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Abstract
To preserve wetland ecosystem function, federal and state agencies have developed assessment procedures to better manage
remaining wetland areas. Currently, wetland assessments do not consider microorganisms when determining wetland quality.
This is notable, because fungi are often the primary decomposers of organic material and thus important players in nutrient
cycling. The objective of this study is to quantify how wetland quality, as measured using the Ohio Rapid Assessment Method
(ORAM), relates to fungal community composition. We sampled soils from six depressional emergent marshes in Ohio belong-
ing to each of the three ORAM quality categories, assessed soil physicochemical properties, and recovered fungal DNA.We then
determined if wetland quality as expressed by the ORAM reflects soil health. Our results indicate that ORAM scoring method-
ology significantly explains differences in fungal community composition between wetlands. We also found that soil physico-
chemical properties not currently included in the ORAM are strong drivers of fungal community composition, particularly bulk
density, pH, soil organic matter, and soil moisture. Overall, our results suggest fungal community composition reflects wetland
quality as assessed by the ORAM, and that the ORAM and potentially other wetland assessments could better capture the soil
environment by including easily measured soil physicochemical properties.

Keywords Exact Sequence Variant (ESV) . Fungi . Marsh . Ohio .WetlandQuality

Introduction

To facilitate the regulation and restoration of wetlands, federal
and state agencies established assessment procedures to mon-
itor wetland quality (Fennessy et al. 2007). The “quality” of
wetlands is largely determined by metrics that characterize
their condition or the degree of anthropogenic disturbance
(Mack 2001a). High quality, high functioning wetlands are
generally considered to be pristine, having experienced little
anthropogenic disturbance, and are capable of carrying out
ecosystem services (Miller and Gunsalus 1999; Mack

2001a; Berglund and McEldowney 2008; Hruby 2014). In
contrast, low quality wetlands are heavily degraded and as a
result, are less functional and provide fewer ecosystem ser-
vices than high quality wetlands.

To evaluate wetland quality, the United States
Environmental Protection Agency recognizes three levels of
assessment that vary in intensity and requisite expertise
(Fennessy et al. 2007). Level 1 assessments are cursory eval-
uations that take little time and do not require a visit to the site
in question. Level 3 assessments are in-depth field investiga-
tions that focus on one aspect of a wetland such as flora or
fauna. Level 2, or rapid assessments, require 24 h or less to
complete and incorporate several descriptive metrics that are
tied to wetland functions.

Common rapid assessment metrics include wetland size,
width of upland buffers, hydrology, and plant community
composition (Miller and Gunsalus 1999; Mack 2001a;
Berglund and McEldowney 2008; Hruby 2014). Wetland size
or area can determine a wetland’s ability to serve as habitat for
a range of wetland flora and fauna (Brown and Dinsmore
1986; Babbitt 2005). Consequently, larger wetlands score
higher in wetland assessments although smaller wetlands
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may serve as habitat for unique species (Semlitsch and Bodie
1998; Mack 2001a). Upland buffers protect the functional
integrity of the wetlands they separate from human distur-
bances and are typically scored using average buffer width,
with wide buffer zones (≥ 50 m) providing greater nutrient
filtration and support of flora and fauna (Castelle et al. 1994;
Gilliam 1994; Burke and Gibbons 1995; Mack 2001a;
Semlitsch and Bodie 2003; Stapanian et al. 2016). Wetland
hydrology, assessed by water depth, hydroperiod, water
sources, and hydrologic regime alterations (e.g. drainage tiles,
ditches, dams), regulates soil anoxia, which in turn controls
nutrient removal and carbon sequestration (Miller and
Gunsalus 1999; Mack 2001a; Fisher and Acreman 2004;
Kimmel et al. 2008; Kayranli et al. 2009; Hruby 2014).
Finally, wetland vegetation, which is scored based on the
number and interspersion of different vegetation classes (e.g.
aquatic, emergent, scrub-shrub), plant diversity, and the abun-
dance of native and invasive plants, plays an important role in
nutrient cycling (Miller and Gunsalus 1999; Mack 2001a;
Fisher and Acreman 2004; Kimmel et al. 2008; Kayranli
et al. 2009; Hruby 2014). Increases in wetland plant functional
diversity, for example, often lead to reduced methane emis-
sions (Bouchard et al. 2007).

Despite its importance in wetland ecosystem function, few
wetland assessments consider the soil environment.
Assessments that currently include soil based metrics assess
soil on a coarse scale considering only recent soil disturbances
or by cursory assessments of soil type (e.g. organic or mineral)
as opposed to any quantifiable soil parameter such as micro-
organism community structure, bulk density (BD), soil organ-
ic matter (SOM), or available soil nutrients (Mack 2001a;
Hruby 2014). A need for incorporating soil based metrics into
assessments was recently highlighted when it was shown that
wetlands with similar quality scores, determined using the
Ohio Rapid Assessment Method (ORAM), did not group to-
gether when soil physicochemical properties were considered
(Rokosch et al. 2009). Additionally, certain soil metrics were
identified to be promising metrics to include in assessments
due to trends they exhibited with swamp quality scores. For
instance, BD was negatively related to swamp quality and
SOM was positively related to swamp quality, with higher
quality swamps having less compact soils andmore SOM than
low quality swamps (Rokosch et al. 2009).

