
 
INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING VOL. 14 NO. 1 (2022) 25-39 

 

   

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

IJIE 

 

Journal homepage: http://penerbit.uthm.edu.my/ojs/index.php/ijie 

The International 

Journal of 

Integrated 

Engineering 

 ISSN : 2229-838X     e-ISSN : 2600-7916  

 
 

*Corresponding author: ffaisae@ump.edu.my 
2022 UTHM Publisher. All rights reserved. 

penerbit.uthm.edu.my/ojs/index.php/ijie 

25 

Modelling and Optimization of Energy Efficient Assembly 

Line Balancing Using Modified Moth Flame Optimizer 
 

Mohd Fadzil Faisae Ab. Rashid1*, Nik Mohd Zuki Nik Mohamed1, Ahmed 

Nurye Oumer2 
 
1Department of Industrial Engineering, College of Engineering, 

 Universiti Malaysia Pahang, 26300, Gambang, Pahang, MALAYSIA 

 
2Department of Mechanical Engineering, College of Engineering, 

 Universiti Malaysia Pahang, 26300, Gambang, Pahang, MALAYSIA 

  

*Corresponding Author 

 

DOI: https://doi.org/10.30880/ijie.2022.14.01.003 

 Received 21 September 2020; Accepted 15 February 2021; Available online 07 March 2022 

 

1. Introduction 

The world demand for energy is increasing at a fast rate with the increasing trend of modernization and 

industrialization. Since the last half a century, the world's energy demand has increased by two folds. Moreover, annual 

rate of global primary energy consumption between 2009 and 2030 is expected to rise by 1.6%. Even though the 

development of renewable energy sources has been increasing, more that 80% of the total energy still comes from non-

renewable fossil fuels like oil, coal and natural gas, which are the major contributors to greenhouse gas (GHG) 

emissions. For instance, in 2012, the energy use of the CO2 emitting energy sources increased by additional 1.4% from 

the year before [1]. 

The manufacturing sector is one of the high energy demanding sectors. According to the report by the United 

Nation Environment Program (UNEP), the manufacturing sector consumes about 35% of the global electricity. 

Moreover, it is responsible for over 20% of the global carbon dioxide emissions, which is quite significant. These 

scenario forced many scientists who are working in the manufacturing field to pay attention to the energy and resource-

efficiency challenges, and focus on making manufacturing processes more sustainable [2].  

Abstract: Energy utilization is a global issue due to the reduction of fossil resources and also negative 

environmental effect. The assembly process in the manufacturing sector needs to move to a new dimension by 

taking into account energy utilization when designing the assembly line. Recently, researchers studied assembly 

line balancing (ALB) by considering energy utilization. However, the current works were limited to robotic 

assembly line problem. This work has proposed a model of energy efficient ALB (EE-ALB) and optimize the 

problem using a new modified moth flame optimizer (MMFO). The MMFO introduces the best flame concept to 

guide the global search direction. The proposed MMFO is tested by using 34 cases from benchmark problems. The 

numerical experiment results showed that the proposed MMFO, in general, is able to optimize the EE-ALB 

problem better compared to five comparison algorithms within reasonable computational time.  Statistical test 

indicated that the MMFO has a significant performance in 75% of the cases. The proposed model can be a 

guideline for manufacturer to set up a green assembly line in future.  
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One of the stages that should be considered in sustainable manufacturing is the design stage. It includes design for 

production and design for green use.  Design for green use involves minimizing energy consumption, reducing waste, 

and end of life design. Besides the product design, the assembly layout design is also important to be considered to 

achieve sustainable manufacturing. In terms of assembly process, an assembly layout design that considers the energy 

factor could contribute to efficient energy utilization. This can be realized by optimizing the number of machines and 

tools that utilize energy to operate. However, minimizing the number of machines and tools in the assembly process 

could lead to inaccurate solution due to the differences in power consumption for different machines and tools.  

Assembly line balancing (ALB) is an activity to optimize the assembly layout by assigning a balance assembly 

workload among workstations. This problem is a combinatorial optimization problem, which requires extensive 

computational effort [3]. Traditionally, the most important factor that is considered during the assembly task 

assignment is to ensure that every workstation has almost similar workload by fulfilling the assembly precedence 

constraints [4]. The ALB problem was categorized into a simple assembly line balancing (SALB) and a general 

assembly line balancing (GALB) [5].  

Researchers implemented different optimization objectives as an indicator to measure the fitness of the assembly 

line. Based on the survey that was conducted by the researcher, for SALB problem, the main optimization objective is 

to minimize the number of workstation. This is followed by minimizing  cycle time and minimizing the smoothness 

index of the workload [6]. These objective functions were matched with the SALB categories which focus on the 

mentioned objectives. Besides the objective functions, researchers also studied the different constraints in the assembly 

process. Sungur and Yavuz for instance, considered the worker’s assignment on top of the main ALB optimization 

objective [7]. In addition to the main objective function, some   researchers have considered to minimize the number of 

resources such as machine and tool in an ALB [8], [9]. The additional constraints in the ALB made the problem 

modelling become nearer to real situation.  

On the other hand, researchers also studied the energy factor in the ALB to produce an assembly line with efficient 

energy utilization. However, the number of works on ALB that have considered energy utilization is relatively small 

compared to the total ALB published works. Nilakantan considered energy utilization in a robotic assembly line [10]. 

In this work, the assembly tasks need to be assigned to different robots.  In this problem, the different robots will 

consume different energy to perform a similar task. The same energy model was also used in different published papers 

[10], [11]. This model is useful when the assembly line uses different robot models in the assembly process.  

