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Abstract: Continuous urbanization and industrialization lead to plenty of rural residents migrating to
cities for a living, which seriously accelerated the population hollowing issues. This generated series
of social issues, including residential estate idle and numerous vigorous laborers migrating from
undeveloped rural areas to wealthy cities and towns. Quantitatively determining the population hol-
lowing characteristic is the priority task of realizing rural revitalization. However, the traditional field
investigation methods have obvious deficiencies in describing socio-economic phenomena, especially
population hollowing, due to weak efficiency and low accuracy. Here, this paper conceives a novel
scheme for representing population hollowing levels and exploring the spatiotemporal dynamic of
population hollowing. The nighttime light images were introduced to identify the potential hollowing
areas by using the nightlight decreasing trend analysis. In addition, the entropy weight approach
was adopted to construct an index for evaluating the population hollowing level based on statistical
datasets at the political boundary scale. Moreover, we comprehensively incorporated physical and
anthropic factors to simulate the population hollowing level via random forest (RF) at a grid-scale,
and the validation was conducted to evaluate the simulation results. Some findings were achieved.
The population hollowing phenomenon decreasing gradually was mainly distributed in rural areas,
especially in the north of the study area. The RF model demonstrated the best accuracy with relatively
higher R2 (Mean = 0.615) compared with the multiple linear regression (MLR) and the geographically
weighted regression (GWR). The population hollowing degree of the grid-scale was consistent with
the results of the township scale. The population hollowing degree represented an obvious trend
that decreased in the north but increased in the south during 2016–2020 and exhibited a significant
reduction trend across the entire study area during 2019–2020. The present study supplies a novel
perspective for detecting population hollowing and provides scientific support and a first-hand
dataset for rural revitalization.

Keywords: population distribution; random forest; nighttime light; modeling; remote sensing

1. Introduction

Three rural issues, including agriculture, countryside, and farmers, have been arous-
ing wide concerns by scholars and have been becoming a top priority of the mission of
the central government of China recently [1]. The rural revitalization strategy released
by the 19th National Congress of the Communist Party of China in 2017 has set a goal to
address the three rural issues, especially the disbalance in terms of urban agglomerations
and rural regions development as well as deficient rural development [2]. The priority
obstacle among the three rural issues is the rural population hollowing out [3]. Population
hollowing out mainly leads to two serious issues. On the one hand, the rural residents,
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especially large numbers of young and vigorous laborers, flock to cities for a living; on
the other hand, the rural land resources have been continuously occupied without rea-
sonable planning, but the old residential estate has not been demolished, which led to
the phenomenon of “external sprawl, internal chaos” [4]. What is more, the rural demo-
graphic structure, especially the quality of the population, has been severely affected by
population hollowing out. The rural demographic structure exhibits senior and children
accumulation, but adults lose features accompanying a variety of social issues such as land
idle and poverty acceleration [5]. The main reason for the population hollowing out is
the accelerated urbanization and the continuous urban–rural transformation process [6].
China, the largest developing country in the world, has to fill the gap of the imbalance
in development in urban and rural areas and server environmental issues, especially air
pollution [7]. Although the speed of urbanization in China is significant, the aggrandize-
ment of population hollowing out featured by the decreasing of the population in rural
regions, numerous abandoned and idle estates were generated due to massive population
migration between urban and rural areas in the past decades [8,9]. The main aims of the
Central Committee No.1 document disclosed in 2018 were realizing rural revitalization and
solving the rural hollowing issue [10]. Hence, it is urgent to solve the population hollowing
out issues for further realizing rural revitalization [11].

One of the key processes for describing the population hollowing out is that quantita-
tively determine the accurate population distribution timely [12]. In contrast, the previous
population data with the administrative boundary are coarse for the updating frequency
and not enough [13]. Meanwhile, the spatial heterogeneity of population distribution
within the political division was always neglected, for the accuracy of the traditional
dataset is limited [14]. Furthermore, the previous survey approaches were time and finance-
consuming [15]. Therefore, it is indispensable to develop a reasonable method to calibrate
the population distribution on the grid-scale to improve the accuracy of the dataset. For-
tunately, remote sensing technology supplies a possibility for retrieving social–economic
parameters [16]. Previous studies have attempted to infer social–economic conditions using
large data, including remotely sensed data and social media data. Large data such as social
media data, the points of interest (POIs) [17,18], street view pictures [19], mobile phone
metadata [20], public transit smartcard data [21], and housing rent data [22] as well as the
remotely sensed data have been widely used to predict socio-economic parameters such
as population [23–26], electricity consumption [27,28], the built-up area detection [29,30],
gross domestic product [31], poverty [32], house vacancy [33], and can be better used in the
fields of describing the socio-economic conditions of urban interior space. Although the
spatiotemporal resolution has been greatly improved and the cost of data acquisition has
been largely reduced by the big data, using big data to determine the population hollowing
out was still a big challenge. To our knowledge, the population hollowing out issues are not
only affected by natural factors but also influenced by anthropic factors. Published studies
mainly evaluated socio-economic phenomena from a single perspective. However, identify-
ing the population hollowing out issues are more complicated than a single socio-economic
phenomenon, and the concept of population hollowing out needs to be comprehensively
described using multi-source data based on multiple perspectives. Additionally, previous
studies on population hollowing out were mainly concentrated on its connotation and
formation mechanism [34], evolution law and stage features [35], affecting factors and
driving forces [36,37], reclamation potential and measure [38], policy-making, et al. [39–42].
Overall, most published research focused on the quantitative determination and regional
spatial heterogeneity of population hollowing out at political boundary scale on a single
time cross-section. However, the spatial and temporal dynamics of population hollowing
out issues at the grid-scale were seldom reported.