Here we propose strengthening current methods by incor-
porating soil microorganisms that regulate valued wetland
functions such as nutrient cycling and the breakdown of harm-
ful chemicals (Gutknecht et al. 2006; Faulwetter et al. 2009).
Specifically, including measurements of fungi could greatly
improve current assessment methods because fungi perform
vital ecosystem functions as plant symbionts, saprobes, and
pathogens (Blaney and Kotanen 2001; Thormann 2006;
Smith and Read 2008; Neori and Agami 2017). Fungi that
act as saprobes are the primary decomposers in both upland

and wetland ecosystems and include white, brown, and soft
rot fungi which degrade lignin, cellulose and hemicellulose
contributing to the build-up of partially decomposed SOM in
wetlands (Hibbett and Donoghue 2001; Thormann 2006).
Mycorrhizal fungi, which exchange immobile soil nutrients
such as phosphorous (P) and nitrogen (N) for carbon (C) from
their plant hosts, comprise the largest group of fungal symbi-
onts in wetlands and include arbuscular mycorrhizal (AM)
and ectomycorrhizal (EM) fungi which associate with herba-
ceous and woody plants respectively (Smith and Read 2008;
Neori and Agami 2017). Finally, fungi that act as plant path-
ogens in both upland and wetland ecosystems can structure
plant communities due to differences in virulence, tolerance,
and susceptibility in host identity and can be important in
determining the establishment of invasive plants (Mitchell
and Power 2003; Inderjit and van der Putten 2010; Rúa et al.
2011). By understanding the fungal functional guilds present
in wetlands of differing quality, the potential functional capac-
ity of the fungal community at each wetland type can be better
understood allowing for improved land management.

The forces that determine the structure and function of
belowground fungal communities include both biotic and abi-
otic properties, such as vegetation and soil physicochemical
properties. For instance, the richness of saprotrophic and mu-
tualistic fungi typically increases with increasing plant rich-
ness, possibly as a product of increased plant richness gener-
ating a more heterogeneous soil environment allowing for
greater resource partitioning in below-ground communities
(Wardle 2006; Hiiesalu et al. 2014; Hiiesalu et al. 2017).
Also, soil properties such as soil nutrient availability (partic-
ularly N and P), SOM, and pH are important determinants of
fungal community richness and composition, with differences
in EM fungi and saprotroph richness explained by the amount
of SOM, C:N ratios, and pH (Erlandson et al. 2016; Glassman
et al. 2017; Hiiesalu et al. 2017).

The primary objective of this study is to quantify how the
quality of freshwater depressional marshes, as measured using
the ORAM, relates to fungal community composition as a first
step in determining if current assessment methods need to be
adjusted to account for microbial communities as proxies for
healthy ecosystems. The ORAM, which is comprised of six
metrics: (1) wetland size, (2) upland buffer width and sur-
rounding land use, (3) hydrology, (4) substrate disturbance
and habitat development, (5) special wetland status (e.g. bogs,
fens, etc.), and (6) wetland vegetation, is used in Ohio to
rapidly assess wetland quality. The ORAM scores wetlands
on a scale of 0 to 100 based on the six metrics and categorizes
them into one of three quality categories: Category 1,
Category 2, and Category 3 (Mack 2001a). Category 1 wet-
lands are low quality (highest disturbance and lowest func-
tional value) and are afforded little regulatory protection by
the Ohio Environmental Protection Agency (OH EPA).
Category 3 wetlands are high quality (lowest disturbance
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and highest functional value) and are a priority for protection
by the OH EPA.

To achieve this objective, we recovered soil fungal com-
munities from six natural marshes within the state of Ohio that
represent the three ORAM quality categories. Using the
Illumina MiSeq platform to sequence soil DNA, we deter-
mined the diversity and composition of the fungal community
at each marsh.We used this data to address the central hypoth-
esis that marshes with higher quality ratings will have more
diverse fungal communities that differ in composition from
lower quality marshes. We additionally identified the role of
soil physicochemical properties and vegetation in structuring
fungal communities, with particular emphasis on soil proper-
ties which are seldom included in wetland assessments.
Together we combine these data as an important first step in
determining if current wetland assessment frameworks would
benefit from the addition of soil based metrics.

