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Abstract. This is the first progress report of the international project funded by the National 
Research Council of Canada called Resilience and Adaptation to Climatic Extreme Wildfires 
(RACE Wildfires). In this first phase, the research performed included two main tasks: 1) the 
development of a sub-model for the representation of the impact of reduced visibility conditions 
on driving speed and 2) the development of a conceptual model for the study of the impact of the 
pandemic on shelter availability and destination choice. An experimental dataset collected in a 
virtual reality environment has been used to develop a sub-model for macroscopic traffic models 
considering the impact of reduced visibility conditions on driving speed. An application of a 
calibrated traffic model considering the impact of smoke has been performed using the WUI-NITY 
platform, an open multi-physics platform which includes wildfire spread, pedestrian response and 
traffic modelling. Verification testing has been performed as well. A conceptual framework for the 
development of a destination choice model to be applied in wildfire scenarios has also been 
developed. 
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Nomenclature 

 

Quantities 

 D optical density (1/m) 

 k vehicle density (veh/km/lane) 

 q traffic flow (veh/h/lane) 

 v vehicle speed (km/h) 

 a parameters of the model in the Highway Capacity Manual 
  (exponent calibration parameter) 

 a, b, c parameters of the model by Van Aerde and Rakha 

 c parameter of the model by del Castillo and Benítez (km/h) 
   (kinematic wave speed at jam density) 

 α reduction coefficient of the critical flow for reduced visibility conditions (-) 

 β reduction coefficient of the free flow speed for reduced visibility conditions (-) 

 γ reduction coefficient of the critical speed for reduced visibility conditions (-) 

 δ reduction coefficient of the jam density for reduced visibility conditions (-) 
 

Subscripts 

 ⛶𝑏 quantity ⛶ at the breaking point, where velocity becomes density depended 

 ⛶𝑐 quantity ⛶ at peak capacity, critical quantity 

 ⛶𝑓 quantity ⛶ in entirely sparse traffic, free-flow situation 

 ⛶𝑗 quantity ⛶ in entirely jammed traffic, total congestion 

 ⛶sm quantity ⛶ in for reduced visibility conditions 
 

Units 

 h hours 
 km kilometres 
 lane number of lanes 
 m metre 
 pce passenger car equivalents 
 veh number of vehicles 
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1. Introduction 

This report presents the interim results of the Resilience and Adaptation to Climatic Extreme 
Wildfires (RACE Wildfires) project, funded by the National Research Council of Canada. The 
project included different activities, this report being focused on the development of modelling 
tools to assess community evacuation protocols. 

The project was initiated since the propagation of wildfires towards urbanized areas may result in 
severe negative impacts, including mass evacuations. Fires may occur in Wildland-Urban  
Interfaces (WUI), where structures and vegetation merge in a wildfire-prone environment (Mell et 
al., 2010). The National Research Council of Canada (NRCC) and the National Resources Canada 
(NRCan) identified a clear research need for reducing the impact of WUI fires. This work included 
the development of a Canadian National Guide for WUI fires (Benichou et al., 2021). In the 
context of WUI fire evacuation, modelling tools may be helpful to support decisions both at the 
planning stage as well as during real-time management (Beverly and Bothwell, 2011). Those tools 
generally include different modelling layers, such as wildfire spread modelling, human response 
and movement simulations, and traffic evacuation modelling (Ronchi et al., 2019; Ronchi and 
Gwynne, 2019). 

The present report focuses on the traffic evacuation modelling layer. Such tools can be used to 
investigate what-if scenarios and perform predictions on the time needed to evacuate a given area 
(Intini et al., 2019). Two main areas have been explored, the study of the influence of wildfire 
smoke on driving and the impact of a pandemic on destination choice (i.e. destination modelling). 

The impact of wildfire smoke on evacuation is a crucial concern since private vehicles are largely 
used for these types of scenarios (Westhaver, 2017). However, there is a limited number of studies 
investigating the strategies and solutions for traffic modelling in case of WUI fire evacuations, 
compared to other hazards such as hurricanes and floods (Dixit and Wolshon, 2014; Kolen and 
Helsloot, 2012; Lindell et al., 2011; Wilmot and Mei, 2004; S. D. Wong et al., 2020). Recent research 
attempted to fill this gap by setting the requirements for the coupling of a traffic modelling layer 
with a wildfire threat (Beloglazov et al., 2016; Cova et al., 2005; Mitchell et al., 2022; Ronchi et al., 
2019). 

On one hand, fire spread modelling outputs can be used as input for trigger points/buffers 
(Mitchell et al., 2022) defining the time/location at which different areas should be evacuated 
(Cova et al., 2005; Li et al., 2015). Those fire spread-dependant trigger models can be integrated 
with traffic models for simulating the subsequent evacuation stage (Dennison et al., 2007). On the 
other hand, fire spread can progressively result in the closure of some roadway links, which can  
no longer be considered for evacuation purposes (Intini et al., 2019; Ronchi et al., 2019; Ronchi 
and Gwynne, 2019) or affect driving behaviour (Wetterberg et al., 2021). However, the evolution 
of the fire spread is associated with several uncertainties since it depends on several factors, such 
as fire, vegetation, topography and environmental variables (Wolshon and Marchive, 2007). 