Shanxi, Hubei, Hunan, Anhui, Henan, and Jiangxi, located in central China, are some
of the important food production bases, energy raw material bases, equipment manu-
facturing bases, and Chinese comprehensive transportation hub [43]. In past decades, a
large number of rural estate was idle and improvident because numerous rural people
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migrated into urban areas in central China. The inadequate resources, dense population,
undeveloped infrastructure, and complicated physical geography and topographic condi-
tions may lead to population loss. The population hollowing out issues of the six central
provinces in China was not only a simple phenomenon that the rural laborers move from
the countryside to cities and towns but also a serious social issue that a larger number
of young human resources transferred from underdeveloped rural regions to developed
urban regions [44]. Consequently, the population hollowing out issues of the six central
provinces in China are more typical, and conducting related studies is strongly desired
currently. So, the significant contribution of this study is to propose a novel scheme for
quantitatively estimating the population hollowing out level via multiple models based on
nighttime light remotely sensed images and other auxiliary spatial–temporal data in six
provinces of Central China.

Based on the above, the objectives of this study are: (i) to take six provinces of Central
China as the research object, construct a population hollowing index, and calibrate the pop-
ulation hollowness level at grid and township scale based on RF, geographically weighted
regression (GWR), and multiple linear regression using Multi-source spatiotemporal big
data during 2016–2020, (ii) to validate the calibration results based on actual statistical
data, and (iii) to analyze the spatial pattern of the population hollowing out and explore its
spatial–temporal dynamic characteristics.

2. Study Area and Materials
2.1. Study Area

The six central provinces of China, with about 1.03 million km2, have diverse land-
scapes, including mountains, rivers, and plains. The six central provinces with great rainfall
conditions are located in a monsoon climate zone. The areas of the urban region and rural
region in the six central provinces are 1.15 and 3.18 ten thousand km2, respectively [45].
The population and the gross domestic product (GDP) of the six central provinces account
for 28.1% of the Chinese population and 20% of the entire GDP of China [46]. The location
and landcover map of the study area are shown in Figure 1.
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Figure 1. The location and landcover map of the study area. Note: The six central provinces’ land use
(the year 2020) data are made available by the data center of resources and environmental sciences,
Chinese Academy of Sciences http://www.resd.cn (accessed on 1 January 2021).

2.2. Data Sources and Pretreatment

The data used in the present study, including the physical and human geography
dataset, are listed in Table 1. Specifically, the physical geography dataset consisted of digital
elevation model (DEM) data, water vector data, meteorological factors, and normalized
difference vegetation index (NDVI) data.

http://www.resd.cn
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Table 1. Description of the datasets.

Sorts Factors Sources Resolution

Physical geography

DEM http://www.gscloud.cn/
(accessed on 1 January 2021). 2015 (30 m)

Waterbody density (WD) http://www.openstreetmap.org/
(accessed on 1 January 2021). 2016–2020 (Vector data)

Meteorological factors concerning
Atmospheric pressure (PRS),

Relative humidity (RHU),
Temperature (TEM), Wind speed

(WIN), Precipitation (PRE)

http://data.cma.cn/ (accessed on
1 January 2021).

2016–2020 (Monthly
ground-level monitoring

station data)

NDVI https://modis.gsfc.nasa.gov/
(accessed on 1 January 2021). 2016–2020 (250 m)

Human
geography

Point of interest (POI) http://www.openstreetmap.org/
(accessed on 1 January 2021).

