
function,” Int. Solid State Circuits Conf, pp. 150-151, 1992.

[71] R. Trueuer and V. K. Agarwal, “Built-in self-diagnosis for repairable embedded
RAMs,” IEEE Design and Test of Computers, pp.24-33, 1993.

[72] T. Chen and G. Sunada, “Design of a self-testing and self-repairing structure for
highly hierarchical ultra large capacity memory chips,” IEEE Trans. VLSI Syst., vol. 1,
pp.88-97, June 1993.

[73] J. R. Day, “A fault-driven, comprehensive redundancy algorithm,” IEEE Design
and Test of Computers, pp.35-44, June 1985.

[74] R. W. Haddad, A. T. Dahbura, and A. B. Sharma, “Increased throughput for the
testing and repair of RAMs with redundancy,” IEEE Trans. Computers, vol. 40,
pp. 154-166, Feb. 1991

[75] N. Hasan and C. L. Liu, “Minimum fault coverage in reconfigurable arrays,”
Digest of Papers, vol.FTCS-18, pp.348-353, June 1998.

221

[76] D. K. Bhavsar, “An algorithm for row-column self-repair of RAM’s and its
implementation on the alpha 21 264,” IEEE Int. Test Conf, pp.311-318, 1999.

[77] O. S. Bair et al., “Method and apparatus for configurable build-in self-repairing
of Asic memories design,” US Patent 5 577 050, Nov. 19,1999.

[78] A. Kablanian et al., “Built-in self repair system for embedded memories,” US
Patent 5 764 878, Jun. 9, 1998.

[79] I. Kim, Y. Zorian, and G. Komoriya et al., “Built-in self repair for embedded high
density SRAM,” IEEEEnt. Test Conf., pp.l 112-1119, 1998.

[80] A. Benso, S. Chiusano, G. D. Natale, and P. Prinetto, “An On-Line BIST RAM
Architecture With Self-Repair Capabilities,” IEEE Transactions on Reliability, Vol 51,
No.l, pp.123-128, March 2002.

[81] R. David, A. Fuintes, and B. Courtois, “Random Pattern Testing Versus
Deterministic Testing of RAM’s,” IEEE Transactions on Computers, Col.36, No.5,
pp.637-650, May 1989.

[82] M. Franklin, and K. K. Saluja, “An Algorithm to test RAMS for Physical
Neighborhood Pattern Sensitive Faults,” IEEE International Test Conference, pp.675-
684, 1991.

[83] J. Desposito, “Innovative Algorithm Allows Row-Column Self-Repair Of
RAMs,” International Test Conference 1999 Proceedings, Vol.47, No.25, December 6,
1999.

[84] A. Kablanian, “The STAR SRAM Embedded Memory,” Semiconductor News,
July 2001.

222

[85] C. R. Cassady, and E. A. Pohl, “Introduction to Repairable-System Modeling,”
2002 Annual RELIABILITY and MAINTAINABILITY Symposium, Tutorial Notes,
January 2002.

[86] J. J. McCall, “Maintenance Policies for Stochastically Failing Equipment: A
Survey,” Management Science, Vol.l 1, No.5, pp.493-524, 1965.

[87] W. P. Pierskalla, “A Survey of Maintenance Models: The Control and
Surveillance of Deteriorating Systems,” Naval Research Logistics Quarterly, Vol.23,
No.3, pp.353-388, 1976.

[88] S. Osaki, and T. Nakagawa, “Bibliography for Reliability and Availability of
Stochastic Systems,” IEEE Transactions on Reliability, Vol.25, pp.284-287, 1976.

[89] Y. S. Sherif, and M. L. Smith, “Optimal Maintenance Models for Systems
Subject to Failure - A Review,” Naval Research Logistics Quarterly, Vol.28, pp.47-
74, 1981.

[90] C. Valdez-Flores, and R. M. Feldman, “Survey of Preventive Maintenance
Models for Stochastically Deteriorating Single-Unit Systems,” Naval Research
Logistics, Vol.36, No.4, pp.419-446,1989.

[91] D. I. Cho, and M. Parlar, “A Survey of Maintenance Models for Multi-Unit
Systems,” European Journal of Operational Research, Vol.51, pp.1-23, 1991.

[92] R. Dekker, “Applications of Maintenance Optimization Models: A Review and
Analysis,” Reliability Engineering and System Safety, Vol.51, No.3, pp.229-240, 1996.

[93] R. E. Barlow, andF. Proschan, “Mathematical Theory of Reliability,” John Wiley
& Sons, Inc., 1965.

223

[94] W. F. Rice, C. R. Cassady, and J. A. Nachlas, “Optimal Maintenance Plans under
Limited Maintenance Time,” Industrial Engineering Research ’98 Conference
Proceedings, 1998.

[95] C. R. Cassady, W. P. Murdock, and E. A. Pohl, “A Deterministic Selective
Maintenance Model for Complex Systems,” Recent Advances in Reliability and
Quality Engineering, pp.311-325, 2001.

[96] C. R. Cassady, E. A. Pohl, and W. P. Murdock, “Selective Maintenance Modeling
for Industrial Systems,” Journal of Quality in Maintenance Engineering, Vol.7, No.2,
pp. 104-117, 2001.

[97] C. R. Cassady, W. P. Murdock, and E. A. Pohl, “Selective Maintenance for
Support Equipment Involving Multiple Maintenance Actions,” European Journal of
Operational Research, Vol.129, No.2, pp.252-258, 2001.

[98] H. Ascher, and H. Feingold, “Repairable Systems Reliability,” Marcel Dekker,
Inc., 1984.

[99] S. M. Ross, “Introduction to Probability Models, Fourth Edition,” Academic
Press, Inc., 1989.

[100] R. E. Barlow, “System Reliability Analysis: Foundation,” Electronic Systems
Effectiveness and Life Cycle Coasting, NATO ASI Series, Vol. F3, pp.2-24, 1983.

[101] L. J. Bain and M. Engelhardt, “Introduction to Probability and Mathematical
Statistics Second Edition,” PWS-Kent Publishing Company, pp.1-170, 1992.

[102] A. Dubi, “Modeling of Realistic Systems With the Monte-Carlo Method -
Unified System Engineering Approach,” 2002 Annual RELIABILITY and
MAINTAINABILITY Symposium, Tutorial Notes, January 2002.

224

[103] J. B. Dugan, “Fault-Tree Analysis of Computer-Based Systems,” 2002 Annual
RELIABILITY and MAINTAINABILITY Symposium, Tutorial Notes, January 2002.

	Ultra Reliable Computing Systems
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1666026562.pdf.vWmOp

