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ABSTRACT

An abstract of the dissertation of Thaddeus Taylor Shannon III for the Doctor of 

Philosophy in Systems Science presented May 11, 2007.

Title: Improving Monitoring and Diagnosis for Process Control Using Independent

Component Analysis

Statistical Process Control (SPC) is the general field concerned with 

monitoring the operation and performance of systems. SPC consists of a collection of 

techniques for characterizing the operation of a system using a probability distribution 

consistent with the system’s inputs and outputs. Classical SPC monitors a single 

variable to characterize the operation of a single machine tool or process step using 

tools such as Shewart charts. The traditional approach works well for simple small to 

medium size processes. For more complex processes a number of multivariate SPC 

techniques have been developed in recent decades. These advanced methods suffer 

from several disadvantages compared to univariate techniques: they tend to be 

statistically less powerful, and they tend to complicate process diagnosis when a 

disturbance is detected.

This research introduces a general method for simplifying multivariate process 

monitoring in such a manner as to allow the use of traditional SPC tools while 

facilitating process diagnosis. Latent variable representations of complex processes are 

developed which directly relate disturbances with process steps or segments. The
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method models disturbances in the process rather than the process itself. The basic 

tool used is Independent Component Analysis (ICA). The methodology is illustrated 

on the problem of monitoring Electrical Test (E-Test) data from a semiconductor 

manufacturing process. Development and production data from a working 

semiconductor plant are used to estimate a factor model that is then used to develop 

univariate control charts for particular types of process disturbances. Detection and 

false alarm rates for data with known disturbances are given. The charts correctly 

detect and classify all the disturbance cases with a very low false alarm rate.

A secondary contribution is the introduction of a method for performing an 

ICA like analysis using possibilistic data instead of probabilistic data. This technique 

extends the general ICA framework to apply to a broader range of uncertainty types. 

Further development of this technique could lead to the capability to use extremely 

sparse data to estimate ICA process models.
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Notations

Si The ith source random variable,

s The source random vector.

Xi The ith observation random variable,

x The observation random vector.

p(si) The probability density/mass function of variable .v,-.

p(si)(ai) The probability density/mass function of variable si written as a function

with its argument, the variable CO, made explicit. 

h(y) The entropy of the random variable y.

D(p(y)\\p(z)) The Kullback-Leibler divergence of the density p(y) from the density 

P(z).

g(co) The zero mean, unit variance Gaussian density.

Cz The covariance matrix of the random vector z.

E{ z } The expectation of the random variable z.

u An estimate of the variable, parameter, vector or function denoted by u.

|K| The determinant of the matrix K.

|| v|| The norm of the vector v (may be taken to be the L2 norm).

viii



1. Introduction

As humans design and operate ever more complex systems, understanding and 

monitoring the operation of the systems becomes increasingly difficult. Not only do 

the systems become more difficult to design, but their operation and maintenance, 

often by non-specialists, pose additional problems. Statistical Process Control (SPC) is 

the general field concerned with monitoring the operation and performance of such 

systems. Originally developed in the manufacturing sector, SPC has been embraced by 

organizational theorists and management scientists, and its techniques are regularly 

applied to problems ranging from biomedical engineering to business development 

and marketing.

SPC consists of a collection of techniques for characterizing the operation of a 

system using a probability distribution consistent with the system’s inputs and outputs. 

Changes observed in the empirical distribution over time are attributed to changes in 

the system’s operation. The proper design of an SPC scheme for a particular system 

requires that the disturbances external to the system be distinguished from internal 

system disturbances.

The usefulness of an SPC system may be judged by its ability to detect 

disturbances in a timely fashion, to have a low rate of false alarms, and to be able to 

distinguish between different kinds of disturbances. Classical SPC in manufacturing 

has focused on the first two criteria, quick detection and minimization of false alarms. 

As is to be expected with any statistical classification problem, there is a tradeoff

1



1. Introduction

between these two objectives. Fast detection, signaling an alarm at the first evidence 

of a disturbance, yields a higher false alarm rate than slow detection. The variance of 

the monitored variable(s) and the magnitude of the disturbance one is monitoring 

determine the tradeoff.

Classical control concerns itself with Single Input, Single Output (SISO) 

problems. More complex plants are analyzed or designed by breaking the complex 

systems down into subsystems such that the subsystems either do not interact or 

operate on significantly different timescales. Fast variables are then controlled 

“inside” and independently of slow variables. In this paradigm, all systems are 

decomposed into single variable feedback loops. The SPC equivalent of this approach 

is to monitor a single variable to characterize the operation of a single machine tool or 

process step using tools such as Shewart charts or Cumulative Sum (CUSUM) charts. 

This traditional approach works well for simple small to medium size processes, but 

becomes inefficient when applied to large (many step) processes. When a plant has 

many steps, even a low false alarm rate at each step produces a high false alarm rate 

for the overall process.

This approach becomes even less tenable when single process steps are either 

too expensive to monitor directly or cannot be characterized by a single measurable 

variable, e.g., a batch fermentation process. In these cases, multiple variables need to 

be monitored simultaneously as they jointly characterize (as a multivariate probability 

distribution) the process step(s). A number of multivariate SPC techniques have been

2



1. Introduction
<y

developed in recent decades to address these situations, including Hotelling T tests, 

Principal Component Analysis for dimension reduction, and Principal Regression 

Analysis for Input/Output simplification. These advanced SPC methods work well in 

many circumstances but suffer from several disadvantages compared to univariate 

techniques: they tend to be statistically less powerful, and they tend to complicate 

process diagnosis when a disturbance is detected.

This dissertation presents a general method for simplifying multivariate 

process monitoring in such a manner as to allow the use of traditional SPC tools while 

facilitating process diagnosis. The objective is to develop latent variable 

representations of complex processes which are directly identified with process steps 

or segments. Our method models disturbances in the process rather than the process 

itself. The basic tool used is a relatively new method for data analysis known as 

Independent Component Analysis (ICA). The methodology is illustrated on the 

problem of monitoring Electrical Test (E-Test) data from a semiconductor 

manufacturing process. On the sample problem, the methodology successfully 

distinguishes between the four different types of disturbances it is designed for.

1.1 Systems Framework

In order to present this work in a Systems Science context, one must begin

with a suitably abstract framework for discussing systems in general. An appropriate

framework that encompasses our issues of interest is Klir’s systems epistemology

(Klir 1985, Klir 2001). The first type of system considered is a source system, a set of
3



1. Introduction

objects with a relation. Practically, we consider a set of variables defined as a system 

in some context. The next type of system is a data system, a source system together 

with a set of observed values for the variables. Often one defines a source system of 

interest only to discover that only some of the variables are observable. It is tempting, 

in those circumstances, to redefine the source system of interest based on the 

measurability of the implied data system. In some instances, this can be done with 

little harm. However, from a methodological point of view, it very much like looking 

for a lost set of keys under a lamp post because that is where the light is. Many applied 

disciplines have been forced to develop methods for dealing with this problem. Two 

prominent examples are the construction of state observers in control theory, and the 

use of factor models and latent variable analysis in the social sciences and finance. 

These methods seek to estimate data for specific unobserved variables based on 

available observations of related variables.

After moving from a source system to a data system description, one normally 

wants to move on to a generative system. A generative system is a time invariant 

description of the relations between the system variables that is more abstract than an 

exhaustive enumeration. A generative system description of a data system must be 

consistent with the observed data values. Generative systems can generally be thought 

of as models of the source system. The general systems method of moving from 

source system to data system, and data system to generative system can be described 

as data driven system modeling. A fourth type of system appears in design and

4



1. Introduction

analysis of complex systems. Structure systems are systems in which the nature of the 

interaction between variables is recognized. The decomposition of a complex control 

problem into a collection of SISO feedback loops is a classic example of the use of 

systems of this type.

To place our work in this framework, we recognize that our objective is to 

obtain a structured data system that describes the presence of identified disturbances, 

in which the variables are non-interactive (so that univariate SPC techniques may be 

used). We start with a data system of interacting variables, estimate a generative 

model using a data driven modeling method, and then identify the resulting latent 

variables with particular types of disturbances. Our end product is then a generative 

model that transforms one data system into another.

1.2 Data Driven System Modeling

Data driven modeling is a popular topic in the statistical learning and soft 

computing communities. This approach selects a parameterized functional form for the 

model, then adjusts the parameters to minimize the model error estimated from 

observations of the original (modeled) system. Figure 1.1 provides a block diagram of 

the basic modeling setup.

5
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1. Introduction

System
Behavior

Model
Error

Model

Source
System

Model
System

Environment

Behavior

Figure 1.1: Data driven system modeling, standard architecture.

The source system’s behavior, its observable outputs, is assumed to be a 

function of the system’s internal states and environmental inputs. The model system’s 

outputs are compared to the source system’s outputs for identical input sequences, and 

the difference (model error) is used to adjust the model function’s parameters. This 

general approach is the basis for a variety of techniques in engineering practice, 

ranging from adaptive filtering to artificial neural networks and fuzzy systems. It relies 

on the availability of the environmental inputs for its success. If the inputs are not 

observable, this approach cannot be used.

If the inputs are unobservable, the modeling architecture used is like that in

Figure 1.2. The basic approach here is to choose a parametric form for the model that

is invertible, and use it to produce estimates of the environmental inputs that produced

the observed system behavior. These estimated inputs are then evaluated in a criterion

function that provides a goodness-of-fit or figure-of-merit for the model. The

ubiquitous example of this approach is linear time series modeling using ARMA
6



1. Introduction

models. The classical approach for time series modeling uses the likelihood of the 

observed data as the model criterion, which is calculated from the residuals. The 

residuals are the moving average inputs to the model. The key assumption made is that 

the inputs are independent and identically distributed, zero mean, Gaussian random 

variables. Without such an assumption, the likelihood cannot be calculated.

System Modeled
Behavior InputsSource

System
Model/Inverse

System

Input
Attributes

Model Criterion 
Function

Figurel.2: Data driven modeling with unobservable inputs.

1.3 Data Reduction

Even when working with the data system of one’s choice, one is often faced 

with data reduction problems, i.e. one is presented with a multivariate set of 

observations generated by a system, and has to find a transformation of the data that 

allows the behavior of the observed system to be better characterized. Different senses 

of better characterizations range from shorter descriptions of the original observations 

without loss of fidelity (e.g. source compression), to descriptions of the behaviors of 

individual subsystems of the observed system together with a characterization of how 

the individual subsystem behaviors generated the observed system behavior (e.g.

7



1. Introduction

source separation, factor analysis, latent variable analysis). In this context, a variable 

that describes the underlying behavior is referred to as a latent variable. Often, data 

reduction is merely the first step in an investigation, whose goal is to make the 

available data easier to work with, without loosing any information needed for a 

solution. From a statistical point of view, one is presented with a set of observations 

that imply a (often high dimensional) joint probability density/distribution, which one 

seeks to represent using an alternative coordinate system (often for a much lower 

dimensional manifold).

The best established and most straightforward approach to this problem is 

Principal Component Analysis (PCA). In PCA, one finds the eigen decomposition of 

the covariance matrix of the data. As covariance matrices are positive semi-definite, 

they are guaranteed to have a full, orthogonal set of eigenvectors, which together 

specify a linear map that diagonalizes the matrix. This map transforms the original 

observed variables into a new set of orthogonal, uncorrelated variables. The variance 

of each new variable is specified by the eigenvalue of the associated eigenvector in the 

transformation. In other words, the eigenvectors of the covariance matrix form a basis 

for the observation space, for which the observed density is uncorrelated. An 

alternative means of calculating the principal components is to find the singular value 

decomposition of the observation vectors stacked as an array.

Factor analysis is a method employed by social scientists and financial analysts 

that attempts to explain a set of observations using a linear model containing

8



1. Introduction

unobserved factors as independent variables. Frequently an investigator will use such 

a model to study a particular variable that is immeasurable, yet is highly related to a 

number of easily measured variables. In such cases, both the value of the factor 

variable and the parameter values of the factor model may be of interest. From the 

description of PCA, it should be clear that any orthogonal transformation of the 

observed data is a valid latent variable or factor representation of the data. Thus, 

additional constraints must be imposed on the analysis if one hopes to find a unique 

factor model. Such constraints usually include dimensionality reduction from the 

observation space to the factor space, the assumption of uncorrelated zero-mean 

disturbances for the factor model, and often the imposition of priors for the signs of 

parameters in the factor model.

One interpretation of PCA is that it provides a decomposition of the 

observation space into a set of uncorrelated subspaces, which may be ordered by the 

variance of the data each contains. The usual assumption is that the variance of the 

data in each subspace signifies the relative importance of that subspace. Thus, 

subspaces with very little variance are not very important for representing the data, 

and in many circumstances are good candidates for being dropped from a 

representation. This observation forms the basis for the methods of Principal 

Component Regression (PCR) and Karhunen-Loeve (KL) transforms. PCR is a 

method for estimating linear models of a dependent variable based on the most 

significant principal components of the independent variables. PCR reduces the

9



1. Introduction

degrees of freedom in a model, thus producing a lower variance (though slightly 

biased) estimator. KL transforms are projections of the data onto the most significant 

subspace as determined by PCA. As such, they can provide significant dimension 

reduction, hence data compression, and are used in a wide range of signal and data 

processing applications.

1.4 Independent Components Analysis

Independent Component Analysis (ICA) often includes PCA as a first step. 

The purpose of ICA is to find that orthogonal transformation that maximizes the 

statistical independence of the transformed variables. Statistical independence 

provides the additional constraints necessary for source separation. Two random 

variables are said to be independent when their joint density is factorizable, i.e. their 

joint density is the product of their separate univariate densities. This implies that 

knowledge of the value of one variable for a particular trial imparts no information 

concerning the value of the other variable for that trial. From the point of view of 

information theory, two variables are independent when their mutual information is 

zero. Thus, ICA seeks a linear transformation of the PCA basis that minimizes the 

mutual information between each pair of the output variables. Alternatively, one could 

say that ICA builds an invertible linear model of the system based on the assumption 

that the system’s inputs are independent. In terms of the architecture of Figure 1.2, 

ICA uses mutual information as the figure of merit to be minimized.

10



1. Introduction

The key issues in ICA are 1) how is the mutual information between the 

sources estimated from the transformed data, 2) how is the mixing transformation 

parameterized, and 3) how are the parameters adjusted to minimize the mutual 

information. The first ICA methods used estimates of kurtosis and skewness, fourth 

and third order cumulants (see Appendix 2), or ad hoc nonlinear correlation measures 

as their objective functions. More recent methods use estimates of the Kullback- 

Leibler divergence between the joint and product densities of the sources as the 

function to be optimized. At the same time, a variety of optimization methods have 

been refined specifically tailored to ICA problems, e.g. the natural gradient and 

FastICA algorithms.