2016–2020 (Vector data)
Road density (RD)

GDP Statistical yearbook,
The statistical report, the official

website of each regional statistical
bureau, Census report

2016–2020 (township)Population Statistical data

Related agricultural data

Population density (POP) https://www.worldpop.org/
(accessed on 1 January 2021). 2016–2020 (1000 m)

NPP-VIIRS Monthly nighttime
stable light (NTL) composite data

https://ngdc.noaa.gov/
(accessed on 1 January 2021). 2016–2020 (742 m)

Global NPP-VIIRS-like nighttime
light data

http://doi.org/10.7910/DVN/
YGIVCD (accessed on 1

January 2021).
2000–2015 (15 arc seconds)

Air Pollutants
(CO, NO2, O3, PM10, PM2.5, SO2)

http://www.cnemc.cn/ (accessed
on 1 January 2021).

2016–2020 (Hourly
ground-level monitoring

station data)

The human geography dataset includes POI data, road vector data, GDP data, popu-
lation data, nighttime stable light data, air pollutants data, and related agricultural data.
The POI data and road vector data were collected from the wiki world map database
http://www.openstreetmap.org/ (accessed on 1 January 2021). The GDP data, popula-
tion statistical data, and related agricultural data were made available from the statistical
yearbook, statistical report, and official website of the local statistical bureau. The pop-
ulation statistical data include the registered population, the permanent population, the
total population, the rural permanent population, the total rural population, and the
rural employees. Population (POP) raster data were obtained from the world pop web-
site https://www.worldpop.org/ (accessed on 1 January 2021), and the total number of
people classified by gender and age sets (including 0–14 and over 65) for each grid was
calculated in the study area during 2016–2020. Nightlight images were downloaded from
https://ngdc.noaa.gov/ (accessed on 1 January 2021), and global NPP-VIIRS-like night-
time light data were obtained from http://doi.org/10.7910/DVN/YGIVCD (accessed on
1 January 2021) during 2000–2015 [47]. In addition, the hourly-averaged air observations
during 2016–2020 were from China Environment Monitoring Center (CNEMC).

The data preprocessing is stated below. The raw NPP-VIIRS (Suomi National Polar-
orbiting Partnership-Visible Infrared Imaging Radiometer Suite) NTL (nighttime light) data
have deviation due to the impact of clouds, moonlights, stray lights, fires, volcanoes, gas
flares, background noise, and other ephemeral lights. The raw NPP-VIIRS NTL data have
been processed to remove outliers in the present study. Moreover, annual NPP-VIIRS NTL
data were synthesized from correspondence monthly NPP-VIIRS nighttime light data. All
images were resampled to a spatial resolution of 500 m. China Geodetic Coordinate System

http://www.gscloud.cn/
http://www.openstreetmap.org/
http://data.cma.cn/
https://modis.gsfc.nasa.gov/
http://www.openstreetmap.org/
https://www.worldpop.org/
https://ngdc.noaa.gov/
http://doi.org/10.7910/DVN/YGIVCD
http://doi.org/10.7910/DVN/YGIVCD
http://www.cnemc.cn/
http://www.openstreetmap.org/
https://www.worldpop.org/
https://ngdc.noaa.gov/
http://doi.org/10.7910/DVN/YGIVCD
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(CGCS2000) was selected as a coordinate reference for all datasets, and all layers were
reclassified into 500 m resolution via ArcGIS 10.0 to keep consistency [48]. We processed
missing data and outliers before constructing the database [49]. We used MATLAB, Excel,
ArcGIS10.0, R, and ENVI for data pretreatment, analysis, and mapping. The ordinary
Kriging interpolation method was used to interpolate data into 500 m grid layers [50]. The
zonal statistics tool, tabulate intersection, and summary statistics of ArcGIS10.0 were used
to construct the database [51].

Unit: CO (mg/m3), NO2, O3, PM10, PM2.5 and SO2 (µg/m3); PRS (hPa), RHU (%),
TEM (◦C), WIN (m/s), PRE (mm); DEM (m), WD, and RD (m/m2), POP (person/hm2),
NTL (W/cm2/sr), GDP (RMB 100 million), NDVI (unitless). Note: population statistical
data and related agricultural data were used to calculate PHI at a township scale via
Equation (1) and Table 2, and other data listed in Table 1 were adopted to fit RF and MLR
models and to map PHI distributions at a grid-scale.

Table 2. PHI and weights for each indicator.

