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Abstract

Differential networks (DN) are important tools for modeling the changes in conditional

dependencies between multiple samples. A Bayesian approach for estimating DNs, from

the classical viewpoint, is introduced with a computationally efficient threshold selection for

graphical model determination. The algorithm separately estimates the precision matrices

of the DN using the Bayesian adaptive graphical lasso procedure. Synthetic experiments

illustrate that the Bayesian DN performs exceptionally well in numerical accuracy and graph-

ical structure determination in comparison to state of the art methods. The proposed method

is applied to South African COVID-19 data to investigate the change in DN structure

between various phases of the pandemic.

Introduction

Probabilistic networks are becoming ever-present in a multitude of scientific disciplines.

These networks aim to illustrate the relationships, if any, between the components of complex

systems [1]. If the data is assumed to be Gaussian distributed with mean μ and covariance

matrix S; the precision matrix Θ≔ {θij}, defined as the inverse of the covariance matrix

Θ� S−1, directly determines the conditional dependence relations and structure of the Gauss-

ian undirected graphical model [2].

Differential network (DN) analysis is a statistical methodology that involves functions

of at least two graphical models. Let G ¼ ðV; EÞ define a graphical model with nodes

V ¼ f1; 2; :::; pg and a set of edges E � V � V. The graph visually depicts the conditional

dependence structure between the nodes of the system. The adjacency matrix associated to a

graphical model G is the binary encoded p × p precision matrix where the entries of the matrix

are equal to 1 if the corresponding precision matrix entry is nonzero and zero otherwise. Non-

zero adjacency matrix entries indicate an edge between corresponding nodes of G. For this

work, the focus will be on the difference of two Gaussian graphical models (GGM), G1 and G2

that share the same set of nodes V. In particular, the edge sets given here are equivalent to the

adjacency matrices obtained from the GGM estimation. More specifically, assume that the

observations, x1; x2; . . . ; xn1
and y

1
; y

2
; . . . ; yn2

are generated from a p variate Gaussian distri-

bution, Np(μ1, S1) and Np(μ2, S2), respectively, where n1 and n2 indicate the respective sample
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sizes that need not be equal. The interest here is estimating the DN (Δ ¼ Σ� 1

2
� Σ� 1

1
), that is

the difference between two precision matrices. Numerous measures exist for comparing and

evaluating the differences between graphical structures [1]. DN analysis is becoming increas-

ingly popular and important, for example in biological systems where protein interaction

networks can be utilised as informative biosignatures for prevalent diseases [3, 4]. The funda-

mental idea here is that, if two molecules interact with one another then a statistical depen-

dency between them should be observed. Additionally, another application of DNs is

multivariate statistical quadratic discriminant analysis [5, 6], under the Gaussian distribution

assumption.

A key component of DN analysis is the estimation of covariance and precision matrix com-

ponents. Numerous statistical matrix estimation, as well as graphical model determination

methods exist within literature. In particular, from a frequentist approach [7], introduce a

computationally efficient neighborhood selection procedure. The lasso is used for covariance

estimation which enjoys consistency for sparse high-dimensional graphs. The approach is

quite effective, in that the sparse precision matrix is estimated by fitting the lasso to each vari-

able using the remaining as predictors. Finally, the estimated precision matrix entry (θij) is

non-zero if the estimated coefficient of i on j or vice versa is non-zero. Importantly, their algo-

rithm can consistently estimate the set of non-zero entries in Θ, [8]. For a penalised likelihood

methodology for sparse precision matrix estimation see [9, 10]. More so [11], estimate the

undirected graphical model using both a block coordinate descent algorithm, as well as Nester-

ov’s first order method [12]. Additionally [13], propose a ℓ1 constraint estimation technique

for both sparse and non-sparse high dimensional matrices with applicability on a wide range

of sparsity patterns and class of matrices; precision estimation in GGMs for example. For a

joint graphical model estimation approach see [14, 15].

Fully Bayesian treatments of GGM estimation are, also, well rooted in literature. In particu-

lar [16], introduce the Bayesian adaptive graphical lasso (BAGLASSO) which utilises a general-

ised Pareto distribution in the hierarchical formulation of the Bayesian graphical lasso. [17]

provide a method for graphical model determination by invoking positive prior mass on the

event that there is no conditional dependencies between variables. In terms of joint graphical

model inference from a Bayesian perspective see [18]. Lastly [19], propose using Kullback-Lei-

bler divergence and cross-validation for graphical model structure estimation.

Background

Recently, a plethora of statistical techniques have emerged for estimating DNs. These tech-

niques can largely be classified into two main categories. The first estimating the individual

precision matrices, Θ1 and Θ2 separately; where the estimated DN is the difference between

the estimated precision matrices. For example, the methods and references for GGM estima-

tion outlined in the introduction can be used to directly estimate Δ. The second methodology

estimates both the precision matrices simultaneously. The approach here, typically penalises a

joint loss function for both precision matrices. [20] provide a methodology for inference and

estimation of functions of GGMs. In particular, the Intertwined Graphical Lasso (IGL)

approach biases the estimation of the precision matrices towards a common value. More so,

their Graphical Cooperative Lasso (GCL) utilises a group-penalty for solutions that favour a

common sparsity pattern. [14, 21] estimate separate graphical models using a joint penalised

loss function. [22] propose a method for estimating Δ directly which relaxes the need for both

individual precision matrices to be sparse nor be estimated directly. Similarly [6, 23], utilise an

alternating direction method of multipliers (ADMM) algorithm for estimating Δ from their

joint ℓ1 penalised convex loss function. More recently [24], introduce a computationally
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efficient iterative shrinkage-thresholding algorithm for minimising the ℓ1 loss function defined

in [6], namely

L1ðΔÞ ¼
1

2
traceðΔ>S1ΔS2Þ � traceðΔðS1 � S2ÞÞ; ð1Þ

is convex and S1 and S2 are the sample covariance matrices. The DN estimate is obtained by

minimising the penalised loss Eq (1). An analogous symmetric convex loss function and esti-

mator is proposed by [23].