1.5 An ICA Based SPC Method

We adopt the position that statistical independence can provide the extra 

constraint necessary for modeling process disturbances in Multiple Input Multiple 

Output (MIMO) systems when only observations of the output variables are available. 

In particular, we use ICA methods for identification and system structure 

investigation. The general procedure is summarized as:

• Collect process output data that includes both nominal process operation and 

designed disturbances that qualitatively enumerate the types of disturbances one 

wishes to detect,

• Develop independence-based factor-analytic models of the process outputs that

link specific factors to specific disturbance types,
11
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1. Introduction

• Using the nominal process outputs, develop probability distributions for the 

factor scores under nominal process,

• Design appropriate univariate SPC charts for the factor scores,

• Validate the factor models by retroactively applying the SPC charts to the

designed disturbance data.

1.6 Dissertation Overview

Chapter two is a fairly detailed description of ICA models, methods, and

motivation. It begins with a discussion of multivariate methods starting with Principal

Component Analysis (PCA) and Factor Analysis (FA) that lead to ICA methods. After 

a short introduction to the linear ICA model, the basic method is demonstrated with a 

simple two dimensional blind source separation example. The example is followed by 

a survey of ICA methods, including a discussion of the relationship between various 

estimators of independence and maximum likelihood methods. After that, there are 

sections describing ICA methods for time structured observations and blind 

deconvolution. Chapter two concludes with a brief sketch of the historical 

development of ICA.

The third chapter introduces the field of Statistical Process control. It includes

illustrative examples of the most common univariate methods: Shewart Charts and

CUSUM charts. The optimality of these techniques is briefly discussed along with

their implementation issues. Multivariate SPC is then discussed both in relation to the

univariate techniques and with respect to process diagnosis. Chapter four introduces
12



1. Introduction

our example application field, semiconductor manufacturing process quality control. 

After a description of the problem context, a review of work applying ICA to E-test 

data in a factor analytic context is provided. The fifth chapter describes our ICA based 

approach to simplifying multivariate SPC. Development and production data from a 

working semiconductor plant are used to estimate a factor model that is then used to 

develop univariate control charts for particular types of process disturbances. 

Detection and false alarm rates for data with known disturbances are given. The charts 

correctly detect and classify all the disturbance cases with a very low false alarm rate.

The sixth chapter introduces a method for performing an ICA like analysis 

using possibilistic data instead of probabilistic data. This technique extends the 

general ICA framework to apply to a broader range of uncertainty types. While not as 

yet directly applicable to our SPC framework, further development of this technique 

may lead to the capability to use extremely sparse data to estimate ICA process 

models. Such a capability would allow rare or costly disturbances to be modeled in our 

framework. The final chapter summarizes this work and reviews the possibilities for 

its further development.

13



2. Independent Component Analysis and Exploratory Factor Analysis

Latent variable techniques are numerical methods that delineate the structure 

of empirical multivariate datasets. The most common technique is Principal 

Component Analysis, which is often applied as a preprocessing step to achieve 

dimension reduction. When the data can be divided into input and output subsets, 

Partial Least Squares Regression can be used to reduce the dimensionality of both 

subsets while also estimating a linear model of the input-output relationship. Factor 

Analysis (FA) is a set of methods and heuristics for defining interesting 

representations of datasets in terms of latent variables that are “meaningful” to the 

analyst. The beauty is in the eyes of the beholder nature of FA arises because the 

system of equations FA is solving is underspecified. Factor Analysis has two 

modalities, an exploratory form and a confirmatory form, which differ slightly in their 

assumptions and procedures.

2.1 Principal Components

The best established latent variable method is Principal Component Analysis 

(PCA). In PCA, one finds the eigen decomposition of the covariance matrix of the 

data. The variance of each latent variable is specified by the eigenvalue of the 

associated eigenvector in the transformation. The eigenvectors of the covariance 

matrix form a basis for the observation space, for which the components of the 

observed density are uncorrelated. An alternative means of calculating the principal

14



2. ICA and Factor Analysis

components is to find the singular value decomposition of the data vectors stacked 

together to form a matrix.

PCA provides a decomposition of the observation space into a set of 

uncorrelated subspaces, which may be ordered by the variance of the data each 

contains. The variance of the data in each subspace signifies the relative importance of 

that subspace for representing the data. Subspaces with very little variance are not 

very important for representing the data, and in many circumstances are good 

candidates for being dropped from a representation. In this manner, PCA finds the set 

of latent variables providing the most parsimonious representation of the observations.

2.1.1 PCA methods

Methods for performing PCA can be classified as either closed form or on-line 

learning techniques. Closed form methods start with an estimated covariance matrix 

formed from normalized observations (zero mean, unit variance). Standard numerical 

techniques such as QR decomposition are then used to find the eigenvectors and 

eigenvalues. On-line techniques are used when adaptive estimation is required for 

tracking nonstationary distributions. Algorithms have been devised using either 

variance maximization or mean-square error minimization with gradient learning 

techniques.

There are a variety of criteria for deciding how many components to keep, the

simplest of which is the Kaiser or eigenvalue one criteria. Under the assumption that

the PCA is performed on normalized data (z-scores with unit variance), the total
15
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variance of the n-variate will be n. Any component with eigenvalue less than one will 

capture less variance than any one of the original observations. The criterion keeps 

only those components with more variance than the observations and drops the others. 

While easy to understand and apply, the crisp nature of the decision rule can lead to 

arbitrary results, as it takes no account of the total variance explained by the remaining 

components. Another simple criterion is to keep enough components to explain some 

predetermined total variance, such as 90% or 95%. While this method considers the 

fidelity of the reduced model, it does not consider the complexity of the model. It may 

also result in arbitrary results in that the least significant component retained may be 

as explanatory as the most significant component dropped.

The scree test attempts to overcome this problem by keeping all the factors 

more significant than the scree -  the relatively flat tail of the eigenvalue distribution. 

Ideally there is a sharp break where the slope of the eigenvalue distribution changes 

from significantly negative to nearly zero; this is the threshold the scree criterion 

selects. Unfortunately, there may be multiple breaks, so there is still arbitrariness to 

this criterion. Both Akaike’s Information Criterion (AIC) and the Minimum 

Description Length Criterion (MDL) can be used as selection criteria to control the 

tradeoff between degrees of freedom and description fidelity, though at significant 

computational cost. Cross-validation is generally used to evaluate the reliability of any 

particular choice.
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2.1.2 Example

This example illustrates the ambiguity in selecting how many components to 

keep. The data is drawn from 2 dimensional Fourier transforms of satellite images. For 

each image, there are 197 samples. The full spectrum of eigenvalues has been 

truncated to the first 31, the number necessary to explain 95% of the total variance of 

the samples. The Kaiser criterion would suggest keeping just 16 of the components, 

those with eigenvalue greater than 1. This would also appear to be a good cutoff as it 

is the minimum number that retains 90% of the total variance. However, the scree test 

would suggest a break after the twelfth or thirteenth component, and for a dimension 

reduction purposes, one might select only the first six.

3020
Principal Component

Figure 2.1: Eigenvalues of the Principal Components.
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Table 2.1: Eigenvalues and Variance Explained

Component Eigenvalue Variance Explained Cumulative Variance

1 81.035 41.99 41.99
2 52.511 27.21 69.19
3 8.551 4.43 73.63
4 7.561 3.92 77.54
5 4.601 2.38 79.93
6 4.236 2.19 82.12
7 2.661 1.38 83.50
8 2.194 1.14 84.64
9 1.828 0.95 85.58
10 1.571 0.81 86.40
11 1.461 0.76 87.15
12 1.276 0.66 87.82
13 1.185 0.61 88.43
14 1.091 0.57 89.00
15 1.054 0.55 89.54
16 1.006 0.52 90.06
17 0.887 0.46 90.52
18 0.883 0.46 90.98
19 0.812 0.42 91.40
20 0.801 0.42 91.82
21 0.746 0.39 92.20
22 0.705 0.37 92.57
23 0.662 0.34 92.91
24 0.623 0.32 93.23
25 0.605 0.31 93.55
26 0.577 0.30 93.85
27 0.524 0.27 94.12
28 0.522 0.27 94.39
29 0.497 0.26 94.64
30 0.484 0.25 94.90
31 0.454 0.24 95.13
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Principal Component
Figure 2.2: Variance explained by each Principal Component.
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Principal Component
Figure 2.3: Cumulative variance explained by Principal Component.
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2.2 Factor Analysis

Factor analysis is a method employed by social scientists and financial analysts 

that attempts to explain a set of observations using a linear model containing 

unobserved factors as independent variables. Frequently an investigator will use such 

a model to study a particular variable that is immeasurable, yet is highly related to a 

number of easily measured variables. In such cases, both the value of the factor 

variable and the parameter values of the factor model may be of interest. This quite 

common form of analysis, construction of factor scales, has the twin benefits of 

reducing the data requirements for a complex analysis (when the scale is used in place 

of multiple exogenous variables) and of simplifying the conceptual framework for the 

analyst.

The basic postulate in Factor Analysis is a generative model

x  = Ay + n

where x  is observed, y  is the vector of common factor scores (unobserved sources), A 

is the factor loading matrix (mixing matrix), and n is the vector of specific factors 

(unobserved sources unique to each observed variable). In general, one postulates a 

small number of common factors, often only two or three, so the rank of A is small 

and the system is underspecified. The specific factors are assumed to be uncorrelated 

and normally distributed, while the common factors are a normal but not necessarily 

uncorrelated. If one assumes

E [y y ']  = I 
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then

J = AA' +E^nn‘ J ,

where E[ ] is expected value. Clearly there are multiple solutions for A even if the 

variance of the specific factors is known. If the specific factors are assumed to have 

zero variance, then the principal components are one solution.

2.2.1 Extracting Factors

To find a factor solution, one first needs an estimate of the communalities, i.e. 

how much of the observed variance in each variable is due to the common factors as 

opposed to the specific factors. The communality for each variable can be estimated 

by its multiple correlation with all the other variables, R . Denoting the diagonal 

matrix containing the communalities as R and assuming our observations are 

normalized, we have

£^nn 'J  = I - R .

Subtracting the specific factor term from both sides of the previous equation 

and substituting the above relation produces

AA' = E \_xx '~ \-(I-R ),

which means we are seeking a decomposition of the matrix obtained by substituting

the communalities onto the diagonal of the observed covariance matrix (the

communality based covariance matrix). The initial factors are found by taking the
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eigen-decomposition of this matrix. Notice that this is merely principal component 

analysis of the communality based covariance matrix. All the caveats about how many 

components (factors) to keep in PCA apply to this stage of FA.

After choosing the number of factors to keep, one is left with

A = ED12

where E is the eigenvector matrix and D is the diagonal matrix of eigenvalues. This is 

a PCA like solution in that its factors are orthogonal and ordered from most to least 

explanatory. At this stage, the rows of A can be considered regressions of the observed 

variables on the latent factors. The sum of the squared coefficients is the R2 for the 

regression, which is now the exact communality for the observed variable and the 

percentage of that variable’s variance explained by the factors.

The artistic instincts of the analyst now come into play in choosing a “rotation” 

to a final model. The primary motivation for the final rotation is to produce an 

interpretable model by attempting to evenly distribute variance across factors, and 

having observed variables load strongly on as few factors as possible. The final 

rotation can either be orthogonal, in which case the factors remain orthogonal, or 

oblique. Oblique transformations complicate the interpretation significantly, as the 

factors will be correlated with one another, but are used because they can greatly 

simplify the factor loadings. Oblique transformations are found by first finding an 

orthogonal rotation and then tweeking to simplify the complexity of the factors.
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The standard framework for orthogonal rotations is maximization of the 

Orthomax criterion

i j  i \  j

where n is the number of factors, the rows are usually normalized prior to rotation and 

the constant ^controls which of the traditional criteria is implemented. With y  set to 

one, one has the Varimax criterion, which maximizes the variance of the variance 

distribution for each variable. Varimax tends to result in either high or low factor 

loadings with few moderate loadings, and is the most frequently used rotation criteria. 

With j'set to zero, this is the Quartimax criterion, which maximizes the kurtosis of the 

loadings. Quartimax has a tendency to produce a common or general factor while 

minimizing the number of moderate factor loadings. If a common factor is expected, it 

may be a good choice. A y o f  nil, where n is the number of factors retained, produces 

the Equimax criterion, a middle ground between Varimax and Quartimax.

If the results of the orthogonal rotation are unsatisfactory from a factor 

complexity or interpretability perspective, an oblique transformation can be added. 

The common procedure is to raise the factor loadings from the orthogonal 

transformation to a high power, which increases the contrast between high and low 

factor loadings, to establish a pattern matrix. A linear transformation of the 

orthogonal factor matrix that produces a best fit to the pattern according to a squared 

sum of error criterion is then found. This is referred to as a procrustean transformation.
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The full Factor Analysis procedure may be summarized:

1) Preprocess data -  remove outliers, normalize to unit variance,

2) Form the sample covariance matrix,

3) Estimate communalities via multiple regression,

4) Replace the diagonal terms of the sample covariance matrix with the estimated 

communalities from (3) and calculate the eigen-decomposition of this 

communality-covariance matrix,

5) Select how many factors to keep based on any of the standard criteria (Kaiser, 

scree, etc.),

6) Calculate a rotation to simplify factor complexity using one of the Orthomax 

criteria,

7) If further factor simplification is desired for interpretability and correlation 

amongst factors is acceptable, calculate an oblique transformation of the 

rotated factors.

There are many optional methods, criteria, and variations at each step of the process.

2.2.2 Exploratory versus Confirmatory Factor Analysis

One of the distinctions that is often made in the FA literature is the difference

between exploratory and confirmatory factor analysis. The basic difference is that in

exploratory factor analysis few or no priors are brought to the analysis. The basic

question asked is what relationships exist in the observed data. In confirmatory factor
24



2. ICA and Factor Analysis

analysis the basic question is whether a specific model is consistent with the observed 

data. The CFA is for model testing rather than model building. As such it is a form of 

covariant structural modeling or structural equation modeling.

2.3 Independent Components

Whereas PCA provides a maximally parsimonious representation of the data, 

and FA seeks to maximize interpretability by minimizing the number of factors 

contributing to each observed variable (localizing the explanation of variance), ICA 

tends to spread the explanation of variance out amongst a greater number of 

components. This is the result of the independence rotation smearing the variance of 

the major principal components across the minor components. The independent 

components will generally be less efficient but (hopefully) more interpretable than the 

principal components.

Our approach to interpreting independent components as representing physical

mechanisms is based on relating the percentage of variance of each observed variable

explained by each component to the mechanism effects expected from first principle

knowledge of the modeled system. Just as one considers the explanation of variance

offered by a factor analysis model, or a PCA, one can consider the distribution of

variance implied by an ICA model. If the data has been centered and the individual

variables normalized ahead of time and the model estimated so that the sources have

unit variance, the elements of the estimated mixing matrix A may be considered as

standardized regression coefficients of the observations on the independent
25
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components. The square of each ag is the percentage of the variance of the observed 

variable i explained by the source j. From this perspective, ICA is a principled form 

of exploratory factor analysis.