Indicators Weights Effects Calculation Methods

Population outflow rate 0.21 positive (Registered population–permanent
population)/Registered population

The ratio of 0–14 years old to the total population 0.18 positive 0–14 years population/Total population
The ratio of the over 65 population to the total

population 0.18 positive Population over 65/Total population

The ratio of rural permanent population to the
total rural population 0.17 negative Rural permanent population/Total

rural population
The ratio of the rural employed population to

the total rural population 0.15 negative Rural employees/Total rural population

Average agricultural land 0.11 positive Total agricultural land area/Total
rural population

3. Methods
3.1. Workflow

The workflow of this research includes three steps that are data collection and prepro-
cessing, model fitting and validation, and the distribution and spatiotemporal dynamic
of population hollowing (Figure 2). First, dependent variables and independent variables
were collected and processed for further analysis. PHI for each township, calculated in
Section 3.2, was selected as dependent variables for Equations (2) and (3). Independent
variables’ value for each township was obtained via the zonal statistics tool in ArcGIS10.0,
and independent variables were listed in Table 1. Second, GWR, regression model, and
RF were fitted based on independent variables listed in Table 1 and dependent variable
calculated in Section 3.2 to determine the quantitative relation between the dependent
variable and independent variables at the township scale [52]. Then the modeling outcomes
were validated. Additionally, potential hollow areas in the study area were identified
using the decreasing trend detection of the night light images. Third, the optimum model
was adopted to map a grid-scale population hollowing distribution. The spatiotemporal
dynamic characteristics of population hollowing were obtained.

3.2. Calculation of Population Hollowing Index Based on Statistical Data

PHI =
m

∑
j=1

W× P (1)

where PHI is the PHI value for each township, m denotes the number of indicator, W is the
weight of each indicator of the population hollowing index [53,54], and P is the normalized
value of each indicator calculated based on methods from Table 2.



Sustainability 2022, 14, 9815 6 of 19

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 20 
 

3. Methods 
3.1. Workflow 

The workflow of this research includes three steps that are data collection and pre-
processing, model fitting and validation, and the distribution and spatiotemporal dy-
namic of population hollowing (Figure 2). First, dependent variables and independent 
variables were collected and processed for further analysis. PHI for each township, calcu-
lated in Section 3.2, was selected as dependent variables for Equations (2) and (3). Inde-
pendent variables’ value for each township was obtained via the zonal statistics tool in 
ArcGIS10.0, and independent variables were listed in Table 1. Second, GWR, regression 
model, and RF were fitted based on independent variables listed in Table 1 and dependent 
variable calculated in Section 3.2 to determine the quantitative relation between the de-
pendent variable and independent variables at the township scale [52]. Then the modeling 
outcomes were validated. Additionally, potential hollow areas in the study area were 
identified using the decreasing trend detection of the night light images. Third, the opti-
mum model was adopted to map a grid-scale population hollowing distribution. The spa-
tiotemporal dynamic characteristics of population hollowing were obtained. 

 
Figure 2. Workflow of the present study. 

  

Figure 2. Workflow of the present study.

The indicator values were calculated with the listed methods in Table 2 using the
datasets in Table 1, and each indicator value was normalized. The entropy weight method
is used to determine the weights for the indicators of the PHI at the township scale in the six
provinces of central China. The weights of population outflow rate, the ratio of 0–14 years
old to the total population, the ratio of over 65 population to the total population, the ratio
of rural permanent population to the total rural population, the ratio of rural employed
population to the total rural population, and average agricultural land are 0.21, 0.18, 0.18,
0.17, 0.15, and 0.11, respectively. Additionally, the positive and negative effects of each
indicator were determined according to the published reference [55].The distribution map
of the PHI at the township scale of the study area was obtained based on Equation (1),
population statistical data, and related agricultural data in Tables 1 and 2 using field
calculation in ArcGIS 10.0.
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3.3. Fitting PHI Prediction Models on a Political Boundary Scale
3.3.1. Geographically Weighted Regression (GWR)

PHIi = β0(ui ,vi)
+ β1(ui ,vi)

· B1 + β2(ui ,vi)
· B2 + . . . + εi (2)

where β0 denotes the intercept of a specific position (ui, vi); the position (ui, vi) represents
the geometric center coordinates of township i; β1 represents the slopes for the factors listed
in Table 1 at a specific location (ui, vi); Bi is the factors’ value listed in Table 1; εi is the bias
of the township i [56–59].

3.3.2. Regression Model

The regression model was used to estimate socio-economic parameters based on
remotely sensed data previously [60,61]. The present study selected the regression model
as the comparison model for evaluating the performance of simulated results.

PHIi = γ0 + γ1X1 + γ2X2 + . . . + εa (3)

where γ0 represents the intercept; γ is the slope for each factor listed in Table 1. X denotes
the factor’s value listed in Table 1; εa is the error term for a specific township.

3.3.3. Random Forest (RF)

The RF algorithm, based on regression tree (CART) analysis and classification, is a
bagging method [62]. The variable selection number (mtry) when branching, the number
of trees of the classification tree (ntree), and the size of the leaf (node size) were necessary
for fitting the RF model [63,64]. The detailed information of the RF model can be found in
the published paper [65].