Michalos in 2015 presented the ALB with efficient energy for an automotive assembly problem [12].  Energy 

utilization was minimized in two stages; during the design and the assembly configuration stages. In the design stage, 

the energy utilization was minimized by reducing the number of robots. Then in the configuration stage, the best 

assembly task assignment was optimized to make sure that the best configuration was achieved. Besides that, 

researcher also considered  energy utilization for robotic assembly line on a two-sided ALB [13]. In this paper, they 

considered the power consumption in both the operation and standby modes. The power in standby mode is assumed to 

be 10% of the power in operation mode. Meanwhile, Urban and Chiang studied  energy efficiency of an unpaced 

assembly line with stochastic assembly time [14]. However, in this paper, they assumed that energy utilization can be 

reduced indirectly when the cycle time is reduced. Therefore, they did not present any mathematical model for energy 

utilization in their work.  

Various optimization algorithms were proposed to optimize the ALB problem. According to a  review paper, 

among the popular algorithms used in ALB were genetic algorithm (GA), simulated annealing (SA), ant colony 

optimization (ACO) and particle swarm optimization (PSO) [15]. The GA has been implemented in various versions of 

ALB problem. The application of GA to optimize ALB can be traced since 1992 [16]. Since that, researchers had made 

various progresses to the GA for ALB. [17] for example; hybridized the heuristics approach in GA by embedding 

heuristic result in the initialization stage. This hybrid approach  had also been used by different researchers for the 

mixed-model  ALB [18]. Besides that, researcher also hybridized the GA with  a Tabu search to enhance  performance 

[19].  Meanwhile, Gao combined the GA with a local search to optimize the robotic ALB [20]. Later, the researcher 

adopted a One-Fifth Success Rule (OFSR) and the probability of selecting the best solution in GA to control the 

diversity of generated solution for ALB [21]. 

Besides, the well-established algorithms that were  presented above, researchers also implemented several 

relatively new algorithms such as the artificial bee colony [22], [23], teaching-learning based algorithm [24], [25], 

Benders decomposition [26] and cuckoo search algorithm [27].  

Based on the presented literatures on ALB works, research on ALB can be divided into two major groups. The first 

group is the research which concentrated on the ALB problem modelling, while the second group focused on the 

optimization algorithm. The research that focused on problem modelling has been extensively studied including ALB 

problems which considered workers and also resources. However, there is a lack of study which considers energy 

utilization in ALB. The existing work that studies energy utilization in assembly line is limited to robotic assembly line. 

Meanwhile, in terms of optimization algorithm, recent researchers tried to explore different optimization techniques. 

On the other hand, the interest on well-established algorithms is still there, but the direction is towards enhancing the 

algorithm performance. 
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This paper, therefore, aims to model and optimize energy efficient ALB problem. In contrast to existing works that 

only focus on the robotic assembly line; the proposed model can be implemented for an assembly line that utilizes the 

electrical power to operate. This paper only focus on the simple assembly line problem type E (SALB-E). For 

optimization purpose, this work proposed a modification to a new algorithm called moth flame optimizer (MFO).  MFO 

was introduced by Mirjalili in 2015 [28]. This algorithm is selected to explore the potential of the new algorithm, since 

no prior work has implemented MFO for ALB.  

The rest of this paper is organized as follows. Section 2 details the problem modelling for energy efficient ALB, 

including a numerical example. Section 3 explains the proposed modified MFO algorithm. Section 4 discusses the 

computational experiment methods and results from benchmark and case study problems. Finally, section 5 presents the 

conclusion and future research direction.  

 

2. Energy Efficient ALB Modelling 

The energy efficient assembly line balancing (EE-ALB) is modelled according to the simple assembly line 

balancing type E model (SALB-E). The purpose of the problem is to design an assembly line with a balanced workload 

and, at the same time, minimizes energy utilization in idle mode. In this work, energy utilization is only considered in 

idle mode because energy consumption in the operation mode is the same for all configurations. This is because the 

total work content and the resources used to conduct a specific assembly task are the same.  

The ALB problem is presented in a precedence graph as shown in Figure 1. The number inside the node represents 

the assembly task, while the edge represents the precedence constraint. For example in Figure 1, assembly task 2 cannot 

be started until task 1 is completed.  

 
Fig. 1 - Example of precedence graph 

 

For problem modelling purpose, the following assumptions are applied: 

1. Assembly operation is conducted manually by worker. 

2. One assembly workstation is operated by one worker only. Any worker can be allocated at any 

workstation and can perform any assigned tasks. 

3. The assembly line only assembles one homogenous type of product. 

4. The power consumption in the idle mode is 10% of the power consumption during the operation 

mode [13], [29]. 

5. Since the power during operation time will be the same, only the power in the idle mode is 

considered. 

6. No similar machine is allowed at one workstation. 

 

For the optimization of EE-ALB problem, two optimization objectives are considered. The first objective is to 

minimize the smoothness index (SI), while the second is to minimize idle energy utilization (IEU). In equation (1) and 

(2), ct is the cycle time, while ptk is the processing time in the kth station. 