2.4 The ICA Model and Fundamental Concepts

The standard form of independent component analysis hypothesizes that the 

observed signals are linear mixtures of independent sources. One normally assumes 

there is the same number of sources as there are observations. The resulting mixture 

model for n observed variables is

x \  =  a \ \ s \ a \ 2 s 2  + • • ■  +  a \ n s n ’

X 2 =  a 2 \ s l  ^  a 2 2 S 2  +  ■ • ■ +  a 2 n S n ’

x n =  a n l S l  +  a n 2 s 2  +  • • • +  a n n S n  ’

or in vector form

x = As.

The classic example of such a process is the “cocktail party problem” of blind

source separation (BSS). The situation is that of many people standing around a large

room in small groups having individual conversations. If there are n conversations

going on and one has n microphones distributed throughout the room (so that no two

microphones pick up exactly the same mix of conversations), the problem of

separating out each conversation, st(t) from the recorded signals xi(t) through xn(t), is

that of estimating the inverse of the mixing matrix A (if it exists). This linear mixing

model is of course idealized in that it does not take into account time delays in the
26
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propagation of the sound signals, reverberation or echoes that might add into the 

recordings, or any additional noise sources (external in the room or internal to the 

recording system).

The key assumption that is made in ICA is that the sources are statistically 

independent. Two sources, x  and y, are independent if they are non-interactive, i.e. 

their joint distribution factors into the product of their individual densities,

p(x, y) = p(x)p(y).

This condition holds only if the sources are uncorrelated and all their higher order 

cross moments are zero. A straightforward way to determine how close to independent 

two sources are is to calculate the Kullback-Leibler divergence between their joint 

density and the product of their individual densities, D(p(x, y) || p(x)p(y)'). For the 

definition and properties of this divergence and related information theoretic concepts, 

see Appendix 1.

The standard ICA approach to estimating W = A'1 is to hypothesize that the 

sources are all statistically independent, i.e.

D(p(S) || p{Si)p{S2) . ..p(sn)) = 0.

The goal of the estimation process is then to find that demixing matrix W such

that

D(p(s) || p(si ) p(s2) . ..p(s„)) = 0,

where
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s = Wx.

A key issue in implementing ICA is selecting a method for approximating the 

divergence D(p(s) || p(sj) p{s2)...p{sn)). Once this has been decided, what remains is 

application of some nonlinear optimization method (usually gradient based) to find W. 

There may be local minima that interfere with an accurate estimation.

Since independent implies uncorrelated and the principal components are 

uncorrelated, most ICA implementations begin the analysis by centering the data and 

then applying a whitening step based on PCA. The eigenvectors found in PCA are an 

orthogonal basis for the observation space. The linear transformation that changes 

coordinates from the original observations to the orthogonal coordinates uncorrelates 

the observations. Furthermore, if each coordinate axis is scaled by one over the square 

root of its respective eigenvalue, then each of the transformed, uncorrelated variables 

will have unit variance.

The rest of the analysis consists of finding that rotation of the “whitened” 

coordinate system that minimizes D(p(s) || p(si) p(s2)...p(sn)). In other words, if the 

whitening transformation is denoted by the matrix V what remains is to find the 

orthogonal matrix B such that W = BV. Notice that a non-orthogonal B would have 

the effect of recorrelating the observations, and thus could not produce independent 

sources. As the space of nxn orthogonal matrices has dimension n(n-1)/2, this 

optimization problem is somewhat more constrained than the original search in n 

dimensions. The last architectural detail in ICA is whether all the components of B are
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estimated simultaneously, often called symmetric estimation, or the components are 

estimated one at a time, the deflationary approach.

2.5 Two-Source BSS Example

We can illustrate the basic ICA procedure with a simple two source example. 

To emphasize the point that ICA performs source separation based on statistical 

characteristics, the sources in our example will be characterized only by their density 

functions. Consider the sources si and S2 with densities

The first variable has a Laplacian density, which is an example from the supergaussian 

or leptokurtic family of distributions. The second variable is uniformly distributed, 

which is an example from the subgaussian or platykurtic family of distributions. It is 

important that both source variables have non-gaussian distributions, otherwise we 

would be no more effective separating the sources using ICA than with PCA. A scatter 

plot of 1000 samples drawn from the joint distribution p(si)p(s2 ) is illustrated in 

Figure 2.4.

Define the mixing matrix

1, if 0 < 52 < 1, 
0, otherwise.

(3 10)
A =
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and consider the set of observations x = As. The observed joint distribution is shown 

in Figur2.5.
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Figure 2.4: The joint distribution of the independent sources si and S2 .

+
++ .

+•***■* if
% *  +  *

n

’$*-+ + t  + + *

++ ±+ /  

*+ *+



2. ICA and Factor Analysis

40 

30 

20 

10 

0(N
X

-10 

-20 

-30 

-40

~5°-30 -20 -10 0 X1 10 20 30 40

Figure2.5: The joint distribution of the observed mixtures xj and X2.

It should be clear that the mixed variables are highly correlated. After 

centering, the observed signals can be whitened using the eigen-decomposition of their 

covariance matrix. Let Cx be the covariance matrix of the centered observations,

C x =£{xxr }.

Let D be the diagonal matrix containing the eigenvalues of Cx in descending order, 

and E be the matrix whose columns are the unit norm eigenvectors, ordered in a like 

manner. These matrices are obtained in PCA, and due to the positive definiteness of 

Cx, E is guaranteed to be orthonormal. Define the whitening transformation V by

V = D '^ E r .

31



2. ICA and Factor Analysis

Since

if we define

Cx = ED E\

y = Vx,

we have

£ { y y r }= V£{xxr }vT = D ^ E rEDErE D = I , 

thus justifying the name. Note that this transformation is not unique, as it may be 

composed with any orthogonal transformation (such as the estimated B) and retain its 

whitening property. The joint distribution of the whitened observations appears in 

Figure 2.6.
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Figure 2.6: The joint distribution of the whitened mixtures yi and yi.
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While the whitened observations are no longer correlated, they are clearly not 

independent. For example, observing a particularly negative value for the first variable 

(a value below -1.8 for instance) reduces the uncertainty in the value of the second 

variable (implies the second value will be negative). Since knowing the value of one 

variable provides information about the value of the other variable, the two variables 

are not independent. The edges of the uniformly distributed source can be seen as the 

crisp diagonal edge on the right and left sides of the scatter plot. The orthogonal 

matrix that we need ICA to find will rotate these edges so that they align with one 

variable axis or the other. A standard ICA method, FastICA, finds the demixing matrix

(-.0535 .1672 ^
W =

^ .4181 -  .2499J

Note that this estimated W is not in fact the inverse of the true mixing matrix A. In 

this case, we have

WA =
0.6759 -0.0328 
0.0049 3.4313 ,

While this is not the identity matrix, the off diagonal elements are small implying that 

the estimated sources sj and h  are fairly pure representations of si and S2 , while the 

non-unity of the diagonal elements implies that we have not recovered the relative 

scales of the sources with respect to each other. In general, the variance, sign and 

ordering of the
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Estimated S1

Figure 2.7: The joint distribution of the estimated sources Sj and

estimated sources is arbitrary, since independence of the sources is invariant to 

permutations and scalar multiples of the rows of B. The joint distribution of s; and h  is 

shown in Figure 2.7. Comparing Figure Figure2.7 to Figure 2.4, we see that they are 

virtually identical except for scaling: the si axis scale has changed by a factor of

0.6759 and the s2 axis scale has changed by a factor of 3.4313.

2.6 Standard Approaches to Implementation

Practical implementations of ICA face three architectural issues: method for 

approximating the divergence between the joint and factored source distributions,
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method for adjusting the mixing parameters, and method for constraining the 

optimization. The choice of optimization method primarily affects computational 

speed and applicability (online versus offline), and hence is the significant factor 

determining in what scenarios the algorithm can be effective. The following 

discussion highlights the major approaches that have been developed over the last 

decade for implementing ICA.

2.6.1 Algebraic Methods

Since a joint density will factor exactly when all the cross terms in its cumulant 

tensors are zero, one approach is to estimate specific cross-cumulants for the proposed 

source variables. For example, the second order cumulant tensor is the covariance 

matrix and the cross-cumulants are the covariances. Two independent distributions 

will have zero covariance, and diagonalizing the covariance matrix is a 

straightforward algebraic problem solved in PCA. Several ICA algorithms have been 

proposed that apply this principle to the fourth-order cumulant tensor. This is 

essentially an eigenvalue decomposition problem for an n x n  matrix. The method of 

fourth-order blind identification (FOBI) does just this. The diagonalization can either 

be done using standard QR factorization methods, which correspond to symmetric or 

simultaneous estimation of the components, or via the power method for finding 

individual eigenvectors, which corresponds to deflationary or one at a time estimation 

of the components. For details of both numerical approaches to finding

eigendecompositions, see (Press et al. 1986).
35
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In the case of even moderately large n this algorithm becomes both 

computationally and memory intensive. FOBI is also limited by its inability to resolve 

components with identical eigenvalues. This latter problem was resolved with the 

development of the popular joint approximate diagonalization of eigenmatrices or 

JADE algorithm (Cardoso 1993). This algorithm attempts to find a transformation that 

simultaneously diagonalizes all the eigenmatrices of the cumulant tensor. Note that 

our fourth-order tensor is a linear transformation in a space of nxn matrices, thus its 

eigenvectors are nxn matrices. In practice, these eigenmatrices are not jointly 

diagonalizable, but it can be shown that the demixing matrix that maximizes the sum 

of squares of the almost diagonal eigenmatrices also minimizes the cross-cumulants 

and thus produces sources that are as independent as possible. Aside from the 

computational limitations of these algebraic methods, the estimation of high order 

cumulants from finite data samples is problematic. Often times the estimated values 

depend almost entirely on a few extreme valued observations (outliers) and thus are 

not robust.

2.6.2 Estimators of Independence

Alternatives to the tensor methods involve actually estimating the Kullback- 

Leibler divergence, which essentially requires the estimation of differential entropy 

from data.
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We have

D P(  s) n^Oi) =jp(s)iog
P(S) ■dsxds2 ...dsn ,

P( s l ) p ( s 2) . . . p ( s n)

= j p(s ) logp ( s ) d s - ' £ j P ( s)logp(st ) dSf ,
i

= Z  KSi)-h(s),

then given the ICA model

and letting

x = As,

B = A ,

we get

D P(  s)

Now if we constrain the estimated sources to be uncorrelated and have unit

variance, i.e.

we have

CS = I,

1 = III = |Cs|,

= |BCXBT|,

= |B| |Cx| |BT|, 

= |B|2|CX|,
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thus |B| must be constant. Therefore, the only component of the divergence that varies 

with the demixing matrix is the sum of the marginal source entropies. The marginal 

entropies are the terms that must be approximated.

Series Expansion Estimators

The classical approach to this problem uses polynomial density expansions, 

similar to Taylor expansions of functions, to arrive at a parametric form for the 

marginal densities, which can then be massaged analytically to approximate the 

differential entropies or their derivatives as desired. This approach supposes that the 

desired marginal density p(s\) is near the standard zero mean, unit variance Gaussian 

density g. Two alternative expansions can be used, the Edgeworth series

p(st)(x) = g(x) 1 H 3 u )  H t (x) + S‘) H 6 (x) +■

or the Gram-Charlier series

P ( S i ) ( x )  = g(x) l+ h M H j(x )+ ! ^ H<U)+k ^ + m ! ^ H t(x )+ .
3! 4! 6!

where Hj(x) are the Hermite polynomials. Truncating either of these series provides a 

closed parameterized form for the marginal densities. A number of researchers have 

proposed using this approach to implement gradient based ICA algorithms (Comon 

1989, Amari, et al. 1996, Haykin 1999). Such gradient based methods can be 

implemented for both online and offline applications and have relatively modest
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memory requirements. One improvement in the expansion based methods is the 

inclusion of both even and odd cumulants in the measure of independence, thus they 

should theoretically be sensitive to a wider range of statistical features.

However, these methods once again rely on estimates of the cumulants and 

thus are subject to the same criticisms concerning robustness as the algebraic methods. 

An additional criticism of cumulant based methods is that the high order polynomials 

in the cumulants concentrate on the tails of the distribution and are minimally affected 

by features near the center. Thus even if the cumulants could be estimated perfectly, 

expansion based estimators of differential entropy would still do a poor job.

Maximum Entropy Estimators

An alternative to the cumulant expansion methods is to estimate the entropy of 

the maximum entropy distribution consistent with the observed data (or in the ICA 

case, the hypothesized sources). Note that the smaller the K-L divergence is, the closer 

the sources are to being independent. As the marginal entropies are the positive terms 

in the divergence, using an approximation method that bounds each of those terms 

from above is a conservative approach.

From information theory and statistical mechanics, e.g. (Cover and Thomas, 

1991), we know that the density p(x) consistent with m moment constraints

that maximizes differential entropy is of the form
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r
p(x) = exp A ^ a jF j ( x )  .

\

In general, it may not be possible to solve for the constants aj and A, as the maximum 

entropy bound may not be achievable.

Several research groups have proposed that by purposefully selecting the 

moment constraints, it is possible to always solve for the constants to a first order 

approximation, resulting in the “approximative maximum entropy density”. The 

nonlinear functions F,(x) in the moment constraints must form an orthonormal set with 

respect to the metric defined by g(x), i.e.

In addition, constraints of zero mean and unit variance are added. Under these 

assumptions, the approximate density is simply

(see Hyvarinen 1998, or Cook et al. 1993 for details). The quantity to be minimized 

over B then becomes

jg (x )F j(x )x kdx = 0, for k = 0 ,l ,2.

p(x) = g(x) 1 + Y Jcj Fj (x) ,

and the resulting entropy bound is

T O )  = MgW)-| E ^ w }2 N O T - i  Z
V i  )  \  J
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Implementation of this method requires selection of the nonlinear functions. In 

addition to the orthogonality constraint, the functions should not increase faster than a 

quadratic to insure the integrability of the approximate density and to avoid being 

sensitive to outliers. Furthermore, the functions should capture aspects or features of 

the modeled distribution. Thus if the form of the density were known a priori, i.e. p{x), 

the best choice would be the -log p(x).