3.3.4. Validation

The accuracy was evaluated via the 10-folded cross-validation [66]. The entire samples
were reclassified into 10 sets with the same number. Nine sets were selected for fitting
models, and the tenth set was utilized for validation. Next, the same process was conducted
nine times until 10 sets were chosen once as the validation set. In this work, we introduced
determinate coefficients (R2), root mean square error (RMSE), and the mean absolute error
(MAE) to assess accuracy [67–69].

R2 =
∑n

i=1 (PHIe,i − PHI)2

∑n
i=1 (PHIt,i − PHI)2 (4)

MAE =
1
n∑n

i=1|PHIt,i − PHIe,i| (5)

RMSE =

√
1
n∑n

i=1 (PHIt,i − PHIe,i)
2 (6)

where n represents the number of township, PHIe,i is the predicted PHI of the township i,
PHI is the population hollowing Index, PHIt,i represents the actual PHI of township i, and
PHI is the actual average PHI of townships.

3.4. Detecting the Distribution and the Dynamic of Population Hollowing
3.4.1. Mapping the PHI on a Grid-Scale

The optimum method with the best accuracy was chosen to illustrate the PHI map.
The estimated values of the PHI may have some biases. Therefore, we used an index to
correct biases.

PHI′ i,j = PHIi,j × (
PHIi,statistic

PHIi,predicted
) (7)
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where PHI
′
i,j denotes the corrected PHI grid value at pixel j within township i, PHIi,j denotes

the PHI grid value estimated by Equation (2) at pixel j within township i; PHIi, statistic denotes
the PHI calculated by Equation (1) using statistical data in Table 2 at township i, PHIj, predicted
represents the total PHI grid value at township i, and the total PHI grid value at township i
was calculated by zonal statistic tool of ArcGIS 10.0 [70–73].

3.4.2. Detecting the Dynamic of PHI

A trend analysis was used to determine the potential population hollowing areas and
map the dynamic of PHI [74]. The tendency of NTL and PHI values variation could be
determined using Equations (8) and (9).

slope1 =
n ∗∑n

i=1 i ∗NTLi − (∑n
i=1 i)(∑n

i=1 NTLi)

n∗∑n
i=1 i2 − (∑n

i=1 i)2 (8)

slope2 =
n ∗∑n

i=1 i ∗ PHIi − (∑n
i=1 i)(∑n

i=1 PHIi)

n ∗∑n
i=1 i2 − (∑n

i=1 i)2 (9)

where NTLi denotes the DN value of nighttime light images at grid i, PHIi denotes the PHI
value at grid i, and n represents the period; in this paper, n = 5, and i is the time unit [75,76].
The potential population hollowing areas were identified based on slope1. On the one
hand, if the slope1 ≤ 0, it means the total night light of the specific area was decreased, so
these regions were considered as one of the potential population hollowing areas. On the
other hand, if the slope1 > 0 at p ≤ 0.05, significance indicated the total night light of these
regions was increased. So, the areas with increasing total night light were excluded from
the potential population hollowing areas. The areas with slope1 > 0 (p > 0.05) remained
as the other potential population hollowing areas to avoid mistakenly excluding potential
population hollowing areas.

The population hollowing trends were identified based on slope2. The level of PHI
trends was determined by the natural break method in ARCGIS 10.0. The map of PHI was
divided into five sorts, including fast reduction, slow reduction, slow growth, moderate
growth, and fast growth, according to slope2.

4. Results
4.1. Identifying the Potential Population Hollowing Regions via Trend Analysis Based on
NPP-VIIRS-like Nighttime Lights Images

The study area consists of 9254 townships. Slope1 (Equation (8)) was used to determine
the potential population of hollowing townships. The number of townships with slope1 > 0
was 4864. The number of townships with slope1 > 0 and p ≤ 0.05 was 2512, revealing that
the total night light in these areas was significantly promoted. So, areas with slope1 > 0 and
p ≤ 0.05 were excluded for the population may be obviously increased in those regions.
The number of townships with slope1 ≤ 0 was 4390 that indicating the population may
be decreased in those regions because the total night light in these areas was decreased.
Hence, the regions with slope1 ≤ 0 were considered as one of the potential population
hollowing areas. Finally, the number of potential population hollowing townships was
determined after screening according to the rules in Section 3.4 (Table 3). The excluded
townships mainly were the areas with subdistrict offices where the rate of urbanization
was higher than other regions in the rural areas. Among these excluded townships, parts of
them were newly established districts during 2016–2020, such as Taikoo District, Jinzhong
City, and Shanxi Province. Obviously, the excluded areas were mainly distributed in the
southern and northern parts of the research area, and the number of the excluded areas in
the north was larger than in the south. Meanwhile, the distribution features of excluded
areas located in Shanxi, Henan, and Anhui were relatively even. The population hollowing
areas demonstrated accumulated characteristics in the eastern part of Hubei Province and
the northern part of Hunan Province (Figure 3).
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Table 3. The number of potential population hollowing townships.