Smoke propagation and associated visibility conditions should be considered explicitly. In fact, 
while the fire spread or the spotting phenomenon (see e.g., (Tohidi, 2016)) may have not yet caused 
the complete closure of a roadway link, traffic may be influenced by the presence of smoke (Intini 
et al., 2019; Wetterberg et al., 2021). In fact, smoke affects visibility and visibility, in turn, may 
affect driving behaviour, i.e., driving speeds (Wetterberg et al., 2021). Hence, while the coupling 
of fire models with traffic models may help in identifying the dynamic evolution of the road 
network available for evacuation, the influence of smoke on driving evacuation behaviour may be 
even more complex to assess. 
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Smoke may have a somewhat similar influence on driving behaviour such as adverse weather 
conditions, which may impair driving performance. However, while rainy and snowy conditions 
were consistently found to affect traffic flow variables such as speeds and capacity (Dhaliwal et al., 
2017; Rakha et al., 2007), there are mixed results for foggy conditions. In fact, these conditions 
may result in a decrease in speed and capacity (Hoogendoorn et al., 2010), an increase in speed 
(Snowden et al., 1998), or a decrease in perceived speed as a function of visibility, an effect which 
can also depend by the simulation environment (Brooks and Rafat, 2015). However, these studies 
do not reflect evacuation conditions, which may in turn also affect driving behaviour (Wong et al., 
2020). In fact, it should be considered that most drivers may be unfamiliar with driving during an 
evacuation scenario, which can be associated with a decreased speed with respect to familiar 
environments (Colonna et al., 2016). Moreover, flow capacity drops can also be observed during 
evacuations (Sullivan et al., 2010). To our knowledge, there are no attempts in previous research 
at modelling traffic flow relationships in case of reduced visibility conditions due to wildfire smoke, 
while this could be a clear contribution to the body of research and practice. 

In parallel with the development concerning the smoke impact on evacuation, this work includes 
developments concerning the impact of a concurrent pandemic threat. The Covid19 pandemic has 
demonstrated the added complexities associated with population safety in case of concurrent 
threats (Hassan and Mahmoud, 2021; Henderson, 2020; Sugg et al., 2022). Community evacuation 
plans should take into consideration the concurring effects of a wildfire threat and a disease spread. 
Existing wildfire evacuation modelling tools do not explicitly account for the impact of a pandemic 
scenario. This means that there is a dire need to develop a sub-model which can be implemented 
in evacuation models so that their predictive capabilities are accurate. The Covid19 pandemic has 
shown that models should take into account issues such as the impact of physical distancing on 
shelter capacity, occupancy limits and route management. Destination models should explicitly 
take into account their possibly reduced capacity and the process of providing information to 
evacuees on shelter availability. This includes representing compliance with the information 
received concerning transportation modes to shelters, shelter relocations or temporary refuge areas 
within and outside the affected communities. This may in turn also affect route and destination 
choices. The combination of those variables, along with the possible impact on the initial response 
to incident notification needs to be included in existing evacuation modelling tools. 

1.1 Aim and objectives 

This work investigates improvements needed in traffic evacuation modelling tools for wildfire 
scenarios to improve the accuracy of their results. 

The first objective is to study the influence of smoke on driving behaviour during evacuations. 
Given the difficulty of acquiring actual data during real-world evacuations with the presence of 
smoke, its influence on driving behaviour may be assessed through simulations, which can provide 
standardized, easy-to-collect data even for hazardous driving environments which could expose 
drivers to risks (Kinateder et al., 2014). To date, one study (Wetterberg et al., 2021) evaluated the 
impact of smoke on driving speeds by performing a virtual reality experiment. This study is used 
as starting point for the modelling work. The results show that different optical density values due 
to the simulated smoke were related to a decrease in the average driver speeds. This preliminary 
result, coupled with previous findings about capacity reduction during adverse visibility conditions 
e.g., (Hoogendoorn et al., 2010), has been used to build a relationship to be used in traffic 
modelling. The objective is therefore the development of a sub-model able to represent the 
reduction in speed as a function of reduced visibility. This would allow a more conservative and 
realistic approach when considering the presence of smoke from WUI fires on the road network. 
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The estimated changes in the traffic flow due to wildfire smoke are implemented into an integrated 
open modelling framework (Ronchi et al., 2020; Wahlqvist et al., 2021) to make it available for any 
interested parties. Testing of the new sub-model is also performed. 

The second objective includes paving the way for the development of a destination model to be 
used for wildfire evacuation models in which pandemic scenarios may occur. This involves 
accounting for shelter availability and compliance with instructions provided and the possible 
impact on the human response to the wildfire event. This is performed by developing a dedicated 
conceptual framework for destination modelling which includes the concurrent threat of a 
pandemic and a wildfire scenario. 

1.2 Report overview 

The first chapter of this report introduces the project, the overall aim and objectives and the report 
structure. Chapter 2 presents the method employed for the development and implementation of 
the sub-models for wildfire evacuation simulations. Chapter 3 presents a brief overview of existing 
approaches adopted for traffic evacuation modelling, particularly focusing on the calibration 
efforts required for the representation of the impact of smoke on driving. Chapter 4 introduces a 
conceptual framework for destination modelling considering the impact of a pandemic on traffic 
evacuation (this includes shelter availability, human response and compliance with instructions 
received). Chapter 5 presents a general discussion on the sub-models developed and further steps 
needed for their full implementation in existing multi-physics wildfire evacuation modelling tools. 
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2 Modelling driving speed in smoke 

This section introduces a set of mathematical models concerning traffic evacuation simulations 
adopted for the development of the sub-model considering the impact of smoke on driving speed 
during wildfire evacuations. As the main focus of this report is macroscopic traffic modelling, only 
the representation of the fundamental traffic dynamics at the macroscopic level is discussed. 

This work makes use of a set of commonly used relationships between speed, flow, and density. 
The work has been done considering the relationships included in the multi-physics WUI-NITY 
tool (Ronchi et al., 2020; Wahlqvist et al., 2021), and other macroscopic models which may be 
suitable for the implementation of the impact of smoke on speed. 

2.1 Macroscopic traffic models 

First, a set of well-known macroscopic traffic models (See Equation 1 to Equation 7) are presented. 
Those models are relationships which consider the fundamental variables of traffic (e.g. vehicle 
speed, vehicle density and vehicle flow) for the representation of uninterrupted facilities (e.g. where 
road links can be assumed unaffected by the presence of intersections for a significant length). 

Equation 1 presents the parabolic model by Greenshield (1935), often also referred to as the 
Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956). 

