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EXECUTIVE SUMMARY 

Travel time reliability, or “the consistency or dependability in travel times, as measured 
from day-to-day and/or across different times of the day” (FHWA, 2021), significantly 
impacts travel behavior. Several metrics have been defined to measure travel time 
reliability. This research focuses on two families of metrics. The first is the buffer index, 
which captures a measure of the extra time that the average traveler needs to add to 
have an on-time arrival probability of 95% (FHWA, 2021). We consider two forms of 
buffer index – (i) the ratio of 95th percentile travel time to sample average travel time 
minus one and, (ii) the ratio of 95th percentile travel time to median travel time minus 
one. We refer to the latter definition of buffer index as modified buffer index in this 
research. Note that we consider the modified buffer index as in the presence of outliers 
or when the distribution is skewed as is often the case for travel times, sample median 
is a better measure of central tendency than sample mean. Therefore, the modified 
buffer index might provide a more accurate representation of travel time reliability 
compared to regular buffer index. The second family of metrics considered in this 
research is called relative width of travel time distributions. The relative width is defined 
as the ratio of the range of travel times in which 80% of the observations around the 
median fall into and the median travel time (van Lint and van Zuylen, 2005). Glick & 
Figliozzi (2017) adopt a similar metric for understanding transit reliability using speed 
data.  Both buffer index and relative widths are sample statistics and, therefore, will vary 
depending on the travel time samples. This research presents methods to conduct 
statistical inferences – confidence intervals and one-sample hypothesis tests on the 
three travel time reliability metrics mentioned above. The methods presented in this 
project will help account for the variability in the estimated buffer index, modified buffer 
index, and relative width and attach statistical guarantees. 

The first part of this research focuses on methodology to derive confidence intervals for 
the three travel time reliability metrics. The multivariate delta method, along with select 
results from the statistical literature on the joint distribution of sample quantiles and 
sample means,  is used to show that the asymptotic distribution of the buffer index, 
modified buffer index, and relative width is normal. In addition to the distribution, we also 
derive a formula for the standard error. Given the asymptotic normal distribution and the 
standard error, this result is used to determine the reliability metrics' confidence interval 
formula. It is well known that the shape of the travel time distribution can vary based on 
the time of day, location, day of the week, etc. The asymptotic normal distribution and 
standard error result are travel time distribution agnostic and do not impose any shape 
requirement and apply to various travel time distributions.  
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The travel time data from Portland, OR metropolitan region is used to calibrate a 
probability distribution. Four other travel time population distributions are generated 
based on this data. The shapes considered vary from the common right-skewed, 
symmetric, and less common left-skewed, and bimodal distribution. We generate travel 
times of different sample sizes using simulation from the five distributions. The 
performance of the Standard Normal with Asymptotic Standard Error confidence interval 
is compared against six other bootstrapping confidence intervals. For the buffer index, 
the Standard Normal with Asymptotic Standard Error confidence interval provides 
consistent coverage of over 95% for common right-skewed, symmetric, and bimodal 
travel time distribution shapes. Standard Normal with Asymptotic Standard Errors 
consistently delivers higher than 95% coverage for all sample sizes for right-skewed 
and symmetric cases tested for the modified buffer index. Standard Normal with 
Asymptotic Standard Errors consistently achieves 95% for all cases tested for the travel 
time relative widths.  

The asymptotic normality results and the standard error formula are also used to derive 
upper-tailed, lower-tailed, and two-tailed one-sample hypothesis tests for the three 
reliability parameters. We compare the performance of the hypothesis testing 
procedures with travel time samples from the population travel time distribution of real-
world data obtained from the Portland, OR, metropolitan region. Formulas are derived 
for the p-values and rejection region. Simulation results show that the power of the 
hypothesis test increases with sample size. 
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1.0 INTRODUCTION 

Travel time reliability has worsened in almost all urban areas in the United States over 
the last thirty years. According to the Urban Mobility Report, which has been produced 
since 1987, the number of congested hours and other reliability metrics such as the 
planning and buffer indices briefly dipped during the COVID-19 pandemic but has 
already returned to pre-pandemic levels (TTI, 2021).  

Travel behavioral studies demonstrate that travelers consider travel time reliability in 
addition to average travel times in their travel choice decision making (Boyles et al., 
2010; Pinjari and Bhat, 2006). This has led to a significant amount of research on 
factors affecting travel time reliability, trends in travel time reliability (Martchouk et al., 
2011; Van Der Loop et al., 2014), and incorporating reliability objectives into 
transportation planning models (Anderson et al., 2019; Boyles et al., 2010; Khani and 
Boyles, 2015). In addition to automobiles, reliability metrics are critical for other modes 
such as transit and bicycles (Glick and Figliozzi, 2017) and freight (Shams et al., 2017), 
where reliability has a direct impact on costs (Figliozzi et al., 2011).   

The Federal Highway Administration (FHWA) formally defines travel time reliability as 
“the consistency or dependability in travel times, as measured from day-to-day and/or 
across different times of the day” (FHWA, 2021). A wide variety of metrics has been 
used for characterizing travel time reliability, such as percent variation, variability index 
(Lomax et al., 2003), standard deviation (Day et al., 2015), skew and width (van Lint et 
al., 2005), reliability ratio (Fosgerau and Engelson, 2011), misery index, on-time arrival 
probability, etc. (Pu, 2011). This research focuses on two popular travel time reliability 
metrics – buffer index (FHWA, 2021; Lyman and Bertini, 2008) and relative width (van 
Lint and van Zuylen, 2005).  The buffer index is popular and conceptually simple 
because it tries to capture a measure of the extra time that the average traveler needs 
to add to have an on-time arrival probability of 95% (FHWA, 2021). The second travel 
time reliability metric considered in this study considers the relative width of travel time 
distribution which is defined as the ratio of the range of travel times in which 80% of the 
observations around the median fall into and the median travel time (van Lint and van 
Zuylen, 2005). Glick & Figliozzi (2017) use a similar metric for analyzing transit reliability 
using high-resolution speed data. But like any statistic, the buffer index and relative 
width have variability, which begs the question, how confident should the traveler be 
about the estimated buffer index and relative width?   

Traditionally, transportation engineers and planners have used point estimates for the 
buffer index and relative width to compare the reliability of various modes or corridors or 
the same corridors for different times of the day. For example, a roadway segment with 
a lower value of the buffer index and relative width of travel time distribution is 
considered more reliable. However, any sample statistic like the buffer index and 
relative width will be associated with variability. First, the natural variability associated 
with random samples will lead to different buffer indices and relative widths. Second, the 
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index estimated variability might be a function of factors such as road and mode type 
and assumptions regarding the travel time distribution or population from where travel 
time samples are obtained.   

Researchers have proposed different methods to determine confidence intervals (Glick 
and Figliozzi, 2017; Hou et al., 2012) and hypothesis tests (Spiegelman and Gates, 
2005) of speed reliability metrics such as percentiles. However, point speeds are often 
normally distributed, unlike travel times, whose distribution need not be symmetric 
(Anderson et al., 2019). Moreover, the buffer index is a function of percentiles and the 
sample mean and the relative width is a function of different sample quantiles. Thus, the 
methodologies developed in Glick and Figliozzi (2017) and Hou et al. (2012) utilizing 
only percentiles are not directly applicable to estimate confidence intervals for the buffer 
index and the relative width.  To date, there are no ready-made procedures to attach 
statistical guarantees or perform statistical inferences on the travel time buffer index and 
relative widths. This research is timely because the COVID-19 pandemic and 
consequent changes in traffic levels have highlighted the need to quickly compare and 
better understand the behavior of most commonly used traffic reliability measures (Rilett 
et al., 2021). 

We overcome three main challenges in this research. First, the lack of knowledge about 
the sampling distribution of buffer index and relative width. Second, the absence of a 
ready-made formula that can be used to estimate the standard error of the buffer index 
and relative width. Prendergast and Staudte (2017, 2016) have obtained first-order 
approximation-based estimates of the standard error of the ratio of quantiles. Note that 
in this study, we consider buffer index involving the ratio of quantile to sample mean and 
the ratio of quantiles. In this research, using the multivariate delta method, we show that 
the sampling distribution of the buffer index and the relative width is asymptotically 
normal and derive a formula for the standard error. This asymptotic normality result is 
used to arrive at a confidence interval formula for the buffer index and the relative width. 
The third challenge is the lack of consensus on the population distribution of travel 
times. Depending on the study and the context, a wide variety of distributions such as 
lognormal, Weibull, or Burr have been found to be appropriate (Emam and Al-Deek, 
2006; Susilawati et al., 2013; Taylor, 2017; Uno et al., 2009). Moreover, the shape of 
the distribution can also vary – left-skewed, right-skewed, symmetric, bimodal, etc. 
(Chen et al., 2014; Feng et al., 2012; Guo et al., 2010; Kazagli and Koutsopoulos, 
2013). The asymptotic normality-based confidence interval does not impose any shape 
requirement on travel time distributions. Hence, we develop confidence interval 
procedures that are general because they are independent of the type of travel time 
distributions and work for a wide range of distribution shapes.  This research compares 
the performance of the proposed method to estimate confidence intervals against 
several bootstrapping-based confidence intervals, which also do not require any specific 
shape or distribution assumptions for travel times. The asymptotic normality result is 
then used to formulate an upper-tailed, lower-tailed, and two-tailed one-sample 
hypothesis testing procedure for the buffer index and relative width. 
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2.0 ASYMPTOTIC DISTRIBUTION OF TRAVEL TIME 
RELIABILITY METRIC 

2.1 INTRODUCTION  

In this chapter, we derive the distribution and standard error of the buffer index and 
relative width using asymptotic theory. A confidence interval formula is presented based 
on asymptotic distributions. Next, we describe several bootstrapping-based confidence 
interval procedures. 