The shrinkage-thresholding algorithm proposed by [24], based on the fast-iterative shrink-

age-thresholding algorithm in [25], aims to minimise Eq (1). The objective function is given by

arg min
Δ2Rp�p

L1ðΔÞ þ rkΔk1;

where kΔk
1
¼
P

i<j

Pp
i¼1
jŶ2:ij � Ŷ1:ijj. The lasso tuning parameter, ρ, controls the strength of

the penalty term and resultantly the amount of shrinkage (precision matrix entries shrunk

towards zero) too. The optimisation objective converges to the solution sequentially using a

quadratic approximation and a gradient descent algorithm. The efficiency of the procedure is

attested to this approach, resulting in superior computational complexity in contrast to the

ADMM approaches by [6, 23]. To conclude this section it is worth noting that the iterative

shrinkage-thresholding method will be used for experimental comparison later.

The main contributions of this study are as follows.

1. A framework for Bayesian DN estimation is developed. That is, the DN is estimated by sep-

arately estimating each Gausian graphical model, referred to as the components.

2. The graphical lasso is applied as the thresholding method in the Bayesian precision matrix

estimation in order to efficiently capture sparse patterns in the DN, hence developing the

BAGLASSO. A threshold selection strategy, based on a conjugate Wishart prior, that

accommodates both dense and sparse graphical structures determination is explored. The

aforementioned strategy, applied to each component of the DN, ensures an accurately

sparse DN estimate.

3. The proposed Bayesian DN efficiently improves the existing classical DN estimation for a

number of known network structures.

4. An R package for the BAGLASSO block Gibbs sampler has been developed for the interested

practitioner and is available on The Comprehensive R Archive Network (CRAN) as abglasso.

The Bayesian DN

A fully Bayesian treatment of DNs remains unexplored and the novel methodology here aims

to develop a simple yet highly accurate Bayesian DN estimation procedure. The novel contri-

bution utilises the BAGLASSO as a launching point to separately estimate the components of

the DN. The subsections that follow develop the framework for individual component estima-

tion from a Bayesian viewpoint. Moreover, the framework has been develop for low p = 10 to

moderate, p = 50 − 100, dimensions where n� p.

The Bayesian graphical lasso prior

Recall that the graphical lasso objective is maximising the penalized log-likelihood

arg min
Θ2Mþ

lðΘÞ;
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where

lðΘÞ ¼ logðdetΘÞ � traceð
S
n

ΘÞ � rkΘk
1

ð2Þ

and M+ is the space of positive definite matrices, S is the sample covariance matrix and n the

sample size, respectively. More over, ρ� 0 is the shrinkage parameter and Θ = (θij) is the preci-

sion matrix. The Bayesian connection to the graphical lasso problem is the maximum a poste-

riori (MAP) estimate, assuming a random sample from Np(μ, Θ−1), of the following

pðΘ jlÞ ¼ C� 1
Y

i<j

fDEðyij j lÞg
Yp

i¼1

fEXPðyii j lÞg ðΘ 2M
þ
Þ: ð3Þ

The prior distribution is given by the product of a double exponential (DE) with form p(y) =

λ/2 exp(−λ|y|) for the off diagonal elements and an exponential (EXP) with form p(y) = λ exp

(−λy)1y > 0, otherwise. The value of Θ which maximizes the posterior density is the graphical

lasso estimate in Eq (2) when ρ = λ/n. Within the Bayesian context λ is treated as the shrinkage

parameter. The formulation and interpretations of the graphical lasso prior in Eq (3) have

been studied in [26]. The aim therein is the development of varying regularization to infer

block structures within the graphical models and efficiently estimating the maximum a poste-

riori of the corresponding posterior distribution. [16] make use of this prior formulation for

the convenience (scale mixture of Gaussian formulation of the double exponential) in the

development of their efficient block Gibbs sampler, in addition to allowing for the use of a

gamma hyperprior on the shrinkage parameter λ for improved precision matrix estimation.

Hierarchical representation

The Gibbs sampler for sampling the precision matrix Θ from the posterior distribution,

defined below in Eq (5), associated with the prior in Eq (3), is constructed using a hierarchical

representation of Eq (3). This particular hierarchical representation of the prior in Eq (3) is

presented by [16], whom follow the same approach as in the development of the Gibbs sampler

for the Bayesian lasso in [27]. The Gibbs sampler in [27] utilises the structure of the double

exponential distribution as a scale mixture of Gaussians, assuming independence of the condi-

tional double exponential priors [28, 29], in their hierarchical representation to simulate

regression parameters from the desired posterior distribution. The positive definite constraint

on Θ in Eq (3) implies that the Gaussian components for θij (DE parameters) in the scale mix-

ture formulation are no longer independent given the scale parameters. To address this issue,

the hierarchical representation of the graphical lasso prior in Eq (3) is given by

pðθ j t; lÞ ¼ C� 1
t

Y

i<j

1
ffiffiffiffiffiffiffiffiffi
2ptij

p expð�
y

2

ij

2tij
Þ

( )
Yp

i¼1

l

2
expð�

l

2
yiiÞ

� �

ðΘ 2MþÞ; ð4Þ

where θ≔ {θij}i�j is a vector of the upper triangular matrix entries of Θ and τ = {τij}i<j the

scale parameters. The normalising constant, Cτ, has no closed-form solution. Obtaining the

marginal distribution Eq (3), [16] propose a mixing density proportional to an exponential

density with rate parameter λ2/2 and simple substitution circumvents the intractable normalis-

ing constant. Finally, the hierarchical representation in Eq (4) is used in the development of
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the block Gibbs sampler, available in the S1 File, with a target posterior distribution given by

pðΘ; tjY; lÞ / detΘ
n
2 expf� traceð

1

2
SYÞg

Y

i<j

t
� 1

2
ij expð�

y
2

ij

2tij
Þexpð�

l
2

2
tijÞ

( )