Methods

Study Sites

We identified six depressional marshes with emergent vegeta-
tion (Table 1) in the state of Ohio using the National Wetland
Inventory (NWI; https://www.fws.gov/wetlands/data/mapper.
html) and previous ORAM scoring data provided by the OH
EPA. We assessed the quality of each marsh using the ORAM
v. 5 methodology (Table S1; Mack 2001a) and conducted a
field survey of each marsh’s vegetation during Summer 2017.
We assessed percent cover of individual plant species, bare
ground, and standing water visually along five transects per
marsh using a 1 m2 quadrat at equal intervals, for a total of ten
quadrats per transect and 50 quadrats per marsh (note, that
transect length varied and was approximately the edge-to-
edge distance of the wetland; Magee et al. 1993). We then
calculated the floristic quality assessment index (FQAI;
Andreas et al. 2004: Eq. 6). We used the FQAI as a secondary
measure of the quality of marsh vegetation because it is a more
objective measure based on a plant’s coefficient of conserva-
tism (C of C) or observed sensitivity to disturbance and fidel-
ity to habitat (Andreas et al. 2004). The FQAI is also incorpo-
rated into the Vegetation Index of Biotic Integrity (VIBI;
Mack 2004) which was used to calibrate the ORAM (Mack
2001b).

To account for within-marsh variation due to environmen-
tal gradients, we established soil sampling stations within each
marsh following a stratified random design. Using data gen-
erated from the vegetation surveys, we divided each site into
two or three strata delineated by dominant plant communities
using the hclust function from the Cluster package (Maechler
et al., 2017; Table 1). From each stratum, we randomly select-
ed five of the surveyed quadrats for a total of 10 or 15 soil

sampling stations (quadrats) per marsh and a total of 70 sam-
pling stations in the study.

Soil Core Sampling

To measure soil physicochemical properties, we collected soil
cores in July, August, and September of 2017 using PVC soil
corers (11.5 cm depth × 10 cm diameter). From each sampling
station, we collected two soil cores from opposing corners of
the quadrat for a total of 140 cores. Cores were placed on ice;
transported back to the lab for immediate determination of soil
moisture and bulk density; and then stored at 4 °C for three
months until further processing.

For extraction of DNA from soil, we collected an addition-
al soil core from the center of each quadrat using a PVC corer
(11.5 cm depth × 10 cm diameter) for a total of 70 cores across
all six marshes.We subsampled each DNA core in the field by
homogenizing the soil and packing two 1.5 mL centrifuge
tubes with approximately 1 g of soil from the homogenized
core. Soil subsamples were flash frozen in liquid nitrogen,
placed on dry ice, and transported back to the lab for imme-
diate DNA extraction (see below). The remainder of each soil
subsample was stored at -80 °C.

Soil Physicochemical Properties

In the lab, we measured BD and gravimetric water content
(soil moisture) by drying 20 g of field moist soil (105 °C,
24 h). We measured soil pH using a modified version of the
protocol described by Tan (2005). Using a 1:4 ratio of field
moist soil to water, we stirred the soil slurry at 80 rpm for
15 min on an orbital shaker (Lab-Line Instruments Inc.,
Melrose Park, IL) and measured the pH of the slurry using a
Beckman Coulter Φ360 pH/Temp/mV meter (Brea, CA).

The remaining soil was air dried for four weeks, ground,
passed through a 2 mm sieve (No. 10), and pooled per sam-
pling station. A portion of the ground soil was submitted to
Brookside Laboratories (New Bremen, OH) for measurement
of SOM (loss on ignition 360 °C), Mehlic III extractable P,
NO3-N, and NH4-N. The remaining air-dried soil was passed
through a 0.212 mm sieve (No. 70) and submitted to
Washington State University Stable Isotope Core Laboratory
(Pullman, WA) for C:N analyses using an elemental analyzer
(ECS 4010, Costech Analytical, Valencia, CA).

Soil Fungal DNA Extraction

We extracted DNA in triplicate for each sampling station with
25μLDI water acting as a negative control.Within 24 h of the
initial soil core sampling, we extracted DNA from 0.25 g of
soil with the DNeasy PowerSoil kit (Qiagen, Carlsbad, CA)
using the default protocol. DNA extracts were stored at -80 °C
for four months, then pooled per sampling station and purified
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using a modified protocol of the DNeasy PowerClean
Cleanup kit (Qiagen, Carlsbad, CA). Specifically, after
cleaning 150 μL of pooled extract by washing with solution
CB, we added 500 μL of undiluted ethanol to pooled DNA
extracts in MB spin columns (Qiagen, Carlsbad, CA).
Following incubation for 5 min at room temperature, the
MB spin columns were centrifuged for 30 s at 10,000×g. We
discarded the flow through and repeated the previous step.
The MB spin columns were then centrifuged for 4 min at
10,000×g to remove any residual ethanol before proceeding
with the remainder of the protocol.

We diluted cleaned DNA extracts to 5 ng/μL DNA by
adding Molecular Biology Grade Water to a volume of
90 μL (IBI Scientific, Dubuque, IA) and submitted samples
to the Ohio State University Molecular and Cellular Imaging
Center (MCIC; Wooster, OH) for library preparation and
Illumina sequencing using the MiSeq platform.

