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Populärvetenskaplig sammanfattning

Återkopplade reglersystem har spelat en viktig roll inom naturvetenskap, medicin och tek-
nik sedan den industriella revolutionen. Den grundläggande idén är att mäta en observabel
hos ett system och använda den erhållna informationen för att styra systemet mot ett visst
tillstånd. Detta är en av hörnstenarna i all modern teknik. Ett viktigt exempel är pacema-
kern, som genom att mäta hjärtrytmen kan hjälpa hjärtat att slå när det avviker från den
normala rytmen.

Gemensamt för dagens reglersystem är att dom kan beskrivas väl av den klassiska fysiken,
det vill säga termodynamik, elektromagnetism och klassisk mekanik. Då modern teknik
börjar närma sig storleksordningar av 100 nanometer eller mindre, blir kvantmekaniska ef-
fekter, såsom tunnling och kvantkoherens, påtagliga. Det blir därför viktigt att ta hänsyn
till detta. Av stort intresse är att utnyttja dessa effekter i ett användbart syfte. Detta är idén
med kvantdatorer, där målet är att använda kvantmekaniska egenskaper för att uföra vis-
sa beräkningar mer effektivt än en vanlig dator. Det är därför av intresse att studera och
implementera återkopplade reglersystem under kvantmekaniska förhållanden – förhopp-
ningsvis kan detta leda till nya teknologier som kan utveckla vårt samhälle eller förbättra
vårt välbefinnande.

Vi står dock inför en rad utmaningar. Att mäta ett kvantmekaniskt system medför att dess
kvantkoherens påverkas. Om mätproceduren interagerar för starkt med systemet förstörs
koherensen, och egenskaperna som vi vill utnyttja går förlorade. Det är därför viktigt att
interagera svagt för att bevara systemets kvantegenskaper. Under dom senaste årtiondena
har metoder för att utföra sådana mätningar utvecklats. Samtidigt är det viktigt att kunna
återkoppla mätinformationen för att styra systemet på ett användbart sätt. Det har till ex-
empel utförts experiment där återkoppling har utnyttjats för att stabilisera kvantkoherens
– ett viktigt steg för att kunna utveckla kvantteknologier.

För att förstå vad som är möjligt att uppnå med återkopplade kvantsystem krävs teoretiska
verktyg. Dessa bör beskriva befintliga experiment med hög precision, men ska också kunna
förutspå vad som är möjligt att implementera. Idag finns det en rad sådana verktyg, men
dessa ger vanligtvis endast kvantitativa resultat. För att få en bredare och mer kvalitativ
inblick har vi i denna licentiatuppsatsen utvecklat en generell formalism för återkopplade
kvantsystem. Vårt huvudresultat är en masterekvation som beskriver dynamiken hos ett
allmänt system under tidskontinuerlig mätning och återkoppling, samt dynamiken hos de-
tektorn som mäter systemet. Detta ger oss möjligheten att kvalitativt beskriva återkopplade
kvantsystem. Vi använder den härledda formalismen för att studera två enklare modeller.
Vi finner att formalismen ger en inblick i hur energi och information kan manipuleras på
mikroskopisk skala, och lägger grunden för fortsatta studier av återkopplade kvantsystem.

v





Chapter 1

Introduction and main result

Feedback control of dynamical systems has been of great scientific and technological im-
portance over the last centuries [1]. The basic idea is to measure a system observable and
use the obtained information to apply forces that drive the system towards a desired state.
Almost all modern technology is based on this concept. A few examples are cruise control
in cars, indoor climate control, pacemakers, and robotic systems. All of these examples are
macroscopic systems, well described by classical physics. As modern technology is approch-
ing the microscopic scale, quantum effects, such as tunneling and entanglement, must be
accounted for. In particular, it is crucial to find ways of controlling and exploiting these
effects. This is the central idea of quantum computers, where the aim is to use quantum
effects to outperform classical computers on certain tasks [2].

With the fast development of modern technology, it is believed that quantum technologies,
such as quantum computers, will become reality during the upcoming century. For this
to happen, the development of accurate measurement and control procedures is of utmost
importance. As measurements unavoidably dephase a quantum system, it is central to
minimize backaction to preserve quantum coherence. Simultaneously, it is desired to apply
highly controllable feedback forces that can steer the system towards a target state with
long coherence times. During the last decades, several steps in this direction have been
taken, including, for instance, deterministic entanglement generation [3], quantum state
stabilization [4–6], and reversing quantum jumps [7].

From a fundamental perspective, it is crucial to understand what is physically possible to
realize with quantum measurements and feedback control. Such questions are raised in the
field of quantum thermodynamics [8], where Maxwell’s demon [9–11] is a central concept.
The idea of the demon is to use measurement and feedback to realize processes that seem-
ingly violate the second law of thermodynamics. In fact, this seemingly paradoxical concept
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has propelled several generalizations of the second law [12–22], where the thermodynamics
of information [23–25] is taken into account in the thermodynamic book-keeping. These
generalizations show that feedback controlled systems, such as Maxwell’s demon, are not
violating the second law. Simulateneously, a substantial number of experimental imple-
mentations of the demon have been realized in various classical [26–33] as well as quantum
systems [34–37]. This provides promising platforms for further fundamental investigations
of feedback control on the microscopic scale. Of special interest are solid state electronic
circuits [38] equipped with quantum dots [39] and superconducting qubits [40]. These
platforms allow for experiments with large statistical samples, and can be measured as well
as controlled with high precision [41–47].

To properly understand quantum feedback control, it is essential to develop theroteical
tools that can describe experimental results with high accuracy. Existing tools are typically
based on stochastic differential equations [48–59]. These provide a powerful framework
that can describe any type of feedback control, discrete as well as continuous in time. Typ-
ically, stochastic equations need to be solved numerically, limiting the possibility to draw
general qualitative conclusions. A special case where analytical methods are available is the
Wiseman-Milburn equation [52] – a Markovian master equation for time-continuous feed-
back protocols that depend linearly on the measured signal. It is, however, common that
optimal control protocols involve a nonlinear depependence on the measured signal. An
important example is bang-bang control [60, 61], where the feedback controller instant-
aneously switches between two different control forces depending if the measured signal is
above or below a threshold value. A corresponding master equation description for such
nonlinear feedback does not exist.