 

 

 

(1) 

 

 
(2) 
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(3) 

 

 

(4) 

 

 

(5) 

 

The first constraint in equation (3) ensures that an assembly task is assigned to one workstation. Equation (4) 

represents the precedence constraint that must be followed. The xa,k and xb,k will equivalent to 1 if the task a or b is 

assigned into station k, or otherwise xa,k and xb,k is 0. Ca refers to the set of successors for task i. In other words, this 

constraint ensures that the successor/s for task i will be assigned to the similar or the following workstation. The 

constraint in equation (5) ensures that the maximum cycle time (ctmax) is obeyed. In equation (5), ti refers to the 

assembly time for ith task. 

 

The idle energy utilization (IEU) in the assembly line for a period of one hour is calculated as follows: 

 

 

(6) 

In equation (6), H is the total number of equipment and K is the total workstation. Meanwhile ph is the power 

rating for the hth equipment.  gi,h = 1 if  the equipment h is needed for task i, otherwise gi,h = 0. Meanwhile gk,h equal 1 

when equipment k is needed in workstation k. 

 

This problem involves two optimization objectives as mentioned in equation (1) and (6). To deal with the multi-

objective optimization problem, the weighted sum approach is used. However, since the ranges of these objective 

functions are different, it needs to be normalized into similar range [0, 1].  

 

 
(7) 

 

 
(8) 

In equation (7) and (8),  and  refers to normalized SI and IEU respectively. Therefore, using the weighted 

sum approach, the objective function is formulated as follows: 

 

 (9) 

In equation (9), w1 and w2 are the weight for the optimization objective, where the w1 and w2 are set at 0.5 

throughout the computational experiment and case study problem. 

 

3. Moth Flame Optimizer 

The moth flame optimizer (MFO) is inspired by the flying and navigation mechanisms of the moth [28].  At night, 

this insect flies and navigates as guided by the moon light. They fly at a fixed angle relative to the moon. This ensures 

the effectiveness to fly in a straight line in a long distance, since the moon is far away from the earth. This mechanism 

is known as traverse orientation. However, when there is artificial light, the moths are trapped in the spiral flying 
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movement because they try to maintain the fix angle to the light source as shown in Figure 2. Furthermore, the distance 

of the light source to the moth is very small compared to the moon distance.  

 
Fig. 2 - Moth flying in spiral direction towards flame 

 

Mathematically, the MFO algorithm consists of three functions (I, P, T). The I element represents the function that 

generates the random initial population. Meanwhile, the P element is the function to move the moths from an initial 

position to the final position in the search dimension. The input of the P function is the existing moth position, while 

the output is the updated moth position. Finally, the T element characterizes the termination function which determines 

the continuity of the iteration process in MFO. Even though there are a few approaches that can be used, the maximum 

iteration number to terminate the optimization was still in used. 

 

3.1 Initialization 

The initialization step involves setting up the initial solutions. The most important element is the moth position 

matrix (M) that represents the solution. The M matrix consists of n moth with d dimensions. 

 

 
 

To create this matrix, random distribution is used to generate the initial population based on the following 

equation: 

 

 (10) 

The ubi and lbi indicated the upper and lower bound for the ith variable. For each of the moth, the fitness of the 

solution is presented in OM matrix. 

 

 
 

Besides the moth matrix, there is a secondary matrix that stores the flame information. The moth and flame 

matrices are of the same size, but they might store different information. The flame matrix (F) keeps the best solution 

found by a particular moth in their journey. Apart from F, there is also the fitness matrix for the flame, OF. The F and 

OF matrices are presented as follows: 
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3.2 Evaluation 

In the continuous problem, the evaluation process can be simply made by replacing the moth position, Mi,j into the 

objective function. However, for a discrete combinatorial optimization problem with precedence constraint, Mi,j need to 

be decoded into a feasible solution. In this case, the topological sort procedure is implemented. The Mi,j is defined as a 

priority factor for jth task in ith solution to determine the selected assembly task to form a feasible assembly sequence, 

seqi. To illustrate the topological sort procedure, an example of the problem given in Figure 1 is considered. In this 

example, the assembly process consists of six tasks. Therefore, the moth position consists of six dimensions. Lets 

assume the first solution is M1 = [4.263 8.427 1.869 7.336 2.293 1.483].  

To decode the M1, the algorithm needs to identify the available candidate task. The candidate task consists of the 

assembly task without the precedence. Referring to Figure 1, the only candidate task is task 1. Therefore, task 1 is 

stored into seq1 = [1]. Next the selected task is removed from the precedence graph.  Now, the candidate task consists of 

tasks 2 and 3. In this situation, M1 for the 2nd and 3rd dimensions are compared. Since M1,2 is larger than M1,3, the 

assembly task 2 is selected to be stored in seq1. Now seq1 = [1 2]. This approach is repeated until all six assembly tasks 

are selected into seq1. For the given M1 above, the feasible assembly sequence that was decoded using the topological 

procedure is seq1 = [1 2 4 3 5 6]. Once the feasible assembly sequence is decoded, the evaluation process is conducted 

by using the fitness function in equation (9).  

 

3.3 Updating Moths and Flames 

In the P function, the moth position is updated by referring to the flame position function as follows: 

 

 (11) 

For Mi is the ith moth, S is the function of spiral and Fj is the jth flame. The spiral function S is a logarithm that uses 

the following equation: 

 

 (12) 

Di calculates the distance between the ith moth and jth flame. Meanwhile, constant γ represents the spiral shape [0, 

1] and q is a random number between [-1, 1]. Di taking absolute value of subtraction between flame position, Fj and the 

moth position Mi as follows: 

 

 (13) 

The q parameter defines the closeness of the moth to the flame. For this purpose, q is calculated as follows: 

 

 (14) 

In equation (14), φ is a coefficient that linearly decreases over the iteration from -1 to -2. By having the φ 

coefficient, the spiral shape moth path towards the flame can be achieved.  