Let 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛) be a random sample from a continuous probability distribution 
with cumulative distribution function (CDF) 𝐹(. ), probability density function 𝑓(. ),  mean 
𝜇, and standard deviation 𝜎. Note that we do not know the 𝐹(. ), 𝜇, and 𝜎, they can vary 
depending on many factors such as signal settings, traffic compositions, time-of-day, 
day-of-the-week, and weather conditions. The shape can be symmetric or asymmetric, 

left-skewed or right-skewed. Let 𝜁𝑝 and 𝛽 represent the true 100𝑝𝑡ℎ percentile and the 

reliability parameter of interest, respectively. For example, if 𝛽 is the buffer index, then: 

 𝛽 = 
𝜁𝑝

𝜇
− 1 (2.1)  

Let �̂� and 𝜁𝑝 denote the sample mean and the sample 100𝑝𝑡ℎ percentile, respectively. 

Note that the buffer index utilizes the 95th percentile, but the treatment in this section is 
more general since it applies to any percentile. The sample estimate of the buffer index 

�̂� is given as 

 �̂� =  
�̂�𝑝

�̂�
− 1  (2.2) 

This research also considers another form of the buffer index which is the ratio of the 
percentiles. We call this the modified buffer index. Let 𝜁𝑝1  and 𝜁𝑝2  represent the true 

100𝑝1
𝑡ℎ and 100𝑝2

𝑡ℎ percentile, respectively. Let 𝜁𝑝1  and 𝜁𝑝2  denote the sample estimate 

of the 100𝑝1
𝑡ℎ and 100𝑝2

𝑡ℎ percentile. The true and sample estimate of the modified 
buffer index is shown below: 

 𝛽 = 
𝜁𝑝1
𝜁𝑝2
− 1  (2.3) 

  �̂� =  
�̂�𝑝1
�̂�𝑝2
− 1 (2.4)  
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For travel time reliability applications, we use the ratio of the 95th percentile to the 
median which is the 50th percentile.  

The third reliability metric considered in this work is called the relative width of travel 
time distributions (van Lint and van Zuylen, 2005). Let 𝜁𝑝1 , 𝜁𝑝2, and 𝜁𝑝3  represent the 

true 100𝑝1
𝑡ℎ, 100𝑝2

𝑡ℎ, and 100𝑝3
𝑡ℎ percentiles with 𝑝1 < 𝑝2 < 𝑝3. Let 𝜁𝑝1 , 𝜁𝑝2 , and 𝜁𝑝3  

denote the sample estimate. The true and sample estimate of the relative width is 
shown below: 

 𝛽 = 
𝜁𝑝3−𝜁𝑝1
𝜁𝑝2

  (2.5) 

  �̂� =  
�̂�𝑝3−�̂�𝑝1
�̂�𝑝2

  (2.6)  

In this research, we use the 10th, 50th, and 90th percentile for 𝑝1, 𝑝2, and 𝑝3 respectively 
(van Lint and van Zuylen, 2005).  

To find the 100(1 − 2𝛼) confidence interval, we need to determine an upper bound 𝑟(𝑿)̅̅ ̅̅ ̅̅   

and lower bound 𝑟(𝑿) such that the probability of 𝛽 lying in [𝑟(𝑿), 𝑟(𝑿)̅̅ ̅̅ ̅̅ ] is 100(1 − 2𝛼). 

If we know the sampling distribution of �̂�, 𝐹�̂�(. ) and its standard error, 𝜎�̂�, we can 

determine the confidence interval.  

2.2 MULTIVARIATE DELTA METHOD AND JOINT DISTRIBUTIONS 
OF SAMPLE QUANTILES AND SAMPLE MEAN 

In this section, we first present the multivariate delta method. We then present two 
theorems – the first one on the joint distribution of sample quantiles and sample mean 
and the second result on joint distributions of sample quantiles. 
 

2.2.1 Multivariate Delta Method 

Suppose that a multivariate vector of statistics 𝐓 = ( 𝑇1, 𝑇2, 𝑇3) converges asymptotically 
to a multivariate normal distribution, that is,  
 

 √𝑛 (𝐓 − 𝛉)
𝐷
→𝐍(𝟎, 𝚺) (2.7) 

 
where 𝑛 is the number of observations, 𝛉 = (𝜃1, 𝜃2, 𝜃3), 𝟎 is a three-dimensional null 
vector and  

𝚺 = (

𝜎1
2 𝜎12 𝜎13

𝜎12 𝜎2
2 𝜎23

𝜎13 𝜎23 𝜎3
2

). 
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Let ℎ(𝐓) be a scalar function of 𝐓 with continuous partial derivatives. According to the 
multivariate delta method (cf. Theorem 5.5.28 in Casella and Berger (2001)), 
  

 √𝑛[ℎ(𝐓) −  ℎ(𝛉)]
𝐷
→𝑁(0, 𝜎ℎ

2)  (2.8) 
 
where 

 𝜎ℎ
2 = (

𝜕ℎ(𝛉)

𝜕𝜃𝟏

𝜕ℎ(𝛉)

𝜕𝜃𝟐

𝜕ℎ(𝛉)

𝜕𝜃3
)𝚺

(

 
 

𝜕ℎ(𝛉)

𝜕𝜃𝟏
𝜕ℎ(𝛉)

𝜕𝜃𝟐
𝜕ℎ(𝛉)

𝜕𝜃3 )

 
 

 (2.9) 

 

provided 𝜎ℎ
2 > 0. In particular, if  

 

 ℎ(𝐓) =
𝑇1

𝑇2
 

 

then it follows from the equations (2.8) and (2.9) that 
 

 √𝑛 [
𝑇1

𝑇2
−
𝜃1

𝜃2
]
𝐷
→𝑁 (0,

𝜎1
2

𝜃2
2 − 2 

𝜃1

𝜃2
3 𝜎12 +

𝜃1
2

𝜃2
4 𝜎2

2)  (2.10) 

 

 

2.2.2 Joint Distribution of Sample Quantiles and Sample Mean 

In this subsection, we present two results to derive the asymptotic distribution of the 
travel time reliability indices considered in this research.  
 
Theorem 1: (Ferguson (1999)) Let 𝑋1, … . , 𝑋𝑛 be a random sample from a continuous 
distribution with cumulative distribution function (CDF) 𝐹(. ), probability density function 

𝑓(. ), mean 𝜇, and finite variance 𝜎2. Let 0 < 𝑝 < 1 and let 𝜁𝑝 denote the 100𝑝𝑡ℎ 

percentile of 𝐹(. ). Assuming that 𝑓(. ) is continuous and positive at 𝑝 and letting �̂� and 𝜁𝑝 

denote the sample mean and the sample 100𝑝𝑡ℎ percentile, then 

 

 √𝑛(
𝜁𝑝
�̂�
−
𝜁𝑝
𝜇
)
𝐷
→𝐍

(

 (
0
0
) , [

𝑝(1−𝑝)

𝜇2[𝑓(𝜁𝑝)]
2

𝜏𝑝

𝑓(𝜁𝑝)

𝜏𝑝

𝑓(𝜁𝑝)
𝜎2
]

)

  (2.11)  

 

where  

 

𝜏𝑝 = ∫ (1 − 𝑝)(𝜁𝑝 − 𝑥)𝑓(𝑥)𝑑𝑥 + ∫ 𝑝(𝑥 − 𝜁𝑝)𝑓(𝑥)𝑑𝑥
∞

𝜁𝑝

𝜁𝑝

−∞

 

= ∫ [𝜁𝑝 − 𝑝𝜁𝑝 − 𝑥 + 𝑝𝑥]𝑓(𝑥)𝑑𝑥 + ∫ [𝑝𝑥 − 𝑝𝜁𝑝]𝑓(𝑥)𝑑𝑥
∞

𝜁𝑝

𝜁𝑝

−∞
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= 𝑝∫ 𝑥𝑓(𝑥)𝑑𝑥 − 𝑝𝜁𝑝∫ 𝑓(𝑥)𝑑𝑥
∞

−∞

+ 𝜁𝑝∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝜁𝑝

−∞

𝜁𝑝

−∞

∞

−∞

  

= 𝑝𝜇 − 𝑝𝜁𝑝 + 𝜁𝑝𝐹(𝜁𝑝) − ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝜁𝑝

−∞

  