�
Yp

i¼1

expð�
l

2
yiiÞ

� �

ðΘ 2MþÞ: ð5Þ

BAGLASSO

It is well known that the double exponential prior in Eq (3) may over-shrink (under-shrink)

large (small) coefficients in Θ. The limitations within a regression context have been studied

in [30–32] with alternative proposals. The BAGLASSO, Bayesian analog to the adaptive graph-

ical lasso [33], exploits the framework and flexibility of the hierarchical representation in Eq

(4) to address the aforementioned limitation. This extension serves to improve the accuracy of

the precision matrix estimates obtained from the posterior in Eq (5) by allowing for different

shrinkage parameters λij for each corresponding off-diagonal precision matrix entry θij. Recall

that the adaptive graphical lasso is given by

arg min
Θ2Mþ

lðΘÞ;

where

lðΘÞ ¼ logðdetΘÞ � traceð
S
n

ΘÞ � l
X

1�i�p

X

1�j�p

xijjyijj; ð6Þ

and xij ¼ 1=j~y ijj
a

for α> 0 are the adaptive weights and the weight matrix (~y ij) is the sample

precision matrix.

The form of the Bayesian graphical lasso in Eq (3) enables the selection of an appropriate

hyperprior on the shrinkage parameter λ, recall that ρ = λ/n in the Bayesian formulation of Eq

(2). Adhering to the positive definite constraint on Θ, the prior normalising constant in Eq (3)

when a single λ is applied to all elements in Θ can be obtained by applying the substitution

~Θ ¼ lΘ. Thereafter, a gamma prior λ* GA(r, s) and corresponding conditional posterior

λ* GA(r + p(p + 1), s + kΘk1/2) can be obtained and sampled from. When allowing for indi-

vidual λij’s for different off-diagonal θij’s, the normalising constant C will inevitably depend on

λij. To address this a hierarchical formulation can be used to construct a set of prior distribu-

tions, serving as the the extension of the graphical lasso prior in Eq (3), for various λij that miti-

gate the complications associated with posterior simulation due to the intractable normalising

constant. This extension is the BAGLASSO and, assuming a random sample from Np(μ, Θ−1),

is given by

pðΘ j flijgi�jÞ ¼ C� 1
flijgi�j

Y

i<j

fDEðyij j lijÞg
Yp

i¼1

EXPðyii j
lii

2
Þ

� �

ðΘ 2MþÞ;

pðflijgi<j j fliig
p
i¼1
Þ / Cflijgi�j

Y

i<j

GAðr; sÞ: ð7Þ

The normalising constant Cflijgi�j is intractable, as mentioned above, and the set fliig
p
i¼1

are

hyperparameters for the diagonal elements of Θ. Simple substitution yields that computation

of λij is simplified by circumventing the intractable normalising constant.

The BAGLASSO selects the amount of shrinkage λij proportionally to the current value of

θij. To see this [16], demonstrate that the conditional posterior, λij | Θ*GA(r + 1, |θij| + s),
has an expected value that is inversely related to magnitude of θij. The data augmented block
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Gibbs sampler for the hierarchical representation in Eq (7) is the fundamental building block

upon which the novel Bayesian DN is devised.

Technicalities on conditional dependencies

Recall that the precision matrix directly determines the conditional dependence relations and

structure of the undirected graphical model. Therefore, correctly estimating the precision

matrices with sparse structures is essential to adequately gauge the conditional dependency

relations between variables. The task to estimate the precision matrix for both n< p and p� n
remains challenging and regularization is often required [34–36]. A popular choice of prior for

Bayesian posterior inference regarding network structure is the conjugate Wishart [37]. An

alternative thresholding strategy is presented which is an adaption of the recommendation by

[32]. In particular the conjugate Wishart W(3, � Ip) prior is used. The corresponding posterior

is W(3 + n, (S + � Ip)
−1), where � = 0.001 and Ip a p dimensional identity matrix. The posterior

samples are used to compute the posterior distribution of the p × p partial correlation matrix

P≔ {ρij}. The recommended strategy here suggests θij 6¼ 0 for i 6¼ j if

jEhðrij j YÞj > Z; ð8Þ

where η may vary depending on the underlying graph structure. The Bayesian posterior

thresholding recommendation by [16] claim that θij 6¼ 0 for i 6¼ j if and only if

~rij

Egðrij j YÞ
> Z: ð9Þ

Noting that ~rij is the posterior sample mean estimate of the partial correlation under graphical

lasso priors in Eq (3); g is the standard conjugate Wishart W(3, Ip) and h the standard conju-

gate Wishart W(3, � Ip). Moreover, η 2 [0, 1] with the lower and upper bounds resulting in a

completely dense or sparse estimate, respectively.

The original recommendation for η in Eq (9) is 0.5. The forthcoming synthetic data analysis

section describes the simulation procedure, as well as, illustrates the performance of the Bayes-

ian DN with regards to different graph structures, namely an AR(1), AR(2), sparse random,

scale-free, band, cluster, star and circle. The goal here is to suggest a suitable sparsity threshold

region under the varying graph structures for the recommended sparsity criterion in Eq (8).