𝑣 = 𝑣𝑓 (1 −
𝑘

𝑘𝑗
)        [Equation 1] 

Equation 2 presents the exponential model by Underwood (1961). 

𝑣 = 𝑣𝑓𝑒
(−

𝑘

𝑘𝑐
)
         [Equation 2] 

Equation 3 presents the North-Western model by Drake et al. (1965). 

𝑣 = 𝑣𝑓𝑒
(−

1

2
(
𝑘

𝑘𝑐
)
2
)
        [Equation 3] 

Equation 4 presents the bi-linear (triangular) model by Daganzo (1994). 

𝑣 = {

𝑣𝑓 ,                             0 ≤ 𝑘 ≤ 𝑘𝑐
𝑞𝑐

𝑘
(
𝑘𝑗−𝑘

𝑘𝑗−𝑘𝑐
) ,            𝑘𝑐 ≤ 𝑘 ≤ 𝑘𝑗

      [Equation 4] 

Equation 5 presents the model by Van Aerde and Rakha (Van Aerde and Rakha, 1995; Wu and 
Rakha, 2009). 

𝑘 =
1

𝑎+
𝑏

𝑣𝑓−𝑣
+𝑐 𝑣

 𝑤𝑖𝑡ℎ 

{
 
 

 
 𝑎 =

𝑣𝑓(2𝑣𝑐−𝑣𝑓)

𝑘𝑗𝑣𝑐
2  

𝑏 =
𝑣𝑓(𝑣𝑐−𝑣𝑓)

2

𝑘𝑗𝑣𝑐
2  

𝑐 =
1

𝑣𝑐𝑘𝑐
−

𝑣𝑓

𝑘𝑗𝑣𝑐
2}
 
 

 
 

     [Equation 5] 
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Equation 6 presents the model by del Castillo and Benítez (1995). 

𝑣 = 𝑣𝑓 (1 − 𝑒
(
𝑐

𝑣𝑓
(1−

𝑘𝑗

𝑘
))
)        [Equation 6] 

Equation 7 presents the model available in the Highway Capacity Manual (HCM) (Transportation 
Research Board and National Research Council, 2016). 

𝑣 =

{
 
 

 
 
𝑣𝑓 ,                                                                0 ≤ 𝑞 ≤ 𝑞𝑏

𝑣𝑓 − (𝑣𝑓 − 𝑣𝑐) (
𝑞−𝑞𝑏

𝑞𝑐−𝑞𝑏
)
𝑎

,                     𝑞𝑏 ≤ 𝑞 ≤ 𝑞𝑐
𝑞𝑐

𝑘𝑗

𝑞

𝑞𝑐−𝑞
,                                                      𝑘𝑐 ≤ 𝑘 ≤ 𝑘𝑗

   [Equation 7] 

In all those models, the traffic density 𝑘, the speed 𝑣 and the flow 𝑞 = 𝑘𝑣 are the variables and 
all other quantities are constant parameters (which differ for each road type and each scenario). 
The first five models (Greenshield (1935), Underwood (1961), Drake et al. (1965), Daganzo (1994), 
and Van Aerde and Rakha (1995)) rely on parameters that can be physically observed during 
experiments or measurements by measuring the speed, density and flow: 

 𝑣𝑓 speed at entirely sparse traffic, free-flow speed (km/h or mi/h) 

 𝑣𝑐 speed at peak capacity, critical speed (km/h or mi/h) 

 𝑞𝑐 flow at peak capacity, critical flow, capacity (veh/h/lane) 

 𝑘𝑐 density at peak capacity, critical density (veh/km/lane or veh/mi/lane) 

 𝑘𝑗 density at entirely jammed traffic, jam density (veh/km/lane or veh/mi/lane) 

Based on the macroscopic models presented here, the work was then conducted in two phases. In 
the first phase, two macroscopic traffic models which were originally adopted (or planned for 
adoption) by WUI-NITY (Greenshields and Van Aerde & Rakha models respectively) have been 
re-calibrated to account for the impact of smoke on driving. 

In the following phase of the project, traffic evacuation data became available (Ronchi et al., 2021), 
thus the two models which have shown the greatest fit with traffic evacuation data were used for 
representing the impact of smoke on driving (Van Aerde & Rakha and Daganzo models). This 
included a re-calibration of the models and an updated relationship of the impact of smoke on 
driving speed. In fact, the models by Daganzo (1994) and by Van Aerde and Rakha (1995) seem 
to fit well to empirical data related to routine traffic and wildfire evacuations (Rohaert et al., 2022). 
These two models also show trends that are very similar to the model proposed in the Highway 
Capacity Manual, when using the same parameters (see Figure 1). 

 

Figure 1. An example of the Daganzo model, the Van Aerde and Rakha model and the HCM model for a 
freeway with a speed limit of 120 km/h. The same parameters have been used for all models. 
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2.2 Reduction factors for the model parameters 

The methods section has introduced different models that are used to represent routine traffic at 
a macroscopic level. However, the parameters present in those models need to be adjusted to 
model the specific driving behaviour during wildfire evacuations (Ronchi et al., 2021). 

Even when there is no smoke present on the road, traffic dynamics during evacuation scenarios 
seem to be different from those during routine scenarios. Rohaert et al. (2022) sourced traffic flow 
data from before and during the 2019 Kincade Fire from the Performance Measurement System 
of the California Department of Transportation and concluded that the evacuation speeds were 
lower than the routine speeds for mid to high-density traffic while little difference was present for 
low-density traffic (see Figure 2). 

 
Figure 2. Van Aerde and Rakha (1995) fitted to the evacuation data and the routine data from the 2019 

Kincade Fire (Rohaert et al., 2022). 

At free flow, the speed is barely influenced (reduced by 1.8%). However, the reduction becomes 
more significant for higher densities. As the density and the speed at capacity dropped by 0.8 and 
8.2% respectively, the capacity of the road was reduced by 9.0%. Similarly, Dixit and Wolshon 
(2014) found capacity reductions of 10% for non-urban areas and 15% for urban areas during 
hurricane evacuations. 