= 𝑝𝜇 − ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝜁𝑝

−∞

  

 

Theorem 2: (Ekström and Jammalamadaka, 2012) Let 𝑋1, … . , 𝑋𝑛 be independent and 
identically distributed continuous random variables with cumulative distribution function 

(CDF) 𝐹(. ) and probability density function 𝑓(. ). Let 0 < 𝑝 < 1 and let 𝜁𝑝 denote the 

100𝑝𝑡ℎ percentile of 𝐹(. ). Let 0 < 𝑝1 < 𝑝2 < 𝑝3 < 1. Assuming that 𝑓(. ) is continuous 

and positive at 𝑝1, 𝑝2, and 𝑝3. Let 𝜁𝑝1 , 𝜁𝑝2 , and  𝜁𝑝3  denote the sample percentiles, then 

 

 √𝑛(

𝜁𝑝1
𝜁𝑝2
 𝜁𝑝3

−

𝜁𝑝1
𝜁𝑝2
𝜁𝑝2

)
𝐷
→𝐍((

0
0
) , [

𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

])  (2.12) 

 

Where 𝜎11 =
𝑝1(1−𝑝1)

[𝑓(𝜁𝑝1)]
2 , 𝜎22 =

𝑝2(1−𝑝2)

[𝑓(𝜁𝑝2)]
2 , 𝜎33 =

𝑝3(1−𝑝3)

[𝑓(𝜁𝑝3)]
2 , 𝜎12 =

𝑝1(1−𝑝2)

𝑓(𝜁𝑝1)𝑓(𝜁𝑝2)
 , 𝜎13 =

𝑝1(1−𝑝3)

𝑓(𝜁𝑝1)𝑓(𝜁𝑝3)
 , 

and 𝜎23 =
𝑝2(1−𝑝3)

𝑓(𝜁𝑝2)𝑓(𝜁𝑝3)
. 

 

2.3 ASYMPTOTIC DISTRIBUTION OF TRAVEL TIME RELIABILITY 

INDEXES 

2.3.1 Asymptotic Distribution of Buffer Index 

The following result follows from equations (2.10) and (2.11). 
 
Theorem 3: The asymptotic distribution of the buffer index is given as  
 

 √𝑛 (�̂� − 𝛽)
𝑫
→𝑁(0, 𝜎𝐵

2) (2.13) 

 

where  

𝜎𝐵
2 =

𝑝(1 − 𝑝)

𝜇2[𝑓(𝜁𝑝)]
2 −

2𝜁𝑝𝜏𝑝

𝜇3𝑓(𝜁𝑝)
+
𝜁𝑝
2𝜎2

𝜇4
 

 

The sample estimate of 𝜎𝐵
2, i.e.  �̂�𝐵

2, can be obtained by using sample estimates of 

𝜇, 𝜁𝑝, 𝜏𝑝, 𝜎
2  which are �̂�, 𝜁𝑝, �̂�𝑝, and �̂�2 respectively. Since we do not know the form of the 

PDF, we can replace 𝑓(𝜁𝑝) with the kernel density estimate at 𝜁𝑝. In this work, for the 

kernel density estimates, we use the Epanechnikov kernel with optimal bandwidth 
determined based on the quantile optimality ratio assuming an underlying lognormal 
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distribution proposed by Prendergast and Staudte (2017, 2016). Prendergast and 
Staudte (2017, 2016) show that such a density approximation works very well for 
unimodal distributions supported in the interval [0,∞) which is the case for travel times.  

Also, in �̂�𝑝, we can replace ∫ 𝑥𝑓(𝑥)𝑑𝑥
�̂�𝑝
−∞

 with 
∑ 𝑥𝑖𝐼(𝑥𝑖≤�̂�𝑝)
𝑛
𝑖=1

𝑛
 where 𝐼(𝑥𝑖 ≤ 𝜁𝑝) is an indicator 

function that takes value 1 when 𝑥𝑖 ≤ 𝜁𝑝 and 0 otherwise. The limiting standard error of 

�̂�, �̂�𝛽 ̂ can be estimated by:  

 

 �̂�𝛽 ̂ = √
�̂�𝐵
2

𝑛
 (2.14) 

 

2.3.2 Asymptotic Distribution of Modified Buffer Index 

The following result follows from equations (2.10) and (2.12). 
 
Theorem 4: The asymptotic distribution of the modified buffer index is given as  
 

 √𝑛 (�̂� − 𝛽)
𝑫
→𝑁(0, 𝜎𝐵

2) (2.15) 

where  

𝜎𝐵
2 =

𝑝2(1 − 𝑝2)

𝜁𝑝1
2 [𝑓(𝜁𝑝2)]

2 − 2
𝑝1(1 − 𝑝2)𝜁𝑝2
𝑓(𝜁𝑝1)𝑓(𝜁𝑝2)𝜁𝑝1

3
+
𝑝1(1 − 𝑝1)𝜁𝑝2

2

[𝑓(𝜁𝑝1)]
2
𝜁𝑝1
4

 

 
The sample estimate of 𝜎𝐵

2, i.e.  �̂�𝐵
2, can be obtained by using sample estimates of 𝜁𝑝1  

and 𝜁𝑝2  which are 𝜁𝑝1and 𝜁𝑝2  respectively. Since we do not know the form of the PDF, 

we can replace 𝑓(𝜁𝑝1) and 𝑓(𝜁𝑝2) with the kernel density estimate at 𝜁𝑝1  and 𝜁𝑝2  

respectively. Similar to the buffer index, for the kernel density estimates, we use the 
Epanechnikov kernel with optimal bandwidth determined based on the quantile 
optimality ratio assuming an underlying lognormal distribution proposed by Prendergast 

and Staudte (2017, 2016). The limiting standard error of �̂�, �̂�𝛽 ̂ can be estimated as  

 

 �̂�𝛽 ̂ = √
�̂�𝐵
2

𝑛
 (2.16) 

 

2.3.3 Asymptotic Distribution of Relative Width of Travel Time 

Distribution 

The following result follows from equations (2.9) and (2.12). 
 
Theorem 5: The asymptotic distribution of the relative width is given as  
 

 √𝑛 (�̂� − 𝛽)
𝑫
→𝑁(0, 𝜎𝐵

2) (2.17) 

where  
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𝜎𝐵
2 =

𝑝1(1 − 𝑝1)

[𝑓(𝜁𝑝1)]
2
𝜁𝑝2
2
+
𝑝2(1 − 𝑝2)

[𝑓(𝜁𝑝2)]
2 [
𝜁𝑝3 − 𝜁𝑝1
𝜁𝑝2
2

]

2

+
𝑝3(1 − 𝑝3)

[𝑓(𝜁𝑝3)]
2
𝜁𝑝2
2
+

2𝑝1(1 − 𝑝2)

𝑓(𝜁𝑝1)𝑓(𝜁𝑝2)𝜁𝑝2
[
𝜁𝑝3 − 𝜁𝑝1
𝜁𝑝2
2

]

−
2𝑝1(1 − 𝑝3)

𝑓(𝜁𝑝1)𝑓(𝜁𝑝3)𝜁𝑝2
2
−
2𝑝2(1 − 𝑝3)

𝑓(𝜁𝑝2)𝑓(𝜁𝑝3)
[
𝜁𝑝3 − 𝜁𝑝1
𝜁𝑝2
3 ] 

 

The sample estimate of 𝜎𝐵
2, i.e.  �̂�𝐵

2, can be obtained by using sample estimates of 𝜁𝑝1 , 

𝜁𝑝2 , and 𝜁3 which are 𝜁𝑝1 , 𝜁𝑝2 , and 𝜁𝑝3  respectively. Since we do not know the form of the 

PDF, we can replace 𝑓(𝜁𝑝1), 𝑓(𝜁𝑝2), and 𝑓(𝜁𝑝3) with the kernel density estimate at 𝜁𝑝1 , 

𝜁𝑝2 , and 𝜁𝑝3  respectively. Similar to the buffer index, for the kernel density estimates, we 

use the Epanechnikov kernel with optimal bandwidth determined based on the quantile 
optimality ratio assuming an underlying lognormal distribution proposed by Prendergast 

and Staudte (2017, 2016). The limiting standard error of �̂�, �̂�𝛽 ̂ can be estimated as  

 

 �̂�𝛽 ̂ = √
�̂�𝐵
2

𝑛
 (2.18) 

 

2.4 STANDARD NORMAL CONFIDENCE INTERVAL  

Given that the distribution of �̂� is proved to be normal asymptotically, we can determine 
the standard normal confidence interval using the following steps:  

• Evaluate �̂� for the original sample. Use equations (2.2), (2.4), and (2.6) for the 

buffer index, modified buffer index, and relative widths respectively.  

• Compute �̂�𝛽 ̂ = √
�̂�𝐵
2

𝑛
. Use equations (2.13), (2.15), and (2.17) for the buffer 

index, modified buffer index, and relative widths respectively. 