A variety of functions have been suggested to measure specific features, e.g. 

the spike of the Laplace distribution

F(x) = |jc| ~ j  log cosh(ax),

or infinitely heavy tails

or asymmetry

(Hyvarinen, Karhunen, and Oja 2001).
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2.6.3 Maximum Likelihood Estimation

An alternative method for estimating BSS models is maximum likelihood 

estimation. For the basic linear ICA mixing model, the likelihood considered as a 

function of the demixing matrix B is

£ (B )= n n p ,(b f* (o ) |B |,
t = 1 i =l

and the log-likelihood is

log L(B) = Z X lo g  Pi (bf x (f))+  r io g |B |.
t=1 i=1

Maximizing the log-likelihood requires the assumption of some functional form for 

the marginal densities. These density functions could be estimated simultaneously 

with the demixing matrix, but density estimation is, in general, a much harder 

problem. Typical implementations constrain the density estimation problem to 

choosing between a generic subgaussian density

p ~ (jc) = a -  -*y2  “  2 log cosh x , 

and a generic supergaussian density

p + (x) = a -  2 logcoshx.

It should be clear that maximizing the log-likelihood in this circumstance is 

exactly the same as minimizing the sum of the marginal entropies using the maximum 

entropy approximation method for the case when the negative of the hypothesized log 

density is used as the moment constraint. Note that if the hypothesized or estimated
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density is subgaussian instead of supergaussian, or vice versa, the maximum 

likelihood method will give erroneous results. The initial connection of maximum 

likelihood estimation to the ICA problem, and its connection to minimizing the KL- 

divergence of the source s was first made by Bell and Sejnowski (Bell and Sejnowski, 

1995) in the context of a gradient based algorithm. It was further developed by Amari 

and Cichocki into the natural gradient algorithm (Amari, Cichocki, and Yang 1996).

2.6.4 Optimization Algorithms

The most basic gradient algorithm (Bell and Sejnowski) is of the form

w = W + r\^{yVT )_1 + £{F(Wx)xr f|,

where r| controls the size of each adjustment, and F(z) is either the log-density, or 

nonlinear correlation, or independence estimator adopted (per the above discussion). 

The observations are not assumed to be decorrelated, unit variance, thus the full 

demixing matrix W is estimated rather than just the orthogonal transformation B. 

Convergence with this method is rather slow due to the inclusion of the decorrelation 

into the gradient optimization, and due to the computational load of the matrix 

inversion for every adjustment. Furthermore, this algorithm is based on the assumption 

that the matrix space over which the optimization is performed has a Euclidian 

structure. This assumption is not, in general, true, therefore the adjustments made by 

the algorithm are not in fact in the direction of steepest descent.
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The complication arises from the fact that when tangent vectors are translated, 

they do not maintain their direction unless the space is flat (e.g. Euclidian), so the 

deflection over an infinitesimal translation must be accounted for in the gradient 

calculation. This leads to the natural gradient algorithm

w = W + i^(wr + £{F(Wx)xr  f)wr W,

= W + n(l + £ ,{p(Wx)xr W r })w.

Not only does this algorithm follow the direction of steepest descent, it also avoids the 

matrix inversion of the basic gradient approach.

As we noted earlier, the observations can be made decorrelated with unit 

variance using PCA as a preprocessing step. In that case, the demixing matrix 

estimated by the optimization, B, is orthogonal, thus

Br B = I.

Both the gradient and natural gradient algorithms would then reduce to

B = B + T|(b  + £ ,{f’(Bx)xr  

together with the enforcement of the orthogonality constraint

B *-(B B r )“1/2B,

after every update.

Once the observations have been whitened, it turns out there is a 

computationally more attractive second order method available. Observe that the 

above methods all seek to find optima of

44



2. ICA and Factor Analysis

E {f(br x)}.

The Kuhn-Tucker condition for such optima under the constraint

F,{(br x)2}=|| b|[2 =1,

is

£'{xF/(br x )} -/lb  = 0.

The Jacobian matrix of the left hand side considered as a function of b is 

7(b) = £'{xxr F '(b r x)}-A l -  ( F { F > r x ) } - i ) l ,

where the approximation is made using the assumption that the data is sphered, i.e.

Cx = I-

Thus an approximate iteration for a Newton method solution to the Kuhn-Tucker 

constraint would be

+ ^ { x F '(b r x ) } - ^ b

F { F > r x ) } - l

which can be simplified to

b + = F{xF'(br x)}- £ {F '(b r x)]b.

This leads to the FastICA algorithm (Hyvarinen and Oja, 1997):

1.Choose an initial component direction b.

2.Let b + =F{xF'(br x )} -F { F '(b r x))b.

3.Let b = b + /| |b+| .

4.Repeat steps 2 and 3 until b does not change.
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This second order method does not require an explicit matrix inversion due to the 

assumption that the data is sphered and thus the Jacobian is approximately diagonal. It 

can be applied either to the divergence based objective function or to the likelihood 

function, and has been shown to have cubic convergence

2.7 BSS of Sources with Time Structure

If the sources in a BSS problem are signals in time rather than just random 

variables, the correlation structure across time can be used to separate them. In 

principle, as long as the time dependencies of the signals are not identical, i.e. there 

exists some lag x for which the autocorrelation functions differ, the sources can be 

separated using only second order statistics. If the sources have time structure, the 

basic ICA model becomes

x(r) = As(r).

We form the time lagged covariance matrix

C x (x) = E \x (t)x (t-x )T}, 

which in principle will be symmetric and whose eigendecompositions would provide 

the desired demixing transformation if all the eigenvalues are distinct. In practice, the 

estimated autocovariance matrix may not be symmetric, so instead we work with

C,(x) = i l c , ( x )  + C;!(T)r j,
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which is symmetric by construction. This is the strategy behind the simple algorithm 

known as AMUSE (Tong, et al. 1991, Molgedey and Schuster, 1994).

The principle drawback to AMUSE is that its success depends on picking a lag 

value for which the eigenvalues are distinct. A generalization of this idea that is less 

apt to cause repeated guessing for a good time lag, attempts to jointly diagonalize the 

averaged, estimated autocovariance matrices for several time lags. This algorithm is 

known as second order blind identification or SOBI (Belouchrani, et al. 1997).

2.8 Blind Deconvolution

Another related problem context where ICA techniques can be applied is for 

blind deconvolution (BD). In this context, an observed signal is assumed to be 

generated by a convolution model

oo

x(t)=  X a t s(f-fc)
*=-«>

and the goal is to find a finite impulse response (FIR) deconvolution filter

n
s(t) = Y Jwkx ( t - k )

k= L

that recovers the source signal. If the convolving process is minimum phase, then the 

temporal whitening filter is the deconvolving filter. If the process is not minimum 

phase (stable and invertible), then a more sophisticated approach is necessary.

Bussgang methods are the earliest approach to BD. Bussgang algorithms look 

for noncausal filters
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L
s(t)= £ v tfkx( t -k )

k = - L

using gradient techniques to minimize a heuristically defined cost function (Godard, 

1980).

An ICA formulation of the problem defines an observation vector 

x(0 =[x(t) ,x(t-1), . . . , x ( t - n  + 1)],

and a source vector

s(t) = [s(t), s( t -1), . . . , s ( t - n  + 1)], 

with the basic linear mixing model

x(t) = As (r).

The ICA solution is then a causal FIR filter (Torkkola 2000, Amari, et al. 2000).

2.9 Historical Development of ICA

One of the first instances of a blind source separation problem being solved by 

a statistical learning process using independence as an objective was the mapping of 

observed muscle contraction signals to the angular position and velocity of a joint 

(Herault et al. 1982-85). The Herault-Jutten algorithm adapted the feedback 

coefficients in a simple two input, two output recurrent network to make the network’s 

outputs independent. This was done by adjusting the feedback coefficients to 

minimize the nonlinear correlation between the outputs. While this method works for 

small problems, it does not scale well. A local stability proof exists for convergence 

(Sorouchyari 1991), but global convergence is not guaranteed.
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In the late 1980s, interest emerged in high-order spectral analysis. Early papers 

on the spectral approach to ICA appeared in 1989 (Comon 1989, Cardoso 1989). This 

approach was based on the algebra of cumulant tensors, which eventually lead to the 

development of the JADE algorithm (Cardoso 1993). The term independent 

component analysis appears to originate in a 1994 paper by Comon (Comon 1994).

During the early 1990s, the Herault-Jutten algorithm was improved and 

extended by Cichocki, Unbehauen, et alia. While still based on the heuristic of 

nonlinear decorrelation, this approach utilizes a feedforward network, does not require 

a potentially ill-conditioned matrix inversion, and scales to larger problems.

In 1995, Bell and Sejnowski published their approach to ICA based on the 

infomax principle (Bell & Sejnowski 1995). The Bell-Sejnowski algorithm is a simple 

gradient method for maximizing the likelihood of an ICA model. While 

computationally intensive, this algorithm attracted a lot of attention to ICA and BSS 

type problems. It was soon refined into the natural gradient algorithm (Amari, 

Cichocki, and Yang 1996), which was really an outgrowth of Cichocki and 

Unbehauen’s earlier work.

Starting in 1997, Hyvarinen and coworkers introduced their FastICA 

algorithms (Hyvarinen 1997, Hyvarinen and Oja 1997, Hyvarinen 1999). These 

algorithms utilize a fixed point optimization method that posses cubic convergence, 

and thus tend to be computationally fast for off line applications.
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3. Statistical Process Control

Statistical Process Control (SPC) is the practice of using statistical inference to 

monitor and diagnose the performance of production systems so as to reduce the 

variability of the system’s output. In the manufacturing context, this translates to 

decreasing the variability in the makeup or function of the finished products or 

components. In the service industry context this amounts to reducing the variability in 

the system’s attributes from the consumer’s point of view. In general the goal is to 

enhance the system’s performance by monitoring the distribution of the measured 

values of variables that describe significant attributes of the system’s outputs.

The general strategy is to characterize the distribution of the system’s outputs 

when the system is functioning as desired (is in control), for example the radius of a 

ball bearing could be characterized as a Gaussian random variable with mean equal to 

the nominal design radius and known variance, then monitor the statistics of the 

population of finished products based on regular sampling to see if the actual 

population produced remains consistent with the nominal, in-control distribution. If 

the measured population is found to be significantly inconsistent with the nominal 

distribution, the system is assumed to have shifted internal state so as to be out o f 

control, and steps to intervene are then taken to return the system to its in-control 

state.

When the measured variables are directly related to the quality of the system’s 

output, this practice is formally called statistical quality control (Montgomery 2005),
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which also includes acceptance testing and related practices. SPC is the general 

practice described above of monitoring the internal system state, and usually includes 

monitoring process variables (attributes of the process rather than the product) as well 

as quality variables.

The entire endeavor forms a closed loop control mechanism for a productive 

system. Such an approach was found to be necessary for the control of manufacturing 

systems in the early twentieth century. The complexity of the systems to be controlled 

was such that no single closed feedback loop would have been sufficient to maintain 

the stability of the system in the in-control state, as such systems routinely involved 

multiple steps, multiple inputs of varying qualities and highly variable human 

operators.

Historically, SPC grew out of sampling techniques for quality assurance. Basic 

techniques for acceptance testing can be used for process monitoring. For example, a 

testing regime designed for testing incoming lots of component assemblies from a 

supplier to determine if they comply with design specification before incorporating 

them into finished products could just as well be used by the upstream supplier to see 

if their assembly process is performing properly.

The field of Quality Engineering considers the various permutations of such 

testing and their application to increase the quality of finished products. The variables 

measured in such practice are termed quality variables and monitoring such variables 

is correctly termed Statistical Quality Control. SPC can be thought of as a
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generalization of these methods that monitors any variable (i.e. not just quality 

variables) that indicates the internal state of the system to be controlled.

The core techniques of SPC monitor process outputs. There are many cases 

where input variability needs to be considered to distinguish between internal and 

external process disturbances. As our proposed methodology is currently developed to 

apply only to process outputs, the following overview of SPC will only cover process 

output monitoring techniques. Methods for input-output modeling such as Partial 

Least Squares (PLS) and model based methods will not be discussed for the sake of 

brevity. Likewise the myriad time-dependent techniques that correct for 

autocorrelation will be omitted. Finally the distinction between quality variables and 

process variables is not made, as it is not germane to the proposed methodology.

3.1 Univariate Control Charts

A simple SPC example is the classic Shewart X  chart (Shewart 1931). This

simplest of all monitoring charts plots the average value of a fixed number of samples

drawn from the process output at regular intervals. Alarm and warning limits are

calculated for the process based on the variance of the in-control process together with

a sensitivity level for detecting process change. From a statistical point of view, the

chart implements a straight forward hypothesis test about the mean of the observed

process. The null hypothesis is that the sample was drawn from a population with a

mean equal to the nominal process mean, and the a  level or probability of type I error

determines the alarm threshold. A type I error represents a false alarm for the
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monitoring system, while a type II error represents a missed detection. The a  level 

chosen determines the false alarm rate for the monitoring system, which in practice 

determines the expected run time for the process, i.e. the expected length of time the 

process will operate while in control before a false alarm is generated. This is a 

tunable parameter, and is selected based on the relative cost of false alarms versus 

missed detections.

Now, if we postulate a process with a normal distribution, a nominal mean of 

50.0 and a process variance of 0.01, and sample the process output 5 times an hour, we 

could obtain a dataset as in Table 3.1. The mean values of the samples within each 

hour are tallied in the right hand column. The distribution of the sample means has 

variance

The control limits for a Shewart chart based on the hourly sample means are 

UCL = fix + La- = 50+ (3)^0.002 = 50.1342,

LCL = n x -  La- = 5 0 -  (3)^0.002 = 49.8658, 

where L is the distance of the control limit from the mean in standard deviations. 

Based on the 3 sigma control limit (p = 0.0027), the average run length will be

ARL = —= 370 
P
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so we can expect the process to run in control for an average of 370 hours before 

generating a false alarm.

Table 3.1: Data for control chart example

Hour Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Mean
1 49.9369 50.0485 49.8971 49.9104 50.0811 49.9748
2 49.7675 49.9995 50.0243 50.0135 50.0636 49.9737
3 49.8768 49.9724 49.8743 49.9861 50.1310 49.9681
4 50.1056 50.1276 49.9653 49.8837 50.0327 50.0230
5 49.9887 50.1863 49.9059 50.1184 49.9327 50.0264
6 50.0379 49.9477 49.8825 49.9985 49.9851 49.9703
7 50.0944 50.0103 49.8979 50.0536 49.7551 49.9623
8 49.7880 49.9192 49.9598 49.9284 50.0473 49.9285
9 49.9355 50.0680 50.0174 49.9344 50.0117 49.9934
10 49.9296 49.7635 49.9884 50.1314 50.0409 49.9708
11 49.9982 50.1990 50.2064 50.1107 50.0345 50.1098
12 50.0818 50.1219 50.0755 50.2848 49.9919 50.1112
13 50.2521 50.1262 49.9482 50.0725 50.0952 50.0988
14 50.0962 50.2213 50.1010 50.3213 50.1379 50.1755
15 50.2227 50.0725 50.1071 50.2509 50.0670 50.1440
16 50.0304 50.0867 50.1317 49.9055 50.0500 50.0408
17 50.1008 49.9729 50.1500 49.9319 50.0964 50.0504
18 50.0217 49.9336 50.2278 50.0426 50.0825 50.0617
19 50.1587 50.0296 50.0452 50.0814 50.0043 50.0638
20 50.0749 50.1281 50.1261 50.1009 50.2293 50.1318

In this example, a process change occurs between the third and fourth sample 

during the tenth hour that causes the process mean to shift up by 0.1. Two versions of 

a Shewart chart for the process mean are given in Figures 3.1 and 3.2. Figure 3.1 is a 

simple chart of the individual process measurements. Figure 3.2 charts the hourly 

mean of the process measurements. It is standard practice to organize process samples 

into logical groups and chart the means, ranges, variances, etc. of the group. This has
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the advantage of increasing the time between false alarms as far fewer tests are made, 

though no alarm can be generated until all the samples for the group have been 

gathered. Both charts alarm in the fourteenth hour (sample 69).