2.2.1 Reductions due to adverse weather conditions 

Moreover, the reduced visibility, due to the spread of smoke, can further reduce the speed and 
flow. Under these conditions, the following correction factors can be applied (Equations 8-11): 

𝑞𝑐,𝑠𝑚 =  𝛼 𝑞𝑐           [Equation 8] 

𝑣𝑓,𝑠𝑚 =  𝛽 𝑣𝑓         [Equation 9] 

𝑣𝑐,𝑠𝑚 =  𝛾 𝑣𝑐         [Equation 10] 

𝑘𝑗,𝑠𝑚 =  𝛿 𝑘𝑗         [Equation 11] 

As mentioned before, many studies have been performed on the effect of adverse weather 
conditions such as rain and snow on traffic dynamics. A summary of these studies is provided in 

Table 1. Usually, these studies express the effect through correction factors (𝛼 , 𝛽 , 𝛾 , 𝛿 ) or 

reductions (1 − 𝛼, 1 − 𝛽, 1 − 𝛾, 1 − 𝛿) that can be applied to the parameters that define the 
macroscopic models. 
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Table 1. Reduction factors expressed as percentages for adverse weather conditions. 
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Only a few studies mention the reduction of the jam density (𝛿). Rakha et al. (2007) that the 

reduction is non-significant (𝛿 ≈ 1). The same conclusion can be drawn from the study by Billot 
et al. (2009). Moreover, the jam density is considered constant in the Highway Capacity Manual 
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(2016, exhibit 12.7 and 12.8). No studies have been found that contradict this assumption. 
Consequently, the same assumption has been made in this report for driving through smoke. 

2.2.2 Reductions due to wildfire smoke 

The only empirical data that is available concerning the reduction factors under reduced visibility 
conditions due to smoke,  was obtained by Wetterberg et al. (2021). In the virtual-reality 
experiment, 46 participants drove on an empty road under five different conditions (see Table 2). 

Table 2: Free flow speed reduction factors as a function of the optical density. Data from Wetterberg et al. (2021) 

Smoke density Optical density 𝑫 [m-1] Free flow speed reduction 𝜷 (-) 

none 0.00 1.00 

low 0.05 0.65 

medium 0.10 0.47 

high 0.15 0.38 

very high 0.20 0.31 

Wetterberg et al. (2021) proposed a third-degree polynomial to obtain values for the reduction 

factor 𝛽 as a function of the optical density 𝐷 (Equation 12). 

1 − 𝛽 = −101.57𝐷3 + 49.43𝐷2 − 9.28𝐷     [Equation 12] 

However, Equation 12 can be substituted with a simpler power model (with comparable goodness 
of fit), which does not have any points of inflection (see Equation 13). 

1 − 𝛽 = 1.474 𝐷0.4594       [Equation 13] 

The experimental data, as well as Equation 12 and Equation 13 are shown in the figure below 
(Figure 3). 

 
Figure 3. Relationship between the reduction factor and the visibility. Data from (Wetterberg et al., 2021). 

2.3 First calibration of the macroscopic model in WUI-NITY 

In this section, the Van Aerde & Rakha model (indicated as VA) and the Greenshields model 
(indicated as GS) are calibrated for reduced visibility conditions. Further details on this work can 
be found in the scientific paper associated with this work (Intini et al., 2022). 

In the first phase, the reduction factor 𝛽 as a function of the optical density was adopted from the 

work by Wetterberg et al. (2021), also discussed above. Thereafter, the other factors 𝛼, 𝛾, 𝛿 were 
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estimated from literature studies (the two first references in Table 1: Rakha et al. (2007) and 
Dhaliwal et al. (2017)). This resulted in the following assumptions: 

{
𝛼 = 𝛾 = 0.94 𝛽

𝛿 = 1
        [Equation 14] 

In the studies that were used to derive these relationships between 𝛼, 𝛽 and 𝛾, the value of 𝛽 did 
not decrease below 0.88 while it can drop till 0.31 when driving in smoke (Table 2). Below, we 
propose different relationships, based on more data. Nevertheless, it should be noted that the 
second attempt to calibrate macroscopic traffic models would need further developments based 
on dedicated data collection efforts. 

2.3.1 Adaptation of the Van Aerde model 

To adapt the Van Aerde model, Equation 5 if given explicitly in terms of the parameters in 
Equation 8 till equation 11: 

𝑘 =  
1

𝑣𝑓(𝑣𝑐−𝒗)
2

 𝑘𝑗𝑣𝑐
2(𝑣𝑓−𝒗)

+
1

𝑞𝑐
 

        [Equation 15] 

Next, Equation 8 till Equation 11 and Equation 114 are applied to obtain the adapted VA model, 
considering reduced visibility conditions (Equation 16). 

𝑘𝑠𝑚 = 
1

  𝛽 𝑣𝑓 (𝛾 𝑣𝑐−𝒗)
2

 𝛿 𝑘𝑗 𝛾
2 𝑣𝑐

2 ( 𝛽 𝑣𝑓−𝒗)
+

1

𝛼 𝑞𝑐
 

 =  
0.94

 𝑣𝑓 (0.94 𝛽 𝑣𝑐−𝒗)
𝟐

 0.94  𝛽 𝑘𝑗𝑣𝑐
2 (𝛽 𝑣𝑓−𝒗)

+
𝒗

𝛽 𝑞𝑐
 

   [Equation 16] 

2.3.2 Adaptation of the Greenshield model 

Analogically, the Greenshield model can be adapted. However, this model relies only on two 
parameters. Consequently, two of the four correction factors are defined by the other two. The 
critical speed always equals half of the free-flow speed in this model, which means that the model 

imposes that 𝛾 equals 𝛽. Moreover, it imposes that 𝛼 equals 𝛾𝛿 as the critical density is always half 
of the jam density. The adjusted Greenshields model is presented in Equation 17. 