In this thesis, we fill this gap by deriving a general formlism for continuous measurement
and feedback control in quantum systems, able to describe linear as well as nonlinear pro-
tocols. The main contribution is a quantum Fokker-Planck master equation describing
the joint dynamics of a quantum system and a detector with finite bandwidth. For a fast
detector, this can be reduced to a Markovian master equation for the system dynamics,
independent of the detector. This Markovian description can be applied for arbitrary feed-
back protocols, linear as well as nonlinear. As such, this equation extends the work by
Wiseman and Milburn beyond linear feedback, and provides a general analytical tool for
investigating feedback in quantum systems.

We now briefly present the main result of this thesis and the underlying assumptions of its
derivation. Finally, we discuss the major highlights and implications of this result. Detailed
derivations and discussions follow in the upcoming chapters. Figure 1.1 is an illustration of
a general setup for continuous measurement and feedback control. We consider an open
quantum system whose dynamics, in the absence of measurement and feedback, is de-
scribed by a Liouvillian superoperator L. This superoperator is assumed to be on Lindblad
form, and the system dynamics are assumed to be Markovian. The detector is continuously
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measuring the (Hermitian) system observable Â, and the measurement strength is para-
meterized by λ. In the weak measurement limit λ → 0, quantum coherence is preserved,
but at the cost of introducing a large measurement uncertainty. The limit λ → ∞ corres-
ponds to a strong, projective measurement with small measurement uncertainty, but with
the cost of destroying quantum coherence. To describe a realistic detector, we assume that
the circuitry and electronic components of the detector collectively introduce a bandwidth
γ, acting as a low-pass frequency filter eliminating high frequency noise. This introduces
a detector delay time 1/γ. In the final step of Fig. 1.1, feedback is continuously applied
on the system by using the measurement outcome D to control the system Liouvillian via
L(D).

Figure 1.1: A general setup for continuous feedback control. An open quantum system is continuously measured by a detector
with bandwidth γ. The measurement strength λ quantifies the backaction and uncertainty of the measurement.
Based on the measurement outcome D, feedback is continuously applied on the system, controlling the system
Liouvillian L(D). In the bottom, two typical trajectories of the system state and the corresponding measurement
outcome are visualized. Figure taken from Paper I.

The main result of this thesis is the following Quantum Fokker-Planck Master Equation
(QFPME),

∂tρ̂t(D) = L(D)ρ̂t(D) + λD[Â]ρ̂t(D)− γ∂DA(D)ρ̂t(D) +
γ2

8λ
∂2Dρ̂t(D), (1.1)

describing the joint system-detector dynamics in Fig. 1.1 under continuous measurement
and feedback control. The joint state of system and detector is represented by the density
operator ρ̂t(D). The system state, independent of the measurement outcomeD, is given by
ρ̂t ≡

∫
dDρ̂t(D). Our state of knowledge of the detector is represented by the probability

distribution Pt(D) ≡ tr{ρ̂t(D)}. The first term on the RHS of Eq. (1.1) describes the
feedback controlled time evolution of the system. We stress that the dependence of D in
L(D) is not specified, and this term can therefore describe feedback protocols that are linear
as well as nonlinear inD. The second term on the RHS represents the effect of measurement
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backaction, with D[Â]ρ̂ = Âρ̂Â − 1
2{Â

2, ρ̂}. In the eigenbasis of Â, this term describes
how the coherence of the system, for nondegenerate eigenstates, is exponentially damped
at a rate proportional to λ. The last two terms on the RHS constitute the Fokker-Planck
equation for an Ornstein-Uhlenbeck process, describing the dynamics of the detector. The
Ornstein-Uhlenbeck process describes a noisy relaxation towards an equilibrium value, i.e.,
how the position of the detector needle (see Fig. 1.1) evolves over time. The first of these
terms, with superoperator drift coefficient A(D)ρ̂ ≡ 1

2{Â−D, ρ̂}, describes the coupling
between system and detector, determining the average position of the detector for a given
system state. This position is set by one of the eigenvalues of Â. The second term, with
diffusion constant γ/8λ, defines the magnitude of the detector noise. In the time traces at
the bottom of Fig. 1.1, we visualize how the detector signal (right time trace) changes when
the system state follows the trajectory in the left time trace.

The main implications and highlights of Eq. (1.1) are now briefly discussed. First, by as-
suming that the detector timescale 1/γ is much larger than the dominating timescale of the
system, we can separate timescales and derive a Markovian master equation for the system
state ρ̂t. This is discussed in detail in Chapter 6. In particular, this equation can handle
feedback protocols that are nonlinear in D, going beyond the master equation for linear
feedback derived by Wiseman and Milburn [52]. A major highlight is that this equation
can provide analytical insight into the problem at hand. This is in contrast to Eq. (1.1) that,
in general, must be solved numerically. Second, by separating the system and detector
timescales for a linear feedback Liouvillian L(D), we can re-derive the master equation by
Wiseman and Milburn. This highlights the generality of Eq. (1.1) and connects it to previ-
ous results in the field of quantum feedback control. Third, the Markovian description of
the system implies fluctuation theorems, providing insight into the relationship between
information theory and thermodynamics. Equation (1.1) is thus a promising tool for future
studies in quantum thermodynamics. This is further discussed in Chapter 7. Finally, we
note that a similar result to Eq. (1.1), but without feedback, was derived by Warszawski and
Wiseman in Refs. [62, 63], and is also discussed in Ref. [57].