• The 100(1 − 2𝛼) standard normal confidence interval is given by [�̂� −

𝑧𝛼�̂�𝛽 ̂, �̂� + 𝑧𝛼�̂�𝛽 ̂] where 𝑧𝛼 is the 100(1 − 𝛼)𝑡ℎ percentile of the standard 

normal distribution.  

 

2.5 BOOTSTRAP CONFIDENCE INTERVALS  

Bootstrapping is a statistical technique to arrive at point estimates or variance of point 
estimates using random samples drawn with replacements from the sample data. 
Bootstrapping can also be thought of as making inferences about population 
parameters based on random samples from the empirical cumulative distribution 
function. Since the sample in effect becomes the population, there are no restrictions or 
requirements on population distributions for bootstrapped confidence interval 
procedures (Davison and Hinkley, 1997; Efron and Tibshirani, 1993). As travel time 
distributions have been found to have different distributions and shapes, bootstrap 
confidence intervals are applicable for travel time reliability metrics. Note that the 
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bootstrap confidence interval methods are applicable for buffer index, modified buffer 

index, and relative width by choosing the appropriate formulas for 𝛽 and �̂� respectively. 
 
Let 𝑿∗ = (𝑋1

∗, 𝑋2
∗, … , 𝑋𝑛

∗) be a bootstrap sample from 𝑿. In other words, 𝑿∗ is a random 
sample drawn with replacement from the original observed sample 𝑿. Let 𝐵 denote the 

total number of independent bootstrap samples. While the sample size is finite, 𝐵 can 
be arbitrarily large but bounded. 
 

The 𝐵 independent bootstrap samples are 𝑿∗𝟏, 𝑿∗𝟐, … , 𝑿∗𝑩. Let 𝜁𝑝
∗𝑏, �̂�∗𝑏, and �̂�∗𝑏 

represent the sample 100𝑝𝑡ℎ percentile, the sample mean, and the sample buffer index 

respectively. These parameters are evaluated for the 𝑏𝑡ℎ bootstrap sample. Let �̂�𝛼 and 

�̂�1−𝛼 denote the 100𝛼𝑡ℎ and 100(1 − 𝛼)𝑡ℎ sample percentile of �̂�∗𝑏 ∀𝑏 = 1, . . , 𝐵. 
 

In this research, we consider the following bootstrapped procedures: (i) Simple 
bootstrap, (ii) Percentile bootstrap, (iii) Standard Normal with Bootstrapped Standard 
Errors, (iv) Standard Normal with Log-transformed Buffer Index, (v) Bias-corrected and 
accelerated (BCa), (vi) Studentized Bootstrap with Asymptotic Standard Errors. While 
the details and associated proofs can be found in classic statistics textbooks (Davison 
and Hinkley, 1997; Efron and Tibshirani, 1993), the procedures for the bootstrap 
confidence intervals are briefly described below for the sake of completeness. 
 

2.5.1 Simple Bootstrap 

• Evaluate �̂� for the original sample. 

• Evaluate �̂�∗𝑏 for each of the 𝐵 independent bootstrap samples. 

• Determine �̂�𝛼 , �̂�1−𝛼 which correspond to the 100𝛼𝑡ℎ and 100(1 − 𝛼)𝑡ℎ sample 

percentile of �̂�∗𝑏. 

• The 100(1 − 2𝛼) simple bootstrap confidence intervals is given by [2𝛽 ̂ −

 �̂�1−𝛼 , 2�̂� − �̂�𝛼]. 

2.5.2 Percentile Bootstrap 

• Evaluate �̂� for the original sample. 

• Evaluate �̂�∗𝑏 for each of the 𝐵 independent bootstrap samples. 

• Determine �̂�𝛼 , �̂�1−𝛼 which correspond to the 100𝛼𝑡ℎ and 100(1 − 𝛼)𝑡ℎ sample 

percentile of �̂�∗𝑏. 

• The 100(1 − 2𝛼) percentile bootstrap confidence intervals is given by [�̂�𝛼 , �̂�1−𝛼]. 

2.5.3 Standard Normal with Bootstrapped Standard Errors 

• Evaluate �̂� for the original sample. 

• Evaluate �̂�∗𝑏 for each of the 𝐵 independent bootstrap samples. 

• Compute �̂�𝛽
∗ = √

∑ (�̂�∗𝑏−�̅�∗)
2𝐵

𝑏=1

𝐵−1
 where �̅�∗ =

∑ �̂�∗𝑏𝐵
𝑏=1

𝐵
 



12 

• The 100(1 − 2𝛼) standard normal confidence interval is given by [�̂� − 𝑧𝛼�̂�𝛽
∗, �̂� +

𝑧𝛼�̂�𝛽
∗]. 

2.5.4 Standard Normal with Log-transformed Buffer Index 

• Evaluate �̂� for the original sample. 

• Evaluate �̂�∗𝑏 for each of the 𝐵 independent bootstrap samples. 

• Log transform the buffer index �̂�∗𝑏. 

• Compute �̂�𝛽
∗ = √

∑ (�̂�∗𝑏−�̅�∗)
2𝐵

𝑏=1

𝐵−1
 where �̅�∗ =

∑ �̂�∗𝑏𝐵
𝑏=1

𝐵
. 

• The 100(1 − 2𝛼) standard normal confidence interval is given by [exp (�̂� −

𝑧𝛼�̂�𝛽
∗), exp (�̂� + 𝑧𝛼�̂�𝛽

∗)]. 

2.5.5 Bias-corrected and accelerated (BCa) 

• Evaluate �̂� for the original sample. 

• Evaluate �̂�∗𝑏 for each of the 𝐵 independent bootstrap samples. 

• Determine �̂�0 = Φ
−1 (

∑ 𝐼(�̂�∗𝑏≤�̂�)𝐵
𝑏=1

𝐵
) where 𝐼(�̂�∗𝑏 ≤ �̂�) is an indicator function 

taking value 1 when �̂�∗𝑏 ≤ �̂� and 0, otherwise and Φ is the standard normal CDF. 

• Let 𝑿𝒋
𝒊  represent 𝑖𝑡ℎ jack-knifed sample or the original sample after removing the 

𝑖𝑡ℎ variable, i.e., 𝑿𝒋
𝒊   = (𝑋1, 𝑋2, …𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋) . 

• Calculate �̂�𝑗
𝑖 the reliability parameter of the sample 𝑿𝒋

𝒊 and �̅�𝑗 =
∑ �̂�𝑗

𝑖𝑛
𝑖=1

𝑛
. 

• Determine �̂�1 =  
∑ (�̅�𝑗−�̂�𝑗

𝑖 )
3

𝑛
𝑖=1

6[∑ (�̅�𝑗−�̂�𝑗
𝑖)
2

𝑛
𝑖=1 ]

3
2
 

. 

• Compute 𝛼1 = Φ(�̂�0 + 
𝛾0+𝑧𝛼

1−𝛾1(𝛾0+𝑧𝛼)
) and 𝛼2 = Φ(�̂�0 + 

𝛾0+𝑧1−𝛼

1−�̂�1(𝛾0+𝑧1−𝛼)
) where 𝑧𝛼 

denotes the 100𝛼𝑡ℎ percentile of the standard normal distribution. 

• Determine �̂�𝛼1 , �̂�𝛼2 which correspond to the 100𝛼1
𝑡ℎ and 100𝛼2

𝑡ℎ percentile of �̂�∗𝑏. 

• The 100(1 − 2𝛼) BCa bootstrap confidence interval is given by [�̂�𝛼1 , �̂�𝛼2]. 

2.5.6 Studentized Bootstrap with Asymptotic Standard Errors 

• Evaluate �̂� for the original sample. 

• Evaluate �̂�∗𝑏 for each of the 𝐵 independent bootstrap samples. 

• Compute �̂�𝛽
∗ = √

∑ (�̂�∗𝑏−�̅�∗)
2𝐵

𝑏=1

𝐵−1
 where �̅�∗ =

∑ �̂�∗𝑏𝐵
𝑏=1

𝐵
. 

• For each bootstrap sample 𝑿∗𝒃, 𝑏 = 1,2,…𝐵. 

o Compute �̂�𝛽
∗𝑏 = √

�̂�𝐵
2

𝑛
 . 
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o Determine 𝑡∗𝑏 =
�̂�∗𝑏−�̂�

�̂�𝛽
∗𝑏 . 

• Determine �̂�𝛼 , �̂�1−𝛼 which correspond to the 100𝛼𝑡ℎ and 100(1 − 𝛼)𝑡ℎ percentile 

of 𝑡∗𝑏. 