𝑘𝑠𝑚 = 𝛿𝑘𝑗 (1 −
𝒗

 𝛽 𝑣𝑓
) = 𝑘𝑗 (1 −

𝒗

 𝛽 𝑣𝑓
)     [Equation 17] 

2.3.3 An example of the adapted models 

The two adapted models are illustrated the five scenarios of the study by Wetterberg et al. (2021), 
also given in Table 2. The scenarios are applied to a road segment similar to the one in the 
experiments: 

 𝑣𝑓 =  72.4 km/h (a measurement of the experiment) 

 𝑣𝑐 = 36.2 𝑘𝑚/ℎ (a reasonable assumption, required for the Van Aerde model) 

 𝑞𝑐 = 1300 𝑣𝑒ℎ/ℎ/𝑙𝑎𝑛𝑒 (a reasonable assumption, required for the Van Aerde model) 

 𝑘𝑗 = 71.8 𝑣𝑒ℎ/𝑘𝑚/𝑙𝑎𝑛𝑒 (a reasonable assumption, required for both model) 

The value of the capacity is suggested in the Planning and Preliminary Engineering Applications 
Guide to the Highway Capacity Manual (Dowling et al., 2016) for minor two-lane highways with 
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a similar free flow speed. The value for the critical speed is the design value for these two-lane 
highways according to the HCM (2016). Following these assumptions, the jam density was 
assumed to be twice the critical density (which is the ratio of the critical flow and the critical 
velocity). The result is shown in Figure 4 and Figure 5. 

 

Figure 4. Diagram of the adapted VA model in different visibility conditions 

 

Figure 5. Diagram of the adapted GS model in different visibility conditions 
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2.3.4 Implementation and verification of the adapted models 

The calibrated model considering the presence of smoke is demonstrated through its 
implementation in a freely accessibly platform, namely WUI-NITY (Ronchi et al., 2020; Wahlqvist 
et al., 2021). 

The WUI-NITY platform is based on the game engine Unity 3D (Unity Technologies, San 
Francisco CA, USA) with built-in Virtual Reality (VR) capability acting as a host for different 
modelling sub-components. In fact, WUI-NITY allows the coupling of the following three 
modelling layers: (1) a fire spread model; (2) a pedestrian response and movement model; and (3) 
a traffic model. 

The platform is intended as model agnostic to allow the implementation of different modelling 
tools for each modelling layer depending on the given intended application. In its first 
implementation, the tool includes macroscopic sub-models for all three modelling layers. 

Given the exemplary scope of this platform, a simple macroscopic traffic model (the GS model) 
was used to represent the traffic evacuation on the egress routes, neglecting the influence of delays 
at intersections. This is deemed a reasonable assumption for this application as queuing on 
segments is predominant in the case of large-scale evacuation. In addition, intersections could be 
operated differently during evacuation (e.g., turning off traffic signals), thus reducing their impact 
on evacuation time. 

In particular, the GS traffic model is implemented in WUI-NITY using a time-step discretisation, 
as shown in Equation 18. 

𝑘𝑗(𝑇 + 1) = 𝑘𝑗(𝑇) +
Δ𝑡 

𝐿𝑗𝑛𝑗
(𝑞𝑗,𝐼𝑁(𝑇) − 𝑞𝑗,𝑂𝑈𝑇(𝑇))    [Equation 11] 

where: 

𝑘𝑗(𝑇) is the average traffic density in the road section j at the time T (vehicles/km/lane); 

Δ𝑡 = (𝑇 + 1) − (𝑇) is the time step (s), set by default as equal to 1 s; 

𝐿𝑗 is the length of the road section (km); 

𝑛𝑗  is the number of lanes; 

𝑞𝑗,𝐼𝑁(𝑇) is the traffic flow entering the section j at the time T (vehicles/hour/lane); 

𝑞𝑗,𝑂𝑈𝑇(𝑇) is the traffic flow exiting the section j at the time T (vehicles/hour/lane). 

The main outputs of the traffic simulation for each time step are the number of vehicles which 
arrive at the destination or in the road network, the vehicular density, the evacuation time curves 
at each destination and the number of residents, evacuees and those who reach shelters. 

Given the functionalities offered by WUI-NITY, a set of verification tests was developed and run 
to perform an implementation of the developed sub-model in reduced visibility conditions (Ronchi 
et al., 2021). This verification test is an ideal scenario designed to investigate the current and any 
future implementation of sub-models concerning driving speed in reduced visibility conditions. 
The structure and format of the test are in line with the existing verification and validation adopted 
for evacuation models adopted in building fire safety engineering applications (International 
Standards Organization, 2020). 
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The test was run by focusing on the implementation of the adapted Greenshield model in the 
traffic simulation layer of the WUI-NITY platform. In this example, a single carriageway road 
(having a speed limit equal to 70 km/h) was considered, by allowing the traffic to move on a single 
lane for a total length of 1 km (see Figure 6). In this scenario, one vehicle travelling at the assigned 
maximum speed corresponding to the speed limit (70 km/h) was made to move along the road 
(from start to destination), with a given set visibility value. The test was repeated by varying the 
initial vehicular density on the road (e.g. using 5 different levels of vehicular density from the 
isolated vehicle scenario to the stopped traffic condition, which for this scenario was equal to 75 
veh/km/lane) and the visibility (scenarios of Table 2). This allowed testing the competing impact 
of traffic density and reduced visibility conditions on traffic flow. 

 
Figure 6. Geometrical configuration of the verification test 

The following assumptions were adopted while performing the test: 

• The Greenshield model was implemented considering a user defined minimum speed to 
avoid complete congestion. Here, the default 5 km/h was used. 

• The given optical density is here assumed uniform across the whole road segment. 