The Bayesian DN is applied across all graph structures with thresholds, η, in the range of 0.2

and 0.6 in increments of 0.02. The absolute sparsity error is computed for each graph structure

for each Bayesian sparsity criterion in Eqs (8) and (9), respectively. The results are based on

the median of 40 replications and the Matthews Correlation Coefficient (MCC), see [38], is

used to determine the best performing threshold. Fig (1a)–(1i) display the optimal threshold,

based on the top performing MCC, for each graph structure and Bayesian sparsity criterion

for p = 10. The optimal threshold plots for p = 30 and p = 100 are available in the S1 File. The

optimal threshold based on Eq (8), η�, for the Bayesian DN is, in most cases, in the neighbor-

hood of the minimum absolute sparsity error and in the region of η� 2 {0.2 − 0.4}. Both Bayes-

ian sparsity criterion candidates perform comparably well noting, however, that Eq (8)

requires less computation.

Synthetic data analysis

The synthetic experiment is designed to test the parameter estimation and graphical structure

determination of the DN estimation for both the novel Bayesian approach (referred to as ‘B-

net’) and the iterative shrinkage-thresholding estimator (referred to as ‘D-net’) from [24]. The
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iterative shrinkage-thresholding estimator uses the lasso penalty and Bayesian Information

Criterion (BIC) for model estimation and selection, respectively. For all simulations, the

assumption is that the observations, x1; x2; . . . ; xn1
and y

1
; y

2
; . . . ; yn2

are generated from a

Gaussian Np(0, S1) and Np(0, S2) respectively. The true DN is

Δ ¼ Σ� 1

2
� Σ� 1

1
;

where the true precision matrices are Θ1 ¼ Σ� 1

1
and Θ2 ¼ Σ� 1

2
. The Bayesian DN applies the

BAGLASSO Eq (7) to each sample, i.e. separately estimates the precision matrices. Further-

more, for excellent performance set r = 10−2 and s = 10−6, see S1 File for more details, for the

Fig 1. Optimal Bayesian sparsity threshold selection. The median of the absolute sparsity error and best performing MCC for various graph structures under varying

thresholds for each Bayesian sparsity criterion in Eq (9) (dotted) and Eq (8) (dot-dash) for dimension p = 10. The best performing threshold is indicated by a vertical line

with the accompanying MCC value displayed in the legend. (a) Model 1: AR(1). (b) Model 2: AR(2). (c) Model 3: at most 80% sparse. (d) Model 4: at most 40% sparse. (e)

Model 5: scale-free. (f) Model 6: band. (g) Model 7: cluster. (h) Model 8: star. (i) Model 9: circle.

https://doi.org/10.1371/journal.pone.0261193.g001
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hyperparameters of the prior distributions of λij for i< j and λii = 1 for i = 1, . . ., p. The itera-

tive shrinkage-thresholding approach jointly estimates the precision matrices for Eq (1). The

following 9 graphical structure variations are considered—where the structure of each is

applied to each component in the DN’s composition to achieve the desired structure in the

DN itself—in the simulation:

• structure 1: An AR(1) model.

• Component 1: θij = 0.7|i−j|.

• Component 2: θij = 0.75|i−j|.

• structure 2: An AR(2) model.

• Component 1: θii = 0.1, θi,i−1 = θi−1,i = 0.05 and θi,i−2 = θi−2,i = 0.025.

• Component 2: θii = 1, θi,i−1 = θi−1,i = 0.5 and θi,i−2 = θi−2,i = 0.25.

• structure 3: A sparse random model where both components have approximately up to 80%

off-diagonal elements set to zero.

• structure 4: A moderately sparse random model where both components have approximately

up to 40% off-diagonal elements set to zero.

• structure 5: A scale-free model where the second component is a scalar multiple of the first.

• structure 6: A band or diagonal model.

• Component 1: θii = 1, θij = 0.2 for 1� i 6¼ j� p/2, θij = 0.5 for p/2 + 1� i 6¼ j� p and θij = 0

otherwise.

• Component 2: θii = 1, θij = 0.7 for 1� i 6¼ j� p/2, θij = 0.9 for p/2 + 1� i 6¼ j� p and θij = 0

otherwise.

• structure 7: A cluster model containing two disjoint groups.

• Component 1: θii = 1, θij = 0.5 for 1� i 6¼ j� p/2, θij = 0.5 for p/2 + 1� i 6¼ j� p and θij = 0

otherwise.

• Component 2: θii = 1, θij = 0.9 for 1� i 6¼ j� p/2, θij = 0.9 for p/2 + 1� i 6¼ j� p and θij = 0

otherwise.

• structure 8: A star model with every node connected to the first node.

• Component 1: θii = 1, θ1,i = θi,1 = 0.1 and θi,j = 0. otherwise.

• Component 2: θii = 1, θ1,i = θi,1 = 2.1 and θi,j = 0. otherwise.

• structure 9: A circular model.

• Component 1: θii = 2, θi,i−1 = θi−1,i = 1 and θ1,p = θp,1 = 0.45.

• Component 2: θii = 4, θi,i−1 = θi−1,i = 2 and θ1,p = θp,1 = 0.95.

The sample sizes and dimensions for each model are n1 = n2 2 {50, 100, 200} and p1 = p2 2

{10, 30, 100}, respectively. The Bayesian estimates are based on 10000 Monte Carlo iterations

after 5000 burn-in iterations. To assess the performance of DN matrix estimation, six loss

functions are considered and defined in Table 1, where p denotes the dimension and γi the ith

eigenvalue, respectively. Notice that some loss functions utilise the true DN matrix and its esti-

mates, while others utilise the eigenvalues and their respective estimates. Table 2 reports the
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median of L1, L2, EL1, EL2, MAXEL1 and MINEL1 for p = 10, 30, 100 in structures 1−9 based

on 40 replications. For each scenario, the best performing measure is boldfaced.

The eigenvalue based loss functions are designed to investigate the extremes of the eigen-

value spectrum. In particular, the MAXEL1 loss function highlights which estimator is favour-

able in a principal component setting, [39]. A couple of observations are worth noting from

Tables 2 and 3. First, the D-net estimator performs better with the AR(1) structure. Second,

the B-net estimator performs exceptionally well in remaining structures. Third, the standard

errors for both DN estimation techniques remain relatively consistent throughout the dimen-

sion spectrum considered, noting that the D-net estimator yields, in general, better results.