The Total
Number of
Townships

The Number of
Townships with

Slope1 > 0

The Number of
Townships

Slope1 > 0 and
p ≤ 0.05

The Number of
Townships with

Slope1 ≤ 0

The Number of
Potential

Population
Hollowing
Townships

9254 4864 2512 4390 6742
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4.2. The Evaluation and Comparison of Calibration Models for Population Hollowing

The RF method indicated the best performance with the highest R2, lowest RMSE, and
MAE among the calibration models, followed by GWR and MLR during 2016–2020. The
best outcome was detected in the year 2019, and the RF method demonstrated the best
performance with the highest R2 = 0.6061, lowest RMSE = 0.0477, and MAE = 0.0403 among
the calibration models, followed by GWR and MLR (Table 4 and Figure 4). Therefore, the
RF model was selected for grid-scale population hollowing mapping. In the present work,
the optimal prediction outcome was obtained when mtry = 4 and ntree = 500 were chosen
for fitting the RF model.

4.3. The Distribution and Spatiotemporal Dynamic Characteristic of Population Hollowing

It can be seen from Figure 5 that the PHI was serious in the north of the study area but
not significant in the south of the study area. Specifically, the severe and moderate PHI are
mainly distributed in most of Shanxi Province, the central, eastern, and northeastern parts
of Henan Province, the northern part of Anhui Province, most of Hunan Province, and the
northern part of Jiangxi Province (Figure 5 with orange and red). One of the severe PHI
was detected in the Fenwei Plain located in Shanxi Province, and the other severe PHI was
distributed around the provincial capital or areas with better economic development. The
most PHI of the other five provinces was mainly accumulated in the central part except
for Shanxi Province, but the PHI was slight in remote areas of the five provinces (Figure 5
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with yellow and green). Moreover, the population hollowing phenomenon decreased in
the study area from 2016 to 2020. It was obvious that the PHI with the highest level in 2016
and with the lowest level in 2020. The most serious PHI with a severe level in 2020 was
mainly distributed in Yueyang City (Hunan Province), Shangrao City, and Jiujiang City
(Jiangxi Province) (Figure 5).

Table 4. Evaluating calibration models for population hollowing using R2, RMSE, and MAE.

2016 2017 2018 2019 2020

RF C V C V C V C V C V

R2 0.6076 0.5882 0.6125 0.6033 0.6087 0.5898 0.6246 0.6061 0.6235 0.5877
RMSE 0.0301 0.0462 0.0216 0.0351 0.0214 0.0311 0.0297 0.0477 0.0295 0.0501
MAE 0.0248 0.0371 0.0167 0.0302 0.0116 0.0251 0.0245 0.0403 0.0244 0.0461

GWR C V C V C V C V C V

R2 0.4291 0.3769 0.4425 0.3986 0.4064 0.3751 0.4343 0.4012 0.4289 0.3784
RMSE 0.0763 0.0801 0.0772 0.0869 0.0796 0.0907 0.0737 0.0799 0.0759 0.0844
MAE 0.0681 0.0749 0.0657 0.0705 0.0699 0.0762 0.0676 0.0708 0.0687 0.0738

MLR C V C V C V C V C V

R2 0.1022 0.0917 0.1276 0.0619 0.0954 0.0776 0.0879 0.0691 0.1075 0.0641
RMSE 0.0997 0.1864 0.0912 0.1859 0.1033 1.1793 0.1268 0.1854 0.0955 0.1845
MAE 0.0779 0.1254 0.0736 0.1304 0.0802 0.1289 0.0839 0.1201 0.0725 0.1293

Note: C and V denote the calibration and validation for the models, respectively.
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Note: (a) and (f), (b) and (g), (c) and (h), (d) and (i), and (e) and (j), represent 2016, 2017, 2018, 2019,
and 2020, respectively.
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provinces of central China from 2016 to 2020.

The grid-scale distribution of PHI was mapped via the RF method determined by
Section 4.3 (Figure 6). Clearly, the distribution of PHI at the grid scale was relatively
consistent with the results at the township scale (Figure 5) during 2016–2020 and revealed
a similar trend that the PHI was high in the north and low in the south. Furthermore,
the detailed information at the grid-scale can be detected via Figure 6 that the uneven
distribution features of PHI inside a political boundary can be differentiated. Specifically,
the PHI level was more serious at the grid-scale than the township scale in the Fenwei Plain
and the Yangzi River watershed areas in the year 2020.