Library Preparation and Sequencing

The MCIC amplified the ITS1 locus using ITS1F and ITS2
PCR primers with an added heterogeneity spacer to compen-
sate for the low nucleotide diversity of the amplicon (Smith
and Peay 2014). Adapters, containing Nextera indices, were
ligated to sequences during PCR for sample indexing.
Samples were amplified in two rounds, the first to amplify
the DNA and attach a portion of the Illumina adapter sequence
and the second to complete the adapter sequence. The follow-
ing steps were carried out on the Eppendorf epMotion5075

automated liquid handler (Hauppauge, NY). In the first round
(PCR 1), 25 ng of genomic DNA was amplified using the
following conditions: initial denaturation at 96 °C for 3 min,
25 cycles of 96 °C for 30 s for denaturation, 55 °C for 30 s for
annealing, and 72 °C for 30 s for elongation. The second
round of PCR was conducted using 3 μL of clean PCR 1
product. PCR conditions for round 2 were the same as PCR
1 except 8 cycles were performed rather than 25 cycles. After
each round of PCR, samples were cleaned using the
Agencourt AMPure XP beads (Beckman Coulter Life
Sciences). Purified amplicon libraries were quantified and
pooled by plate at equimolar ratios before sequencing. The
final pools were purified using the Pippin Prep size selection
system (Sage Science; Beverly, MA) to discard primer dimers.

Amplicon libraries were sequenced using the Illumina
MiSeq sequencing platform at a final concentration of 14.3
pM. PhiX was mixed in the pool of amplicon libraries for the
sequencing run (expected at 20%). The run was clustered to a
density of 681 ± k/mm2 and the libraries were sequenced
using a 300PE MiSeq sequencing kit with the standard
Illumina sequencing primers. Image analysis, base calling,
and quality assessment were performed on the MiSeq instru-
ment. The resulting sequences were demultiplexed and
adapters were removed.

Sequence Processing

Resulting sequences were processed using the bioinformatics
pipeline Quantitative Insights into Microbial Ecology 2

Table 1 Descriptions of the six marshes included in the study. Note that there was good agreement between our ORAM scores and scores from a
previous OH EPA assessment which evaluated four of the six marshes

Site Hoffman Big Island Keller Dunlap Calamus Morgan Swamp

Site Name Category 1A Category 2A Category 2B Category 2C Category 3A Category 3B

ORAM Score 25 34.5 39.5 42.5 70 78

County Champaign Marion Fairfield Fairfield Pickaway Ashtabula

Coordinates 40.250o N,
83.800o W

40.585o N,
83.224o W

39.863o N, 82.620o

W
39.834o N, 82.725o

W
39.583o N, 83.001o

W
41.649o N,

80.884o W

Surrounding Land
Use

Active Farm Abandoned
Farmland/
Wildlife Area

Active Farm Active Farm Forest/Active Farm Forest

Soil Series Walkill Silt
Loam

Milford Silt Clay
Loam

Muskego Muck Pewamo Silt Clay
Loam

Unclassified Muck Caneadea-Canadice
Silt Loam

Hydroperiod Seasonally
Flooded

Seasonally
Flooded

Regularly
Saturated

Permanently
Flooded

Permanently Flooded Permanently
Flooded

MaximumWater
Depth

<0.4 m <0.4 m <0.4 m >0.7 m >0.7 m >0.7 m

Dominant Plant
Communities

S1: Phalaris
arundinacea

S2: Leersia
oryzoides

S1: Phalaris
arundinacea

S2: Leersia
oryzoides /
Eleocharis spp.

S1: Typha latifolia
S2: Scirpus

fluviatilis
S3: Polygonum

amphibium
/Urtica dioica

S1: Polygonum
amphibium

S2: Wolffia spp. /
Lemna spp.

S1: Typha latifolia
S2: Nuphar advena
S3: Sparganium

eurycarpum /
Cephalanthus
occidentalis /
Typha latifolia

S1: Nuphar advena
S2: Juncus effusus /

Dulichium
arundinaceum
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(QIIME2; http://qiime2.org; Caporaso et al. 2010). We
removed heterogeneity spacers from sequences using the
cutadapt trim-paired function of the cutadapt QIIME2
plugin (Martin 2011). We used the dada2 denoise-paired
function of the DADA2 plugin to denoise, remove chimeras,
merge paired end reads, and identify exact sequence variants
(ESV), a proxy for species (Callahan et al. 2016). Using the
feature-table group function of the feature-table plugin, we
pooled the ESVs by strata. We assigned taxonomy using the
feature-classifier classify-sklearn function with a 0.70 confi-
dence threshold (Pedregosa et al. 2011) from the feature-
classifier plugin (Bokulich et al. 2018). We trained the RDP
classifier with the UNITE v. 7.2 database (https://doi.org/10.
15156/BIO/587481; Kōljalg et al. 2013) using the feature-
classifier fit-classifier-naïve-bayes function of the feature-
classifier plugin. ESVs assigned to at least a fungal phylum
were retained. We then rarefied the resulting ESV table and
representative sequences to the lowest number of sequences
observed from all strata using the feature-table rarefy function
(Fig. S1) from the feature-table plugin to standardize
statistical analyses.