Before presenting these results inmore detail, we will provide the necessary theoretical back-
ground of this thesis. Chapter 2 introduces stochastic processes and stochastic calculus. As
these subjects are reoccurring throughout the thesis, this chapter acts as an important ref-
erence for the proceeding chapters. In Chapter 3, we discuss the basics of open quantum
systems – the first main pillar of this thesis. We introduce the density operator, an indis-
pensable tool for describing such systems, and review the Lindblad master equation, which
describes the dynamics of open systems that are weakly coupled to their environment. We
also introduce full counting statistics, a tool for determining transport statistics in nanos-
ized systems. Chapter 4 is devoted to quantum measurements – the second main pillar of
this thesis. We begin by discussing von Neumann and generalized quantummeasurements.
Building on this, we introduce Gaussian measurements and discuss weak continuous meas-
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urements. Finally, we shortly review two of the central results in the field of continuous
feedback control. Chapter 5 reviews stochastic and information thermodynamics – two
fields of research where measurement and feedback are central. The idea of this chapter
is to provide background to the results presented in Chapter 7. In Chapter 6, we derive
Eq. (1.1) by using two approaches, one based on conventional calculus, and one based on
stochastic calculus. We also give the details of the separation of timescales expansion that
reduces the QFPME to a Markovian master equation for the system. In Chapter 7, we ap-
ply Eq. (1.1) on two toy models to highlight its usefulness. At last, in Chapter 8, we discuss
possible directions of future research.
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Chapter 2

Stochastic processes and stochastic
calculus

Thedynamics of physical systems can be described by differential equations. Two important
examples are Maxwell’s equations and the Schrödinger equation. These descriptions are
deterministic, such that if we (with precision) know the initial conditions of a system, we
can with certainty predict its future. If a system is subjected to randomly fluctuating forces,
its dynamics are no longer deterministic, but rather stochastic, and it is difficult to predict its
exact future. A prime example of this is Brownian motion [64], where the spatial trajectory
of a pollen grain becomes random when suspended in a liquid. Due to the thermal motion
of the liquid molecules, the pollen grain is kicked in random directions when colliding
with them. Another example is noise in electronic circuits. Here we discuss two such
noise sources, Johnson-Nyquist (thermal) noise [65, 66] and shot noise [67]. At finite
temperature, the velocities of electrons in any conductor follow a thermal distribution. This
means that at any instance in time, there is a thermally fluctuating current in the conductor,
even in the absence of an external voltage source. Themagnitude of these fluctuations scales
with the square root of the temperature of the conductor. By lowering the temperature, we
may thus reduce such fluctuations. This is known as Johnson-Nyquist noise. Shot noise,
on the other hand, is due to the intrinsic properties of a conductor. For instance, consider
a solid state device with a tunnel barrier. With a train of electrons approaching the barrier,
only a fraction tunnel through it – the others are reflected. The arrival times of tunneling
electrons are random, leading to a fluctuating tunnel current with an average determined
by the height and width of the barrier. As a final example, we discuss measurements, which
are central for this thesis. In classical physics, the stochasticity of a measurement can be
due to imperfections in the detector, such as thermal noise and disturbances from adjacent
electronics. In quantum physics, we know from the postulates of quantum mechanics that
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a measurement yields random outcomes [2]. In addition, the coupling strength between
the measured system and the detector determines the level of uncertainty in the outcome
[68], i.e., with weaker coupling, we observe more fluctuations in the outcome statistics.

All of the above examples describe stochastic processes. To model such processes, it is
common to employ stochastic differential equations (SDE). In the physical sciences, SDEs
are commonly written as Langevin equations – first order differential equations describing
the deterministic and stochastic contributions to the dynamics of a system. The stochastic
contribution is commonly driven bywhite noise. As white noise is an idealization (as we will
see later in this chapter), the Langevin equation must be handled with care. With too naive
mathematical manipulations, one reaches erroneous results. To resolve this issue, one can
introduce the concept of Itô calculus, and rewrite the Langevin equation on Itô form. This
provides a sound framework for calculations. Both the Itô and Langevin equations describe
the dynamics of some stochastic variable. Instead of studying the dynamics of this variable,
one can study the dynamics of its probability distribution. These dynamics are governed
by a Fokker-Planck equation – typically formulated as a second order partial differential
equation. We note here that every Itô (or Langevin) equation has a corresponding Fokker-
Planck equation. That is, we can always describe the stochastic dynamics from two points
of view – via the stochastic variable or its probability distribution.

We begin this chapter by briefly discussing stochastic processes in Sec. 2.1. We introduce the
concepts of stochastic trajectories, trajectory averages, and correlation functions. Towards
the end of the section, we defineMarkovian processes. Section 2.2 introduces Langevin, Itô,
and Fokker-Planck equations on a general level. We also provide two important examples
of stochastic processes, Brownian motion (Wiener process) and the Ornstein-Uhlenbeck
process. In Sec. 2.3, we motivate why it is necessary to introduce Itô calculus.

2.1 Stochastic processes

Above we introduced a few examples of stochastic processes in physical systems – it could
be the position of a particle, the current in an electronic circuit, or the outcome of a meas-
urement. In this thesis, we typically denote the value of a random process at time t by a
capital letter X(t). The process can be continuous or discrete in time. Any observation
of X(t) over time results in a trajectory XXX = {x0, x1, . . . , xn−1}, where xj = X(tj) is the
value of the process at time t0 ≤ tj ≤ tn−1, with t0 and tn−1 being the initial and final
times of the trajectory, respectively. By observing a very large number of trajectories, we
can determine the probability P[XXX] = P[x0, . . . , xn−1] of observing a specific trajectory XXX.
Integrating P[XXX] over all possible values except xj, we get

P[xj] =
∫

dx0 · · · dxj−1dxj+1 · · · dxn−1P[x0, . . . , xn−1], (2.1)

8



where P[xj] is the probability distribution of observing xj at time tj. Note that we will use the
notations P[xj] = P[X(tj)] = ptj(x) interchangeably. With Bayes’ theorem, the probability
of observing trajectory XXX can be written as

P[x0, . . . , xn−1] =

n−1∏
j=1

P[xn−j|x0, x1, . . . , xn−j−1]

 P[x0], (2.2)

where P[xn−j|x0, x1, . . . , xn−j−1] is the transition probability to observe xn−j given that the
random process followed trajectory x0, x1, . . . , xn−j−1 up till time tn−j−1. With the traject-
ory probability, we may calculate trajectory averages over functionals f[XXX]. The functional
could, for instance, be the work performed on a system along a trajectory XXX – this will be the
case in Chapter 5, where we define work, heat and entropy along stochastic trajectories of
microscopic systems. A trajectory average can be computed with a path integral according
to