Up to this point, we have only discussed the updating procedure using the equation (12), which obliges the moth to 

fly towards a flame. This can cause the moth to trap in local optima, since it only follows a single flame source. To 

improve the exploration in MFO, the flame is updated by sorting their fitness from the best to the worst. By using this 

approach, the moth will follow different flames based on their fitness level. This mechanism will diverse the search 

direction in MFO. 

Based on the presented MFO procedure above, the moths update its’ position by relying highly on the flame 

position, Fj. This procedure will make the chances to be trapped in local optima to be higher. The only mechanism to 

avoid this problem is by sorting the flame from best to worst, while maintaining the moth in original orders. This will 

divert the moth flying direction to reduce moth trapping in local optima.  

However, the flame sorting mechanism makes the search direction become too diversified, since the moth needs to 

follow a specific flame. In the case of the problem with y number of flames, there are also y different search directions 

in the algorithm. In this paper, we have proposed to improve the updating procedure by taking into account the best 

flame for the current iteration, Fbest, in the updating formula. For this purpose, the absolute distance from the Fbest to the 

moths is calculated. In the meantime, if the absolute distance is directly included in the updating formula, the premature 
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convergence can occur. Therefore, the updating procedure from Sine-Cosine Algorithm (SCA) is adopted [30]. In SCA, 

the following formulas are used to update the position. 

 

 
(15) 

Xi represents the existing position, while  is the updated position. Meanwhile r1, r2, r3 and r4 are the random 

numbers [0, 1]. To integrate this procedure into MFO, only the second part of the formula is considered as follows: 

 

 
(16) 

Therefore, the updating procedure in equation (12) is replaced with a modified equation as follows: 

 

 (17) 

The modified updating formula makes all the flames move towards the Fbest. However, the moving direction is not 

straight forward because of the sine and cosine functions. This gives the algorithm a better guided exploration ability. 

Furthermore, the Fbest from iteration to iteration might be different. This makes the search direction to be diversified, 

but in a guided mode.  

 

4. Computational Experiment 

This section explains the computational experiment that is used to measure the performance of the modified MFO. 

For this purpose, a set of well-known benchmark ALB problems taken from http://assembly-line-balancing.mansci.de/ 

are used [31]. Since these benchmark problems did not consider energy utilization, the equipment and power 

consumptions for each of the assembly tasks in the benchmark problems were randomly generated.  

For the purpose of algorithm comparison, the performance of the modified MFO is compared with the original 

MFO algorithm and Sine-Cosine Algorithm (SCA). In this case, SCA is used since the modified MFO adopted the 

updating procedure from SCA. Besides that, the modified MFO was also compared with other population-based 

algorithms such as Genetic Algorithm (GA), Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) 

algorithms. These algorithms (GA, ACO and PSO) were selected because of their popularity in optimizing the ALB 

based on literature review. Furthermore, GA, ACO and PSO were among the well-established algorithms that were 

used in different optimization problems. 

For the computational experiment, the population size for all algorithms was set to 30, while the maximum 

iteration was 500. For each of the problem, the optimization is repeated 10 times with different pseudo-random seeds. 

In the end, the minimum, mean and standard deviation of the fitness were measured. The benchmark test problems 

consist of six problems. These problems are categorized as small size (Mitchell and Sawyer), medium size (Kilbridge 

and Tonge) and large size (Lutz2 and Arc). Each of the benchmark problems are tested with different maximum cycle 

time, ctmax as suggested by the original benchmark problem. In total, there are 34 cases that have been considered. Next, 

the proposed MMFO is implemented to optimize the case study problem.   

Table 1 presents the optimization results for EE-ALB obtained from ten runs. For each of the cases, the results are 

presented in terms of minimum fitness, mean fitness and standard deviation (SD). In Table 1, the bolded value means 

the best obtained minimum and mean fitness for a particular case.  
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Table 1 - Minimum fitness obtained by different algorithms 

Problem Cycle 

time 
Fitness GA ACO PSO SCA MFO MMFO 

Mitchell 

(21 tasks) 14 
Minimum 0.1855 0.1824 0.1855 0.1847 0.1824 0.1811 
Mean 0.2008 0.1838 0.1967 0.2018 0.1949 0.1845 
SD 0.0089 0.0014 0.0084 0.0191 0.0148 0.0049 

15 
Minimum 0.1958 0.1847 0.1980 0.1851 0.1811 0.1824 
Mean 0.2269 0.1901 0.2195 0.2111 0.1998 0.1859 
SD 0.0393 0.0073 0.0233 0.0222 0.0234 0.0045 

21 
Minimum 0.1637 0.1425 0.1454 0.1565 0.1465 0.1425 
Mean 0.1895 0.1455 0.2052 0.1760 0.1843 0.1427 
SD 0.0283 0.0034 0.0345 0.0165 0.0286 0.0005 

26 
Minimum 0.2079 0.1437 0.1917 0.1747 0.1537 0.1425 
Mean 0.2508 0.1552 0.2459 0.1844 0.1851 0.1524 
SD 0.0263 0.0116 0.0560 0.0087 0.0472 0.0066 

35 
Minimum 0.1476 0.1242 0.1452 0.1242 0.1242 0.1177 
Mean 0.1622 0.1242 0.1615 0.1399 0.1390 0.1270 
SD 0.0102 0.0000 0.0161 0.0107 0.0095 0.0085 