50.4

50.3
Step change

U W L  =  2rr50.2co
' T-H

I 50.1
a
Q 50.0

I 49-9 
00

49.8 L W L  =  2 q

LCL = 3rr49.7

49.6
100

Sample

Figure 3.1: Twenty hours of samples plotted with 2 and 3 crlimits.
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Figure 3.2: Shewart X chart with 2 and 3 olimits.

An alternative to the Shewart chart is the Cumulative Sum (CUSUM) chart, 

(Page 1954, Hawkins and Olwell 1998). The cumulative sum for a process with target 

mean ju* is

Ci !*■*)>
7=1

Cj_i T (X7 [J.*).

If x ~ N(jU*, (?) then Q ~ N(0, no2), the cumulative sum is a zero mean random 

variable. If at i = 0 a step change occurs in the process mean of size d, the we have 

instead Q  ~ N(nd, no2). A steadily increasing or decreasing CUSUM indicates a shift
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in the process mean. This is operationalized by forming two one-sided Tabular 

CUSUMs

Q+ = max(0, x t -  (ji, + k) + C ^ ) ,

Cf  =  m in(0,x£ -  (/r* -  k)  +  Cf^) ,  

where k is one-half the magnitude of the expected shift in the mean. If either one-sided 

CUSUM exceeds an alarm limit h, a shift in process mean is indicated. As with the 

Shewart charts, the false alarm rate is controlled by the selection of the alarm limit. 

Unlike the Shewart charts, CUSUMs are designed to be sensitive to a particular 

magnitude of shift in parameter value. This magnitude is usually expressed in terms of 

standard deviations for the monitored variable, e.g. a CUSUM chart is developed to 

monitor for a 1.5 a  change in the process mean. A CUSUM chart for our example 

process is in Figure 3.3. This chart detects the step change in the twelfth hour (sample 

58), 2 full hours before the Shewart chart. The CUSUM was designed with k = 0.1 and 

an alarm limit based on 3 a. The ARL for this chart is comparable to that of the 

Shewart chart.
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Figure 3.3: Upper and lower CUSUMs, k = 0.1.

3.2 Optimality and Design Issues

Which is better a Shewart cart or a CUSUM? Are either of them optimal or is 

there some other superior method? The proper form of the question is: given all 

procedures for determining if a process has shifted from one known distribution to a 

second known distribution and identical false alarm rate, which procedure has the 

smallest expected time to signal a change? Moustakides proved that CUSUM are the 

optimal detector for this problem (Moustakides 1986). Put another way, among all 

techniques with a given false alarm rate, the optimal detector fo r a known step change
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in a process parameter is a CUSUM chart. While any particular CUSUM is only 

optimal for a specific magnitude step change, their performance is robust as long as 

the change is not too far from the designed magnitude.

However, CUSUMs do have several weaknesses. They can be slow to respond 

to large shifts. They can fail to respond to transient shifts. Both of these cases are 

better handled by Shewart charts. For example, the optimal test for a one time step 

transient of unknown size will be a Shewart chart. Therefore CUSUMs and Shewart 

charts are often used together.

Another consideration when designing a process monitoring scheme is the 

complexity of implementation. No matter what type of chart is to be used, one must 

first characterize the nominal, “in control” distribution of the monitored variable. The 

general observation applicable in all cases is that large samples are always better. 

Mischaracterization of the parameters variance can radically affect the false alarm rate 

and sensitivity of any monitoring scheme. A variety of procedures, rules and methods 

have been developed for both Shewart charts and CUSUMs in many process contexts, 

e.g. (Montgomery 2005). Most of these apply to variables with normal distributions. 

Additional work is needed when implementing charts for non-normal distributions. 

The computational cost of implementing a monitoring scheme is also a consideration. 

For example, Shewart R charts monitor the range of values occurring within a logical 

group and are very cheap to implement compared to variance monitoring.
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When implementing a new production process, it has become common to use 

an experimental design methodology to characterize the major factors affecting 

process outputs. Candidate factors are identified and experiments are run that 

systematically vary the factors so as to capture the effects of both individual factors 

and factor interaction. The standard framework uses analysis of variance (ANOVA) to 

analyze the data from the experiments.

3.3 Multivariate Approaches

Let X be an n dimensional normal random variable X ~ N(jU, Z )  with known 

mean and covariance. We may test the null hypothesis

H0: JU =  jL io

against the alternative that the mean has shifted 

We reject the null hypothesis if

t 2 = (x - ju0y z ’\ x  - ju0) ~ x l

is sufficiently large. This is the optimal affine invariant test for an unknown shift in 

the process mean. However, if the alternative hypothesis specifies a direction for the 

shift in process mean ju, i = juo + £x,

H i: pi =  / / i ,

then the optimal test statistic is
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Z = (X - - //o) ~ .

It is important to note that only the direction of the disturbance of the mean is 

significant, the magnitude of the shift makes no difference to the reduction in degrees 

of freedom.

In practice T2, Hotelling’s statistic, is used in a Shewart chart manner 

(Hotelling 1947). An estimate S based on the sample covariance matrix of the in

control process gives the test statistic

T^CX-z/o/sVX-Ao)-^2,

when a large enough sample size is available for estimating S. This is the fundamental 

tool used for multivariate process monitoring.

One major practical difficulty with this approach is that T2 alarms are hard to 

interpret. A variety of approaches have been tried, starting with running univariate 

control charts on all the individual variables in the hope that only a small subset will 

alarm with the T2. As most multivariate control problems have a significant degree of 

correlation between measured variables, this approach tends to be swamped by 

uninformative false positives. A number of authors have suggested using different 

control limits for the univariate charts to limit the false positives (Alt 1985, Hayter and 

Tsui 1994), but these approaches still avoid directly linking alarms to causes. A more 

direct approach is to calculate the relative contribution of each variable to the alarm 

via
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where T ^  is the test statistic calculated by omitting the ith variable (Runger, Alt and

Montgomery 1996). A large value of di is an indication that variable i is responsible 

for the alarm.

Another issue with T2 charts is that they are inherently Shewart charts. No 

clean CUSUM implementation exists for Hotelling statistics. One issue is that T2 is a 

quadratic variable and so the linear drift interpretation of the CUSUM does not carry 

over. It is possible to define a related statistic that accumulates on a linear scale, 

(Crosier 1988), but the optimality arguments that apply to the univariate CUSUM no 

longer hold.

Another line of development in multivariate process monitoring is the 

application of PCA to reducing the dimensionality of the problem (Jackson 1980). So 

long as the disturbances of interest are in the space spanned by the retained 

components, reducing the dimensionality of the problem reduces the degrees of 

freedom in the test statistic and increases the power of the test (Scranton et al. 1996). 

If the data are considered to be multivariate normal, then the principal component 

scores are independent of each other and can be treated individually with univariate 

charts. Based on these observations, one common approach is to chart each of the 

major principal components individually and combine the minor components into a 

single T2 chart. Interpretation of alarms is still a problem with this approach. The 

percentage of variance a component explains of each variable can be used as a
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contribution plot indicating which measured variables are involved when a particular 

component generates an alarm. This is about as informative as the relative contribution 

statistics for T1 alarms discussed earlier. In both cases a process engineer familiar with 

the details of the system is required for accurate trouble shooting.

3.4 Advanced Process Control

One of the active areas of research in Advanced Process Control (APC) is the 

automation of alarm interpretation for multivariate SPC. Several themes are of note. 

The first approach is based on template matching of alarms to previously identified 

faults stored in a data base. This approach tends to use PCA for dimension reduction 

and charting (Kourti and McGregor 1996). Clustering of expert interpreted 

contribution plots is used to create a library of known faults against which new alarms 

can be checked (Kourti 2002). A library of diagnosed faults is required and the 

problem of when to expand the library and what kind of matching criteria to use are 

key issues. A critical issue in this work is checking the observability of known faults 

by the monitoring scheme. Kourti et al. suggest constructing special Hotelling charts 

to detect some important types of disturbances.

Another approach for batch processes where data over a time course is 

available is to attempt to match the eigen decomposition of an alarm to an established 

library (Singhal and Seborg 2002). Both this and the previous approach fit into a 

standard machine learning framework, being in essence expert systems for process 

diagnosis.
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An alternative APC approach is to divide the variables into subsets associated 

with different process segments (Undey and £inar 2002). PCA is applied to each 

subset and one or two principal components from each subset are kept. Alarms are 

then attributed to the process segment that is implicated by the contribution plots. This 

approach has the advantage of not depending on a data base of historical alarms. 

However process disturbances in one segment may cause alarms in components 

associated with other segments due to process structure.

The design issue of needing large samples of nominal process data in order to 

characterize the process and set appropriate alarm limits, has lead to work that merges 

data from related processes or products to improve overall monitoring. Data paucity is 

particularly a problem in industries with short production runs or plants in which 

multiple products are fabricated simultaneously. Under the assumption that the eigen 

structures of the multivariate distributions from different products run through a 

common plant are identical, nominal and disturbance data from the products can be 

merged via normalizing the observations based on product means and variances (Lane 

Martin, Kooijmans and Morris 2001, Martin, Morris and Lane 2002). A weighted 

average of the product sample covariance matrices is used for pooling.
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4.1 Introduction

This chapter reviews preliminary work using ICA as a method for isolating 

sources of variance in E-test data. The sources of variation we seek to isolate are 

fundamental physical phenomena such as lateral diffusion or effective gate length, 

gate oxide thickness, and channel implant. Such phenomena can be tied directly to 

individual process steps, and thus process control can be affected. A natural result of 

our method is that the isolated sources are as statistically independent as possible. We 

seek to develop a general model of how the manufacturing process generates 

variability in the observed E-test parameters. Observations of a normally functioning 

manufacturing system (including well calibrated and poorly calibrated process steps) 

were assembled, and ICA models were estimated that explained the observations as a 

function of independent meta-parameters. Meaningful physical interpretations are 

given to the meta-parameters so that the ICA model provides an explanation of the E- 

test variability.

The next section provides a brief overview of our methodology, and the 

following section a description of our data, including variance profile based on PCA. 

The fourth section includes our results along with a short discussion interpreting the 

physical significance of the independent components.
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4.2 Methodology

In semiconductor manufacturing, the build up of individual circuits is the result 

of a multi-step process where each step contributes variability to the effectiveness and 

robustness of the circuits produced. Microelectronic parametric test (E-test) structures 

are incorporated on production wafers in an attempt to monitor specific physical 

phenomena in the semiconductor manufacturing process. Although, test structures are 

designed to isolate specific phenomena, in practice there is usually a high degree of 

correlation between measured test parameters, due to the influence of multiple 

variance mechanisms in any structure. This correlation confounds our ability to 

diagnose production process variation using conventional ANOVA methods on E-test 

and lot-equipment-history (LEH) data. Traditional statistical reduction methods, such 

as principal component analysis (PCA), do not help in this context.

Our approach to interpreting independent components as representing physical 

mechanisms is based on relating the percentage of variance of each observed variable 

explained by each component to the mechanism effects expected from first principle 

engineering knowledge. This can be done both after the fact and by including E-test 

parameters calculated by first principle models that should represent isolated 

mechanisms, and then seeing how they are represented by the independent 

components.

The issue of how many independent components (mechanisms) to look for was 

handled by calculating confidence intervals for the components using a bootstrap
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technique (Meinecke, et al. 2001, Davison and Hinkley 1997). The confidence 

intervals allow one to determine which components are significantly different from all 

the other components, as opposed to those which cannot be reliably distingished from 

other components. Insignificant components appear in groups of at least two, and 

jointly describe “independent subspaces” within which no separation or preferred 

basis can be calculated. Such subspaces could represent a mixture of minor variance 

sources, whose sum is too gaussian to separate. Our approach was to collapse these 

subspaces and force the variance they contain to be represented by either a single 

component or by the existing significant components. This is accomplished by 

dropping the most minor components from the PCA basis, and re-estimating the ICA 

model. Following the re-estimation of the reduced dimension mixing model, 

confidence intervals were again calculated and the process continued until all the 

components that remained were significant.

4.3 Data

This work focused on estimating models of 0.25pm CMOS transistor test 

structures embedded in the scribe lines of 8” CMOS wafers. Our raw data set 

contained over 10,000 test sites from 230 regular production lots of a single ASIC 

product made by LSI Logic. The data represented all lots, both high and low yield, 

manufactured during a two month period at a single fabrication facility. In general, 

data were sampled from 20% of the wafers in a lot, though some lots were under or
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over represented. No effort was made to censor or oversample lots as part of this 

study.

At each test site 107 test parameters were available, of which we chose to 

include eight n-channel measurements:

• saturation current, long-wide channel (ID LW),

• saturation current, short-wide channel (ID SW),

• saturation current, short-narrow channel (ID SN),

• threshold voltage, long-wide channel (VT LW),

• threshold voltage, short-wide channel (VT SW),

• threshold voltage, short-narrow channel (VT SN),

• lateral diffusion (LD),

• gate oxide thickness (TOX W).

Of these variables, the saturation currents and voltage thresholds are directly measured 

values, while lateral diffusion and gate oxide are values calculated using analytic first 

principles models. Lateral diffusion was calculated using Whitfield’s method 

(Whitfield 1985, Ng and Brews 1990) from current-voltage relationships measured 

across a variety of gate lengths. Gate oxide was calculated using a quantum correction 

to a capacitance measurement (Lo et al. 1997).

The data were cleaned by censoring sites containing one or more out-of-range 

test measurements (attributable to tester malfunction) or extreme outliers. Less than
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1% of the sites were removed. Each parameter was then normalized to zero mean and 

unit variance.