Fungal Functional Guilds

We assigned ESVs to a functional guild using the online ver-
sion of FUNGuild with a confidence cut-off of “Possible”
(http://funguild.org, accessed 17 June, 2019; Nguyen et al.
2016a). For any ESV not assigned to a functional guild but
classified to the family, genus, or species level, we assigned
the most probable functional guild or guilds based on the
literature. We then calculated the relative abundance of each
functional guild at the stratum level. For ESVs assigned to
multiple functional guilds, we equally allocated sequences to
each of the assigned functional guilds so that each possible
function of the ESV was equally weighted and patterns could
be more easily discerned. We considered both “narrow”
functional guilds (e.g. AM fungi, white rot, plant pathogen,
etc.) and “broad” functional guilds (e.g. saprotroph, pathogen,
endophyte, etc.).

Statistical Analyses

We performed all statistical analyses in R version 3.4.4 (R
Core Team 2018). We fit all linear mixed effects models using
the lme function from the nlme package (Pinheiro et al. 2018).
To meet the assumptions of normality and homoscedasticity
the following transformations were performed: soft rot,
saprobe, and pathogen richness were log transformed; and
white rot, EM, and AM richness were square root trans-
formed. Ref. "R Core Team 2018" is cited in the body but
its bibliographic information is missing. Kindly provide its
bibliographic information in the list.R Core Team (2018) R:
A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL
http://www.R-project.org/.

Using per stratum raw ESVabundance data, we calculated
Shannon diversity indices, observed richness, and Chao1 rich-
ness using the diversity and the specnumber functions from
the vegan package (Oksanen et al. 2018) and chao1 function
from the fossil package (Vavrek 2011). We used linear mixed
effects models to test if ORAM score significantly affects
Shannon diversity, observed richness, Chao1 richness, and
the richness of broad and narrow functional guilds with site
as a random effect. Linear mixed effects models were also
used to quantify the relationships between ORAM score and
individual soil variables (e.g. BD, pH, soil moisture, Mehlich
III extractable P, NO3

−, NH4
+, N, C, and C:N) with site as a

random effect.
We then calculated relative ESV abundances per stra-

tum by dividing the number of sequences per ESV in a
stratum by the total number of sequences in the stratum.
We visually assessed the ability of the ORAM to group
wetlands based on fungal communities and fungal func-
tional guilds using relative ESV abundances with non-
metric multidimensional scaling (NMDS) using the
metaMDS function from vegan (Oksanen et al. 2018).
We used NMDS ordination for these assessments
because it allowed use of non-Euclidean distances (e.g.
Bray-Curtis), which are preferred for comparison based
on community composition (Faith et al. 1987). To iden-
tify indicator taxa, we used the multipatt function of the
indicspecies package at the site level (De Caceres and
Jansen 2016). To visually assess the ability of the
ORAM to group marshes based on soil physicochemical
properties we performed a principal component analysis
(PCA) using the prcomp and fviz_pca_biplot functions
from the factoextra package (Kassambara and Mundt
2017). We used the Euclidean-based PCA ordination
for this assessment following common methodology for
environmental data (Janžekovič and Novak 2012). Ref.
"De Caceres and Jansen 2016" is cited in the body but
its bibliographic information is missing. Kindly provide
its bibliographic information in the list.De Caceres, M,
& Jansen, F (2016) Indicspecies: relationship between
species and groups of sites. R package version, 1(6).

We then calculated weighted relative ESV abun-
dances, weighted relative vegetation cover, and weight-
ed averages of soil physicochemical properties per site
using strata weights (i.e. number of surveyed vegetation
quadrats belonging to a stratum divided by the total
number of surveyed quadrats in a marsh). We tested if
ORAM and component metric scores significantly ex-
plained differences in fungal community composition,
fungal functional guild composition, and soil physico-
chemical properties using permutational multivariate
analysis of variance (PERMANOVA) using the adonis
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function from vegan (Oksanen et al. 2018) with 720
permutations (maximum possible).

We assessed the impacts of soil properties (averaged per
stratum) and plant communities (relative cover per stratum) on
(1) fungal communities and (2) functional guilds by canonical
correspondence analyses (CCA) using the cca function from
vegan (Oksanen et al. 2018). CCA is a constrained ordination
technique that assumes a unimodal relationship between the
set of response variables (e.g. ESV abundance) and the set of
predictor variables (e.g. soil properties). We then tested for
statistical significance with the anova.cca function from
vegan.

igure files as EPS format or at a higher
resolution? "?>Results

Sequence Processing

We recovered 6,115,790 sequences from all sampling sites
and retained 248,712 sequences after quality filtering and chi-
mera removal with DADA2. Sequence data are available at
NCBI Sequence Read Archive: PRJNA525991 and filed un-
der accession numbers SAMN11081749 - SAMN1108197.
Of the sequences that passed quality filtering, 222,241 se-
quences were identified as fungi with 135,696 sequences be-
ing assigned to a fungal phylum using the UNITE database.
We rarefied strata to a sampling depth of 2861 sequences per
strata yielding 40,054 sequences across 759 unique ESVs
(Fig. S1).

Fungal Community Composition

Ascomycota was the most abundant phylum and comprised
47% of the total fungal community, followed by
Basidiomycota which comprised 45% of the community
(Fig. S2). The Blastocladiomycota, Chytridiomycota,
Entomophthoromycota, Entorrhizomycota, Glomeromycota,
Kickxellomycota, Monoblepharomycota, Mortierllomycota,
Mucoromycota, Rozellomycota together comprised the re-
maining 8% of the fungal community.