⟨f[XXX]⟩ =
∫

D[XXX]f[XXX]P[XXX], (2.3)

where D[XXX] = dx0 · · · dxn−1. For functions f[X(tj)], depending only on the value of X(tj)
at any arbitrary time t0 ≤ tj ≤ tn−1, we get the trajectory average

⟨f[X(tj)]⟩ =
∫

dxjf[xj]P[xj] =
∫

d[X(tj)]f[X(tj)]P[X(tj)]. (2.4)

We will use this in Sec. 2.3, as well as in Chapters 4 and 6. Trajectory averages are also
important when computing correlation functions, such as

CX(t, t′) = ⟨X(t)X(t′)⟩ − ⟨X(t)⟩⟨X(t′)⟩. (2.5)

Compared to the average ⟨X(t)⟩ and the variance ⟨X2(t)⟩−⟨X(t)⟩2, the correlation function
CX(t, t′) provides additional information about the dynamics of a stochastic process. In
particular, it measures how the value of the process at time t, X(t), influences the value X(t′)
at a later time t′ > t. Typically, we are interested in the stationary state of the correlation
function, where it only depends on the difference in time τ = t′ − t, i.e., when CX(t, t′) =
CX(τ). It is useful to define the power spectrum of the stationary correlator CX(τ) as

SX(ω) =
∫ ∞

−∞
dτ eiωτCX(τ). (2.6)

This provides a spectrum of the underlying frequencies present in the noise of the stochastic
process. An important example is delta correlated noise, with stationary correlation func-
tion CX(τ) = δ(τ), where δ(·) is the Dirac delta function. Its power spectrum reads
SX(ω) = 1. That is, the spectrum is flat, and contains an equal weight of all frequencies.
This is important when, for example, studying Johnson-Nyquist noise [69]. The concept
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of correlation functions and power spectra will be especially useful in Chapters 3 and 6,
where we discuss Full counting statistics and detector bandwidths.

Up to this point, the theory is completely general, and we have not made any assumptions,
except introducing the concept of having a stationary state. However, it is often required
to make assumptions in order to derive analytical results. A common assumption, that is
relevant for this thesis, is the one of Markovian dynamics. In this case, we assume that the
transition probabilities only are conditioned on the previous value of the process, rather
than the entire history of values, i.e., P[xj|x0, . . . , xj−1] = P[xj|xj−1]. This is referred to as
a Markov process, and the trajectory probability [Eq. (2.2)] can be written as

P[x0, . . . , xn−1] =

n−1∏
j=1

P[xn−j|xn−j−1]

 P[x0]. (2.7)

This will be important in Chapter 5 when we derive fluctuation theorems. The probability
of observing three consecutive events xj−2, xj−1, and xj in any Markov process can be writ-
ten as P[xj−2, xj−1, xj] = P[xj|xj−1]P[xj−1|xj−2]P[xj−2]. With Bayes’ theorem, we find the
Chapman-Kolmogorov equation [69]

P[xj|xj−2] =

∫
dxj−1P[xj|xj−1]P[xj−1|xj−2], (2.8)

stating that if the transition probabilities P[xj|xj−1] and P[xj−1|xj−2] are known, we can
always find the transition probability P[xj|xj−2]. This will be an important reference when
discussing Markovian dynamics of quantum systems in Chapter 3.

2.2 Langevin, Itô, and Fokker-Planck equations

In the previous section, we studied trajectory probabilities of stochastic processes. Now we
change focus to stochastic differential equations, and study the dynamics of the random
process X(t). In the physical sciences, it is common to write the equation of motion of X(t)
as a Langevin equation [69]

Ẋ(t) = α[X(t)] + β[X(t)]ξ(t), (2.9)

where α and β are real functions, and ξ(t) is a time-continuous, rapidly varying random
process (noise term) with mean ⟨ξ(t)⟩ = 0. Here ⟨·⟩ denotes a trajectory average as defined
in Eq. (2.3). We may assume that the mean is zero as any non-zero mean can be baked into
the function α. The first term on the RHS of the Langevin equation describes the determ-
inistic dynamics of the process, and is commonly referred to as a drift term as it describes
the overall direction in which X(t) is moving. The second term describes how randomly
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fluctuating forces influence the dynamics of X(t), and adds noise on top of the determin-
istic behavior. The noise term is assumed to be stationary, such that its correlation function
⟨ξ(t)ξ(t + τ)⟩ is invariant under translations in t, and thus only depend on the distance
τ between two points in time. We require that the correlation function is normalized ac-
cording to ∫ ∞

−∞
dτ⟨ξ(t)ξ(t+ τ)⟩ = 1. (2.10)

In this way, we assure that ⟨ξ(t)ξ(t + τ)⟩ decays to zero for large τ , such that the present
state of ξ(t) is uncorrelated with itself in the distant past. In fact, we will concentrate
on Markovian processes, where the characteristic correlation time is so short that for any
ϵ > 0, we have ∫ ϵ

−ϵ
dτ⟨ξ(t)ξ(t+ τ)⟩ = 1. (2.11)

This implies that the noise term is delta correlated, with ⟨ξ(t)ξ(s)⟩ = δ(t− s). The power
spectrum [see Eq. (2.6)] is thus flat (as discussed above), and we refer to ξ(t) as a white
noise process, as it similarly to white light contain the same weight of all frequencies. In
particular, we note that the variance of ξ(t) diverges, Var[ξ(t)] = δ(0). This is unphys-
ical, and therefore, somewhat problematic, but the noise term still has physical meaning.
For example, it can serve as a good approximation, or be used to derive other stochastic
processes. Note that white noise should be considered as an idealization, or a limiting case
of a random process that is physical. For instance, the singularity of the variance may be
derived from another process η(t) with correlation function ⟨η(t)η(t+ τ)⟩ = τ−1

c e−|τ |/τc ,
where τc is a finite characteristic correlation time. When τc is small, formally when τc → 0,
we get a delta correlation in accordance with the Markov assumption above. That is, if the
characteristic correlation time of a process is very small, we approximate the process as delta
correlated. It should be noted that this approximation can lead to peculiar results, as indic-
ated with the diverging variance above. Therefore, Langevin equations should be treated
with care. In general, one must introduce Itô calculus and rewrite the Langevin equation
on Itô form, as will be motivated in Sec. 2.3.