• Using an agent-based modelling approach, an IF condition was set up so that when the 
two concurring variables causing speed reduction would occur (e.g., traffic density and 
reduced visibility), the minimum speed adopted would be based on the minimum speed 
driven by the visibility variable rather than the minimum speed due to traffic density (e.g., 
1 km/h in this example). This issue has been widely investigated in other evacuation 
contexts (Ronchi et al., 2013). 

• The time step adopted in the calculation was equal to 1s. 

As a result of the test, the simulation results were compared to the hand calculations, reported in 
Table 3. 

 

Please notice that the calculated evacuation times at a density equal to 75 vehicles/km/lane always 
correspond to 3600 given the assumptions made on minimum speed. The differences between 
simulated and calculated times were all below 3.3%. In particular, the stall speed was approximated 
to 1.08 km/h in WUI-NITY rather than the 1 km/h adopted in the hand calculations. The long 
runtime at the highest vehicle density level makes this small difference in assumed speed more 
visible. The overall difference in results is caused by the approximation of the speed-density 
relationship equation implemented in the simulator and hand calculations. 
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Table 3. Comparison of calculated and simulated evacuation times 

 
Traffic density 
(Veh/km/lane) 

Evacuation times (s) by smoke density 

Low Moderate High Very high 

Calculation  81 112 138 168 

Simulation 1 80 112 137 168 

Relative difference  1.2% 0% 0.7% 0% 

Calculation  106 147 180 219 

Simulation 19 105 146 179 219 

Relative difference  0.9% 0.7% 0.6% 0% 

Calculation  158 217 265 322 

Simulation 38 157 217 265 321 

Relative difference  0.6% 0% 0% 0.3% 

Calculation  295 400 483 577 

Simulation 56 294 399 482 576 

Relative difference  0.3% 0.2% 0.2% 0.2% 

Calculation  3600 3600 3600 3600 

Simulation 75 3479 3514 3530 3544 

Relative difference  3.3% 2.4% 1.9% 1.6% 

 

2.4 Second calibration of the macroscopic model  

Based on the experiment by Wetterberg et al. (2021), the first part of the work presented in this 
report included adjusting the model by Greenshields (1935) and the model by Van Aerde and 

Rakha (1995) to different optical densities. To do so, 𝛼 = 𝛾 = 0.94 𝛽 and 𝛿 = 1 was assumed. 
This means that there will be a reduction of the critical velocity and critical flow, even when there 

is no smoke present (1 − 𝛼 = 1 − 𝛾 = 6% for 𝐷 = 0). Moreover, the relationship between 𝛼, 𝛽 

and 𝛾 is based on observed trends for rain and snow, with reduction equal to or smaller than 12%. 

Note that this relationship has been extrapolated till reduction up to about 70% (𝐷 = 0.20 m-1). 

The assumptions for the correction factors can be considered further. This is a necessary step for 
their implementation in existing macroscopic traffic models (Greenshields, Daganzo and Van 
Aerde). 

Figure 7 displays the reductions (1 – 𝛼) as a function of (1 – 𝛽) for all data found in Table 1. When 
a study reports about an interval, the midpoint is displayed. Figure 7 reveals a positive correlation 
of medium strength (the sample Pearson correlation coefficient equals 0.473). 
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Figure 7. Relationship between 𝛼 and 𝛽 based on the data from Table 1. 

Subsequently, a linear fit has been made to describe the relationship (also shown in Figure 7). The 

fit is forced to intercept the origin (1 − 𝛼 equals 0 when 1 − 𝛽 does, or in other words, 𝛼 equals 

1 when 𝛽 does). The result is presented in Equation 19. 

(1 − 𝛼) = 1.004 (1 − 𝛽) → 𝛼 ≈ 𝛽      [Equation 19] 

Furthermore, it is assumed that the reduction in critical velocity equals the reduction in critical 

flow (𝛼 ≈ 𝛾), just as in the HCM (2016, exhibit 12.7 and 12.8), which means that the critical density 
is not influenced by the reduced visibility. The jam density is also assumed to be independent of 

visibility. When employing the power law relation between 𝛽 and 𝐷, the proposed model can be 
summarised as in Equation 20. 

𝛼 = 𝛽 = 𝛾 = 1 − 1.474 𝐷0.4594, 𝛿 = 1     [Equation 20] 

As the critical density and the jam density are not affected by the visibility, models can be 
downscaled linearly to adjust for reduced visibility. The resulting re-calibrated models of 
Greenshields, Daganzo and Van Aerde & Rakha are presented in the next sections. 

2.4.1 Calibrated Greenshields model (1935) 

The parabolic model by Greenshields (see Equation 1) relies on two parameters: the free-flow 
speed and the jam density. Consequently, two of the four correction factors are defined by the 
other two. The critical speed always equals half of the free-flow speed in this model, which means 

that the model imposes that 𝛾 equals 𝛽 . Moreover, it imposes that 𝛼 equals 𝛾𝛿 as the critical 
density is always half of the jam density. The Greenshield model can be adjusted according to 
Equation 20, as presented in Equation 21. 

𝑣𝑠𝑚 = 𝛼 𝑣𝑓  (1 −
𝑘

𝑘𝑗
) = 𝛼 𝑣       [Equation 21] 

Figure 8 shows the calibrated model for five different visibility scenarios. 
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Figure 8. Calibrated adapted Greenshield model, adapted to reduced visibility. 

2.4.2 Calibrated Daganzo model (1994) 

The bi-linear model by Daganzo (see Equation 4) relies on three parameters: the free-flow speed, 
the critical density, and the jam density. The critical speed always equals the free-flow speed in this 

model, which means that the model imposes that 𝛾 equals 𝛽. 

The Daganzo model can be adjusted according to Equation 20, as presented in Equation 22. 

𝑣𝑠𝑚 = {
𝛼 𝑣𝑓 ,                                         0 ≤ 𝑘 ≤ 𝑘𝑐

𝛼 𝑣𝑐
𝑘𝑐

𝑘

𝑘𝑗−𝑘

𝑘𝑗− 𝑘𝑐
 ,                       𝑘𝑐 ≤ 𝑘 ≤ 𝑘𝑗

} = 𝛼𝑣   [Equation 22] 

Figure 9 shows the calibrated model for five different visibility scenarios (expressed by optical 
density). 