Agaricales (phylum Basidiomycota) was the most abun-
dant order accounting for 24% of the total fungal community
followed, by Sordariales (phylum Ascomycota) which made
up 16% of the community (Fig. 1a). The most abundant ESV
across sites was Lasiosphaeriaceae7 (phylum Ascomycota)
appearing in four of the six marshes and comprising 4% of
the total fungal community.

Fungal Functional Guilds

A total of 441 ESVs out of 759 ESVs were assigned to a
functional guild by FUNGuild; the classifiable ESVs ranged

from 51% at Category 3B to 88% at Category 1A. At all six
marshes, saprotroph was the most abundant broad functional
guild comprising approximately 68% of the total classifiable
ESVs, with undefined saprotrophs being the most abundant
narrow functional guild comprising approximately 39% of the
classifiable community (Fig. 1b).

Marsh Quality and Fungal Communities

Observed and Chao1 fungal richness significantly decreased
with marsh quality (ORAM; P = 0.019; P = 0.024; Fig. 2) as
well as with the quality of hydrology (Metric 3; P = 0.017;
P = 0.028) and vegetation (Metric 6; P = 0.020; P = 0.031)
and the degree of habitat development and substrate distur-
bance (Metric 4; P = 0. 048; P = 0.048). Additionally, the rich-
ness of saprotrophs significantly declined with marsh quality
(P = 0.041) and a negative trend was detected between marsh
quality and the richness of soft rot fungi (P = 0.056). There
was no relationship between marsh quality and Shannon di-
versity or the richness of AM, EM, pathogenic, and soft rot
fungi (P > 0.10; Fig. 2).

Marsh quality significantly explained differences in fungal
community composition (F1, 4 = 1.40, R2 = 0.26, P = 0.0036;
Fig. 3) but did not explain differences in narrow fungal func-
tional guild composition (P > 0.10; Fig. S3). Differences in
fungal community composition were also significantly ex-
plained by habitat development and substrate disturbance
(Metric 4; F1, 4 = 1.55, R2 = 0.28, P = 0.0083) and weakly
explained by vegetation quality (Metric 6; F1, 4 = 1.41, R2 =
0.26, P = 0.051).

Soil Physicochemical Properties and ORAM Score

Wetland quality significantly explained differences in
soil properties between marshes (F1,4 = 2.96, R2 = 0.43,
P = 0.040; Fig. 4). Differences in soil properties were
also significantly explained by habitat development and
substrate disturbance (Metric 4; F1,4 = 4.53, R2 = 0.53,
P = 0.006) and weakly explained by wetland hydrology
(Metric 3; F1,4 = 2.43, R2 = 0.38, P = 0.083) and vegeta-
tion (Metric 6; F1,4 = 3.06, R2 = 0.43, P = 0.051). Among
specific soil properties, four soil properties were partic-
ularly related to wetland quality: soil pH (P = 0.042)
and BD (P = 0.066) exhibited negative trends with wet-
land quality; and soil moisture (P = 0.070) and SOM
(P = 0.089) exhibited positive trends with wetland
quality.

Soil Physicochemical Properties and Fungal
Communities

Soil physicochemical properties did not significantly af-
fect fungal diversity or fungal richness (P > 0.10).
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However, soil physicochemical properties significantly
explained differences in fungal community composition
(F10, 3 = 1.29, P = 0.009; Fig. 5) and narrow fungal

functional guild composition (F10,3 = 1.86, P = 0.044;
Fig. S4). Most notably, %C, %N, SOM, BD and soil
moisture differentiated fungal community composition in

Fig. 1 (a) Relative abundance of the top 24 fungal orders by site. (b)
Relative abundance of narrow functional guilds for each marsh. In (a)
the “unidentified” group represents ESVs only assigned to a fungal
phylum or class. The “other” group represents the bottom 1% of fungal

orders across the whole fungal community. In (b) the “unassigned” group
represents ESVs assigned to at least the family level that were not able to
be assigned to any functional guild

831Wetlands (2020) 40:825–838



high quality marshes from marshes of lower quality.
Within high quality marshes, C:N, NO3-N, and pH
drove differences in community composition.

Vegetation Effects on Fungal Community
Composition

Vegetation significantly explained differences in fungal com-
munity composition (F10, 3 = 1.22, P = 0.033; Fig. 6) account-
ing for 80% of the variation. Most notably, plants more char-
acteristic of disturbed habitats (e.g., Polygonum amphibium,
Phalaris arundinaceae, and Leersia oryzoides) were tightly
associated with fungal communities in Category 1 and
Category 2 marshes, whereas plants more characteristic of pris-
tine habitats (e.g.,Dulichium arundinaceum and Cephalanthus
occidentalis) were strongly associated with the fungal commu-
nities of Category 3 marshes (Fig. 6). Narrow functional guild
composition, however, was unaffected by vegetation composi-
tion (P > 0.10; Fig. S5). FQAI score weakly explained differ-
ences in fungal community composition between marshes
(F1,4 = 1.36, R

2 = 0.25, P = 0.051), but did not explain differ-
ences in fungal functional guild composition (P > 0.10).