The Itô form of the Langevin equation (2.9) is given by

dX(t) = a[X(t)]dt+ b[X(t)]dW(t), (2.12)

where dX(t) = X(t+dt)−X(t) is an infinitesimal increment of the stochastic process, with
dt being an infinitesimal timestep, while a and b are real functions related to α and β via{

a(x) = α(x) + 1
2β(x)β

′(x),
b(x) = β(x),

(2.13)

where the prime denotes differentiation with respect to x, and dW(t) is a Wiener in-
crement, which is a Gaussian random variable with mean ⟨dW(t)⟩ = 0 and variance
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Var[dW(t)] = dt. The Wiener increment stems from the Wiener process, and is discussed
in some more detail below. We assume that X(t) and dW(t) are independent at time t,
such that ⟨f[X(t)]dW(t)⟩ = 0 for any function f. This is proven in Appendix A. Also
note that dW(t) at different instances of time are independent. In particular, we note that
[dW(t)]2 = dt – this is the main rule of (Itô) stochastic calculus, and we sometimes refer
to it as the Itô rule. Note that the Itô rule implies that dW(t) scales as

√
dt, which is im-

portant when expanding functions of X(t) to first order in dt, which corresponds to second
order in dW(t). In Sec. 2.3, we motivate the origin of this rule, and why it is necessary for
obtaining sensible results. We point out that this is not the only type of stochastic calculus.
If the noise term dW(t) is non-Gaussian, other rules of stochastic calculus apply [57, 64].
However, in this thesis, we concentrate solely on Gaussian noise. The Itô equation provides
a useful tool for simulating trajectories of X(t) and for calculating statistics of the process.
Solving it analytically is, in general, hard, but there exists a few cases where it is possible
[64] – its solution specifies the probability distribution of X(t). One can also think of in-
dividual trajectories of X(t) as solutions to the Itô equation. As the increment dW(t) can
be chosen in an infinite number of ways, the Itô equation has infinitely many solutions –
if all of them were known, we could construct the probability distribution of X(t) at all
times t. Before proceeding, we note that the Itô rule implies that any function f[X(t)] has
an infinitesimal increment

df(X) = [a(X)f
′
(X) +

1
2
b2(X)f

′′
(X)]dt+ b(X)f

′
(X)dW, (2.14)

where we omitted the time arguments for brevity. To obtain this equation, we expanded
f(X+ dX) around X to first order in dt, i.e., to second order in dW.

While the Itô equation is useful for studying the dynamics of X(t) on a trajectory level, it
does not, in general, provide the dynamics of the full distribution pt(x) = P[X(t) = x]
of X(t). To find a description of the dynamics of pt(x), one can work with Fokker-Planck
equations. In fact, every Itô (or Langevin) equation has a corresponding Fokker-Planck
equation. In the remaining paragraphs of this section, we outline how the Itô equation
(2.12) can be transformed into a Fokker-Planck equation for pt(x).

We begin by noting that the distribution is given by

pt(x) = ⟨δ[X(t)− x]⟩ =
∫

d[X(t)]δ[X(t)− x]P[X(t)], (2.15)

where ⟨·⟩ again denotes the trajectory average defined in Eq. (2.3). From Eq. (2.14), we find
the increment

dδ[X(t)−x] =
{
a[X(t)]δ′[X(t)− x] +

1
2
b2[X(t)]δ′′[X(t)− x]

}
dt+b[X(t)]δ′[X(t)−x]dW(t),

(2.16)
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where primes denote derivatives with respect to X(t). By taking the average ⟨·⟩ over this
equation, we get

dpt(x) = −∂x[a(x)pt(x)]dt+
1
2
∂2x [b

2(x)pt(x)]dt, (2.17)

where we used that ⟨b[X(t)]δ′[X(t) − x]dW(t)⟩ = 0 as X(t) and dW(t) are independent
– see Appendix A. Since this equation is linear in dt, we find the standard form of the
Fokker-Planck equation

∂tpt(x) = −∂x[a(x)pt(x)] +
1
2
∂2x [b

2(x)pt(x)]. (2.18)

The drift term a(x) determines the deterministic evolution of the stochastic process, i.e.,
how the center of pt(x) evolves over time. The diffusion term b2(x) determines the mag-
nitude of the noise in the process, in other words how broad pt(x) is.

The three descriptions above – Langevin, Itô, and Fokker-Planck equations – are equivalent,
and can be used to describe the same process. We now briefly study two common processes
in terms of these three descriptions.

2.2.1 Brownian motion (Wiener process)

Brownian motion can be defined via the Langevin or Itô equations

Ẋ(t) = σξ(t) and dX(t) = σdW(t), (2.19)

where σ > 0 is referred to as the diffusion constant. In the case of a particle subjected to
thermal fluctuations, σ is proportional to the temperature of its environment. If σ = 1, we
refer to the process as a Wiener process, even though its qualitatively identical to Brownian
motion. The Itô equation may be solved by integration,

X(t) = σ

∫ t

t0
dW(t) = σ lim

N→∞

N−1∑
j=0

δW(t0 + jδt), (2.20)

where we in the last equality discretized time into N segments of length δt = (t − t0)/N,
and introduced the finite Wiener increment δW(t), which is a Gaussian random variable
with mean 0 and variance δt. The integral object in this equation is referred to as a (Itô)
stochastic integral [64, 69]. In this thesis, we will not need this type of mathematical tools,
and will thus not dig deeper into it than this. Instead, we use the sum representation in
Eq. (2.20), together with the central limit theorem, to conclude that X(t) is a Gaussian
random variable with mean ⟨X(t)⟩ = 0 and variance Var[X(t)] = σ2(t− t0).
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Figure 2.1: (a) Typical trajectories of Brownian motion and the Ornstein-Uhlenbeck process. The Brownian motion stays, on
average, around 0, while the Onstein-Uhlenbeck process drifts towards an equilibrium position. To simulate these
trajectories, we used the Itô equations (2.19) and (2.23), together with the following parameters, x0 = 0, σ = 30,
k = 15 · 10−3, m = 2, and dt = 10−3. (b) Comparison of the power spectra of a white noise process (black, dashed
line) and the Ornstein-Uhlenbeck process [see Eq. (2.28)] for a few choices of k (solid lines). Note that Eq. (2.28)
tends to the white noise spectrum as k is increased. Here we use σ = k/

√
2.