 
Figure 9. Calibrated adapted Daganzo model, adapted to reduced visibility. 

2.4.3 Calibrated Van Aerde & Rakha (1995) 

The model by Van Aerde & Rakha relies on four parameters, namely (𝑎, 𝑏, 𝑐, 𝑣𝑓) or (𝑣𝑓, 𝑣𝑐 , 𝑘𝑐, 

𝑘𝑗). Therefore, it does not require restrictive relationships between 𝛼, 𝛽, 𝛾 and 𝛿. The Van Aerde 

model can be adjusted according to Equation 20, as presented in Equation 23.  

{

𝑎𝑠𝑚 = 𝑎
𝑏𝑠𝑚 = 𝑏 𝛼
𝑐𝑠𝑚 = 𝑐/𝛼

} → 𝑘 =
1

𝑎+
𝑏

𝑣𝑓−(𝑣𝑠𝑚/𝛼)
+𝑐 (𝑣𝑠𝑚/𝛼)

→ 𝑣𝑠𝑚 = 𝛼 𝑣   [Equation 23] 

Figure 10 shows the calibrated model for five different visibility scenarios (expressed by optical 
density). 
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Figure 10. Calibrated Van Aerde & Rakha model, adapted to reduced visibility. 
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3 A conceptual framework for destination modelling considering the 
impact of a pandemic on shelter availability 

This section introduces a conceptual framework for the representation of the decisions that take 
place during a wildland-urban interface fire scenario considering the impact of a pandemic 
scenario. 

The first step is to define a possible timeline for a wildfire evacuation. This includes people who 
are proceeding to the evacuation to complete so before the fire reached the urbanized area. A 
schematic representation of this process is presented in Figure 11. The first level of the timeline 
represents the wildfire and its propagation. The second line refers to the actions taken by the 
emergency services and authorities and the third line to those by the evacuating population. 

 

Figure 11. Timeline of a wildfire evacuation divided into three levels (wildfire, emergency services, and population) 

In this section, the timeline at the bottom of Figure 11 is discussed. A method is proposed to 
model the behaviour of the evacuating population. This is represented through a flowchart, which 
is deemed to allow the implementation. The main effort has been placed on modelling the 
evacuating population considering the impact of shelter availability (e.g. due to a concurrent 
pandemic scenario along with a WUI fire evacuation). 

Each step of this conceptual model is described in this section along with key aspects which need 
to be taken into consideration for the correct implementation of this modelling approach. It should 
be noted that this conceptual framework has been designed considering the characteristics of an 
integrated multi-physics model like WUI-NITY (Wahlqvist et al., 2021). Nevertheless, its 
implementation should be possible in other models which present comparable characteristics (i.e. 
they perform the representation of the key modelling layers of a WUI fire evacuation such as 
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pedestrian response and movement, traffic evacuation and wildfire spread) and a reasonably similar 
level of granularity. Figure 13 presents a set of steps which are here discussed. 

Start Evacuation 

Here, the start of the evacuation refers to the moment at which the population receives an 
evacuation recommendation or an evacuation order. The start of the evacuation is either defined 
by the user or through a trigger buffer model, e.g., PERIL (Mitchell et al., 2022), which allows for 
identifying the moment at which the population should start evacuating. 

Evacuation delay 

The evacuation recommendation/order is followed by a reaction delay, representing the time a 
household spends before it starts evacuating. This includes both the time for people to become 
aware of the incoming threat as well as the time to respond to it (Lovreglio et al., 2016; Zhao et 
al., 2022). The user can define the probability distribution for the entire population or per 
population group. An example of such a distribution is given in Figure 12. It should be noted that 
those distributions may be assumed of different types (McLennan et al., 2019) and it would be 
beneficial for an evacuation model to allow users to customise the shape and type of the 
distribution in use. 

 

Figure 12. Cumulative distribution of pre-evacuation time. 

Route calculations 

Possible routes to be used by evacuees are pre-calculated by the evacuation simulator. These can 
be based on a set of assumptions which are defined either by the user or based on a given modelling 
approach (Bladström, 2017). 
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Figure 13. Flowchart of the destination model implementation. 
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Destination choice 

In this step, every household is assigned a destination. The initial distribution between routes is 
defined by the user or based on a given approach (e.g., shorter time, shorter distance, familiar 
route, etc. in relation to the number of evacuees initially aiming towards a given shelter or domain 
exits). 

Pedestrian and traffic model 

Thereafter, both the pedestrian and the traffic model advance one timestep. In the pedestrian 
model, households are assumed to stay together. Once they reach a vehicle, decisions are made 
individually for each vehicle. 

All agents safe? 

When all agents have reached their destinations (excluding those people who decided to defend in 
place (McCaffrey et al., 2018; Tibbits and Whittaker, 2007)), the evacuation simulation is 
completed. 

Route accessible? 

When a given road segment is no longer accessible due to the propagation of fire and smoke or 
due to a traffic accident, all routes that contain that segment will be recalculated and the destination 
choice needs to be reconsidered. However, rerouting is unlikely to happen immediately, and a 
decision delay (rerouting delay) is implemented. 

Shelter accessible? 

The shelter accessibility is examined similarly to route accessibility. When rerouting occurs, a 
decision delay is implemented. 

Shelter occupied? 

The shelter occupation is examined. At a certain occupation level (user-defined), the shelter will 
be closed. Other evacuees that are still on their way to the shelter will have to reroute. Once more, 
this decision is taken after a certain delay. 

Obstruction reached? 

When a road segment or shelter closes, agents will continue to follow the original route until they 
have received, understood, and processed the closure notification (until the rerouting delay is over). 
Some evacuees might reach a fully occupied shelter, a road accident, or a fire/smoke front and 
therefore make faster decisions. For those agents, the planned rerouting will be performed 
immediately. 