Discussion

Wetland assessments use easily evaluated properties to score
the condition and by proxy, the functional capacity of wet-
lands (Miller and Gunsalus 1999; Mack 2001a; Berglund
and McEldowney 2008; Hruby 2014). Current assessment
procedures do not consider soil microorganisms despite their
importance in regulating and carrying out valuable wetland
functions (Gutknecht et al. 2006; Faulwetter et al. 2009). As
an important first step in determining the need and feasibility
of adjusting current wetland assessment frameworks to con-
sider microbial communities, we assessed the relationship be-
tween the ORAM, and fungal community composition and
diversity. Our data suggests that current assessment methods
are capable of distinguishing fungal communities of high
quality marshes from low quality marshes; however, current
assessments of wetland quality do not distinguish fungal func-
tional guild composition. We further provide evidence that
soil physicochemical properties are important determinants
of marsh quality and have a role in structuring fungal commu-
nities and functional guild composition in marshes, alongside
vegetation.

Fig. 2 (a) Shannon diversity (H′), (b) observed richness, and (c) Chao1
estimated richness of the fungal communities in relation to the ORAM
score of each site. Wetland quality was not related to Shannon diversity

(P = 0.18), but significantly declined with observed richness (P = 0.017),
and Chao1 estimated richness (P = 0.023)
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Fungal communities in all six marshes were dominated by
saprotrophs (Fig. 1b), highlighting the importance of fungi as
regulators of SOM accumulation and C storage in marshes
(Thormann 2006). Across quality categories, white rot fungi
were the most abundant specific guild of saprotrophic fungi
recovered while soft rot fungi were also highly represented
(Fig. 1b). The high abundance of white and soft rot fungi
indicates an abundance of recalcitrant C sources such as lig-
nin, cellulose, and hemicellulose which they degrade (Hibbett
and Donoghue 2001). Brown rot fungi were not specifically
recovered, although they may exist as a part of the undefined
saprotroph category but this may reflect the lack of conifers
with which brown rot fungi are tightly associated (Hibbett and
Donoghue 2001).

In contrast to saprotrophs, our study recovered a relatively
low abundance of mycorrhizal ESVs (Fig. 1b). This lack of
mycorrhizal fungi may be a product of the time of year of the
study which took place during the summer when the vegeta-
tion present at each site was already mature. Levels of AM
colonization in wetlands are seasonal, most likely tied to plant

phenology, with colonization levels being the greatest during
the spring and the lowest during late summer (Bohrer et al.
2004). Had we sampled in spring or early summer during
periods of new vegetative growth, we may have recovered
more mycorrhizal ESVs and fewer saprotroph ESVs. Also,
the lack of EM fungi in this study could be attributed to the
dominance of emergent herbaceous plants at each marsh
(Table 1). EM fungi more commonly associate with woody
plant species, and thus had this study been conducted in wet-
lands dominated by trees or shrubs, such as members of the
Salicaceae, we could expect to observe more EM fungi (Smith
and Read 2008; Erlandson et al. 2018). Ref. "Bohrer et al.
2004" is cited in the body but its bibliographic information
is missing. Kindly provide its bibliographic information in the
list.Bohrer, KE, Friese, CF, & Amon, JP (2004) Seasonal dy-
namics of arbuscular mycorrhizal fungi in differing wetland
habitats. Mycorrhiza, 14(5): 329-337.

Our central hypothesis that the fungal communities
would differ based on quality and be more diverse in
higher quality marshes was only partially supported.

Fig. 3 NMDS (stress = 0.093) of the top 90% ESVs of total fungal
community identifiable at least to family. Marsh quality significantly
explained differences in fungal community composition between
marshes (F1, 4 = 1.40, R2 = 0.26, P = 0.0036). Individual points
represent strata and are shaped by site and colored by ORAM category.

Arrows represent ESVs that are associated (P < 0.10) with two or more
marshes belonging to the same quality category according to indicator
analysis. Dashed lines represent standard deviation ellipses for strata
grouped by ORAM category
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While fungal diversity and functional guild composition
were not impacted by marsh quality (Figs. 2a and S3),
fungal richness significantly declined with quality and fun-
gal composition was significantly explained by marsh
quality (Figs. 2b,c and 3). The ability of the ORAM to
describe differences in fungal community composition is
likely tied to the impacts of anthropogenic disturbances on
soil physicochemical properties. For instance, wetland soil
bacterial communities were observed to differ based on
land use type (i.e. farmed, restored, undisturbed reference,
etc.) as a product of differences in soil chemistry, particu-
larly soil pH and N (Hartman et al. 2008). In our study,
there were particularly strong relationships between fungal
community composition, substrate disturbance (Metric 4),
and soil physicochemical properties. Soil properties also
significantly distinguished the fungal functional guild
communities (Fig. S4), which were not separable by
ORAM score (Fig. S3).