Table 1. Loss functions used in the synthetic data analysis to assess the numerical accuracy of the B-net and D-net estimates.

Measure Loss function Abbreviation

Matrix L1-norm kΔ̂� Δk1 ¼ max1�j�p

Pp
i¼1
jD̂ ij � Dijj

L1

Frobenius loss kΔ̂� ΔkF , where kAk2

F ¼ traceðAA>Þ L2

L1 eigenvalue loss
Pp

i¼1
jĝ i � gij=p EL1

L2 eigenvalue loss
Pp

i¼1
ðĝ i � giÞ

2
=p EL2

L1 loss on the largest eigenvalue jĝmax � gmaxj MAXEL1

L1 loss on the smallest eigenvalue jĝmin � gminj MINEL1

https://doi.org/10.1371/journal.pone.0261193.t001

Table 2. Synthetic study median loss results.

AR(1) AR(2) S80 S40 SF Band Cluster Star Circle

B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net

p = 10

L1 1.04 0.64 1.13 1.49 2.26 3.41 6.03 7.56 2.24 2.79 1 1.21 0.85 1.68 18.47 18 2.73 2

L2 0.91 0.64 1.41 2.09 2.21 3.8 6.09 7.45 2.14 2.22 1.39 1.91 1.05 2.48 8.73 8.49 3.87 4.3

EL1 0.14 0.1 0.24 0.53 0.23 0.61 0.63 1.12 0.11 0.48 0.22 0.43 0.25 0.58 1.19 1.2 0.42 1.23

EL2 0.03 0.03 0.09 0.35 0.1 0.47 0.47 1.73 0.02 0.49 0.07 0.21 0.1 0.52 6.02 7.2 0.27 1.83

MAXEL1 0.17 0.51 0.49 1.07 0.2 0.72 0.7 1.57 0.15 1.37 0.44 0.55 0.64 1.42 5.45 6 0.58 1.91

MINEL1 0.28 0.06 0.09 0.45 0.16 0.67 0.9 1.09 0.15 1.37 0.44 0.49 0.36 0.22 5.52 6 0.6 1.91

p = 30

L1 1.86 1.27 1.04 1.52 10.48 13.66 25.16 30.8 5.98 5.21 0.97 1 5.89 5.65 58.07 58 2.72 2.06

L2 1.98 1.35 1.93 3.82 13.11 17.03 26.02 32 3.77 2.87 2.21 3.67 8.39 8.2 15.26 15.23 4.96 7.65

EL1 0.16 0.12 0.17 0.58 0.77 2.4 1.75 4.67 0.22 0.31 0.22 0.59 0.72 0.74 0.71 0.72 0.15 1.25

EL2 0.04 0.06 0.04 0.43 0.75 7.36 3.93 28.49 0.1 0.27 0.07 0.42 2.1 2.21 7.29 7.73 0.04 1.92

MAXEL1 0.56 1.07 0.22 1.2 1.04 3.41 2.84 8.34 1.05 1.62 0.49 0.81 5.41 5.55 10.45 10.77 0.64 1.93

MINEL1 0.38 0.14 0.16 0.53 1.14 3.4 3.03 8.23 0.85 1.62 0.49 0.81 0.19 0.35 10.45 10.77 0.64 1.93

p = 100

L1 2.11 1.33 1.02 1.35 44.18 46.52 91.89 96.26 7.04 7.03 0.97 1 19.88 19.61 198.16 198.32 2.81 2.03

L2 3.36 2.62 3.1 7.07 58.3 62.13 103.75 108.41 5.56 3.88 3.87 7.04 28.2 28 28.17 28.19 9.17 14.09

EL1 0.14 0.13 0.15 0.63 3.37 5.17 5.04 9.08 0.11 0.23 0.27 0.63 0.78 0.78 0.4 0.4 0.18 1.27

EL2 0.03 0.07 0.03 0.5 14.36 36.49 33.86 114.22 0.03 0.15 0.1 0.49 7.69 7.83 7.78 7.83 0.06 1.98

MAXEL1 0.46 1.29 0.07 1.35 6.22 9.97 10.41 18.07 0.1 1.77 0.53 1 19.4 19.58 19.72 19.79 0.83 1.98

MINEL1 0.48 0.17 0.31 0.67 6.18 10.04 9.86 17.81 0.1 1.77 0.53 1 0.2 0.38 19.72 19.79 0.83 1.98

Summary of L1, L2, EL1, EL2, MAXEL1 and MINEL1 for an AR(1), AR(2), sparse random, scale-free, band, cluster, star and circle graphical model. The median loss

values reported here are based on 40 replications for both the B-net and D-net estimators. The best performing values are boldfaced.

https://doi.org/10.1371/journal.pone.0261193.t002
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This may be due to the fact that the best performing tuning parameter in the solution path

leads to highly sparse estimates. The B-net estimation procedure inherits the utilisation of mul-

tiple penalty parameters in the precision matrix estimation, leading to robust estimation of the

precision matrices.

To assess the performance on graphical structure determination, the specificity, sensitivity,

false negative rate, f1 score and the MCCs are computed and defined in Table 4. Noting that,

TP, TN, FP and FN denote the number of true positives, true negatives, false positives and

false negatives, respectively. Values of specificity, sensitivity, f1-score and MCC closer to one,

imply better classification performance. The closer the values of false negative rate are to zero

the better. Further insights on the performance metrics are discussed in [40]. The sparsity for

Table 3. Synthetic study standard error loss results.