Applying PC A to our data we found that over 95% of the variance for either 

channel can be explained by four components, Figure 4.1. However, when we 

consider which components explain which parameters, we find that the principal 

components are as uninformative as they are efficient, Table 4.1. As the principal 

components offer little possibility for source isolation, we are forced to look for an 

additional constraint. Statistical independence is a reasonable constraint to add, in that 

fabrication process variability arises from variability in the individual steps of the 

process, and the variability introduced at each step should (hopefully) be independent 

of the other steps. ICA enables us to implement this constraint.

>  50
<+H

Principal Component

Figure 4.1: Percent of variance explained by principal component.
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Table 4.1: Percentage of parameter variance explained by each principal 
component.

PCI PC2 PC3 PC4 PC5 PC6 PC7 PCS
ID LW 75 22 1 1 0 1 0 0
ID SW 95 1 0 2 0 1 1 0
IDSN 80 3 0 11 6 0 0 0
VT LW 72 24 0 2 0 1 0 0
VT SW 90 0 5 2 0 3 0 0
VT SN 78 1 7 8 6 0 0 0
LD 24 70 0 5 0 1 0 0
TOX 30 1 68 1 0 0 0 0

4.4 Results

Visual inspection of the parameter distributions suggested that their 

distributions were both tailed and skewed, so Fast ICA estimation was performed 

using a hyperbolic tangent moment estimator followed by refinement using a one 

sided skewness estimator. A symmetric estimation process was used to preserve the 

ordering of the components during confidence interval estimation. Confidence 

intervals were developed for every component using a bootstrap approach. This was 

done by resampling the original data set with replacement to produce new datasets of 

equal size. The resampling was done at the lot level rather than the wafer or site level, 

as there should be some dependence between sites on a wafer, and between wafers in a 

lot. The ICA estimation was repeated for each of the resample datasets using the 

original model as the starting point for the nonlinear optimization.
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It is informative to look at the percentage of variance of each test parameter 

explained by each estimated independent component. Note that this is possible even 

though we cannot estimate the variance of the sources, because the percentage of 

variance explained is the product of the source and the model together and is 

unambiguous. Percentages of parameter explanation by source are in Table 4.2.

Table 4.2: Percentage of parameter variance explained by each independent 
component.

IC1 IC2 IC3 IC4 ICS IC6 IC7 IC8
ID LW 0 0 85 0 0 15 0 0
ID SW 2 28 45 6 1 17 0 1
IDSN 2 31 30 3 0 12 4 17
VT LW 0 1 94 0 1 4 0 0
VT SW 0 38 55 4 0 2 0 0
VT SN 0 31 38 4 0 2 25 0
LD 5 79 1 0 7 6 0 2
TOXW 1 1 2 1 1 94 0 0

In this example, component 1 is not significantly different from components 4

and 5. The three components specify a three dimensional subspace for which there is

no preferred ICA basis, i.e. the basis for this subspace does not have a persistent set of

basis vectors under bootstrap re-estimation. To reduce this subspace, the most minor

component was dropped from the PCA basis and the model and confidence intervals

re-estimated. This process was repeated until five significant components were found.

Table 4.3 contains the percentages of variance explained by these final n channel

model components. Note that the end result of the collapsing or regularization process
71
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is that the original components 1, 4, and 5 have been eliminated, while almost all the 

variance they accounted for is still explained by the five significant components.

Table 4.3: Percentage of parameter variance explained by each independent 
component, of the reduced model.

1C1
CDW
ID

IC2
CDL

IC3
Implant

IC4
CDW
VT

IC5
Gate
Oxide

ID LW 0 0 85 0 14
ID SW 0 34 47 0 17
IDSN 24 33 31 3 10
VT LW 0 1 94 0 4
VT SW 0 39 56 0 2
VT SN 1 36 39 23 1
LD 1 91 1 1 5
TOX W 0 2 2 1 95

To evaluate whether the isolation accomplished with ICA is a result of having 

already included the answer in the problem by having included LD and TOX W in the 

data, the model was also estimated without LD and TOX W. The minor component 

was dropped from the PCA basis, and five significant independent components were 

estimated, Table 4.4. The resulting components are very similar to those illustrated 

above with identical physical interpretations. The mechanisms are clearly present in 

the drive currents and voltage thresholds alone.

It is clear that a few significant, statistically independent sources of variance

account for almost all the variance in the observed test parameters. Based on our

knowledge of the device physics and the manufacturing process, the sources can be

labeled and related to specific manufacturing steps. Examining the percent of variance
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of the original parameters explained in light of common understanding of basic 

semiconductor device physics leads us to suggest that five significant physical 

mechanisms have been isolated in the eight-parameter transistor model.

For the n-channel device, IC5 explains almost all of the gate oxide thickness 

(TOX W). This component has no effect on the threshold voltage parameters, which 

makes sense as these are surface channel devices. IC2 explains most of the lateral 

diffusion parameter and has a strong influence on the short channel drive currents and 

threshold voltages. It appears to have isolated the poly gate critical dimension 

influence on the device.

Table 4.4: Percentage of parameter variance explained by each independent 
component, reduced model, LD and TOX W omitted.

IC1
CDW
ID

IC2
CDL

IC3
Implant

IC4
CDW
VT

IC5
Gate
Oxide

ID LW 0 0 85 0 14

ID SW 1 32 46 0 20

IDSN 15 38 30 3 14

VT LW 0 1 96 0 3

VT SW 1 41 56 0 2

VT SN 0 37 39 22 2

IC3 explains significant portions of the threshold and drive current variation 

without explaining the LD or TOX parameter. This suggests that this component has 

isolated the channel implant impact. Finally, IC1 and IC4 appear to explain two
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separate narrow active channel mechanisms. One of these has an effect on narrow 

channel drive current, while the other affects narrow channel threshold voltage. 

Neither affects the wide active devices. It is expected that there would be an active 

critical dimension influence on the narrow active devices. That two different 

mechanisms were isolated suggests that an additional phenomenon such as field edge 

profile or gate oxide thinning at the field edge may be influential. This was 

unexpected, not only has ICA isolated the expected mechanisms, but it has also 

isolated a separate mechanism previously unrecognized in the test structures.

4.5 Conclusion

A very important point about this modeling technique is that no engineering 

knowledge or assumptions are placed into the model up front. The ICA technique 

blindly isolates the phenomena. We have simply interpreted the mechanisms that are 

isolated by looking at what each ICA component explains about the original 

parameters. We believe that this method is successful because we know from theory 

that the underlying physical phenomenon has distinct isolated impacts on device 

performance. Consider the lateral diffusion parameter, LD, which is not directly 

measurable from the E-Test structures. LD is a calculated parameter estimated by 

fitting the relationship of threshold voltage and drive current across devices of several 

different sizes. It is by first principles of device physics that we know that this method 

isolates the lateral diffusion with fair accuracy. ICA appears to isolate this mechanism

based only on the statistics of the test parameters.
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E-test parameters are used for process monitoring and diagnosis. Control charts 

are set for each parameter, both those directly measured and those calculated through 

analytic models, and alarms set to detect process drift and abrupt change. Our 

estimated independent components can be utilized in the same manner.

Our approach successfully improves the isolation of specific physical 

mechanisms in semiconductor E-test parametric data when compared to the isolation 

provided by specific test structures. The isolated sources have very good agreement 

with expected physical mechanisms at the device level. Furthermore, the sources can 

be tied back to specific sets of fabrication steps, enabling improvements in statistical 

process control and diagnosis.
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5.1 Methodology

Motivated by the results summarized in chapter 4, we formulated a process 

monitoring methodology using independent components in place of principal 

components. The advantage of the independent components is that they can be linked 

to process factors, which can simplify process diagnosis. Kourti’s suggestion (Kourti 

2002) to check SPC methods to see if they are capable of detecting known faults 

implies that the appropriate way to validate an independent-component-based scheme 

is to test the scheme’s ability to detect and classify disturbances in its linked factors. 

The availability of data from factorial experiments provides such an opportunity. 

Designed factorial experiments are essentially process runs with specific disturbances 

in one or more factors, so a set of factor identified process control charts should 

generate alarms specific to each run.

As the factors in designed experiments are purposefully varied to uniformly 

cover all factor effects and interactions, the designed disturbances are independent 

sources of variance. If we use the data from the experimental runs to estimate an 

inverse mixing model, we should obtain a model that isolates the disturbances in 

separate components. Since we know how many major sources of variance have been 

designed into the experimental data, we even know how many principal components 

to keep in our estimation.
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One difficulty in using independent component scores for control charts is that 

by assumption, the scores are not normally distributed. Determining appropriate 

control limits depends on knowing the distribution of the charted variable. Given that 

a “large” amount of data is always desired for characterizing nominal distributions, the 

simplest solution to this problem is to form nonparametric empirical distributions of 

nominal component scores. Control limits can then be set using the scores given by the 

percentile corresponding to the desired false alarm rate.

ICA model estimation is an unsupervised learning process. Our method 

estimates a linear transformation that minimizes mutual information between 

estimated sources and generates confidence intervals for nominal values for each 

source. We must then check to see if the resulting control charts correctly identify 

known disturbances. This validation step was performed both for process data used for 

ICA and for additional data not included in estimating the inverse mixing process.

The overall procedure for identifying disturbances using ICA is:

1. Collect nominal data and experimental data,

2. Center and normalize each variable using sample means and variances from 

the experimental data,

3. Apply PC A to the normalized experimental data,

4. Keep only as many principal components from (3) as there are designed 

disturbance types in the experimental data,
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5. Perform ICA to separate principal components into disturbance identified 

components,

6. Transform nominal data into disturbance identified component loadings using 

the normalization factors from the experimental data together with the 

demixing model from (5),

7. Form nominal empirical probability density functions for each disturbance 

identified component using the scores obtained from (6),

8. Select test values for each disturbance identified component based on a desired 

probability of committing a type 1 error,

9. Use the ICA transform from (5) and test limits from (8), form X  and o2 

control charts for the scores of each disturbance identified component,

10. Evaluate chart performance on the experimental data,

11. Evaluate chart performance on out-of-sample data with known disturbances (if 

available).

5.2 Data

Continuing in the same application context described in chapter four, our data 

comes from 8” CMOS wafers with 0.185pm CMOS transistor test structures 

embedded in the scribe lines. The amount of data available from any one experimental 

lot of wafers is limited. Multiple experiments for any single product are rare so we 

must pool data in the manner of (Martin, Morris and Lane 2002). The pooling of data
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between products manufactured using identical processes has many potential 

advantages, including proper calibration for short product runs and new products.

Twenty three experimental lots for 18 different products are used. Data was 

obtained from anywhere from 2 to 25 wafers in each lot. Yield from these lots ranged 

from 0% to over 90%. In all, 225 wafers are included for model estimation containing 

a total of 2470 data points for each variable. Two additional experimental lots for two 

more distinct products, comprising 16 wafers containing 141 data points are used for 

evaluation purposes. The number of sites sampled on each wafer varies by product. 

While not affecting the estimation of the ICA model, this variability in sampling 

impacts the wafer level statistics we generate for the component score control charts. 

While negligible with respect to our central results, this variability is undesirable from 

a statistical sampling perspective. In addition to the experimental lots, data from 1022 

nominal production wafers containing 9685 data points is used to generate the nominal 

component score distributions. These nominal wafers are all from a single product 

included in the experimental lots. The designed disturbances available to us in the e- 

test context are a two-way factorial analysis of n and p  channel implant, each with 

high, low, and nominal values, a cross-wafer skewing of the lithography process, and a 

single factor analysis of gate oxide thickness with hi, low, and nominal values.

Based on the exploratory work described in the last chapter and the type of

experimental disturbances available, we chose to include eleven measurements from

both n-channel and p-channel test structures:
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• saturation current, long-wide channel (ID LW),

• saturation current, medium-wide channel (ID MW),

• saturation current, short-wide channel (ID SW),

• saturation current, long-narrow channel (ID LN),

• saturation current, medium-narrow channel (ID MN),

• threshold voltage, long-wide channel (VT LW),

• threshold voltage, medium-wide channel (VT MW),

• threshold voltage, short-wide channel (VT SW),

• threshold voltage, long-marrow channel (VT LN),

• threshold voltage, medium-narrow channel (VT MN),

• gate oxide thickness (TOX).

These 22 parameters should, from an expert’s perspective, capture the 

signatures of the 4 kinds of disturbances included in the experimental lots. 

Unfortunately, data drawn for p-channel long-narrow saturation current was badly 

corrupted by truncation, so our analysis is based on the 21 remaining parameters.

5.3 Model Estimation

Each variable was normalized by product to be zero mean by subtracting the 

product mean from each observation

~  x i ~  ^product (.0 •
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The variance of the combined products was then normalized to be one

~
1 Jvar(z)

While (Lane, et al. 2001) normalized both parameter mean and variance by 

product, our normalization is justified by the relatively small sample size of some of 

our products. The sample mean is relatively easy to estimate and we have the ability to 

check our estimate against the known nominal parameter value for each product. 

While estimating variance is in general harder, it is further confounded by some 

products being represented by lots which contain disturbances designed to increase 

variance while others do not. In this case, normalizing variance by product would not 

remove product-to-product variation, but rather experiment-to-experiment variation.