• The 100(1 − 2𝛼) studentized double bootstrap confidence intervals is given as 

[𝛽 ̂ − �̂�1−𝛼�̂�𝛽
∗, 𝛽 ̂ − �̂�𝛼�̂�𝛽

∗]. 
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3.0 CASE STUDY 

The approaches developed in the previous section are applied to a real-world case 
study. The data for the case study is from the Portland, OR metropolitan region and was 
originally collected and analyzed by Anderson et al. (2019). The data belongs to the 
eastbound direction of the Tualatin Sherwood corridor, which begins at SW Tualatin-
Sherwood Road and OR 99W and ends at SW Nyberg Street and I-5 as shown in 
Figure 3-1. Depending on the section of the corridor, the AADT generally lies in the 
20000-30000 range. The final section near I5 has an AADT of slightly more than 40000. 
The traffic mix is dominated by automobiles, with 68-75% cars (depending on sections) 
and nearly 20% light trucks.  

The travel time data was downloaded from the BlueMAC Transportation Data Systems 
website (BlueMAC, 2017). In 2016, about 120 Bluetooth detector devices, called 
BlueMAC devices, were installed in Washington County at intersections on various 
arterials. The vehicle capture rate of these BlueMAC devices is higher than 10% of the 
traffic for target corridors (Anderson et al., 2019). The BlueMAC Transportation Data 
Systems website allowed us to select any two BlueMAC devices, one is the origin and 
the other the destination, and download all travel time data recorded by these detectors. 
The data used in this study was not temporally or spatially aggregated. We used travel 
time data of vehicles detected at the beginning and end of the eastbound direction of 
the Tualatin Sherwood corridor. For more details on the data and descriptive analysis, 
see Anderson et al. (2019). 

 

Figure 3-1: Tualatin-Sherwood Corridor 
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This study uses corridor-level travel time information collected from August 2017 to 
November 2017 from 6 AM to 7 PM.  All the observations lying outside the bounds 
defined by equation (3.1) were classified as outliers. 

𝑀 ± 3
∑ |𝑡𝑡𝑖−𝑀|
𝑚
𝑖=1

𝑚
(3.1) 

where 𝑡𝑡𝑖 is the travel time observed in the 𝑖𝑡ℎ trip, 𝑀 is the median in each 15-minute 
block of travel times, and 𝑚 is the number of trips within each block of travel times 
(Clark et al., 2002; Zhang et al., 2018). After removing the outliers, there are 17491 
observations that cover both weekdays and weekends. The density of the travel time is 
shown below in Figure 3-2. Note the log-lognormal shape of the data but with a small 
bump on the right tail. This type of shape is not uncommon when analyzing travel time 
data since congestion skews the data and even create bumps. The distributions 
analyzed later in the paper consider these two factors: skewness and the potential 
presence of bumps (technically bimodal distributions) on the right tail.  

Figure 3-2: Travel Time Density 

The Lognormal distribution (𝜇 = 6.7034,𝜎 = 0.3245 ) was a good fit for the data and 
consistent with the predominant shape.  Note that for the lognormal distribution, 𝜇 and 𝜎 
represent the mean and standard deviation of the natural log of travel times. Since 
Lognormal distribution has been widely used for travel times, we picked Lognormal (𝜇 =
6.7034, 𝜎 = 0.3245 ) as the “Base” case denoted as B since travel times in many 
instances tend to look lognormal and right-skewed. In general, travel time distributions 
tend to be right skewed. However, in rare occasions, such as the onset of congestion, 
they can be left skewed(van Lint and van Zuylen, 2005) which we model in Case D. If 
the time period of analysis is longer than the peak period, you will have the bimodal 
distribution which we see in Case E. For the sake of conciseness, we generated only 
four additional cases to cover different shapes and distributions: 
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• Case A: Lognormal distribution with a higher right skew. 

• Case C: Symmetric Normal distribution. 

• Case D: Skewed Normal distribution with location parameter 𝜉 = 1250, scale 
parameter 𝜔 = 400, and shape parameter 𝛼 = −2.5 for a left-skewed distribution. 

• Case E: Bi-modal Normal distribution with the first and second normal centered 
at 700 and 1200, respectively.  

 

A summary of key parameters and statistics for the five cases A to E are presented in 
Table 3.1, and Figure 3-3 shows the corresponding density function graphs. The cases 
correspond to four unimodal shapes and one bimodal shape. The unimodal distributions 
cover two right-skewed distributions, one symmetric and one left-skewed distribution. 
The skewness in Table 3.1 refers to the third standardized moment. The reliability 
increases as we move from right to left-skewed distributions.  
 
Table 3.1: Summary of Parameters and Statistics 

Case Shape Distribution 
(Parameters) 

Skew-
ness 

True 
Mean 

True 95th 
Percent-
ile 

True 
Buffer 
Index 

True 
Modi-
fied 
Buffer 
Index 

True  
Relative 
Width 

A Right 
Skewed 

Lognormal  
(𝜇 = 0.7034, 
 𝜎 = 0.4868) 

1.6896 
 

337.6003 667.8292 0.9781 1.2269 1.3300 

B Right 
Skewed 

Lognormal  
(𝜇 = 0.7034, 
 𝜎 = 0.3245 ) 

1.0367  859.2416 1390.1334 0.6178 0.7053 0.8559 

C Symmetric Normal (𝜇𝑁 =
700, 𝜎𝑁 = 220) 

0 700 1061.8678 0.5169 0.5169 0.8055 

D Left 
Skewed 

Skewed Normal 
(𝜉 = 1250, 
𝜔 = 400, 𝛼 =
−2.5) 

-0.5757 953.6731 1342.7043 0.4079 0.3658 0.6921 

E Bimodal Normal 𝜇𝐵𝑁 =
[700,1200], 𝜎𝐵𝑁 =
[150,110], 𝑝 =
[0.8,0.2] 

0.6399 800 1274.2831 0.5928 0.7040 0.9000 

 

We consider the following sample sizes: 100, 300, 500, 1000, and 2000. The travel time 
samples were generated from the above distributions using a simple Monte Carlo 
simulation. The number of bootstrap samples was fixed at 1000. Efron and Tibshirani 
(1993) recommend at least 300. We generated 500 sets of travel time samples of each 
size. The confidence intervals were then calculated for each set. Then we evaluated 
the: (i) Width: the average width of the 500 confidence intervals, and (ii) Coverage: the 
proportion of times the confidence intervals capture the true reliability index. This study 
focuses on 95% confidence intervals, as they are most widely used in transportation 
applications. Therefore, we expect the coverage to be around 95%. 
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Figure 3-3: Density function graphs 

3.1 COMPUTATIONAL RESULTS FOR BUFFER INDEX AND 
MODIFIED BUFFER INDEX 

Among the procedures tested, Simple Bootstrap performs the worst with significantly 
lower coverage. Figure 3-4 and Figure 3-5 show the 500 confidence intervals generated 
for a sample size of 1000 using Standard Normal with Asymptotic Standard Errors and 
Simple Bootstrap, respectively. The red lines correspond to confidence interval which 
does not contain the true value. The figures demonstrate that Standard Normal with 
Asymptotic Standard Errors based confidence interval is better at capturing the true 
value as Figure 3-4 has fewer red lines than Figure 3-5    
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Figure 3-4: 500 Buffer Index Confidence Intervals for sample size of  1000 (Case B) using Standard 
Normal with Asymptotic Standard Errors 

 
Figure 3-5: 500 Buffer Index Confidence Intervals for sample size of  1000  (Case B) using Simple 

Bootstrap 
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Table 3.2 to Table 3.6 present the width and coverage for the five population 
distributions for different sample sizes for the buffer index. Table 3.7 to Table 3.11 
provide the same information for the modified buffer index. When the coverage is lower 
than 95%, the corresponding entries have been shown in red. The entries with the 
lowest width have been highlighted in yellow. The width of the confidence interval 
depends on the skewness. The width decreases from right skew to left skew and then 
increases for the bimodal distribution. As the buffer index decreases or as the travel 
time reliability increases, the confidence interval width also decreases.  

Studentized Bootstrap provides confidence intervals with the lowest width for the buffer 
index. However, the coverage is lower than 95% for both buffer index and modified 
buffer index. In general, Percentile Bootstrap, Standard Normal with Bootstrapped 
Standard Errors, Standard Normal with Log-transformed Buffer Index, BCa, and 
Standard Normal with Asymptotic Standard Errors perform the best.  For these best-
performing confidence interval procedures, there is no noticeable increase in coverage 
with sample size. However, the width of the confidence interval decreases with sample 
size. The width of the Percentile Bootstrap, Standard Normal with Bootstrapped 
Standard Errors, BCa, and the Standard Normal with Log-transformed Buffer Index are 
similar to the width of Standard Normal with Asymptotic Standard Errors confidence 
intervals for sample sizes higher than 100. In general, we can see that  width of the 
confidence intervals  decreases proportionally to the inverse square root of the sample 
size.  