AR(1) AR(2) S80 S40 SF Band Cluster Star Circle

B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net

p = 10

L1 0.19 0.05 0.14 0.09 0.72 1.16 1.37 2.42 0.16 0.01 0.29 0.19 0.33 0.12 0.79 0.12 0.69 0.12

L2 0.15 0.03 0.15 0.04 0.78 1.02 1.07 2.11 0.09 0.01 0.37 0.15 0.37 0.05 0.42 0.06 0.89 0.01

EL1 0.02 0.01 0.07 0.04 0.12 0.24 0.19 0.77 0.02 0.01 0.09 0.1 0.08 0.03 0.06 0.02 0.14 0.03

EL2 0.01 0.01 0.05 0.05 0.11 0.41 0.39 3.51 0.01 0.01 0.06 0.1 0.09 0.04 0.8 0.29 0.17 0.1

MAXEL1 0.11 0.01 0.25 0.08 0.27 0.5 0.57 1.28 0.08 0.01 0.17 0.18 0.3 0.08 0.4 0.12 0.48 0.1

MINEL1 0.13 0.04 0.1 0.08 0.26 0.57 0.64 1.46 0.08 0.01 0.17 0.22 0.12 0.09 0.38 0.12 0.5 0.1

p = 30

L1 0.22 0.01 0.14 0.11 1.45 1.25 1.63 2.28 0.11 0.01 0.16 0.04 0.08 0.04 0.22 0.03 0.5 0.05

L2 0.2 0.01 0.14 0.01 1.03 1.23 1.07 1.23 0.05 0.01 0.27 0.2 0.04 0.01 0.06 0.01 1.07 0.01

EL1 0.02 0.01 0.03 0.02 0.2 0.25 0.18 0.3 0.01 0.01 0.04 0.04 0.01 0.01 0.01 0.01 0.05 0.01

EL2 0.01 0.01 0.01 0.03 0.39 1.58 0.86 4.6 0.01 0.01 0.03 0.07 0.03 0.02 0.15 0.05 0.05 0.03

MAXEL1 0.15 0.02 0.12 0.06 0.61 1.31 0.76 1.58 0.06 0.01 0.1 0.11 0.04 0.03 0.11 0.04 0.28 0.04

MINEL1 0.16 0.02 0.07 0.05 0.61 1.37 0.83 1.6 0.03 0.01 0.11 0.12 0.05 0.03 0.11 0.04 0.28 0.04

p = 100

L1 0.24 0.01 0.12 0.02 2.26 2.85 2.49 4.02 0.1 0.01 0.01 0.01 0.03 0.01 0.07 0.36 0.19 0.01

L2 0.2 0.01 0.05 0.01 1.17 1.1 1.85 1.71 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.05 1.31 0.01

EL1 0.01 0.01 0.01 0.01 0.17 0.11 0.22 0.16 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.01

EL2 0.01 0.01 0.01 0.01 1.45 1.56 2.98 3.84 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.08 0.01 0.01

MAXEL1 0.19 0.01 0.07 0.01 0.75 0.89 1.08 1.32 0.03 0.01 0.03 0.03 0.01 0.01 0.07 0.1 0.14 0.01

MINEL1 0.12 0.01 0.05 0.01 0.6 0.89 0.89 1.52 0.03 0.01 0.03 0.03 0.01 0.01 0.07 0.1 0.14 0.01

Summary of L1, L2, EL1, EL2, MAXEL1 and MINEL1 for an AR(1), AR(2), sparse random, scale-free, band, cluster, star and circle graphical model. The median

standard errors reported here are based on 40 replications for both the B-net and D-net estimators. The best performing values are boldfaced.

https://doi.org/10.1371/journal.pone.0261193.t003

Table 4. Performance measures used to assess classification accuracy of the B-net and D-net graphical models

estimates.

Measure Performance function Abbreviation

Specificity TN
TNþFP SP

Sensitivity TP
TPþFN SE

False negative rate FP
FPþTN FNR

F1-score TP
TPþ1

2
ðFPþFNÞ F1

Matthews Correlation Coefficient TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p MCC

https://doi.org/10.1371/journal.pone.0261193.t004
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the B-net estimator is determined by the thresholding rule in Eq (8) and the thresholds, η,

associated with the MCC values in Fig (1a)–(1i). Similarly, the best performing tuning parame-

ter in the solution path of the D-net algorithm determines the sparsity of the estimator. The

median performance scores, based on 40 repetitions, for each graphical structure is presented

in Table 5. The main diagonals of the adjacency matrices were not included in the scoring.

The B-net estimator generally outperforms the D-net estimator across all models and all

dimensions according to the MCC, f1-score, sensitivity and false negative rate, with the excep-

tion of the star case for p = 100. Fig (3a)–(3i) display the true and inferred undirected DN

graphs for both the B-net and D-net estimators for p = 10; higher dimensions are available in

the S1 File. Lastly, Fig (2a)–(2i) display the true and inferred adjacency matrices for p = 10.

Both Figs 2 and 3 visually demonstrate the superiority of the B-net estimator.

Real data analysis

This section focuses on applying the novel Bayesian DN estimator, B-net, as well as the terative

shrinkage-thresholding estimator, D-net, to the spambase dataset, available at https://archive.

ics.uci.edu/ml/datasets/spambase to investigate changes in DN structure between spam and

non-spam data. In addition, the B-net estimator is applied to South African COVID-19 data,

obtained from https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-

reports/, https://ourworldindata.org/coronavirus/country/south-africa and https://mediahack.

co.za/datastories/coronavirus to investigate the change in DN structure between various

phases of the pandemic.

Table 5. Synthetic study median performance results.