Rerouting delay 

The rerouting delay represents the time it takes for: 

• a closure to be discovered 
• a notification to be released to the population 
• the notification to be received and understood by the population 



27 

 

• a decision to be made 

The user can define probability distribution for the entire population or per population group. 

Rerouting planned? 

After the checks are executed, the pedestrian model and traffic model can proceed with the next 
time step. However, if a rerouting delay ends before the next time step, then the routes and 
destinations of the affected vehicles must be recalculated first. 

Fire model and smoke model 

The fire model and smoke model run previously or simultaneously with the evacuation model and 
influence it on different levels. Not only can roads and shelters be closed due to the propagating 
fire/smoke fronts, but smoke can also influence driving behaviour (e.g. reduce driving speed or 
affect re-routing decisions). 
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4 Discussion 

This report presented the work performed for recalibrating a set of macroscopic traffic models to 
include the impact of wildfire smoke on driving speed. A conceptual framework for the study of 
the impact of shelter availability (due to a concurrent pandemic) was also presented. This was 
performed to represent an evacuation condition in case of WUI fires. 

An experimental relationship between smoke density and individual speed (Wetterberg et al., 2021) 
was adopted to recalibrate macroscopic traffic models. This was performed by implementing a set 
of updated speed-flow relationships considering the impact of wildfire smoke on driving speed. In 
fact, this report discussed previous research assessing the negative influence of rain and fog on 
traffic flow variables, while the influence of wildfire smoke is still largely unexplored. Smoke can 
affect traffic flow in different ways, especially in case of evacuations, where some links can be 
blocked due to the presence of smoke (Intini et al., 2019), thus dynamically affecting in turn the 
evacuation operations or speed increase may affect evacuation times. Compared to evacuation 
times in clear conditions, evacuation times can be significantly higher in case of low traffic density 
and low visibility conditions than in clear conditions. This means that in case of scarcely populated 
rural areas affected by evacuations in case of WUI fires, the effect of smoke can dramatically 
increase network clearance times, due to the high capacity drop due to the presence of smoke, 
even in presence of relatively few vehicles entering a given road section. 

It should be noted that reliable real-world data concerning reduced visibility due to smoke at the 
drivers’ height are lacking. In other words, data concerning evacuation speeds during wildfires exist 
(Rohaert et al., 2022; Ronchi et al., 2021), but those are not coupled with visibility conditions at 
the drivers’ height. 

The models presented here are calibrated on data collected from individual driving behaviour in 
smoke (Wetterberg et al., 2021). Future research should experimentally investigate how driving in 
smoke is affected by the concurrent presence of other vehicles and reduced visibility. In the 
meanwhile, it is recommended to adopt the models presented in this work, as they yield more 
conservative results compared to current predictions which completely omit the impact of smoke 
on driving speed. 

An accurate estimation of evacuation time is crucial for both evacuation planning and real-time 
management (Chiu et al., 2007; Wolshon and Marchive, 2007). The information obtained can be 
applied to define trigger points/buffers (Cova et al., 2005; Mitchell et al., 2022) to define the time 
and/or the location at which an evacuation order should start. In addition, the evolution of fire 
and, consequently, smoke, can be taken into account while managing the evacuation, predicting 
the possible unavailability of given links due to the presence of smoke. It should be noted that the 
current modelling approach makes use of simplified assumptions concerning global visibility 
conditions in a given road link. Future work should focus on coupling such updated traffic models 
with a more accurate prediction of smoke spread which accounts for varying visibility during the 
passage of time and within a given road link. 

The present work demonstrates that 1) the integration between different modelling layers is 
fundamental (i.e., combining fire spread models, evacuation response and traffic models) to 
achieve reliable predictions of evacuation clearance time; 2) such modelling layers should be able 
to communicate and produce credible outputs in real-time, relying on an appropriate trade-off 
between computational time and accuracy. For this reason, the use of the WUI-NITY platform 
allowing for the simulation of multiple layers affecting WUI fire evacuation (Ronchi et al. 2020; 
Wahlqvist et al., 2021) was selected. 



29 

 

Introducing the models calibrated for reduced visibility conditions in such platforms may indeed 
pave the way for enhanced planning and real-time management of evacuations due to wildfires in 
WUI areas. Clearly, this is the first attempt of filling a gap in research and practice, which surely 
needs further study and development. Future studies should be conducted to investigate a wider 
set of behaviour for different driver populations and road types, and possibly relying on data from 
real events (e.g. using trajectory and speed data from evacuating vehicles, e.g. making use of GPS 
data (Zhao et al., 2022) or traffic sensor datasets (Rohaert et al., 2022)). 

In this work, simple macroscopic traffic modelling approaches were used, and this is deemed 
suitable for real-time management applications. This approach may need further refinement for 
planning purposes. In the latter case, the switch to microscopic or mesoscopic modelling can be 
justified (Intini et al., 2019). Moreover, the comparison between simulated evacuation and real case 
studies in presence of smoke from wildfires could help in assessing the validity of such an 
approach. 

The effects of smoke on traffic evacuation are not limited to the impact on traffic flow (i.e., on 
travel times and congestion), but they may also cause crashes, especially during evacuation in large 
wildfires. Several examples of such events are reported by (Blanchi et al., 2018; McLennan et al., 
2019; Toledo et al., 2018). However, while most research on wildfire evacuation cites the 
occurrence of traffic crashes during evacuation also due to reduced visibility conditions this aspect 
is still not studied from a prevention perspective. 

Similarly to the recalibration of traffic models considering the impact of smoke, the conceptual 
framework for the representation of the impact of destination availability on evacuation is an 
important first step towards a more accurate prediction of evacuation times. This work is still at 
an initial stage and further developments will be presented within the current project 

Overall, the work conducted so far demonstrated the complexities associated with WUI fire 
evacuation processes and paves the way towards a more accurate representation of them. 
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