Table 3.2: Buffer Index - Width and Coverage for Case A: Lognormal, Skewness = 1.6896 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.772 0.958 0.408 0.97 0.310 0.966 0.208 0.956 0.146 0.966 

Simple 
Bootstrap 

0.669 0.834 0.373 0.882 0.291 0.874 0.199 0.896 0.141 0.918 

Percentile 
Bootstrap 

0.669 0.972 0.373 0.964 0.291 0.972 0.199 0.95 0.141 0.964 

Normal with 
Bootstrapped SE 

0.684 0.956 0.376 0.946 0.295 0.948 0.201 0.946 0.141 0.958 

Normal with Log- 
transformed 
Buffer index 

0.680 0.958 0.377 0.946 0.296 0.958 0.200 0.946 0.141 0.96 

BCa Bootstrap 0.720 0.938 0.381 0.948 0.290 0.952 0.203 0.956 0.142 0.948 

Studentized 
Bootstrap 

0.679 0.878 0.373 0.876 0.294 0.908 0.199 0.9 0.140 0.908 
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Table 3.3: Buffer Index - Width and Coverage for Case B: Lognormal, Skewness = 1.0367 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.424 0.954 0.228 0.97 0.174 0.966 0.118 0.96 0.083 0.962 

Simple 
Bootstrap 

0.374 0.842 0.211 0.884 0.165 0.876 0.113 0.894 0.080 0.924 

Percentile 
Bootstrap 

0.375 0.968 0.211 0.962 0.165 0.972 0.113 0.946 0.080 0.97 

Normal with 
Bootstrapped SE 

0.382 0.948 0.213 0.946 0.167 0.944 0.114 0.942 0.081 0.956 

Normal with Log- 
transformed 
Buffer index 

0.382 0.958 0.213 0.946 0.168 0.954 0.114 0.938 0.081 0.96 

BCa Bootstrap 0.402 0.942 0.216 0.952 0.164 0.954 0.116 0.952 0.081 0.946 

Studentized 
Bootstrap 

0.382 0.874 0.212 0.884 0.167 0.91 0.114 0.9 0.080 0.914 

 

Table 3.4: Buffer Index - Width and Coverage for Case C: Symmetric Normal, Skewness = 0 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.269 0.954 0.148 0.966 0.114 0.962 0.078 0.952 0.055 0.964 

Simple 
Bootstrap 

0.250 0.89 0.143 0.906 0.111 0.922 0.077 0.912 0.054 0.936 

Percentile 
Bootstrap 

0.251 0.966 0.142 0.96 0.111 0.976 0.077 0.952 0.054 0.968 

Normal with 
Bootstrapped SE 

0.252 0.948 0.143 0.952 0.112 0.954 0.077 0.938 0.054 0.966 

Normal with Log- 
transformed 
Buffer index 

0.254 0.958 0.143 0.952 0.112 0.96 0.077 0.932 0.054 0.962 

BCa Bootstrap 0.259 0.938 0.144 0.962 0.110 0.954 0.078 0.952 0.054 0.95 

Studentized 
Bootstrap 

0.240 0.884 0.140 0.91 0.111 0.916 0.077 0.904 0.054 0.94 
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Table 3.5: Buffer Index - Width and Coverage for Case D: Left Skewed Normal, Skewness = -0.5757 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.193 0.96 0.107 0.96 0.082 0.954 0.057 0.948 0.040 0.948 

Simple 
Bootstrap 0.184 0.92 0.105 0.938 0.082 0.93 0.057 0.922 0.040 0.938 

Percentile 
Bootstrap 0.184 0.972 0.105 0.972 0.081 0.966 0.057 0.952 0.040 0.962 

Normal with 
Bootstrapped SE 0.184 0.958 0.105 0.96 0.082 0.956 0.057 0.936 0.040 0.954 

Normal with Log- 
transformed 
Buffer index 

0.187 0.954 0.105 0.958 0.082 0.954 0.057 0.936 0.040 0.946 

BCa Bootstrap 
0.188 0.954 0.106 0.956 0.082 0.958 0.057 0.94 0.040 0.932 

Studentized 
Bootstrap 0.174 0.914 0.102 0.94 0.081 0.936 0.057 0.92 0.040 0.934 

 

Table 3.6: Buffer Index - Width and Coverage for Case E: Bimodal, Skewness = 0.6399 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.207 0.96 0.115 0.956 0.087 0.962 0.061 0.972 0.043 0.952 

Simple 
Bootstrap 

0.202 0.924 0.114 0.932 0.087 0.94 0.061 0.964 0.043 0.944 

Percentile 
Bootstrap 

0.202 0.974 0.114 0.958 0.087 0.962 0.061 0.972 0.043 0.96 

Normal with 
Bootstrapped SE 

0.202 0.968 0.114 0.944 0.087 0.956 0.061 0.974 0.043 0.95 

Normal with Log- 
transformed 
Buffer index 

0.207 0.97 0.115 0.952 0.088 0.962 0.061 0.976 0.043 0.95 

BCa Bootstrap 0.204 0.956 0.113 0.956 0.087 0.948 0.061 0.946 0.043 0.952 

Studentized 
Bootstrap 

0.185 0.902 0.111 0.916 0.086 0.934 0.061 0.96 0.043 0.944 
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Table 3.7: Modified Buffer Index - Width and Coverage for Case A: Lognormal, Skewness = 1.6896 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

1.119 0.964 0.598 0.964 0.458 0.968 0.311 0.962 0.218 0.964 

Simple 
Bootstrap 

1.010 0.876 0.563 0.902 0.438 0.908 0.301 0.916 0.212 0.932 

Percentile 
Bootstrap 

1.014 0.964 0.562 0.968 0.438 0.974 0.301 0.95 0.212 0.974 

Normal with 
Bootstrapped SE 

1.029 0.954 0.564 0.954 0.441 0.958 0.302 0.95 0.213 0.954 

Normal with Log- 
transformed 
Buffer index 

1.033 0.948 0.567 0.96 0.444 0.962 0.302 0.942 0.213 0.96 

BCa Bootstrap 1.089 0.952 0.576 0.952 0.446 0.962 0.303 0.938 0.213 0.956 

Studentized 
Bootstrap 

1.102 0.906 0.571 0.932 0.443 0.922 0.302 0.91 0.210 0.928 

 

Table 3.8: Modified Buffer Index - Width and Coverage for Case B: Lognormal, Skewness = 1.0367 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.555 0.962 0.302 0.964 0.231 0.966 0.158 0.962 0.111 0.966 

Simple 
Bootstrap 

0.506 0.868 0.286 0.908 0.223 0.91 0.153 0.916 0.108 0.936 

Percentile 
Bootstrap 

0.508 0.964 0.286 0.968 0.223 0.974 0.153 0.950 0.108 0.974 

Normal with 
Bootstrapped 
SE 

0.514 0.958 0.286 0.954 0.224 0.956 0.154 0.950 0.109 0.956 

Normal with 
Log- 
transformed 
Buffer index 

0.519 0.946 0.288 0.958 0.226 0.962 0.154 0.942 0.109 0.96 

BCa Bootstrap 0.538 0.952 0.291 0.952 0.226 0.962 0.154 0.938 0.109 0.956 

Studentized 
Bootstrap 

0.551 0.906 0.291 0.932 0.227 0.928 0.154 0.914 0.107 0.928 
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Table 3.9: Modified Buffer Index - Width and Coverage for Case C: Symmetric Normal, Skewness = 
0 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.343 0.968 0.189 0.96 0.146 0.97 0.100 0.958 0.071 0.958 

Simple 
Bootstrap 

0.324 0.88 0.184 0.912 0.144 0.916 0.100 0.932 0.070 0.934 

Percentile 
Bootstrap 

0.325 0.976 0.185 0.97 0.144 0.98 0.100 0.952 0.070 0.97 

Normal with 
Bootstrapped SE 

0.327 0.96 0.184 0.946 0.144 0.962 0.100 0.944 0.070 0.956 

Normal with Log- 
transformed 
Buffer index 

0.332 0.956 0.186 0.95 0.145 0.964 0.100 0.948 0.070 0.956 

BCa Bootstrap 0.335 0.954 0.186 0.964 0.145 0.964 0.100 0.946 0.070 0.952 

Studentized 
Bootstrap 

0.333 0.912 0.186 0.914 0.146 0.936 0.101 0.928 0.070 0.938 

 

Table 3.10: Modified Buffer Index - Width and Coverage for Case D: Left Skewed Normal, 
Skewness = -0.5757 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.233 0.95 0.128 0.956 0.099 0.964 0.069 0.95 0.048 0.944 

Simple 
Bootstrap 

0.224 0.884 0.127 0.93 0.098 0.936 0.068 0.924 0.048 0.93 

Percentile 
Bootstrap 

0.224 0.97 0.127 0.96 0.098 0.962 0.068 0.962 0.048 0.952 

Normal with 
Bootstrapped SE 

0.225 0.942 0.127 0.944 0.098 0.952 0.068 0.95 0.048 0.942 

Normal with Log- 
transformed 
Buffer index 

0.231 0.94 0.128 0.952 0.098 0.954 0.068 0.95 0.048 0.942 

BCa Bootstrap 0.231 0.932 0.127 0.948 0.098 0.958 0.068 0.938 0.048 0.936 

Studentized 
Bootstrap 

0.227 0.876 0.128 0.93 0.098 0.924 0.069 0.916 0.048 0.922 

 