The covariance matrix of the normalized data was then formed and PCA was 

performed. The proportion of variance explained by the first seven principal 

components is given in Table 5.1. As there are four designed disturbance factors in our 

experimental lots, we need at least the first four principal components. The first four 

components capture 92.4% of the variance in the 21 parameters while the next three 

components together represent just over 5% of the variance, and the least significant 

14 comprise the remaining variance. Keeping only the first four components is 

therefore not only justified by our hypothesis that our designed disturbances are the 

significant sources of variance in our data, but is also consistent with the scree and 

eigenvalue-one criteria commonly used for data reduction.
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Table 5.1: Proportion of variance explained by the first seven principal 
components

Principal
Component

1 2 3 4 5 6 7 Total

TOX N 16.3% 1.3% 37.3% 43.3% 1.6% 0.0% 0.0% 99.7%
VTNLW 31.1% 46.1% 7.9% 12.1% 1.4% 0.0% 0.3% 98.8%
IDNLW 36.2% 43.4% 9.8% 7.5% 1.4% 0.0% 0.2% 98.4%
VTNMW 68.2% 23.6% 4.3% 0.7% 0.7% 0.0% 0.1% 97.6%
IDNMW 68.9% 11.7% 10.6% 1.8% 0.8% 1.2% 0.0% 95.0%
YT NSW 69.8% 14.6% 11.9% 0.0% 0.5% 0.0% 0.1% 97.0%
ID NSW 67.7% 7.9% 16.3% 2.7% 0.7% 1.0% 0.0% 96.3%
VTNMN 53.0% 25.7% 0.0% 0.8% 0.9% 13.0% 0.0% 93.3%
IDNMN 53.3% 12.0% 0.3% 2.7% 23.1% 2.8% 1.2% 95.5%
VTNLN 32.6% 44.5% 9.4% 8.7% 1.6% 0.0% 0.4% 97.2%
IDNLN 26.0% 30.3% 16.1% 3.0% 7.4% 11.6% 2.2% 96.5%
TOX P 15.4% 1.3% 37.8% 43.3% 2.0% 0.1% 0.0% 99.7%
VTPLW 13.6% 59.3% 16.9% 8.1% 0.2% 0.1% 0.5% 98.8%
IDPLW 15.3% 57.7% 18.7% 5.9% 0.3% 0.1% 0.6% 98.6%
VTPMW 48.5% 47.5% 1.1% 0.6% 0.4% 0.1% 0.5% 98.6%
IDPMW 60.1% 28.5% 8.1% 0.8% 0.5% 0.1% 0.7% 98.8%
VT PSW 54.2% 35.4% 7.4% 0.0% 0.4% 0.1% 0.4% 97.8%
IDPSW 60.2% 22.2% 13.8% 1.5% 0.4% 0.1% 0.5% 98.6%
VTPMN 39.2% 45.6% 0.7% 0.8% 1.1% 0.0% 10.0% 97.3%
IDPMN 50.2% 30.8% 0.5% 1.9% 8.4% 1.0% 3.8% 96.6%
VTPLN 15.4% 54.6% 20.4% 5.0% 0.2% 0.1% 0.4% 96.0%

Total 42.6% 30.7% 11.9% 7.2% 2.6% 1.5% 1.0% 97.4%

ICA was then performed using the FAST ICA algorithm with a hyperbolic 

tangent moment function using a scaling parameter of 1.3 and fine tuned using a 

skewness criterion. The resulting inverse mixing model produced factors which were 

easily identified with the four types of designed disturbances. The labeled factors 

explanation of variance is in Table 5.2.
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Table 5.2: Independent component explanation of variance
Gate N P Diffusion Total

TOX N 97.7% 0.4% 0.1% 0.0% 98.2%
VT NLW 3.7% 93.0% 0.5% 0.1% 97.2%
IDNLW 7.7% 88.9% 0.3% 0.0% 96.9%
VTNMW 2.7% 59.6% 0.1% 34.4% 96.8%
IDNMW 5.5% 30.3% 0.0% 57.1% 92.9%
VT NSW 1.7% 42.0% 0.0% 52.7% 96.4%
ID NSW 4.1% 23.0% 0.0% 67.5% 94.6%
VTNMN 5.8% 58.6% 0.1% 15.0% 79.5%
IDNMN 20.2% 30.0% 0.0% 18.2% 68.3%
VTNLN 6.2% 88.5% 0.5% 0.0% 95.2%
IDNLN 12.8% 61.9% 0.1% 0.6% 75.4%
TOX P 97.3% 0.3% 0.1% 0.0% 97.7%
VTPLW 1.1% 0.3% 94.9% 1.8% 98.0%
IDPLW 2.4% 0.3% 93.4% 1.5% 97.6%
VTPMW 0.5% 0.1% 72.0% 25.1% 97.6%
IDPMW 1.4% 0.0% 43.3% 52.7% 97.5%
VT PSW 0.2% 0.0% 51.9% 44.8% 97.0%
IDPSW 1.0% 0.0% 33.0% 63.6% 97.6%
VTPMN 2.2% 0.0% 73.8% 10.2% 86.2%
ID PMN 11.8% 0.0% 52.1% 19.5% 83.4%
VTPLN 3.3% 0.3% 90.0% 1.7% 95.3%

Total 13.8% 27.5% 28.9% 22.2% 92.4%

5.4 Nominal Distributions

Nominal distributions for each of the component scores were then generated by 

normalizing parameter measurements from healthy production wafers using the same 

factors used above and transforming them using the inverse mixing matrix found by 

ICA. The resulting population of scores is used as an empirical probability distribution 

for determining critical values for one and two tailed tests. Histograms of the nominal 

scores appear in Figures 5.1 -  5.8.
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Figure 5.1: Nominal distribution of N implant score wafer mean.
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Factor Score
Figure 5.2: Nominal distribution of P implant score wafer mean.
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Figure 5.3: Nominal distribution of Gate Oxide score wafer mean.
90
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Figure 5.4: Nominal distribution of Lithography score wafer mean.
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Factor Score
Figure 5.5: Nominal distribution of N implant score wafer variance.

Factor Score
Figure 5.6: Nominal distribution of P implant score wafer variance.
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Factor Score
Figure 5.7: Nominal distribution of Gate Oxide score wafer variance.

Factor Score
Figure 5.8: Nominal distribution of Lithography score wafer variance.



5. ICA Disturbance Modeling

5.5 Construction of Control Charts

Based on the above empirical distributions, control limits for Shewart charts 

can be selected and control charts implemented. The basic logical group for our 

process is the wafer, so the natural control charts to use are for wafer mean and 

variance. We choose a false alarm probability of 0.01 and implement a two-sided 

control chart for wafer mean and a one-sided control chart for wafer variance. An 

example chart for N implant wafer means appears in Figure 5.9. While this is the 

normal form of a Shewart chart, our data is not time ordered and so the sequence in 

which the wafer scores are plotted is arbitrary. Figures 5.10 -  5.17 are scatterplots of 

wafer mean or variance versus lot. Each horizontal line on the plot represents a lot, 

and the control limits for the Shewart chart appear as vertical lines. This display makes 

it easy to see which lots contain which types of disturbances. These plots are 

essentially compressed Shewart charts organized by lot. Two additional experimental 

lots not used for model estimation are plotted in Figures 5.18 -  5.25.
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Figure 5.9: Shewart chart for N implant score wafer mean.
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Figure 5.11: Compressed Shewart chart for P implant score wafer mean.
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Figure 5.12: Compressed Shewart chart for Gate Oxide score wafer mean.
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Figure 5.13: Compressed Shewart chart for Lithography score wafer mean.
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Figure 5.14: Compressed Shewart chart for N implant score wafer variance.
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Figure 5.15: Compressed Shewart chart for P implant score wafer variance.
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Figure 5.16: Compressed Shewart chart for Gate Oxide score wafer variance.
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Figure 5.17: Compressed Shewart chart for Lithography score wafer variance.
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Figure 5.18: Chart for additional lots, N implant score wafer mean.
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Figure 5.19: Chart for additional lots, P implant score wafer mean.
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Figure 5.20: Chart for additional lots, Gate Oxide score wafer mean.
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Figure 5.21: Chart for additional lots, Lithography score wafer mean.
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Figure 5.22: Chart for additional lots, N implant score wafer variance.
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Figure 5.23: Chart for additional lots, P implant score wafer variance.
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Figure 5.24: Chart for additional lots, Gate Oxide score wafer variance.
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Figure 5.25: Chart for additional lots, Lithography score wafer variance. 

5.6 Validation Results

We validate our characterization of the estimated independent components by 

evaluating the performance of the control charts based on our knowledge of the design 

disturbances. If the control charts correctly classify which wafers were processed with 

which disturbances we can be confident our characterization and methodology is 

working as intended. Given that the designed disturbances were wafer-wide step 

functions for n implant, p  implant, and oxide thickness, the wafer mean X charts for 

those three component scores should classify those disturbances, while the o2 chart for 

lithography should classify the across wafer lithography disturbances.
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5. ICA Disturbance Modeling 

The detection results for wafers included in the ICA estimation are given in 

Table 5.3 and those for the wafers not included in ICA are given in Table 5.4. For the 

wafer mean charts we get zero false positives and zero false negatives for 100% 

correct classification of all 241 wafers. The o2 chart for lithography has four false 

positives and zero false negatives for a classification rate of 98.4%. This is very good 

considering that the classification rate was not used as a criterion during data 

preprocessing and model estimation. Based on these results we can confidently claim 

that our independent component scores are latent variable indicators fo r  the designed 

disturbances in the experimental lots.

Table 5.3: Detection results for wafers included in ICA.
Disturbance True False True False

N Implant 160 0 65 0

P Implant 160 0 65 0

Gate Oxide 18 0 207 0

Lithography 192 4 29 0

Table 5.4: Detection results for wafers not included in ICA.
Disturbance True False True False

N Implant 8 0 8 0

P Implant 8 0 8 0

Gate Oxide 0 0 16 0

Lithography 16 0 0 0
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5.7 Discussion

Examinations of the compressed Shewart charts for p-implant and gate-oxide 

wafer variances, reveal a significant number of alarm signals. These charts do not 

correspond to any of the designed disturbances nor do the alarms correlate with the 

disturbances. While no process cause can be attributed to these alarms, their most 

likely methodological causes are the variability in the sampling pattern and number of 

samples taken from each wafer and the fact that we did no product specific 

normalization of variance when we pooled our data. The variability of how the wafers 

were sampled can be remedied in practice by standardizing testing across products. 

The issue of how to normalize variance by product with sparse data is an appropriate 

subject for future research.

As a check of the robustness of our technique with respect to the assumption 

that the designed disturbances are the major sources of variance in the experimental 

data used for ICA, we repeated the analysis keeping the first five principal 

components. The results show that our four factor-linked components are stable. The 

explanation of variance for the five component model is given in Table 5.5. The 

additional factor appears to be linked to narrow channel phenomena unrelated to the 

designed disturbances. Classification of disturbances is identical to that with the four 

component model.

As we noted in the discussion of Hotelling T2 tests in chapter three, the optimal 

test for a shift in the mean of a multivariate distribution in a known direction is a
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univariate test. One interpretation of our independent components is that they provide 

a set of orthogonal alternatives for these tests. An alternative approach to developing 

these directions would be to do multi-dimensional clustering of known faults from a 

historical data base. The cluster centers could be used to generate such test. A 

difficulty of this approach would be keeping the cluster centers orthogonal from each 

other so that the test statistics remain uncorrelated. Our method guarantees this 

orthogonality.

Table: 5.5 Explanation of variance of five independent components.
Gate N P Diffusion Narrow Total

TOXN 99.3% 0.3% 0.1% 0.0% 0.1% 99.7%
VTNLW 4.4% 93.5% 0.5% 0.2% 0.1% 98.6%
IDNLW 8.7% 89.1% 0.3% 0.0% 0.2% 98.3%
VTNMW 3.0% 60.7% 0.0% 32.4% 1.4% 97.5%
IDNMW 5.9% 31.4% 0.0% 55.2% 1.2% 93.7%
VT NSW 1.9% 43.1% 0.0% 50.4% 1.6% 96.9%
ID NSW 4.3% 24.1% 0.0% 65.6% 1.3% 95.2%
VTNMN 5.1% 55.6% 0.2% 12.3% 7.2% 80.3%
IDNMN 14.3% 22.4% 0.1% 11.9% 42.6% 91.4%
VT NLN 7.1% 89.1% 0.4% 0.1% 0.1% 96.8%
IDNLN 10.3% 54.1% 0.4% 1.9% 16.2% 82.8%
TOXP 99.3% 0.3% 0.1% 0.0% 0.0% 99.7%
VTPLW 1.1% 0.4% 94.3% 2.2% 0.2% 98.3%
IDPLW 2.5% 0.4% 92.8% 1.9% 0.3% 97.9%
VTPMW 0.5% 0.0% 73.0% 23.5% 1.0% 98.0%
IDPMW 1.5% 0.0% 44.4% 50.7% 1.3% 97.9%
VT PSW 0.2% 0.0% 53.1% 42.9% 1.2% 97.4%
IDPSW 1.0% 0.0% 34.1% 61.5% 1.4% 98.0%
VTPMN 1.7% 0.1% 71.1% 8.0% 6.4% 87.3%
IDPMN 8.7% 0.3% 47.0%* 14.7% 21.1% 91.8%
VTPLN 3.5% 0.3% 89.3% 2.2% 0.4% 95.5%

Total 13.5% 26.9% 28.6% 20.8% 5.0% 94.9%
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6. Possibilistic Independent Component Analysis

6.1 Possibility Theory

Possibility theory is that sub-branch of evidence theory that concerns itself 

with consonant (nested) bodies of evidence (De Cooman 1997, Klir and Wierman 

1998). This mode of dealing with uncertainty is commonly encountered both in the 

form of crisp logical constraints and in the form of fuzzy membership functions for 

linguistic values. Formally, a possibility distribution is a mapping from a domain of 

interest, Q, to the real interval [0,1]

ju: SI —> [0,1],

with

sup//(ry) = l.

For our purposes, we are interested in possibility distributions defined on real 

intervals, i.e. subsets of IK". The possibility measure n  associated with a possibility 

distribution f.i is defined by

11(0) = 0,

and for A c  Q

11(A) = max ju(x) .
xeA

Note that

n(Q) = i,
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and for any ample field of subsets C = {A,| A,- c  Q}

f  \
n

V i J
(JA,. =supH(Ai),

i

and

fjA, |< in f n ( 4 ) .

The possibilistic equivalent of the factorization of probability distributions is 

the noninteraction constraint

y) = min{//(x), ju(y)}.

This implies that the multivariate possibility distribution is the cylindric extension of 

the marginal distributions. Independence of possibilistic variables implies 

noninteraction of the marginal distributions (Klir 2006) and is a stronger condition 

than noninteraction.

6.2 Possibilistic Measures of Uncertainty

To perform BSS with possibilistic data, we need to construct an estimator of 

the transmission between continuous possibilistic variables (an appropriate 

information measure analogous to KL divergence in the probabilistic case). Following 

a proposal of Klir and Yuan (Klir and Yuan 1995), such a measure would be 

Tu l { xx,x 2 ) = UL {x l ) +  UL ( x2) - U L ( xv x2) ,

where
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6. Possibilistic ICA

h{x)
UL(x) = jo H L (ax ) d a + ( l - h ( x ) ) H L ( Q ) ,

and

HL{"x)  = min In f l [ l + Ml ( \ ) ] + \ )
L i- 1 /=1

Hi denotes Lebesgue measure, h(x) is the height of the possibility density, T denotes 

the set of orthonormal transformations, axu is the ith projection of ax  with respect to 

the coordinate system t, and Q and the or-cuts ax  are convex subsets of Mn. While 

originally proposed for convex sets, this measure has been extended to nonconvex sets 

in (Ramer and Padet 2001).

Two variables are said to be noninteractive if

ju(x, y) = min{//(x), //(y)}.

The variables are independent iff

ii{x\y) = ju(x) and //(y|x) = ju(y),

in which case

Tjji {xi ,x2) = 0.

6.3 Possibilistic Independence: Example

Suppose that two variables x\ and x% are jointly observed, and their values 

always fall within the square region with vertices at (0, V2), (a /2, 0), (0, -a /2), (-a /2, 0) 

illustrated in Figure 6.1. If nothing else is known about the frequency with which 

values appear, we can characterize the uncertainty of the values of the variables by
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assigning a possibility of 1 to values within the square region and a possibility of 0 to 

those outside the region. This is a crisp possibilistic constraint on xi and x%.

2 

0 

-2

-2 0 2 

Figure 6.1: Observed possibility distribution.

