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ABSTRACT
In this paper we study the sum ∑p≤x � (np), where � (n) denotes the number of divisors of n, and {np} is a sequence of integers

indexed by primes. Under certain assumptions we show that the aforementioned sum is ≪ x as x → ∞. As an application,

we consider the case where the sequence is given by the Fourier coe�cients of a modular form.
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1. INTRODUCTION
Starting with the early work of Bellman and Shapiro, Erdős, and Hooley in the 1950s, there has

been an interest in estimating the average number of divisors over polynomial values. Given an

irreducible polynomial F (x) ∈ ℤ[x], a classical result of Erdős [4] asserts that

x log x ≪ ∑
n≤x

� (F (n)) ≪ x log x, as x → ∞. (1.1)

In the case of a quadratic polynomial F , this can be strengthened to give an asymptotic formula of the

form ∑n≤x � (F (n)) ∼ �x log x for some constant � depending on F (see [6] and [7] for an expression

of � in terms of Hurwitz class numbers). No such results have been shown for polynomials of higher

degree.

Another averaging result mentioned in [4], this time over primes p, is that

∑
p≤x

� (F (p)) ≪ x. (1.2)

When F (x) = x + a, a ≠ 0, we obtain the Titchmarsh divisor problem, which is concerned with the

average number of divisors over shifted primes. As it is well known, one has again an asymptotic

formula ∑p≤x � (p + a) ∼ Cx , for some explicit constant C depending on a.
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Motivated by the Titchmarsh divisor problem, one can study the behavior of

∑
p≤x

� (np), (1.3)

where the np’s are quantities of arithmetic signi�cance, such as natural invariants associated to

objects arising from arithmetic geometry. In this direction, Akbary and Ghioca [1] examined a

version of geometric �avor, in the context of abelian varieties.

Another notable result is due to Pollack [12], who investigated the average number of divisors of

|E(Fp)|, for elliptic curves E over ℚ. Pollack’s strategy is based on a re�nement of Erdős’s original

idea from [4], which is also outlined in Elsholtz and Tao [3, Section 7]. A remark in [12] suggests that

Erdős’s method is amenable to the sum in (1.3) when the np ’s are given by the Fourier coe�cients

of a cuspidal eigenform without complex multiplication (non-CM).

The purpose of this note is to supply a proof of the above remark. In fact, we consider a somewhat

more general setting that includes sequences {np} of integers indexed by prime numbers, subject to

two assumptions:

(H1) There exists a �xed positive integer k such that |np | ≤ pk for all primes p.

(H2) There exists a �xed number c ∈ (0, 1) such that

#{p ≤ x ∣ np ≠ 0 and np ≡ 0 (mod m)} ≪
� (x)
'(m)

,

holds uniformly for all positive integers m ≤ xc , and the implied constant depends only on

the sequence. As usual, � (x) = ∑p≤x 1 and ' is Euler’s totient function.

THEOREM 1.1. Let {np} be a sequence of integers indexed by prime numbers, for which (H1) and (H2)

hold. Then

∑
p≤x
np≠0

� (np) ≪ x as x → ∞.

It is important to recognize that another paper of Pollack [11] gives, under some assumptions,

an upper bound for sums of the form ∑n≤x an�r (n), where {an} is a sequence of nonnegative

real numbers and �r (n) is the r-fold divisor function. In principle, it should be possible to recover

Theorem 1.1 by following the line of reasoning from [12], with some modi�cations. Nonetheless,

we have included an argument in order to give a complete proof of the following result, which is

our main focus.