Equivalently, one can define Brownian motion via the Fokker-Planck equation{
∂tpt(x) = σ2

2 ∂
2
x pt(x),

pt0(x) = δ(x),
(2.21)

where the second line defines the intial condition. The solution to this initial value problem
reads [69]

pt(x) =
e−x2/2σ2(t−t0)√
2πσ2(t− t0)

. (2.22)

That is, X(t) is a Gaussian random variable centered at x = 0 with variance σ2(t− t0), just
as above. With the initial value used here, the process describes the position of a Brownian
particle moving in one dimension, starting at the origin at t0. As random, unbiased noise
is the only force acting on the particle, it stays at the origin on average. The variance of
the position grows linearly with time as the particle always has the possibility of moving
far from the origin if it is exposed to the random force for a long time. In Fig. 2.1(a), we
illustrate a typical trajectory of Brownian motion in one dimension.

As mentioned above, if σ = 1, we refer to this process as a Wiener process, and denote it by
W(t). A special property of this process is that all increments ΔW(t) = W(t+ Δt)−W(t)
are independent of each other, and ofW(t) for any Δt > 0. Note that theWiener increment
is Gaussian as well, with ⟨ΔW(t)⟩ = 0 and Var[ΔW(t)] = Δt [69].
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2.2.2 The Ornstein-Uhlenbeck process

TheOrnstein-Uhlenbeck process is a generalization of Brownianmotion with an additional
drift term that drives the process towards a specific position. Its Langevin and Itô equations
are given by

Ẋ(t) = k[m− X(t)] + σξ(t) and dX(t) = k[m− X(t)]dt+ σdW(t). (2.23)

Here k, σ > 0 are constants, with units of inverse time, and m determines the position
towards which the system is driven [it has the same unit as X(t)]. In practice, the Ornstein-
Uhlenbeck process describes the position of a Brownian particle with overdamped dynamics
in a harmonic potential, where the friction term proportional to Ẋ(t) dominates over the
acceleration term proportional to Ẍ(t), such that the latter can be neglected from the equa-
tion of motion. The Ornstein-Uhlenbeck process thus describes a noisy relaxation towards
an equilibrium position. As we will see in Chapters 4 and 6, it can be used to model meas-
urement signals. We note that it has applications in a wide range of situations, for instance,
in financial mathematics, where it is used to model interest rates [70].

The Itô equation in Eq. (2.23) can be solved analytically, see, e.g., Ref. [64], but to avoid
clutter, we present only the solution of the corresponding Fokker-Planck equation. The
solutions are equivalent anyway. The Fokker-Planck equation is given by{

∂tpt(x) = k∂x[(x− m)pt(x)] + σ2∂2x pt(x),
p0(x) = δ(x− x0),

(2.24)

where the initial distribution is centered at some arbitrary value x0. The solution reads

pt(x) =

√
k

2πσ2(1− e−2kt)
e

k
2σ2(1−e−2kt)

[x−m(1−e−kt)−x0e−kt]
2

. (2.25)

The Ornstein-Uhlenbeck process is thus a Gaussian random variable with mean ⟨X(t)⟩ =
m(1 − e−kt) + x0e−kt and variance Var[X(t)] = σ2(1 − e−2kt)/k. In the stationary limit,
we obtain

pss(x) = lim
t→∞

pt(x) =

√
k

2πσ2
e−

k
2σ2 (x−m)2 . (2.26)

The Ornstein-Uhlenbeck process thus reaches a stationary distribution – this was not the
case with Brownian motion. In fact, the Ornstein-Uhlenbeck process is the only single-
variable stochastic process which is Gaussian, Markovian, and has a stationary distribution
[69]. We also see that Eqs. (2.25) and (2.26) provide a nice illustration of the noisy relaxation
mentioned above. At t = 0, the process starts at the initial position x0 and makes a random
walk towards the equilibrium position x = m that is reached in the stationary limit. The
timescale of the relaxation is determined by 1/k. The variance is 0 at time t = 0 (we know
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exactly where the particle is), and grows towards σ2/k at a rate given by 2k. We illustrate
a sample trajectory of the Ornstein-Uhlenbeck process in Fig. 2.1(a).

The stationary correlation function of the Ornstein-Uhlenbeck process is given by [69]

CX(τ) =
σ2

k
e−k|τ |. (2.27)

That is, the correlation between two points in time separated by τ decays exponentially on
a timescale 1/k, as expected for a Markovian process. Its power spectrum [see Eq. (2.6)]
reads

SX(ω) =
2σ2

k2 + ω2 . (2.28)

The spectrum thus has a Lorentzian shape with width 2k (full width at half maximum). In
Fig. 2.1(b), we compare Eq. (2.28) to the spectrum of white noise for different choices of k,
where we use σ = k/

√
2 such that the maximum of SX(ω) remains invariant under changes

of k. We observe that the width of the spectrum increases with k, and in the limit k → ∞,
we recover the white noise spectrum. This can also be seen from the correlation function,
CX(τ) → δ(τ) as k → ∞ for σ = k/

√
2. This will be important when interpreting the

effect of a finite detector bandwidth in Chapter 6.

2.3 Motivation for stochastic calculus

As the final part of this chapter, we provide a motivation for why stochastic calculus and
the Itô equation are necessary for obtaining sensible results. In fact, the Langevin equation,
or rather the white noise term ξ(t) in Eq. (2.9), is not rigorously defined, such that a too
naive mathematical treatment leads to the wrong results. We begin by motivating this, and
then show how we can go from the Langevin equation to the Itô equation. Note that the
idea of this section is to motivate why stochastic calculus is needed, rather than providing
rigorous derivations. We closely follow the discussions in Refs. [57] and [69].