Differences in soil physicochemical properties between
the marshes in our study were significantly explained by
ORAM score (Fig. 4); however in swamps, the ORAM

was not able to describe differences in soil physicochem-
ical properties (Rokosch et al. 2009), indicating additional
research is required to determine the ability of wetland
assessments to describe the soil environment across wet-
land types. One possible way to improve the relationship
between wetland assessments and the soil environment is
to include easily measured soil physicochemical proper-
ties that respond consistently across multiple wetland
types to disturbance gradients, and also serve as important
regulators of microbial communities. For instance, SOM,
BD, and soil moisture exhibited trends with wetland qual-
ity in marshes (P = 0.089, P = 0.066, and P = 0.070) and
in swamps (Rokosch et al. 2009), and were also strong
drivers of fungal community composition and functional
guild composition (Figs. 5 and S4). The potential utility
of these soil measures in wetland assessments is not only
highlighted by their importance in determining the struc-
ture of soil fungal communities, but also because similar
trends with wetland quality were observed in different
wetland types. This suggests that SOM, BD, and soil
moisture, three easily measured soil properties, would

Fig. 4 PCA of the measured soil properties at each marsh. PC1 correlates
with %C, %N, soil moisture, BD, and SOM. PC2 correlates with CN,
NO3-N, pH, and NH4-N. Wetland quality significantly explains
differences in soil properties between marshes (F1,4 = 2.96, R2 = 0.43,

P = 0.040). Points represent strata and are shaped by site and colored by
ORAM category. Dashed lines represent standard deviation ellipses for
strata grouped byORAM category. Length of arrows indicates strength of
association
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serve as useful quantitative measures to incorporate into
wetland quality assessments.

Another soil physicochemical property with the potential to
serve as a useful measure in wetland assessments is soil pH.
Soil pH had a significant negative relationship with ORAM
score (P = 0.042), and was important in determining fungal
community structure. This fits in line with the growing num-
ber of studies reporting soil pH as an important determinant in
both the structure and richness of fungal communities
(Tedersoo et al. 2014; Hiiesalu et al. 2017; Erlandson et al.
2018). It should be noted, however, that soil pH was more
important in distinguishing communities within a quality cat-
egory rather than between quality categories, particularly the
two Category 3 marshes (Fig. 5) and that soil pH was not
impacted by swamp quality in Ohio (Rokosch et al. 2009).
This suggests that further research may be required to deter-
mine if soil pH is a useful quantitative measure to include in
wetland assessments for multiple wetland types or for only
freshwater depressional marshes, such as those investigated
in this study.

Vegetation significantly explained differences in fungal
community composition (Fig. 6) but was not significant
for fungal functional guild composition (Fig. S5). The
weak explanatory power of vegetation for fungal func-
tional guild is likely due to the dominance of saprotrophs
which are less dependent upon living vegetation, and a
lack of mycorrhizal ESVs which tend to be more tightly
associated with their plant hosts (Nguyen et al. 2016b;
Fig. 1b). Additionally, we did determine that vegetation
quality, measured both by Metric 6 and FQAI score, ex-
plained differences in fungal community composition.
Specifically, we observed that plant species with higher
C of C scores are tightly associated with the fungal com-
munities of high quality marshes. While Metric 6 is capa-
ble of explaining differences in fungal community com-
position, the metric could be made more quantitative
through the inclusion of FQAI scores. Although this
would require assessors to have plant identification exper-
tise and may increase the requisite experience needed to
complete the assessment, it would reduce scorer

Fig. 5 CCA of fungal communities using soil physicochemical variables.
Soil physicochemical properties significantly explain differences in
fungal community composition (F10, 3 = 1.29, P = 0.009) accounting for
81% of the variation. CCA1 explains 11% (P = 0.007) of the variation and

CCA2 explains 11% (P = 0.10). Points represent strata and are shaped by
site and colored by ORAM category. Dashed lines represent standard
deviation ellipses for strata grouped by ORAM category. Length of
arrow represents correlation strength of variable
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subjectivity and strengthen the ability of assessments to
capture wetland function.

Due to the pivotal role of soil fungi in the regulation of
key wetland functions (Thormann 2006; Neori and Agami
2017), we suggest that additional research be conducted to
examine the ability of the ORAM and other wetland as-
sessment methods to capture differences in these valuable
wetland components. Specifically, we propose additional
research be done to identify soil physicochemical proper-
ties that respond consistently, across wetland types, to dis-
turbance gradients and are important drivers of microbial
communities. Other studies have similarly observed a
strong link between soil physicochemical properties and
fungal community composition (Erlandson et al. 2016;
Glassman et al. 2017; Hiiesalu et al. 2017), highlighting
the potential utility of these properties as additional quan-
titative measures for wetland quality. The identification
and inclusion of quantitative measures of soil into assess-
ments will serve only to bolster the ability of wetland

quality assessments to serve as proxies for wetland func-
tion (Miller and Gunsalus 1999; Mack 2001a; Berglund
and McEldowney 2008; Hruby 2014).
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