COROLLARY 1.2. Let f = ∑n≥1 anqn be a non-CM newform of weight k ≥ 2 with integer Fourier

coe�cients. Then under GRH we have that

∑
p≤x
ap≠0

� (ap) ≪ x as x → ∞. (1.4)

Corollary (1.2) improves an estimate of Gun and Murty [5], who showed that

x ≪ ∑
p≤x
ap≠0

� (ap) ≪ x(log x)A, (1.5)

for some absolute constant A depending on f . The assumption on the Generalized Riemann Hy-

pothesis (GRH) is required, as in [5], for the use of an e�ective version of the Chebotarev density

theorem, which allows for the veri�cation of (H2). Combining (1.4) with the lower bound from

(1.5) it follows that, conditional on GRH, the order of magnitude for the divisor sum over Fourier

coe�cients is x . In the spirit of the Titchmarsh divisor problem, it would not be unreasonable to

expect that this sum is in fact asymptotic to Cx , for some constant C depending on f . However,

establishing this asymptotic relation may be beyond the capabilities of the current methods, even

under GRH.
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2. PRELIMINARIES
In this section, we brie�y recall some key facts about smooth numbers, which are then used to

establish two technical results that will play a role in the proof of Theorem 1.1.

For X ≥ Y ≥ 2, denote by S(X, Y ) the set of all positive integers not exceeding X and free of

any prime divisors larger than Y . These numbers are sometimes referred to as being Y -smooth, or

Y -friable. Also denote by Ψ(X, Y ) the cardinality of S(X, Y ), and by u the ratio logX / log Y .

In the range

1 ≤ u ≤ (1 − ")
log x

log log x
with " > 0 being �xed, it is known that

Ψ(X, Y ) ≪ X exp(
−u log u

2 ) . (2.1)

This follows, for example, from the Corollary in [2, Page 15].

Another standard result [8, Page 790] is that

Ψ(X, (logX )� ) = X 1−1/�+O(1/ log logX ) (2.2)

for any �xed � > 1.
We now use the estimates (2.1) and (2.2) to sum over certain smooth numbers the functions 1/n

and 1/'(n), respectively.

LEMMA 2.1. Assume c ∈ (0, 1) is a constant. If r ≥ 1/c is a large enough integer in the range x1/r >
(log x)2, then letting x → ∞ we have

∑
d∈S(xc ,x1/r ), d≥xc/4

1
d
≪ (log x) exp(−

cr log r
8 ) .

If x1/r ≤ (log x)2 then the above sum is ≪ x−� for some � > 0.

Proof. Note that

∑
d∈S(xc ,x1/r ), d≥xc/4

1
d
= ∫

xc

xc/4

dΨ(t, x1/r )
t

=
Ψ(xc , x1/r )

xc
−
Ψ(xc/4, x1/r )

xc/4
+ ∫

xc

xc/4

Ψ(t, x1/r )
t2

dt.

If x1/r > (log x)2 then by (2.1) we get

Ψ(t, x1/r ) ≪ t exp(−
cr log r
8 ) ,

and, as a result, the required sum of 1/d is bounded by (log x) exp(−cr log r/8).
Now assume that x1/r ≤ (log x)2. We also suppose that x is large enough so that log x ≥ (4/c)4.

Then (log t)8/3 ≥ (log x)2 whenever t ≥ xc/4. Using (2.2) we get

Ψ(t, x1/r ) ≤ Ψ(t, (log t)8/3) = t5/8+O(1/ log log t),

which is eventually bounded by t3/4, as t tends to in�nity (with x). It follows that the required sum

of 1/d is bounded by some negative power of x . □

LEMMA 2.2. With the notation from Lemma 2.1, we have

∑
d∈S(xc ,x1/r ), d≥xc/4

1
'(d)

≪ (log x) exp(−
cr log r
16 )

if x1/r > (log x)2. Otherwise, the sum is ≪ x−� (log log x) for some � > 0.
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Proof. For the �rst statement, we use the Cauchy-Schwarz inequality

⎛
⎜
⎜
⎝

∑
d∈S(xc ,x1/r ), d≥xc/4

1
�(d)

⎞
⎟
⎟
⎠

2

≪
(

∑
d≤xc

d
�(d)2)

⎛
⎜
⎜
⎝

∑
d∈S(xc ,x1/r ), d≥xc/4

1
d

⎞
⎟
⎟
⎠
.