AR(1) AR(2) S80 S40 SF Band Cluster Star Circle

B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net B-net D-net

p = 10

SE 0.72 0.11 0.82 0.21 0.6 0.53 0.65 0.36 0.89 NA 0.89 0.44 1 0.25 0.22 0.11 0.9 0

SP 1 1 0.97 0.7 0.89 0.82 0.87 0.94 0.9 NA 0.95 0.93 1 0.87 0.8 1 0.95 0.98

PR 0.87 0.5 0.3 0.12 0.22 0.22 0.72 0.56 0.18 NA 0.16 0.11 0.4 0.16 0.06 0.02 0.2 0

MC 0.45 0.11 0.76 -0.07 0.54 0.39 0.43 0.24 0.71 NA 0.83 0.41 1 0.14 0.11 0.3 0.88 -0.07

F1 0.84 0.2 0.84 0.24 0.67 0.56 0.77 0.51 0.76 NA 0.86 0.4 1 0.34 0.25 0.2 0.9 0

FNR 0.28 0.89 0.18 0.79 0.4 0.47 0.35 0.64 0.11 NA 0.11 0.56 0 0.75 0.78 0.89 0.1 1

p = 30

SE 0.31 0.01 0.75 0.04 0.23 0.08 0.37 0.03 0.79 NA 0.9 0.24 0.89 0.02 0.03 0.02 0.97 0

SP 0.97 1 0.99 0.93 0.98 0.99 0.82 1 0.92 NA 1 1 0.99 0.98 1 1 1 0.99

MC 0.17 0.02 0.8 -0.04 0.35 0.16 0.16 0.05 0.52 NA 0.92 0.46 0.89 -0.02 0.06 0.08 0.95 -0.03

F1 0.48 0.01 0.82 0.04 0.36 0.14 0.53 0.06 0.53 NA 0.93 0.38 0.93 0.04 0.06 0.03 0.95 0

FNR 0.69 0.99 0.25 0.96 0.77 0.92 0.63 0.97 0.21 NA 0.1 0.76 0.11 0.98 0.97 0.98 0.03 1

p = 100

SE 0.21 0 0.73 0 0.04 0.01 0.15 0 0.49 NA 0.95 0.05 0.79 0 0.02 0.12 0.99 0

SP 0.99 1 1 1 1 1 0.92 1 0.98 NA 1 1 1 1 1 1 1 1

MC 0.33 0.01 0.82 0 0.14 0.05 0.07 0.01 0.39 NA 0.95 0.22 0.81 0 0.08 0.35 0.98 -0.01

F1 0.34 0 0.82 0 0.08 0.01 0.25 0 0.4 NA 0.95 0.1 0.88 0 0.04 0.22 0.98 0

FNR 0.79 1 0.27 1 0.96 0.99 0.85 1 0.51 NA 0.05 0.95 0.21 1 0.98 0.88 0.01 1

Summary of SE, SP, F1, MC and for an AR(1), AR(2), sparse random, scale-free, band, cluster, star and circle graphical model. The median performance scores reported

here are based on 40 replications for both the B-net and D-net estimators. The best performing values are bold-faced and scores that were not attainable due to single

class classification are encoded as NA.

https://doi.org/10.1371/journal.pone.0261193.t005
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Spam data

The objective here is to compare the B-net and D-net graphical model estimates of the spam

and non-spam emails. The dataset consists of 1813 spam emails and 2788 non-spam emails.

The attributes include, amongst others, the average length of uninterrupted sequences of capi-

tal letters; total number of capital letters in the e-mail; an indicator denoting whether the e-

mail was considered spam or not, in this study.

Following the approach of [24], the data is standardised using a non-paranormal transfor-

mation in order to satisfy the Gaussian assumption. The B-net estimates are based on 10000

iterations of the Monte Carlo sampler after 5000 burn-in iterations. Fig 4 illustrates the differ-

ence between the B-net and D-net estimates. Both estimators indicate the presence of several

common hub features namely, ‘edu’, ‘original’, ‘direct’, ‘lab’, ‘telnet’ and ‘addresses’. It is clear

from both panes that the state of the covariance matrix structure between the spam and non-

spam emails may very well be different. Furthermore, given that Hewlett-Packard Labs

Fig 2. DN adjacency matrix heatmaps. Comparison of the true DN, B-net and D-net adjacency matrices for an AR(1), AR(2), sparse random, scale-free, band, cluster,

star and circle graphical model and p = 10. (a) Model 1: AR(1). (b) Model 2: AR(2). (c) Model 3: at most 80% sparse. (d) Model 4: at most 40% sparse. (e) Model 5: scale-

free. (f) Model 6: band. (g) Model 7: cluster. (h) Model 8: star. (f) Model 9: circle.

https://doi.org/10.1371/journal.pone.0261193.g002
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Fig 3. DN adjacency matrix graphical models. Comparison of the true DN, B-net and D-net graphical structure estimates for an AR(1), AR(2), sparse random,

scale-free, band, cluster, star and circle graphical model and p = 10. (a) Model 1: AR(1). (b) Model 2: AR(2). (c) Model 3: at most 80% sparse. (d) Model 4: at most

40% sparse. (e) Model 5: scale-free. (f) Model 6: band. (g) Model 7: cluster. (h) Model 8: star. (i) Model 9: circle.

https://doi.org/10.1371/journal.pone.0261193.g003
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donated the data, words such as ‘telnet’ and ‘hp’ appear more often in the non-spam emails

and can be used to distinguish between spam and non-spam emails.