24 

Table 3.11: Buffer Index - Width and Coverage for Case E: Bimodal, Skewness = 0.6399 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.297 0.966 0.164 0.952 0.124 0.968 0.085 0.944 0.060 0.96 

Simple 
Bootstrap 

0.279 0.902 0.159 0.914 0.120 0.948 0.085 0.958 0.060 0.93 

Percentile 
Bootstrap 

0.278 0.966 0.159 0.966 0.120 0.966 0.085 0.976 0.060 0.96 

Normal with 
Bootstrapped SE 

0.280 0.946 0.159 0.948 0.120 0.958 0.085 0.958 0.059 0.96 

Normal with Log- 
transformed 
Buffer index 

0.287 0.956 0.160 0.952 0.121 0.962 0.085 0.964 0.060 0.948 

BCa Bootstrap 0.283 0.944 0.159 0.944 0.120 0.956 0.086 0.972 0.059 0.952 

Studentized 
Bootstrap 

0.267 0.902 0.157 0.904 0.118 0.93 0.085 0.944 0.060 0.926 

 

For the buffer index, Standard Normal with Asymptotic Standard Errors consistently 
delivers higher than 95% coverage for all sample sizes for all right-skewed, symmetric, 
and bimodal cases tested. Percentile bootstrap fails to meet the 95% bar in one of the 
20 right-skewed, symmetric, and bimodal cases tested. BCa, Standard Normal with 
Bootstrapped Standard Errors and Standard Normal with Log-transformed Buffer Index 
fails to hit the 95% coverage mark in 7, 10, and 5 of the 20 right-skewed, symmetric, 
and bimodal cases. Standard Normal with Asymptotic Standard Error narrowly misses 
the 95% coverage for the less common left-skewed case for two sample sizes.  For the 
modified buffer index, Standard Normal with Asymptotic Standard Errors consistently 
delivers higher than 95% coverage for all sample sizes for all right-skewed and 
symmetric cases tested. For the less common left-skewed and bimodal data, Standard 
Normal with Asymptotic Standard Error narrowly misses the 95% coverage for two 
cases. Percentile bootstrap delivers 95% coverage for all cases tested.  
 
While percentile bootstrap provides marginally better (smaller) confidence interval 
widths, we recommend the Standard Normal with Asymptotic Standard Errors for higher 
than 100 samples as it consistently delivers the required coverage for the more 
common right-skewed and symmetric shapes. Moreover, we can develop one-sample 
hypothesis tests described in the next chapter with the knowledge of the asymptotic 
normal distribution.   
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3.2 COMPUTATIONAL RESULTS FOR RELATIVE WIDTH OF TRAVEL 
TIME DISTRIBUTIONS 

Table 3.12 to  

Table 3.16 present the width and coverage for the five population distributions for 
different sample sizes for the relative width of travel time distributions. Similar to the 
buffer index results, the confidence interval width decreases with relative width or 
increase in reliability. There are no significant differences in the width of the confidence 
interval among all confidence interval procedures. As expected, the width of the 
confidence interval decreases with sample size.  

For the more common right skewed distribution, Percentile Bootstrap and Standard 
Normal with Asymptotic Standard Errors consistently delivers more than 95% coverage. 
For the less common left skewed and bimodal distribution, Standard Normal with 
Asymptotic Standard Errors achieves 95% coverage for all cases tests. Percentile 
Bootstrap fails to achieve 95% coverage in four out of the ten cases tested.  

Table 3.12: Relative Width - Width and Coverage for Case A: Lognormal, Skewness = 1.6896 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.711 0.970 0.393 0.960 0.301 0.966 0.208 0.950 0.145 0.958 

Simple 
Bootstrap 

0.662 0.904 0.377 0.934 0.288 0.920 0.204 0.926 0.141 0.932 

Percentile 
Bootstrap 

0.662 0.966 0.377 0.956 0.289 0.962 0.203 0.952 0.141 0.956 

Normal with 
Bootstrapped SE 

0.669 0.962 0.378 0.956 0.288 0.940 0.204 0.946 0.142 0.954 

Normal with Log- 
transformed 
Buffer index 

0.667 0.958 0.380 0.950 0.289 0.950 0.204 0.948 0.141 0.956 

BCa Bootstrap 0.686 0.944 0.380 0.950 0.291 0.948 0.204 0.940 0.141 0.950 

Studentized 
Bootstrap 

0.662 0.888 0.375 0.936 0.284 0.906 0.202 0.916 0.140 0.926 

 

 

 

 

 



26 

 

Table 3.13: Relative Width - Width and Coverage for Case B: Lognormal, Skewness = 1.0367 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.394 0.972 0.221 0.962 0.170 0.968 0.117 0.950 0.081 0.966 

Simple 
Bootstrap 

0.364 0.906 0.210 0.928 0.160 0.922 0.113 0.924 0.079 0.932 

Percentile 
Bootstrap 

0.365 0.978 0.209 0.954 0.161 0.966 0.113 0.950 0.079 0.962 

Normal with 
Bootstrapped SE 

0.367 0.956 0.210 0.960 0.160 0.952 0.114 0.938 0.079 0.956 

Normal with Log- 
transformed 
Buffer index 

0.368 0.958 0.212 0.960 0.161 0.954 0.114 0.942 0.079 0.956 

BCa Bootstrap 0.373 0.944 0.211 0.958 0.161 0.950 0.113 0.940 0.079 0.950 

Studentized 
Bootstrap 

0.359 0.886 0.205 0.928 0.155 0.902 0.111 0.910 0.077 0.930 

 

Table 3.14: Relative Width - Width and Coverage for Case C: Symmetric Normal, Skewness = 0 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.368 0.974 0.211 0.976 0.163 0.984 0.110 0.970 0.074 0.972 

Simple 
Bootstrap 

0.320 0.908 0.185 0.930 0.141 0.936 0.100 0.904 0.070 0.934 

Percentile 
Bootstrap 

0.321 0.966 0.185 0.958 0.141 0.964 0.100 0.950 0.070 0.960 

Normal with 
Bootstrapped SE 

0.321 0.950 0.185 0.954 0.141 0.964 0.100 0.940 0.070 0.946 

Normal with Log- 
transformed 
Buffer index 

0.323 0.954 0.186 0.958 0.142 0.966 0.100 0.938 0.070 0.950 

BCa Bootstrap 0.324 0.940 0.186 0.958 0.142 0.956 0.100 0.940 0.070 0.942 

Studentized 
Bootstrap 

0.291 0.868 0.166 0.886 0.125 0.892 0.092 0.870 0.066 0.908 
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Table 3.15: Relative Width - Width and Coverage for Case D: Left Skewed Normal, Skewness = -
0.5757 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.350 0.978 0.203 0.982 0.159 0.984 0.104 0.980 0.070 0.974 

Simple 
Bootstrap 

0.294 0.874 0.166 0.912 0.128 0.898 0.091 0.926 0.064 0.942 

Percentile 
Bootstrap 

0.294 0.946 0.166 0.948 0.129 0.938 0.091 0.962 0.064 0.972 

Normal with 
Bootstrapped SE 

0.297 0.938 0.168 0.940 0.129 0.920 0.091 0.944 0.064 0.964 

Normal with Log- 
transformed 
Buffer index 

0.301 0.940 0.168 0.938 0.129 0.916 0.091 0.944 0.064 0.960 

BCa Bootstrap 0.303 0.940 0.168 0.930 0.129 0.930 0.091 0.950 0.064 0.954 

Studentized 
Bootstrap 

0.270 0.832 0.142 0.842 0.107 0.840 0.081 0.878 0.059 0.910 

 
Table 3.16: Relative Width - Width and Coverage for Case E: Bimodal, Skewness = 0.6399 

Sample Size  100 300 500 1000 2000 

Confidence  
Interval 
Procedures 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Width Cove- 
rage 

Normal with 
Asymptotic 
Standard Error 

0.316 0.976 0.174 0.990 0.134 0.968 0.090 0.968 0.062 0.952 

Simple 
Bootstrap 

0.300 0.930 0.160 0.942 0.122 0.930 0.085 0.912 0.059 0.936 

Percentile 
Bootstrap 

0.299 0.972 0.160 0.976 0.122 0.964 0.085 0.950 0.059 0.948 

Normal with 
Bootstrapped SE 

0.300 0.970 0.159 0.974 0.122 0.950 0.085 0.938 0.059 0.948 

Normal with Log- 
transformed 
Buffer index 

0.311 0.976 0.161 0.980 0.123 0.956 0.085 0.938 0.059 0.940 

BCa Bootstrap 0.298 0.960 0.159 0.972 0.122 0.944 0.084 0.930 0.059 0.928 

Studentized 
Bootstrap 

0.284 0.912 0.146 0.908 0.111 0.898 0.080 0.896 0.057 0.922 
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4.0 HYPOTHESIS TEST 

This chapter presents the one-sample hypothesis test procedures for the three travel 
time reliability metrics - buffer index, modified buffer index, and relative width. Using 
Theorem 3, 4, and 5, and the limiting standard error result (equations 2.13, 2.15, and 
2.17), we construct hypothesis testing procedures for the three reliability indices studied 
in this project. Table 4.1 presents the test statistic, rejection region, and p-values for the 
lower-tailed, two-tailed, and upper-tailed hypothesis tests. Use equations (2.2), (2.4), 

and (2.6) for �̂� for the buffer index, modified buffer index, and relative widths 

respectively. Note that �̂�𝛽 ̂ = √
�̂�𝐵
2

𝑛
  and use equations (2.13), (2.15), and (2.17) for �̂�𝐵

2 for 

the buffer index, modified buffer index, and relative widths respectively. 