Since ∑d≤X (
d

�(d))
2
≪ X , summation by parts gives

∑
d≤X

d
�(d)2

= ∑
d≤X

(
d

�(d))

2 1
d
≪ logX.

The conclusion now follows from Lemma 2.1. The second statement is also a consequence of

Lemma 2.1 and the inequality

1
'(d)

≪
log log d

d
.

□

3. PROOF OF THE THEOREM
Our goal is to show that

∑
p≤x
np≠0

� (np) (3.1)

is ≪ x as x → ∞. To this end, we will employ the method developed originally by Erdős in [4], and

re�ned by Elsholtz and Tao [3]. We follow closely an adaptation of this method due to Pollack [12]

(see also [11]), who applied it in the context of elliptic curves.

For every nonzero term of the sequence np we consider its prime factorization:

|np | = p1… pJ , (3.2)

where the prime factors are arranged in nondecreasing order, and repetitions are allowed. Pick the

largest index j ≤ J such that

p1… pj ≤ xc . (3.3)

If no such index exists (i.e., j = 0), then all prime divisors of np are greater than xc , and so � (np) = O(1)
by the assumption (H1). The contribution of these terms np towards (3.1) is trivially ≪ x . Hence,

without loss of generality, we may assume that j ≥ 1.
Next we consider the terms np for which the corresponding quantities J and j are close, that is

J − j = O(1). In this case, the submultiplicative property of the divisor function � , in combination

with (3.3), implies that

� (np) ≤ � (p1… pj )� (pj+1) … � (pJ )

≤ � (p1… pj )2O(1)

≪ ∑
d≤xc

np≡0 (mod d)

1.

It follows that the contribution of all the primes of this type towards (3.1) is at most

∑
d≤xc

#{p ≤ x ∣ np ≠ 0 and np ≡ 0 (mod d)},

which by (H2) is bounded above by

� (x) ∑
d≤xc

1
�(d)

. (3.4)
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It is known that ∑d≤X 1/�(d) ≪ logX ; in fact, the following more precise estimate holds (see [13]):

∑
d≤x

1
�(d)

=
315� (3)
2�4 (

log x +  −∑
p

log p
p2 − p + 1)

+ O(
(log x)2/3

x ) ,

where  is the Euler-Mascheroni constant. Therefore, the sum in (3.4) is ≪ x , as desired.

We now turn to estimating the contribution of the coe�cients ap for which the corresponding

di�erence J − j is not bounded above by an absolute constant. To be more speci�c, we will assume

that J − j ≥ (2k + 1)/c.
If pj+1 ≥ xc/2, then the fact that the prime factors are non-decreasing implies

|np | = (p1… pj )(pj+1… pJ )
≥ pj+1… pJ
≥ x (J−j)c/2 ≥ x (2k+1)/2,

which contradicts (H1): |np | ≤ pk ≤ xk . Thus

pj+1 < xc/2

and

p1… pj > xc/2, (3.5)

for otherwise p1… pj+1 < xc , so j would no longer be the largest index in (3.3).

De�ne r to be the positive integer such that

x1/(r+1) ≤ pj < x1/r . (3.6)

Equation (3.6) shows that the quantity p1… pj is x1/r -smooth, i.e., all its prime factors are at most

x1/r . This is where the results from Section 2 will come into play. As seen there, it will be convenient

to treat two cases, depending on the range for r .
CASE 1. x1/r > (log x)2.

The prime factors pj+1,… pJ are all at least x1/(r+1), so their product is at least x (J−j)/(r+1). At the

same time, this product does not exceed |np | ≤ xk (again, by (H1)). Therefore J − j ≤ (r + 1)k, which

gives

� (pj+1… pJ ) ≤ 2J−j ≤ 2(r+1)k ≪ 2rk

and as a result

� (np) ≪ � (p1,… pj )2rk

= 2rk ∑
d ∣p1,…pj

1.