Meanwhile, the spatiotemporal dynamic of PHI at grid-scale in six provinces of
central China from 2016 to 2020 was described via trend analysis. Overall, the PHI level
demonstrated a decreased trend in the north and a raised trend in the south in the study
area from 2016 to 2020. Specifically, most parts of Shanxi Province, eastern and central
Henan Province, and northeastern and northern Anhui Province revealed a decreased
trend, especially Henan Province.
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Figure 6. The distribution map of PHI was calibrated via the RF method at a grid-scale in six provinces
of central China from 2016 to 2020.

The PHI in the southern part of the study area indicated the fastest upward trend,
including areas located in the southwestern of Hubei Province and the northwestern
of Hunan Province, the northern of Jiangxi Province as well as the southern of Anhui
Province (Figure 7a). Clearly, the building area increased in northern of the study area,
including Shanxi, Henan, and Anhui, which was inverse to the PHI decreasing change
trend (Figure 7b). That is, the PHI was decreasing in the north of the study area, and which
building area was increasing in the correspondence area. The relationship between PHI
and building area indirectly proved our simulated PHI outcomes were reliable.
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5. Discussion
5.1. The Comparison between Our Scheme and the Previous Studies

The random forest model was adopted as the optimum method for identifying PHI at
the grid-scale in this study. The good performance of RF with relatively higher accuracy
in estimating socio-economic parameters than traditional methods, including MLR and
GWR, has been reported by previous studies [77]. The robustness of RF has also been
confirmed by the current study that the accuracy of RF in identifying PHI outperformed
other methods, including GWR and MLR. We first extended the published studies that the
RF method can be successfully used to identify the population hollowing at a grid-scale.
The possible reason for the higher accuracy of the RF method in detecting PHI than any
other method was the nonlinear relations between affecting factors and PHI. For example,
the PHI was correlated with the location of the natural and human influential factors that
have to be considered from a nonlinear perspective. Hence, the accuracy of MLR and GWR
was lower than the RF method due to the linear hypothesis [78].

Although previous studies have introduced field surveys to determine PHI [36,37], the
field investigation method was time-consuming and expensive and was hard to implement
in a larger region. Meanwhile, some scholars used related indicators to infer the PHI level
at the political boundary scale. However, the indicators method neglected the subtle details
inside the political boundary, and the differences in PHI cannot be detected accordingly.
Moreover, field investigations have been seldomly conducted to verify the reliability and
feasibility of the indicators method, and the accuracy of the estimation of PHI was doubtful.
We improved the accuracy of the PHI estimation model by RF at grid-scale and strengthened
the validation process. The outcomes of the present study confirmed that the scheme of
this paper could be effectively used to identify PHI in a relatively larger region.

5.2. The Possible Reasons and Explanations for the Distribution and Dynamics of Population
Hollowing across the Study Area during 2016–2020

To our knowledge, population hollowing was mainly affected by physical geographical
factors, social and economic development, and disasters or unexpected events [79]. Firstly,
from the location perspective, the six provinces of central China are adjacent to regions
with relatively better economic status, such as Chongqing, and the eastern and southern
coastal areas [80]. Our outcomes demonstrated that the population hollowing phenomena
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were mainly accumulated in central areas except for Shanxi and Henan provinces (Figure 5).
The population hollowing was slight around the boundaries of the study areas because
those regions are close to an urban agglomeration with well economic development that
supplies plenty of job opportunities for residents. So, few people living in the marginal
areas of the study area would like to immigrate to other cities to make a living. On the
contrary, the population hollowing of the inner places was obviously severe for the location
and the distance from the urban areas (Figure 6) [81,82].

Secondly, the topography and physical geographic conditions generated significant
impacts on human activities. For example, the results obtained by us showed that the
population hollowing was serious in the Fenwei Plain, followed by Lvliang Mountains
and Taihang Mountains located in Shanxi Province. The possible reasons for the severe
population hollowing are stated as follows. The large population and inadequate economic
development of Fenwei Plain led to the loss of residents. Meanwhile, the undeveloped
infrastructure facilities of the Lv Liang and Taihang Mountains severely limited the local
economic development, which resulted in a large number of people living in mountain
areas immigrating to urban areas to find jobs. Moreover, although the rank of GDP and the
agricultural products of Henan Province is higher than a majority of provinces of China, a
dense population leads to the limited capability of resources sustaining [83]. Hence, the pop-
ulation hollowing of Henan province was severe, which was consistent with the conclusion
of the current study (Figure 5). Fortunately, the population hollowing of Henan province is
decreasing during the past five years according to the trend analysis in Section 3.4 due to
continued economic development and well physical geographic conditions.