39 
Minimum 0.1341 0.1295 0.1613 0.1341 0.1295 0.1332 
Mean 0.1528 0.1344 0.1788 0.1601 0.1470 0.1334 
SD 0.0132 0.0061 0.0111 0.0152 0.0161 0.0004 

Sawyer  

(30 tasks) 27 
Minimum 0.2719 0.2207 0.2318 0.2749 0.2256 0.2235 
Mean 0.2938 0.2393 0.3127 0.2998 0.2532 0.2367 
SD 0.0230 0.0196 0.0497 0.0224 0.0216 0.0176 

30 
Minimum 0.2787 0.2343 0.2809 0.2743 0.2733 0.2281 
Mean 0.2966 0.2689 0.3051 0.2862 0.2804 0.2595 
SD 0.0158 0.0196 0.0257 0.0078 0.0040 0.0230 

33 
Minimum 0.2940 0.2624 0.2478 0.2849 0.2817 0.2691 
Mean 0.3156 0.2755 0.2957 0.3137 0.3004 0.2775 
SD 0.0168 0.0136 0.0350 0.0194 0.0198 0.0052 

36 
Minimum 0.2297 0.2118 0.2274 0.2178 0.2521 0.2128 
Mean 0.3128 0.2162 0.2900 0.2712 0.2806 0.2247 
SD 0.0573 0.0065 0.0496 0.0345 0.0243 0.0150 

41 
Minimum 0.2708 0.1714 0.2839 0.2521 0.2503 0.2157 
Mean 0.3002 0.2089 0.3200 0.2867 0.2772 0.2464 
SD 0.0458 0.0301 0.0437 0.0269 0.0306 0.0255 

47 
Minimum 0.2414 0.2024 0.2344 0.2564 0.1951 0.1961 
Mean 0.3051 0.2433 0.2846 0.2676 0.2404 0.2346 
SD 0.0561 0.0233 0.0347 0.0133 0.0275 0.0324 

54 
Minimum 0.2440 0.2136 0.2155 0.2475 0.2173 0.2113 
Mean 0.2720 0.2245 0.2613 0.2690 0.2489 0.2139 
SD 0.0374 0.0121 0.0340 0.0235 0.0214 0.0025 

75 
Minimum 0.2460 0.2369 0.2444 0.2429 0.2013 0.1953 
Mean 0.2504 0.2399 0.2630 0.2526 0.2384 0.2233 
SD 0.0043 0.0041 0.0281 0.0151 0.0211 0.0170 

Kilbridge 

(45 tasks) 79 
Minimum 0.2968 0.2344 0.2810 0.2985 0.2631 0.2308 
Mean 0.3303 0.2475 0.3056 0.3216 0.2849 0.2511 
SD 0.0237 0.0141 0.0237 0.0133 0.0235 0.0148 

92 
Minimum 0.2853 0.1977 0.3070 0.2854 0.2825 0.2042 
Mean 0.3367 0.2316 0.3269 0.3165 0.3145 0.2456 
SD 0.0342 0.0265 0.0119 0.0182 0.0232 0.0233 

110 
Minimum 0.2938 0.2253 0.2383 0.2970 0.2831 0.2367 
Mean 0.3266 0.2607 0.3110 0.3202 0.3171 0.2558 
SD 0.0241 0.0236 0.0440 0.0201 0.0295 0.0161 

111 
Minimum 0.2896 0.2233 0.2667 0.3023 0.2276 0.1988 
Mean 0.3405 0.2470 0.3109 0.3476 0.2765 0.2301 
SD 0.0396 0.0180 0.0447 0.0379 0.0372 0.0189 

138 
Minimum 0.3111 0.2082 0.3568 0.2831 0.3039 0.2064 
Mean 0.3629 0.2399 0.3760 0.3697 0.3640 0.2394 
SD 0.0422 0.0181 0.0196 0.0535 0.0466 0.0312 

184 
Minimum 0.2665 0.1715 0.2370 0.2125 0.2212 0.1708 
Mean 0.4353 0.1930 0.3635 0.3384 0.2961 0.1918 
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Problem Cycle 

time 
Fitness GA ACO PSO SCA MFO MMFO 

SD 0.1013 0.0126 0.1536 0.1400 0.1245 0.0211 
Tonge 

(70 tasks) 320 
Minimum 0.2263 0.2386 0.2285 0.2320 0.1862 0.2112 
Mean 0.2781 0.2422 0.2700 0.2566 0.2153 0.2251 
SD 0.0341 0.0023 0.0391 0.0231 0.0269 0.0142 

364 
Minimum 0.2341 0.1709 0.2311 0.2052 0.1924 0.1832 
Mean 0.2924 0.2034 0.2711 0.2262 0.2114 0.2054 
SD 0.0390 0.0197 0.0437 0.0176 0.0112 0.0221 

410 
Minimum 0.2410 0.1795 0.1986 0.2021 0.1899 0.1598 
Mean 0.2776 0.1904 0.2150 0.2370 0.2086 0.1755 
SD 0.0314 0.0108 0.0125 0.0251 0.0196 0.0111 

468 
Minimum 0.2272 0.1944 0.2160 0.2040 0.2014 0.1829 
Mean 0.2556 0.1983 0.2272 0.2247 0.2210 0.1859 
SD 0.0195 0.0028 0.0143 0.0246 0.0159 0.0048 

527 
Minimum 0.2172 0.1683 0.1762 0.1638 0.1461 0.1574 
Mean 0.2299 0.1752 0.2177 0.1954 0.1794 0.1599 
SD 0.0145 0.0072 0.0250 0.0184 0.0214 0.0032 