Using the square root trick, we can restrict this sum to divisors d that are at least (p1… pj )1/2, which

by (3.5) is at least xc/4. Hence

� (np) ≪ 2rk ∑
d∈S(xc ,x1/r ), d≥xc/4

np≡0 (mod d)

1. (3.7)

We obtain that the contribution towards (3.1) from these primes is

≪ ∑
r
2rk ∑

d∈S(xc ,x1/r ), d≥xc/4
#{p ≤ x ∣ np ≠ 0 and np ≡ 0 (mod d)}.

Assumption (H2) together with Lemma 2.2 shows that the previous sum is

≪ � (x)∑
r
2rk ∑

d∈S(xc ,x1/r ), d≥xc/4

1
�(d)

≪ x∑
r
2rk exp(−

cr log r
16 ) .
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Since ∑r 2rk exp(−cr log r/16) converges, we get that the expression above is ≪ x .

CASE 2. x1/r ≤ (log x)2.
We start with the inequality

� (n) ≪ exp(
log n

log log n)
valid for all n ≥ 3. This follows, for example, from the explicit estimation ([10])

max
n≥2

log � (n) log log n
log 2 log n

≈ 1.5379.

Now instead of (3.7), we obtain

� (np) ≪ exp(
log x

log log x)
∑

d∈S(xc ,x1/r ), d≥xc/4
np≡0 (mod d)

1.

Using Lemma 2.2 again, we see that the contribution towards (3.1) is

≪ � (x) exp(
log x

log log x)
x−� log log(x)∑

r
1,

for some � > 0. The fact that this expression is ≪ x follows immediately from (3.6), which ensures

that r ≤ log(x)/ log(2), and thus ∑r 1 ≪ log(x).
The proof of Theorem 1.1 is now complete.

4. PROOF OF THE COROLLARY
We shall check that the two necessary assumptions of Theorem 1.1 are veri�ed. Since it is clear

that (H1) is implied by the Ramanujan bound: |ap | ≤ 2p(k−1)/2, we only need to establish (H2). As we

explain below, this is a consequence of an e�ective version of the Chebotarev density theorem.

Fix an integer m ≥ 1. Let

f (z) = ∑
n≥1

anqn (q = e2�iz)

be a non-CM newform of weight k ≥ 2, level N and character � , with integer Fourier coe�cients.

Associated to f and m is a Galois representation

�m ∶ Gal(ℚ/ℚ)→ GL2(ℤ/mℤ)

with the property that if p is a prime not dividing mN then

tr �m(Frobp) ≡ ap (mod m)

and

det �m(Frobp) ≡ � (p)pk−1 (mod m),
where Frobp denotes a Frobenius element at p.

Let Km the sub�eld of ℚ �xed by the kernel of �m . De�ne

Cm ∶= {g ∈ Im(�m)∶ tr(g) ≡ 0 (mod m)},

and put

�(m) =
|Cm |

|Gal(Km/ℚ)|
.

Note that Cm is nonempty because it contains the image of complex conjugation. Moreover, by the

Chebotarev density theorem

#{p ≤ x ∶ ap ≡ 0 (mod m)} ∼ �(m)� (x).

We are interested in the subset where ap ≠ 0, namely

� (x,m) ∶= #{p ≤ x ∶ ap ≠ 0 and ap ≡ 0 (mod m)}.
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Assuming GRH, an e�ective version of the Chebotarev Theorem (see [9, Lemma 5.3]) gives that for

x ≥ 2 we have

� (x,m) = �(m)� (x) + O(m3x1/2 log(mNx)) + O(x3/4).
As explained in [5, Page 235], for an upper bound on �(m) one can use the quantity

∏
�n∥m

�
�n−1(�2 − 1)

≤
1
m

∏
� ∣m

�
� − 1

=
1

'(m)
.

Therefore, under GRH, we obtain that the inequality

� (x,m) ≪
� (x)
'(m)

holds uniformly for all m ≤ x1/9, so c = 1/9 satis�es (H2).

The conclusion of the corollary is now clear from Theorem 1.1.
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