Last but not least, the population of immigrants is not only influenced by natural and
human factors but also affected by national strategies for regional revitalization, national
measures for eliminating poverty, and emergencies or disasters [84]. The outcomes of our
study indicated the population hollowing of the entire study area is decreasing year by year
(Figure 7). Especially, the population hollowing of the six provinces has been significantly
reduced from 2019 to 2020. The Chinese government has released a strategy named Plan
for Promoting the Rise of central China (2016–2025) to solve the imbalance in the regional
development of China. Furthermore, the Targeted Poverty Alleviation Plan of China was
published in 2013, and the central government of Chinese has disclosed that the plan was
to be finished in the year 2020. Unexpectedly, the COVID-19 pandemic exhibited seriously
negative effects on the economy and humans globally. A large number of people had to
move to a safe area to protect themselves, and plenty of the population went home during
the epidemic period [85]. Consequently, the population hollowing revealed a significant
decreasing trend in the study area due to the above-mentioned reasons.

5.3. Limitations of the Current Study

Though several findings have been obtained by the current study, some uncertainties
need to be solved further. First, six indicators for PHI at the township scale and twenty
dependent variables for PHI at the grid scale were used for determining the population
hollowing in the present study. Nevertheless, population hollowing is a complicated issue
that may be influenced by both natural and human factors [86]. So, the comprehensive
definition of PHI needs to be further developed for well understanding the PHI. Second,
the limitations of data used in the current study may result in biases in the study results.
The possible reasons for outliers in Figure 4i–h are as follows. The transit time of nighttime
light remotely sensed satellite is about 1 a.m. local time, and the majority of lights for
illumination have been turned off because the residents always rest after 22 o’clock. So, the
PHI value may be overestimated when we used nighttime light remotely sensed images
to infer human activities. Additionally, the resolution of some dependent variables was
inadequate for describing the PHI. For example, the meteorological and pollution data
used in this study were obtained via the kriging interpolation method, which may limit
the accuracy of the calibrated models [87]. Third, the identification of potential population
hollowing areas may have uncertainties. For example, the PHI of the industrial zone may be
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overestimated because the brightness and density of the lights are not very high. Contrarily,
the PHI of tourism sites and airports may be underestimated because the lights are always
bright, but the population density is low [88].

Overall, the mechanism of population hollowing is complicated, and detailed studies
need to be conducted in the future [89]. Hence, the PHI will be strengthened for comprehen-
sively understanding the meaning of the population hollowing phenomenon. Moreover,
the high-resolution dataset of the potential variables will be used to promote the accuracy
of estimation methods [90]. For example, detailed information concerning sectoral GDP,
including industrial GDP, commercial GDP, and services GDP, can be adopted to address
the low accuracy of nighttime light images in estimating economic activities in the daytime.
Furthermore, the accuracy of population hollowing area determination will be improved in
the future via detailed analysis.

6. Conclusions

The present study identified the population hollowing using POI data, nighttime
light remotely sensed images, statistical data, and auxiliary data based on multiple models
across six provinces in central China during 2016–2020. Some conclusions were obtained.
Firstly, the PHI was determined based on the entropy method, and the results showed
that the potential population hollowing regions were mainly distributed in rural areas
of the study area. Secondly, the simulation accuracy of random forest in estimating PHI
outperformed the geographically weighted regression model and multiple linear regression
model. Thirdly, the spatial distribution of population hollowing at township scale and
grid-scale is basically consistent. The spatiotemporal distribution of population hollowing
in central China presented significant characteristics that the PHI value was high in the
north and low in the south of the study area, and the PHI value was decreased in the
north and increased in the south from 2016 to 2020. The population hollowing value of
Shanxi Province and Henan Province was the highest and exhibited the most severe level.
Moreover, the remaining four provinces, including Anhui, Hubei, Hunan, and Jiangxi
province, also indicated severe population hollowing conditions in central parts. Fourthly,
the dynamic of PHI of Henan Province demonstrated the fastest reduction trend during the
past five years. On the contrary, the speedy increase in PHI was identified in the southwest
of Hubei Province and the north of Jiangxi Province. Overall, the PHI value reduced
significantly across the entire study area from 2019 to 2020. The findings of this study urge
local governments to pay more attention to the population hollowing issue. Meanwhile, the
scheme used in the current study supplies an economical and efficient method to simulate
and detect the distribution and dynamics of population hollowing using spatiotemporal
datasets. Meanwhile, the outcomes of this work can support governments in making
decisions for realizing the strategy of rural vitalization.
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