We begin by assuming that X(t) and ξ(t) are statistically independent, and that Ẋ = dX/dt.
The latter assumption corresponds to what we would expect from conventional calculus.
We now show that these two assumptions cannot be true simultaneously, and that one
of them needs to be relaxed. To this end, it is illuminating to calculate the infinitesimal
increment dX(t) = X(t+ dt)− X(t). The Langevin equation (2.9) provides the following
result,

dX(t) = α[X(t)]dt+ β[X(t)]ξ(t)dt. (wrong) (2.29)

We indicate already here that this result is wrong, and should not be used for calculations
– we only work with it in this paragraph to highlight the subtleties of the Langevin equa-
tion. It yields the average increment ⟨dX(t)⟩ = ⟨α[X(t)]⟩dt, which is independent of the
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Figure 2.2: Illustration of the fractal structure of a Wiener process W(t). When zooming in, the Wiener process never becomes
linear. Therefore, it has no derivative.

noise term, as expected from the assumptions. For the variance of the increment, we get
Var[dX(t)] = ⟨[dX(t)]2⟩ = 0, where we used that all nonlinear terms in dt vanish. This
suggests that the increments are deterministic, and that the noise term does not induce
any noise to the process – quite contrary to what to expect from a stochastic process. We
understand that our two assumptions cannot be true simultaneously. Here we will relax
the second assumption. That is, the fluxion Ẋ will not be interpreted as dX/dt, but we
still assume independence between X(t) and ξ(t). Note that we are not required to make
this relaxation – one can still assume that Ẋ = dX/dt holds, but must then relax the other
assumption. Equation (2.9) is then referred to as a Stratonovich equation, and requires
computational tools that are not discussed here [57].

To further motivate why we relaxed this assumption, we will, in this paragraph, assume that
Ẋ = dX/dt holds, and show that we run into other problems than the one above. Under
this assumption, the solution to Eq. (2.9) would read

X(t)− X(t0) =
∫ t

t0
dt′α[X(t′)] +

∫ t

t0
dt′β[X(t′)]ξ(t′). (2.30)

For this to hold, the function

W(t) =
∫ t

t0
dt′ξ(t′) (2.31)

must exist. From the central limit theorem,W(t) can be shown to be a Gaussian distributed
random variable with mean 0 and variance t − t0. In fact, W(t) is a Wiener process [69].
Because of the fractal structure ofW(t), see Fig. 2.2, it is impossible to linearize it as h → 0
in [W(t + h) − W(t)]/h. Therefore, the derivative Ẇ(t), and thereby also ξ(t), does not
exist in a rigorous mathematical sense [69]. This provides further support why Ẋ ̸= dX/dt.
Despite being nonexistent in a mathematical sense, we will continue to use ξ(t) in our
discussion as it is commonly used in the physical sciences.

17



From the discussion in the preceding paragraphs, we understand that analyzing and solv-
ing the stochastic differential equation (2.9) raise several warning bells, indicating that the
equation must be treated with care. As conventional calculus does not apply as we are
used to, one way to proceed is to introduce Itô calculus, and rewrite Eq. (2.9) on Itô form.
Itô calculus provides computational rules that allow us to calculate and manipulate the
increment dX in a mathematically and physically sensible way.

To introduce the Itô calculus, we begin by studying the Wiener process in Eq. (2.31), and
note that for t > s

W(t)−W(s) =
∫ t

s
dt′ξ(t′), (2.32)

implying that any Wiener increment ΔW(t) = W(t + Δt) − W(t) is independent of
W(t), as discussed above. We also note that ΔW(t) is Gaussian with ⟨ΔW(t)⟩ = 0 and
Var[ΔW(t)] = ⟨ΔW2(t)⟩ = Δt, as we expect for the Wiener process, see discussion above.
This gives us the infinitesimal increment dW(t) = ξ(t)dt, suggesting that ξ(t) is the de-
rivative dW(t)/dt. As noted above, mathematically this derivative does not exist, but is
still used here (and in the physical sciences) because of the convenient notation. The main
result of Itô calculus is that [dW(t)]2 = dt – a quite surprising result as dW(t) appears to
be proportional to dt.

To understand why [dW(t)]2 = dt, we make use of a small Wiener increment δW(t) =
W(t + δt) −W(t) and study it over a time period Δt = t − t0. By discretizing Δt into N
intervals, δt = Δt/N. We now define a quantity

χ =
N−1∑
j=0

[δW(tj)]2, (2.33)

where tj = t0 + jδt. The mean and variance of χ are given by{
⟨χ⟩ = Δt,
⟨χ2⟩ − ⟨χ⟩2 = Δt

N/2 .
(2.34)

In the continuous limit, N → ∞, the variance vanishes and χ becomes deterministic –
more specifically, χ → Δt. In this limit, we may interpret the sum in Eq. (2.33) as an
integral, and we get

Δt =
∫ t+Δt

t
dt =

∫ t+Δt

t
dW2, (2.35)

where we omitted the time argument for brevity. This implies the Itô rule dW2 = dt. When
we analyzed Eq. (2.9) above, we thought that dW = ξ(t)dt was scaling as dt. The Itô rule
teaches us that dW actually scales as

√
dt, and partly explains why our analysis of Eq. (2.9)

went wrong. At this point, it is tempting to replace ξ(t)dt with dW in Eq. (2.29), but a
little more care is needed to find the correct form for the infinitesimal increment dX(t).
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To find the increment dX(t) corresponding to Eq. (2.9), we Taylor expand X(t+ dt) as

X(t+ dt) = edt∂sX(s)
∣∣∣
s=t
, (2.36)

where we write the expansion as an exponential function for brevity. In fact, all terms in the
expansion are not needed, only the ones scaling as dt. To calculate the derivatives ∂ns X(s)
(n > 1), we assume that

∂sX(s)
∣∣∣
s=t

=
(
α[X(s)] + β[X(s)]ξ(t)

)∣∣∣
s=t
. (2.37)