Lutz2 

(89 tasks) 17 
Minimum 0.5783 0.5844 0.6254 0.5977 0.6002 0.5552 
Mean 0.6138 0.6081 0.6406 0.6249 0.6283 0.5598 
SD 0.0242 0.0178 0.0201 0.0258 0.0167 0.0034 

18 
Minimum 0.6284 0.5854 0.5962 0.6112 0.5994 0.5704 
Mean 0.6495 0.6056 0.6279 0.6203 0.6179 0.5892 
SD 0.0120 0.0126 0.0201 0.0139 0.0168 0.0158 

19 
Minimum 0.6120 0.5721 0.6129 0.5707 0.5547 0.5651 
Mean 0.6356 0.5932 0.6357 0.6147 0.5910 0.5752 
SD 0.0164 0.0146 0.0158 0.0272 0.0296 0.0119 

20 
Minimum 0.6185 0.5849 0.6445 0.6132 0.5923 0.5672 
Mean 0.6323 0.5957 0.6564 0.6416 0.6134 0.5916 
SD 0.0144 0.0128 0.0087 0.0225 0.0246 0.0216 

Arc 

(111 

tasks) 

10027 
Minimum 0.2504 0.2386 0.2406 0.2627 0.1731 0.1938 
Mean 0.3041 0.2621 0.2798 0.3023 0.2272 0.2125 
SD 0.0469 0.0221 0.0419 0.0276 0.0380 0.0220 

10743 
Minimum 0.2536 0.2420 0.2232 0.2162 0.1960 0.2222 
Mean 0.3093 0.2555 0.2440 0.2515 0.2110 0.2338 
SD 0.0611 0.0122 0.0182 0.0323 0.0205 0.0106 

11378 
Minimum 0.2235 0.2083 0.1810 0.2296 0.1634 0.1614 
Mean 0.2682 0.2245 0.2287 0.2568 0.1962 0.1841 
SD 0.0344 0.0102 0.0377 0.0232 0.0191 0.0141 

11570 
Minimum 0.2957 0.1777 0.2010 0.2179 0.1897 0.1730 
Mean 0.3188 0.1887 0.2356 0.2527 0.2275 0.1756 
SD 0.0204 0.0104 0.0259 0.0228 0.0272 0.0024 

17067 
Minimum 0.2158 0.1361 0.2750 0.1617 0.1835 0.1328 
Mean 0.3488 0.1459 0.2983 0.2112 0.2333 0.1454 
SD 0.0920 0.0190 0.0205 0.0439 0.0447 0.0132 

 

Based on the minimum results in Table 1, there is no single algorithm that dominates a particular benchmark 

problem in this computational experiment. To further analyze the results, a standard competition ranking was used. For 

this purpose, the best fitness will be assigned rank 1, while the worst fitness is ranked as 6.  When there is a tie, the 

following rank is left from the calculation. Table 2 below presents the frequency of the ranking obtained by the 

algorithms.  
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Table 2 - Frequency of the rank for algorithms 

Algorithm Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 

GA Best 0 1 1 2 17 13 

Mean 0 0 2 4 6 22 

ACO Best 8 16 5 3 1 1 

Mean 8 19 6 0 1 0 

PSO Best 1 0 5 10 8 10 

Mean 0 0 3 8 13 10 

SCA Best 0 2 6 11 7 8 

Mean 0 0 4 15 13 2 

MFO Best 8 4 12 8 1 1 

Mean 2 5 19 7 1 0 

MMFO Best 19 12 3 0 0 0 

Mean 24 10 0 0 0 0 

 

Based on Table 2, the proposed MMFO came out with the most frequent results with rank 1. The MMFO has been 

ranked as 1 in 19 cases (56%). From this number, the MMFO showed a better performance compared with other 

algorithms in 18 cases, while in one of the case, the MMFO has a tie ranked with other algorithms. This is followed by 

ACO and MFO with 24% of the cases. In terms of mean fitness, the proposed MMFO has obtained the best mean 

fitness in 70% of the cases. While in the remaining 30% of the cases, the MMFO is in second position in terms of the 

mean fitness. Meanwhile, ACO is in the next position with 24% of the best mean, 56% in the second rank and 18% in 

the third rank. On the other hand, GA is the algorithm with the most frequently ranked in the fifth and sixth place, in 

terms of the best and mean fitness. This is followed by PSO and SCA algorithms.  

Figure 3 and 4 show the error bars of the average rank for the considered algorithms. As mentioned earlier, the 

proposed MMFO has a better rank compared with the comparison algorithms. However, the error bars indicated 

inconclusive evidence regarding the performance of MMFO compared with ACO. Therefore, a statistical test was 

conducted to further analyze the results.  

 

 
 

Fig. 3 - Average ranks for minimum fitness 
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Fig. 4 - Average ranks for mean fitness 

 

4.1 Statistical Test 

In order to test for the significant difference in the algorithms, an ANOVA test is conducted. The purpose of 

statistical test is to measure either the obtained result using the proposed algorithm have significant difference or not. If 

the results show significant difference, it confirmed that the MMFO has relevant advantage statistically compared with 

other algorithms. Otherwise, the result obtained by MMFO did not have any differences with other algorithms.  