Using the UL measure of uncertainty, the uncertainty of joint observations is 

3.17 bits, the marginal uncertainty of either jci or x% is 1.94 bits and the transmission 

between x\ and X2 is 0.70 bits. Intuitively, a large absolute value for an observation of 

x\ implies a reduced range of possible values for X2 and vice versa. If a 45° rotation is 

applied to the variables, Figure 6.2 is obtained. The joint uncertainty is still 3.17 bits, 

but the marginal uncertainties are now 1.585 bits and the transmission is 0. The rotated 

variables are independent.
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2

0

-2

Figure 6.2: Demixed possibility distribution.

6.4 Proposed Method

The general recipe for PICA assuming a linear mixing model is:

1. Center the observed possibility distribution.

2. Find the principal axes of the distribution.

3. Scale the principal axes.

4. Find the rotation that minimizes the transmission between variables.

As with most data analysis techniques, the first step for possibilistic BSS is to center 

the data with an affine translation, i.e. shift the coordinate axis so that the origin is at 

£  where
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£
J Xjdjl,

\d &  ’

so that

\{ x i - ^ i)d fii = 0 .

Then we find the principal axis of the possibility distribution by diagonalizing 

I given by

7u  = J X i X j  d V »

so that

I = EDE .

We can then decompose the demixing transformation as

W = B D /2Er = BV,

where B e SO(«).

We then find a linear transformation that minimizes the HL transmission, i.e.

given n variables find

B = argminl^ Wxn),
BeSO(n)

= argminT^ (BYxj,..., BYxn),
BeSO(n)

^  UL (B V-Xy) -  t/L(BVx)
;=i

^ U L (B \X j) -U L (Y x )

= argmin
BeSO(n)

= argmin
BeSO(n)

= argmm
BeSO(n)

1=1

. J=l
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where each uncertainty term is calculated separately. If we assume the possibility 

distribution is normal, i.e. h(x) = 1, we have

B = argmin
B eSO (n)

= argmin
BeSO (n)

: argmin
BeSO (n)

: argmin
BeSO (n)

BVxJda

2^ £  In ( l + ( “ BV^)) rfa
j=1

This final expression is advantageous in that no evaluation of the multivariate HL 

function is required. The minimization of the transmission can be performed 

calculating with the univariate marginals of the or-cuts. Given a representation of a 

possibility distribution as finite set of k discrete a-cuts, this becomes

B = argmin
BeSO (n)

Numerical approximations of the natural gradient with respect to the generators of 

SO(n) can be derived for this minimization within a particular computational 

framework. Thus no nested optimization problems need be solved and reasonably 

efficient standard computational techniques can be used.

6.5 Crisp Example

Consider a case with two independent sources characterized by a joint crisp 

possibility distribution as in Figure 6.3. The value of either source variable can be
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anywhere in the interval [0, 1] with possibility 1. Let these source variables be mixed 

together via a linear mixing process characterized by the mixing matrix

( 2.5 -1 .5n
M =

v0.5 0.9

The possibility distribution of the observed mixture will then appear as in Figure 6.4; 

centering the distribution results in Figure 6.5. Adopting the principal axes as the 

working coordinate system results in Figure 6.6, and scaling by the reciprocal of the 

square root of the eigenvalues produces Figure 6.7.

2 

1 

0 

-1 

-2

Figure 6.3: Joint possibility distribution of two noninteractive sources.
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2 

1 

0 

-1 

-2

Figure 6.4: Mixed (observed) possibility distribution.

2 

1 

0 

-1

-2

Figure 6.5: Centered distribution.
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2 

1 

0 

-1 

-2

- 2 - 1 0 1 2  

Figure 6.6: Centered distribution with principal axes aligned.

2 

1 

0 

-1 

-2

Figure 6.7: Distribution with principal axes scaled.
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Finally, a counterclockwise rotation of -0.54 radians produces noninteractive 

variables as shown in Figure 6.8. The demixing matrix found through BSS is

^0.1667 -0.8333^
W =

v -0.3 -0.5

the actual inverse of the mixing matrix is

f  0.3
W =

0.5 N 
-0.1667 0.8333

The reordering of the variables and the change of sign for the measurement scales is 

an artifact of the ordering and directions chosen for the eigenvectors when aligning the 

principal axes.

2 

1 

0 

-1 

-2

Figure 6.8: Distribution after final separating rotation.
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6.6 Discussion

This chapter has outlined the potential for using PICA to perform BSS with 

variables characterized by possibility distributions. While the theoretical examples 

used to illustrate the general procedure were crisp, it should be clear that the same 

basic procedure could be applied to fuzzy membership functions or any possibility 

distribution of interest. Applications for this technique may include factor analysis as 

well as machine learning applications. As an example, one could merge data from a 

variety of sampling plans or measurement scales into a single body of evidence and 

then estimate a factor model based on the assumption of independent sources. 

Application of this technique could also lead to a reduction in complexity of a fuzzy 

inference system through the restructuring of variables to minimize multiple 

dependences.

A primary limitation of this proposal is the problem of developing practical 

representations of the level sets or or-cuts of the joint possibility distribution from 

empirical data, e.g. (Joslyn 1997). Coincident with this issue is that of numerical 

implementation of the uncertainty calculations. How to efficiently implement the 

necessary calculations depends on the representation chosen for the possibility 

distribution, which is related to how the distribution is to be empirically estimated. 

The above concerns have been omitted in this sketch and are probably best dealt with 

on an application specific basis. Obviously, an implementation based on a gradient
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optimization method would be preferable to using a line search or simplex technique, 

and should be feasible in some contexts.
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7. Conclusion

7.1 Summary

The first contribution of this work is the use of ICA to provide an explanation 

for the variance observed in a multivariable data set. The explanation of e-test 

variance attributed to underlying physical mechanisms quantified by the independent 

component scores is a novel application of ICA. The generally held view that ICA 

cannot be used to investigate variance is a misperception. While ICA cannot determine 

the difference between the magnitude of source variance and gain in the mixing 

process, it can be used to explore how observed variance is generated from its sources. 

This result was first published in (Shannon, et al. 2003a)

The primary contribution offered here is a new methodology for multivariate 

statistical process control that has the advantages of using univariate control charts, 

providing direct diagnosis of detected disturbances, and making no assumptions about 

the observed measurements other than that they are nongaussian. Our method is 

demonstrated on E-test data from a semiconductor manufacturing process. No 

measurements or experiments other than those normally performed in the operation of 

the process are required. Validation of our method in the form of classification of 

known disturbances produced excellent results. The preliminary results on process 

monitoring contained in chapter four appeared in (Shannon et al. 2003a) and formed 

the basis for a patent application (Abercrombie et al. 2003). The development of these
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results into control charts began with (Shannon et al. 2003b, Shannon et al. 2004); the 

final results appear in (Shannon and McNames 2007).

The final contribution of this research is a theoretical framework for 

performing an ICA-like separation of sources characterized by possibilistic data. This 

framework extends an analytic tool from the domain of probability distributions to the 

generalized uncertainty domain that includes classical possibility theory, fuzzy sets 

and systems, and Dempster-Schafer Evidence Theory. This generalization may have 

myriad uses in generalized information theory, but also may be useful in the advanced 

process control domain for estimating control charts for rare or costly disturbances 

that cannot be properly characterized by probability distributions. This framework was 

first presented in (Shannon 2005).

7.2 Future Research

A number of methodological questions could be investigated. How much data 

and how many examples of each disturbance type are required for ICA model 

estimation for a given size problem? While it is customary to need (and rare to have) a 

large data set for SPC design, the issues of how much is enough and what to do when 

there is not quite enough need to be addressed.

What is the best method for pooling data from multiple products or recipes that

effectively removes product-to-product variation but leaves intact disturbance

examples that may only be present in some products? One of the potential advantages

of pooling products is that examples of all disturbances need not be generated for each
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product. Techniques for product-to-product normalization should ensure disturbance 

specific information is not lost in the data pooling process while also removing all the 

nominal product-to-product variation.

How replicable must the known disturbances be for reliable estimation? Can 

historical data from naturally occurring disturbances that have been fully diagnosed be 

used for ICA modeling, or does one need purposely induced disturbances? 

Disturbances contained in a historical database would be desirable in that they 

represent faults actually encountered in process operation, but they may not represent 

a disturbance type in a crisp manner. It might be the case that many more examples 

would be needed for model estimation.

Additional case studies implementing independent component charts are 

needed. In the E-test context, the next research step would be to expand the framework 

to include more parameter measurements and disturbance types. It would also be 

appropriate to implement the charts in the actual production environment and compare 

their performance to the monitoring systems now in use. One would expect a variety 

of insights to emerge from implementation in a production environment.

A logical field to apply our method to would be batch process monitoring in 

the chemical industry. Processes in this field involve multiple segments in each of 

which the time course of the process is monitored. It is one of the most fertile fields 

for the development of APC methods, as it includes continuous dynamics with discrete
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7. Conclusion

transitions between process stages. The amount of data available for analysis tends to 

be immense and the payoff for process improvement is significant.

Possibilistic ICA development is an entirely separate research area with many 

potential milestones. The first step would be to implement numerical algorithms for 

specific problems. The field of generalized uncertainty theory is undeveloped 

compared to the theories of probability and information theory. Many basic issues of 

how to represent data numerically and how to calculate with possibility distributions 

are unresolved. Fuzzy sets are the most commonly encountered examples of graded 

possibility distributions, and it is in the fuzzy systems context that possibilistic ICA is 

likely to be implemented.
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Appendix A: Information Theory

In this section, we briefly summarize the definitions and features of the 

information theoretic concepts of entropy, differential entropy, negentropy, and 

mutual information.

Definition: The entropy H(x) of a discrete random variable x  with probability mass 

function p(x) is defined as

H(x) = -E{ log p(x)} = ~ Z  /K*) log p( x) .
x b X

Definition: The joint entropy H(x) of a pair of discrete random variables x  and y, with 

joint probability mass function p(x, y) is defined as

H(x,  y ) = -e{iog p(x,  y)}= - Z  Z  p(x> y)  lo§ p(x> y)  ■
yeY  xeX

Definition: The conditional entropy H(x | y) of a discrete random variable x with 

respect to a discrete random variable y, with joint probability mass function p(x, y) is 

defined as

H ( x \ y )  = - E p{Xty) {log p(x  | y)}= ~ Z  Z  P ^  y) lo§ P(x  I y) ■
y e Y x z X

Definition: The mutual information I(x\ y) between two discrete random variables jc

and y with joint probability mass function p(x, y) is defined as
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I (x;y)=  X  P( x , y ) l og
x e X .y e Y  p ( x )  p { y )

Appendix A

p(x,y)

Proposition: The relationship between entropy and mutual information produces the 

following identities:

I(x,y)  = H(x)  + H ( y ) - H ( x , y ) ,

I(x,y)  = H ( x ) - H ( y \ x ) ,
= H ( y ) - H ( x \ y ) .

Definition: The differential entropy h(x) of a continuous random variable x  with 

probability density p{x) is defined as

h(x) = --Ejlog /?(*)}= -J  p(x) log p{x)dx.

Proposition: For a continuous random variable x  and scalar constant c

h(x + c) = h(x) , 

h(cx) = h(x) + log | c | , 

and for a vector valued continuous random variable x and non-singular matrix A

h{Ax) = h(x) + log | A | .
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Proposition: The maximum entropy distribution for an n-dimensional, vector valued 

continuous random variable x with covariance matrix C is the multivariate Gaussian 

distribution. If x is Gaussian with covariance matrix C then

h(x) = 0.51og(2^)n | C | .

Definition: The negentropy j(x ) of a continuous random vector of dimension n, with 

covariance matrix C is defined as

j (x) = (0.5)log(2;E2)n | C | - h ( x ) .

Note that for all x

7(x) > 0,

and for any non-singular matrix A

7  (Ax) = j ( x ) .

Definition: The Kullback-Leibler divergence or distance between two densities p(x) 

and p{y) is defined by

D(p(x)\\p(y)) = J p ( x ) l o g - ^  d x d y .

Definition: The mutual information I(x\ y) between two continuous random variables 

x and y with joint density p(x, y) is defined as
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I(x>y) -  f P(*> y) l°g ^ "" d xd y .
J P(x)p(y)

Clearly from the definitions

7(x; y) = D(p(x,  y)||/?(jc)p(y)).

Proposition:

b (p (jO|p ()’))2  0,

with equality iff p(x) = p(y) almost everywhere. This is a direct consequence of 

Jensen’s inequality.

Corollary: I(x, y) > 0 with equality iff p(x, y) = p(x)p(y), i.e. x  and y are independent.
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Appendix 8: Cumulants 

Definition: The j-th moment mfx)  of a continuous random variable x with density p(x) 

is defined as

mj (x) = e \x j }= | x j p(x)dx.

Definition: The characteristic function ¥*(£0) of a continuous random variable x with 

density p(x) is defined as

¥,(<») = E{eim) = \ e ia*p{x)dx, 

which is the Fourier transform of the density.

The characteristic function offers a straightforward approach to calculating the 

moments of a random variable via the identity

mj (x) = r j - J - J y¥x (G>), 
d(0J

where i is the square root of negative one. The moments of x are the Taylor series 

coefficients of ¥*(£0), therefore the characteristic function is also called the moment 

generating function.
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Definition: The second characteristic function or cumulants generating function 

d?x( (d) of a continuous random variable x  with density p(x) is defined as

® xm  = InOF, (CO)) = \n(E{eia* }).

Definition: The j-th cumulant k f x) of a continuous random variable jc with density 

p(x) is defined as

kj(x) = r J- £ - j O x(0)). 
dec1

General expressions for the first four cumulants are 

kx (x) =

k2(x) = e {x 2}- [ e {x}]2 ,

k3 (x) = E{x3} - 3E{x2 }e {x}+ 2[E{x\Y,

k4(x) = E{ x4} - 3 [ E { x 2} J - 4 E{ x3} e {x}+12E{x2} [ e {x} J - 6 [ E { x } ] \

Note that the first order cumulant is merely the mean or first moment and that the 

second order cumulant is the variance of the distribution. Also, note that for a zero 

mean variable, the formulas for the cumulants simplify significantly. Cumulants have 

the very nice property that for two independent random variables x and y, k f x  + y) = 

kfx) + kj(y). Clearly, the cumulants of order three or higher are all zero for a Gaussian 

distribution.
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For zero mean, vector valued random variables we have 

k{xi, x j ) = E{xix j \,

k(xi, x ],xk) = E{xix jxk},

k(X; , x j , xk,xl ) = E{xix jxkxl} -  E{xlx] \E{xkxt } -  E{X[xk } e { x ] x 1 } - E{xixl }E{xjx k}.

These cumulants are tensors of their respective rank. The second order cumulant is the 

covariance matrix for the distribution.
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