South African COVID-19 data

The 2019 novel coronavirus (COVID-19) has affected more than 180 countries around the

world, including South Africa. The current body of knowledge boasts a wealth of statistical lit-

erature that aims at empowering researchers to study and alleviate the impact of the disease,

see for example [41]. Understanding the interaction of key metrics and attributes between var-

ious phases, cycles or waves of the pandemic may prove to be invaluable in strategic planning

and prevention. The goal here, is to use the Bayesian DN, B-net, to illustrate that the interactiv-

ity of key daily metrics between suspected homogeneous and heterogeneous phases within the

pandemic life cycle is ever changing. In particular, the B-net is used to model the interactivity

of daily metrics between the first two peaks or waves; the first wave and the following plateau

and finally the difference between the first and second post wave plateaus. The data consists of

446 observations from the 7th of February 2020 to the 27th of April 2021. The daily metrics

include, deaths; performed tests; positive test rate; active cases; tests per active case; recoveries;

hospital admissions; hospital discharges; ICU admissions and the number of ventilated

patients. It should be noted that no sensitive patient information is used, however, the inter-

ested reader is referred to [42] for a detailed treatment and framework for dealing with and

sanitizing medical data containing sensitive patient information. Due to the irregularities in

data capturing and publishing, a seven day moving average is applied across all daily metrics.

The data is standardised using a non-paranormal transformation in order to satisfy the Gauss-

ian assumption. The B-net is applied to the data using 10000 iterations of the Monte Carlo

sampler after 5000 burn-in iterations.

Fig 5 highlights the temporal nature of the pandemic between suspected homogeneous and

heterogeneous phases. In other words, comparing the cyclical behaviour of individual daily

metrics may seem clearly distinctive over time; a peak or wave is always followed by a plateau.

Furthermore, extrapolation of the temporal behaviour of individual daily metrics may incor-

rectly allude to distinct multi modality of multiple daily metrics. Upon observing multiple

Fig 4. A comparison of the D-net and B-net DN estimates for the spam emails dataset. (a) The Bayesian DN for the spam emails dataset. (b)

The iterative-shrinkage DN for the spam emails dataset.

https://doi.org/10.1371/journal.pone.0261193.g004
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metrics simultaneously, the crisp group-wise multi modality diminishes rather rapidly. The

figures in Fig 6 illustrate the higher proportions of hub features present in the DNs. Interest-

ingly, the Bayesian DN provides insight to the change in interaction between daily metrics

between perceived homogeneous pandemic phases, that is comparisons between the two peaks

and two post-peak plateaus. This change in behaviour could be as a result of the change in pop-

ulation adherence to public sanitation awareness; weather conditions; virus mutations or com-

placency of over time.

Discussion

The Bayesian differential network estimator is the first of its kind which utilises the excellent

graphical structure determination and matrix estimation of the Bayesian graphical lasso [16].

In comparison with the state of the art iterative shrinkage-thresholding approach, the Bayesian

differential network offers MCMC outputs that allow the user to gain deeper insight and infer-

ence in the estimation procedure. The numerical accuracy of the Bayesian differential network

Fig 5. South African COVID-19 daily metrics over time. 7-day moving average filled area line plots with standardised counts for daily new cases; deaths; tests; positive

test rate; active cases; tests per active case; recoveries; hospital admissions; hospital discharges; ICU admissions and ventilated patients.

https://doi.org/10.1371/journal.pone.0261193.g005
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Fig 6. Bayesian DN estimates of South African COVID-19 data. The Bayesian DN and corresponding BAGLASSO graphical models between the first two waves;

the first wave and the following plateau and finally the difference between the first and second post wave plateaus. The p−values from the Box’s M-test for

homogeneity of covariance matrices between the contributing precision matrices were all less than 0.001 [43].

https://doi.org/10.1371/journal.pone.0261193.g006
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is, in general, superior to that of the iterative shrinkage-thresholding estimator. Moreover, the

Bayesian proposal captures both sparse and dense precision matrix patterns in some well-

known graphical structures more accurately. The latter being a result of the Wishart prior’s

ability to accommodate the variability and adjustment to the data. Furthermore, the threshold-

ing technique for sparse estimation is designed such that it accounts for the effect of prior allo-

cation through the posterior expectation.

The graphical structure learning is a crucial component of the Bayesian differential network

estimator. The ad hoc approach provided in Eq (8) suggests a suitable sparsity threshold under

varying graph structures. The Bayesian differential network also provides key insights to

changes in the interactive behaviour of real data metrics ranging from filtering spam emails to

COVID-19 life cycles. For high-dimensional data, the block Gibbs sampler may be adjusted to

incorporate the singular normal distribution presented in [44] in the hierarchical representa-

tion Eq (7). Furthermore, research on simultaneous Bayesian estimation and optimisation of

both Σ� 1

1 and Σ� 1

2 in the construction of the differential network is underway.

Supporting information

S1 File. Supplementary material. Contains a block Gibbs sampler, as well as, additional opti-
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Funding acquisition: Mohammad Arashi.

Investigation: Jarod Smith, Mohammad Arashi, Andriëtte Bekker.
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PLOS ONE Empowering differential networks using Bayesian analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0261193 January 25, 2022 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261193.s001
https://doi.org/10.1371/journal.pone.0261193


References
1. Shojaie A. Differential network analysis: A statistical perspective. Wiley Interdisciplinary Reviews:

Computational Statistics. 2020; p. e1508.

2. Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. MIT press; 2009.

3. Chuang H, Lee E, Liu Y, Lee D, Ideker T. Network-based classification of breast cancer metastasis.

Molecular Systems Biology. 2007; 3(1):140. https://doi.org/10.1038/msb4100180 PMID: 17940530

4. Taylor I, Linding R, Warder-Farley D, Liu Y, Pesquita C, Faria D, et al. Dynamic modularity in protein

interaction networks predicts breast cancer outcome. Nature Biotechnology. 2009; 27(2):199–204.

https://doi.org/10.1038/nbt.1522 PMID: 19182785

5. Li Q, Shao J. Sparse quadratic discriminant analysis for high dimensional data. Statistica Sinica. 2015;

25:457–473.

6. Jiang B, Wang X, Leng C. A direct approach for sparse quadratic discriminant analysis. The Journal of

Machine Learning Research. 2018; 19(1):1098–1134.
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