 In this case, one-way ANOVA with the confidence interval at 95% is used. The null hypothesis stated that there 

are no differences in the mean of fitness. Meanwhile, the alternative hypothesis specified that there are significant 

differences in the mean of fitness. In this test, when the P-value is larger than the α (α = 0.05, since confidence interval 

is 95%), the null hypothesis is accepted. Otherwise, if the P-value is less than α, the null hypothesis is rejected [32].  

The results of ANOVA are summarized in Table 3. From this table, the P-value is less than α in 32 out of 34 cases. 

This result shows that there are significant differences in the mean of fitness in 94% of the problems. In other words, 

the results confirm that there is at least one algorithm that has a significant performance over other algorithms in 

majority of the problems. However, the ANOVA test did not specifically reveal the group of data (or algorithm) that 

has a significant performance over other group. To identify the group of data that has a significant performance, a post 

hoc analysis is conducted. In this case, the Fisher's least significant difference (LSD) is implemented [33]. The LSD is 

calculated using the following equation: 

 

 

(18) 

In the LSD equation, tc represents critical t-value from the t-distribution table, for 95% confidence interval and 54 

degrees of freedom. MSW represents the mean square within the group, N1 and N2 are the numbers of sample data in the 

considered groups. Next, the absolute mean difference between particular groups with the comparison groups is 

calculated. When the absolute mean difference is larger than the LSD, it shows that a particular group has a significant 

difference compared with the comparison groups. In this study, we are interested to analyze the results from the 

proposed MMFO. Therefore, the absolute mean differences between MMFO and comparison algorithms are presented 

in Table 3. In this table, the bolded value shows that the MMFO has a significant difference over the comparison 

algorithm. Meanwhile, the value in the bracket means that the comparison algorithm has a significant difference 

compared with MMFO.  

Based on the LSD analysis, the MMFO has a significant performance in 75% of the cases when compared with 

comparison algorithms. In detail, the MMFO has a significant performance compared with GA in all problems. 

Meanwhile, in comparison with PSO and SCA, the MMFO significantly performed better in 94% of the problems, and 

71% of the problems compared with MFO. However, the MMFO only has a significant performance in 18% of the 

problems compared with ACO. This result shows that the proposed MMFO is able to come out with better performance 

in the majority of the problems, except when comparing with ACO. On the other hand, ACO also did not have a 

significant performance over MMFO, except in one problem (i.e. Sawyer with cycle time 41).  
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Table 3 - Summary of ANOVA and LSD test 