Table 4.1: One-Sample Hypothesis Test  

Hypothesis Test Statistic Rejection region for large n 
 

P-value 

𝐻0: 𝛽 = 𝛽0 
𝐻𝐴: 𝛽 < 𝛽0 𝑏 =

�̂� − 𝛽0
�̂�𝛽 ̂

 
𝑏 ≤ 𝑧𝛼 Φ(𝑏) 

𝐻0: 𝛽 = 𝛽0 
𝐻𝐴: 𝛽 ≠ 𝛽0 

|𝑏| ≥ 𝑧𝛼
2
 |𝑏| ≥ 𝑧𝛼

2
 

𝐻0: 𝛽 = 𝛽0 
𝐻𝐴: 𝛽 > 𝛽0 

𝑏 ≥ 𝑧𝛼 1 −Φ(𝑏) 

 
In Table 4.1, 𝛽0 corresponds to the null value or the prior belief about the buffer index or 
the modified buffer index or the relative width. For example, if on a roadway segment, the 
travel time reliability is known to be 0.7, then the null hypothesis becomes 𝐻0: 𝛽 = 0.7. If 

one suspects or want to test the fact that the travel time reliability has worsened, then one 

will choose the alternative hypothesis of 𝐻𝐴: 𝛽 > 0.7. The test statistic will be 𝑏 =
�̂�−0.7

�̂�𝛽 ̂
. If 

one is conducting the test at 5% significance, then 𝛼 = 0.05, 𝑧𝛼 = 1.645 and therefore one 
will reject the null if 𝑏 ≥ 1.645 or fail to reject the null otherwise.  

 
Table 4.2 gives the power of the above asymptotic test for the upper tailed hypothesis 
tests of buffer index. The hypothesis test studied is  𝐻0: 𝛽 = 0.6178 against  𝐻𝐴: 𝛽 >
0.6178 at 5% level of significance. The null value is 0.6178. The first row of the table 

corresponds to the case where the travel time samples are generated from the 
lognormal distribution with a true value of 𝛽 of 0.6178. We generated 1000 sets of 
samples of sizes 100, 300, 500, 1000, 2000 and identified the proportion of times the 
null is rejected. In this case, the proportion of times the null is rejected corresponds to 
the probability of type 1 error which is 0.05. The probabilities estimated by simulation 
0.03, 0.03, 0.028, and 0.041 are lower than 0.05, indicating the reliability of this test. 
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The second row of Table 4.2 is when the travel times are generated from a population 
with a slightly higher 𝛽. At higher samples, the hypothesis test correctly rejects the null 
hypothesis with a probability of 0.92. In general, as expected, as the true buffer index of 
the population deviates from the null value of 0.6178, the power of the test increases. 
Also, the probability of correctly rejecting the null hypothesis increases with sample size.  
Table 4.3 gives the power of the upper tailed hypothesis tests of the modified buffer 
index of  𝐻0: 𝛽 = 0.7053 against  𝐻𝐴: 𝛽 > 0.7053 at 5% level of significance. Table 4.4 

presents the power of the upper tailed hypothesis tests of the relative width. The 
hypothesis test studied is 𝐻0: 𝛽 = 0.8559 against  𝐻𝐴: 𝛽 > 0.8559 at 5%  level of 
significance. As seen in Table 4.3 and Table 4.4, the same trends are observed for the 
modified buffer index and relative width respectively. 
 
The results also highlight the importance of sample sizes. Samples of size 2000 or 
higher can be easily obtained in high traffic corridors in a week or less time. Even 
assuming a low sampling rate of 1%, with an AADT of 50,000, it is possible to obtain 
2000 observations in only four days (assuming 80% of the daily traffic takes place 
between 6 AM and 7 PM). With technologies based on license plate readings and 
matchings, it is possible to achieve sample rates close to 2000 observations in one day 
in most roadways with AADT higher than 2500.  
 

Table 4.2: Buffer Index - Probability of Rejection for Upper-tailed Hypothesis Test 

Population  for generating travel time 

samples 
Sample Size 

100 300 500 1000 2000 

Lognormal 𝜇 = 6.70, 𝜎 = 0.32, 𝛽 = 0.6178 0.030 0.030 0.028 0.041 0.052 

Lognormal 𝜇 = 6.70, 𝜎 = 0.35, 𝛽 = 0.6877 0.125 0.272 0.387 0.694 0.926 

Lognormal 𝜇 = 6.70, 𝜎 = 0.37, 𝛽 = 0.7232 0.175 0.455 0.667 0.913 0.995 

Lognormal 𝜇 = 6.70, 𝜎 = 0.38, 𝛽 = 0.7589 0.271 0.619 0.834 0.987 1.000 

 

Table 4.3: Modified Buffer Index - Probability of Rejection for Upper-tailed Hypothesis Test 

Population  for generating travel time 

samples 
Sample Size 

100 300 500 1000 2000 

Lognormal 𝜇 = 6.70, 𝜎 = 0.32, 𝛽 = 0.7053 0.028 0.029 0.032 0.037 0.048 

Lognormal 𝜇 = 6.70, 𝜎 = 0.35, 𝛽 = 0.7988 0.101 0.252 0.369 0.668 0.925 

Lognormal 𝜇 = 6.70, 𝜎 = 0.37, 𝛽 = 0.8474 0.151 0.417 0.659 0.905 0.995 

Lognormal 𝜇 = 6.70, 𝜎 = 0.38, 𝛽 = 0.8974 0.231 0.615 0.824 0.988 1.000 

 
Table 4.4: Relative Width - Probability of Rejection for Upper-tailed Hypothesis Test 

Population  for generating travel time 

samples 
Sample Size 

100 300 500 1000 2000 

Lognormal 𝜇 = 6.70, 𝜎 = 0.32, 𝛽 = 0.8559 0.03 0.035 0.024 0.03 0.038 

Lognormal 𝜇 = 6.70, 𝜎 = 0.35, 𝛽 = 0.9471 0.16 0.403 0.581 0.904 0.995 

Lognormal 𝜇 = 6.70, 𝜎 = 0.37, 𝛽 = 0.9933 0.269 0.676 0.895 0.991 1 
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Lognormal 𝜇 = 6.70, 𝜎 = 0.38, 𝛽 = 1.04 0.41 0.874 0.985 1 1 
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5.0 CONCLUSIONS 

This research focuses on conducting statistical inferences and attaching statistical 
guarantees on the travel time reliability measures - buffer index, modified buffer index, 
and relative widths. The multivariate delta method is used to show that the asymptotic 
distribution of the buffer index, modified buffer index, and relative width is normal. A 
formula for the standard error of the three reliability metrics is derived. This result is 
used to arrive at a confidence interval formula for the reliability metrics. The asymptotic 
normality-based confidence interval does not impose any shape requirement on travel 
time distributions and thus is widely applicable. The performance of the Standard 
Normal with Asymptotic Standard Error confidence interval is compared against six 
other bootstrapping confidence intervals on travel time data obtained from a corridor in 
the Portland Metropolitan region, USA. For the buffer index, the Standard Normal with 
Asymptotic Standard Error confidence interval provides consistent coverage over 95% 
for common right-skewed, symmetric, and bimodal travel time distribution shapes. For 
the modified buffer index, Standard Normal with Asymptotic Standard Errors 
consistently delivers higher than 95% coverage for all sample sizes for all right-skewed 
and symmetric cases tested. For the travel time relative widths, Standard Normal with 
Asymptotic Standard Errors consistently achieves 95% for all cases tested. The 
asymptotic normality result is used to derive upper-tailed, lower-tailed, and two-tailed 
one-sample hypothesis tests for the buffer index, modified buffer index, and relative 
widths. Simulation results show that the power of the hypothesis test increases rapidly 
with sample size, which allows researchers and practitioners to easily test the impact of 
factors related to traffic or environmental conditions with relatively small sample sizes. 
 

This research can be extended in multiple directions. One potential direction for future 
research is to derive confidence intervals and hypothesis testing for other travel time 
reliability measures, such as the planning time index. Another direction for research is to 
derive two-sample confidence interval and hypothesis test procedures, which can be 
used for conducting before and after travel time reliability evaluation studies.  There is 
also scope for developing methodologies to compare entire travel time distributions 
rather than relying on reliability metrics which only focus on part of the travel time 
distributions.The developed methods can also be used to arrive at practical estimates of 
changes in traffic or travel times which result in a statistically significantly lower travel 
time reliability metric.  
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