Benchmark 

Problem 
ANOVA 

LSD 

Absolute Mean Difference Between MMFO and 

Comparison Algorithms 

 
CT MSW P-value GA ACO PSO SCA MFO 

Mitchell_21 14 0.000126 0.063644 0.0101 0.0164 0.0006 0.0122 0.0173 0.0104 

15 0.000529 0.050966 0.0206 0.0410 0.0042 0.0336 0.0252 0.0139 

21 0.000515 0.000933 0.0203 0.0468 0.0028 0.0625 0.0332 0.0415 

26 0.001051 7.2E-05 0.0291 0.0983 0.0027 0.0934 0.0320 0.0326 

35 0.000107 4.7E-06 0.0093 0.0352 0.0028 0.0345 0.0129 0.0120 

39 0.000137 1.82E-05 0.0105 0.0194 0.0009 0.0453 0.0267 0.0136 

Sawyer_30 27 0.000728 0.000106 0.0242 0.0571 0.0026 0.0761 0.0632 0.0165 

30 0.000317 0.004645 0.0160 0.0371 0.0093 0.0456 0.0267 0.0208 

33 0.000420 0.019941 0.0184 0.0381 0.0020 0.0182 0.0362 0.0229 

36 0.001289 0.002231 0.0322 0.0880 0.0085 0.0653 0.0465 0.0559 

41 0.001148 0.000152 0.0304 0.0538 (0.0375) 0.0736 0.0402 0.0308 

47 0.001146 0.017039 0.0304 0.0705 0.0087 0.0500 0.0331 0.0058 

54 0.000620 0.003945 0.0223 0.0581 0.0107 0.0474 0.0552 0.0351 

75 0.000298 0.023901 0.0155 0.0271 0.0166 0.0397 0.0292 0.0151 

Kilbridge 79 0.000378 4.56E-07 0.0174 0.0792 0.0036 0.0545 0.0705 0.0338 

92 0.000571 2.44E-07 0.0214 0.0911 0.0139 0.0813 0.0709 0.0689 

110 0.000769 0.000582 0.0249 0.0708 0.0049 0.0552 0.0644 0.0613 

111 0.001108 5.16E-06 0.0298 0.1104 0.0168 0.0808 0.1175 0.0464 

138 0.001416 7.17E-07 0.0337 0.1235 0.0005 0.1366 0.1303 0.1246 

 184 0.011592 0.008305 0.0965 0.2435 0.0012 0.1718 0.1467 0.1043 

Tonge_70 320 0.000692 0.005113 0.0236 0.0530 0.0171 0.0449 0.0315 0.0098 

364 0.000789 6.35E-05 0.0252 0.0870 0.0020 0.0657 0.0209 0.0060 

410 0.000399 4.51E-07 0.0179 0.1021 0.0149 0.0394 0.0615 0.0331 

468 0.000246 6.56E-06 0.0141 0.0697 0.0124 0.0412 0.0388 0.0351 

527 0.000282 4.31E-06 0.0151 0.0700 0.0152 0.0578 0.0355 0.0195 

Lutz 2_89 17 0.000377 1.86E-05 0.0174 0.0540 0.0483 0.0808 0.0651 0.0685 

18 0.000239 8.12E-05 0.0139 0.0603 0.0164 0.0387 0.0311 0.0287 

19 0.000415 0.000209 0.0183 0.0605 0.0180 0.0606 0.0395 0.0159 

20 0.000330 2.14E-05 0.0163 0.0406 0.0040 0.0647 0.0500 0.0217 

Arc 111 10027 0.001189 0.000192 0.0309 0.0916 0.0496 0.0673 0.0898 0.0147 

10743 0.001055 0.001392 0.0291 0.0755 0.0217 0.0102 0.0177 0.0228 

11375 0.000634 9.82E-05 0.0226 0.0841 0.0404 0.0447 0.0727 0.0121 

11570 0.000478 1.32E-06 0.0196 0.1432 0.0131 0.0600 0.0771 0.0519 

17067 0.004225 0.001915 0.0583 0.2034 0.0005 0.1529 0.0658 0.0879 

 

The result of the computational experiment and statistical test indicated that the MMFO has a better overall 

performance, considering the percentage of the cases in rank 1 and 2 obtained by this algorithm and also the cases that 

this algorithm has a significant performance. However, this does not mean that the MMFO has better performance in all 

of the considered problems. The nearest challenger to the MMFO is the ACO algorithm. This is followed by the 

original MFO. The reason for the performance of MMFO is the balance mechanism for exploitation and exploration. 

The exploitation refers to how good the mechanism inside the algorithm manipulates the existing solution to reproduce 

new solution for the following iteration. Meanwhile, the exploration refers to the mechanism to explore the search 

space.  
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In MFO, the exploitation mechanism used is the behavior of the moth flying in spiral direction towards the flame. 

While the exploration mechanism is the flame sorting that makes the moth follow the different flame source when it has 

been updated. However, the flame sorting mechanism resulted in unguided global search direction. On the other hand, 

this mechanism has its own benefit because the unguided global search direction may suddenly produce better solution 

since the exploration is semi-random. This can be observed in Table 2, where the number of solution in rank 1 with a 

better fitness is relatively high, but lacking in the better mean.  

The proposed MMFO adopted a concept of best flame that will guide the global search direction in algorithm. This 

concept made the exploration mechanism more structured, where all the flames move towards the best flame in sine 

and cosine wave direction. This mechanism has produced a positive effect especially in terms of consistencies of 

algorithm to produce good solution. This effect has been proven by the mean fitness result of MMFO which was only 

ranked in first and second positions.  

On the other hand, ACO is well-known for having good performance in optimizing discrete combinatorial 

problem. The solution construction mechanism in ACO is somehow highly related to combinatorial problem like ALB. 

In comparison with other algorithms that generate the solution for the whole dimensions simultaneously, the solution 

construction in ACO produces the solution dimension by dimension, guided by the level of pheromone deposited by the 

ant. This mechanism provides a better chance for ACO to produce good solution in ALB.  

Table 4 presents the average CPU time for algorithm to complete the iterations. On average, the MMFO consumed 

about 54% additional CPU time compared with MFO. Comparing with other algorithms, the MMFO roughly in the 

fourth or fifth place in term of the CPU time. This is because of additional mechanism in the MMFO that requires the 

flame to move towards the best flame in the search space. In comparison with original MFO, the MMFO needs to 

determine the best flame, then calculate distance of best flame to moths, and update the moth position using additional 

formula. On the other hand, ACO algorithm required longer CPU time because the solution is constructed task by task 

instead of the whole assembly sequence in the other algorithms. Meanwhile, the discrete combinatorial crossover 

mechanism in GA makes this algorithm consumed the highest CPU time. In the GA, the partially mapped crossover 

(PMX) mechanism involved swapping a substring, while the remaining elements need to be inspected one by one to 

avoid duplication of the same offspring.  

Table 4 - Average CPU time 

Problem 
CPU Time (seconds) 

GA ACO PSO SCA MFO MMFO 

Mitchell 21 12.10 11.63 11.33 10.82 8.18 12.39 

Sawyer 30 34.11 46.09 33.83 33.35 24.76 40.16 

Kilbridge 45 99.24 76.13 64.01 31.37 45.03 69.71 

Tonge 70 778.42 608.45 444.17 493.56 343.22 546.68 

Lutz2 89 1895.80 936.39 854.88 858.71 636.86 1028.36 

Arc 111 3733.31 1407.45 1387.43 1818.75 1406.57 1948.80 

 

5. Conclusions 

Energy utilization becomes an important issue to be considered in the manufacturing sector as one of the biggest 

power consumption in the world. Considering the rise in energy cost and severe environmental impact from energy 

generation, the assembly process in the manufacturing sector should move to reduce energy utilization. This paper aims 

to model and optimize an energy efficient assembly line balancing (EE-ALB). In the proposed model, the energy 

utilization during the idle mode for the equipment which are used to assemble the product is considered.  

For the optimization purpose, a modified moth flame optimizer (MMFO) is proposed to optimize this problem.  

MMFO improves the exploration ability in moth flame optimizer (MFO) by introducing the best flame concept which 

guides the global search direction in the algorithm. A computational experiment has been conducted using 34 cases 

from the ALB benchmark problems. The results indicated that the MMFO has a better overall performance compared 

with the comparison algorithms. Even though the computational time is higher than the MFO, it is still comparable with 

the well-established algorithms.  

The ALB with energy utilization model which was presented in this paper could be a framework to design an 

efficient energy assembly line. In the future, the energy efficient assembly line concept will consider the different ALB 

classes such as two-sided and mixed-model problems.  
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