This assumption is based on the fact that ξ(t) in reality must have a small, but finite correla-
tion time τc over which it remains constant. That is, during an infinitesimal time increment
dt ≪ τc, ξ(t) is constant, and is not affected by time derivatives of Eq. (2.37). Using this,
as well as the first and second order terms in the Taylor expansion (2.36), alternatively to
first order in dt, i.e., second order in dW(t) = ξ(t)dt due to the Itô rule, we get the correct
increment

dX(t) = a[X(t)]dt+ b[X(t)]dW(t), (2.38)

where the coefficients a[X(t)] = α[X(t)] + 1
2β[X(t)]β

′[X(t)] and b[X(t)] = β[X(t)] show
the relation to Eq. (2.9). The prime in a[X(t)] denotes the derivative with respect to X.
Equation (2.38) is known as an Itô stochastic differential equation. It implies that the
variance of dX reads

⟨(dX)2⟩ = ⟨b2(X)⟩dt, (2.39)

where we used that ⟨dX⟩ = ⟨a(X)⟩dt, and that X(t) and dW(t) are independent. That is,
the variance of the increment is nonzero, indicating that the noise term induces noise in the
process as desired. This motivates why Itô calculus is required to obtain reasonable results,
and the increment in Eq. (2.29) should be avoided. We note that Itô calculus will be used
in Chapter 6 when we derive Eq. (1.1).
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Chapter 3

Open quantum systems

The textbook description of basic quantum mechanics is based on closed systems that are
completely isolated from their environment and described by pure states, i.e., we are cer-
tain what state the system is in. Such a description can teach us a great deal about the
foundations of quantum physics, but it is inevitable that quantum systems never are isol-
ated in reality. They always interact with their environment by exchanging energy and/or
particles, and are thereby open. A typical example of this is the light-matter interaction
between an atom (system) and an electromagnetic field (environment) [71, 72]. Another
relevant example is solid state quantum dots (system) [39] defined in semiconductor ma-
terials (environment), where the quantum dots may exchange electrons and phonons with
its environment. A complete description of the physics of these examples requires a full
theoretical treatment of both the system and the environment. For instance, to understand
all processes in the example of light-matter interactions, we must quantize the electromag-
netic field, and keep track of all possible photon states of the field. As there, theoretically,
are an infinite number of photon states, it is, in general, a formidable task to theoretically
model such a problem. To this end, it is necessary to develop a manageable theory for open
quantum systems [2, 68, 73]. The joint unit of system and environment can be treated as a
closed system, and by tracing out the environment, we obtain a description of the system
alone. By performing such a trace operation, we lose information about the correlations
between the system and the environment, and introduce uncertainty about which state the
system is in. The state of an open quantum system is thus, typically, mixed. Often, we
are interested in the dynamics of these systems. By assuming a weak coupling between the
system and the environment, it is possible to find a general Markovian master equation for
open systems – the Lindblad equation. This equation effectively describes how the envir-
onment influences the system, without having to keep track of the environmental degrees
of freedom. The Lindblad equation is an important tool for modeling open quantum sys-
tems, and plays a significant role in this thesis, especially in Chapters 4, 6, and 7, where we
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study continuous measurements and feedback control of open quantum systems.

In this chapter, we discuss the basic theoretical tools required to describe open quantum
systems. We begin by reviewing the dynamics of pure states in closed systems in Sec. 3.1.
This acts as a reference for the proceeding sections. Section 3.2 introduces mixed states
and the density operator. The latter is a valuable tool in the theory of open quantum
systems. In particular, we motivate the origin of mixed states. Section 3.3 is devoted to
the dynamical description of open systems. Most importantly, we introduce the Lindblad
master equation. Before concluding this chapter, we introduce full counting statistics in
Sec. 3.4 – a tool for gaining full statistical knowledge of particle transport in nanoscale
systems described by Markovian master equations. This will be a useful tool in Chapter 7,
where we study the statistics of energy exchanges between a thermal environment and an
open system.

3.1 Pure states

The state of a quantum system is said to be pure if it can be described by one single, nor-
malized state vector |ψ(t)⟩, for which ⟨ψ(t)|ψ(t)⟩ = 1. For a closed system, the time
evolution of this state is described by the Schrödinger equation

∂t |ψ(t)⟩ = −iĤ(t) |ψ(t)⟩ , (3.1)

where Ĥ(t) is the (possibly time dependent) Hamiltonian of the system. The time depend-
encemay be due to the interaction with an external driving field, such as in the semi-classical
description light-matter interactions. Note that we have absorbed the factor of ℏ−1 into
the Hamiltonian in Eq. (3.1) such that all energy units are given in inverse units of time
(alternatively known as the convention ℏ = 1). The solution to the Schrödinger equation
is given by

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ , (3.2)

where |ψ(t0)⟩ is the initial state vector of the system at time t0, with ⟨ψ(t0)|ψ(t0)⟩ = 1,
and Û(t, t0) is the time evolution operator given by

Û(t, t0) = T e−i
∫ t
t0
dsĤ(s)

, (3.3)

where T is the time ordering operator. The time evolution operator is unitary, i.e., Û(t, t0)Û†(t, t0) =
Û†(t, t0)Û(t, t0) = 1, such that the normalization of the state vector is preserved; ⟨ψ(t)|ψ(t)⟩ =
⟨ψ(t0)|Û†(t, t0)Û(t, t0)|ψ(t0)⟩ = ⟨ψ(t0)|ψ(t0)⟩ = 1. With the state vector, we may cal-
culate all moments of any observable Â at time t as ⟨Âk⟩ = ⟨ψ(t)|Âk|ψ(t)⟩.
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3.2 Mixed states

The preceding discussion was concerned with pure states of closed quantum systems. We
now proceed with mixed states which cannot be described by a single state vector. Suppose
that we are dealing with a quantum system (closed or open), where we are uncertain about
the exact system state. This uncertainty can be expressed by a probability distribution pj,
normalized with

∑
j pj = 1, specifying the probability that the system is in some state

|ψj⟩. The possible system states |ψj⟩ are not necessarily mutually orthogonal. Under these
conditions, the system state is said to be mixed, and is represented by the density operator

ρ̂ =
∑
j

pj |ψj⟩⟨ψj| . (3.4)

The density operator is positive (and thereby Hermitian, ρ̂† = ρ̂), i.e., ⟨Φ|ρ̂|Φ⟩ ≥ 0 for
any state vector |Φ⟩, and has trace tr{ρ̂} = 1. The latter property follows from the normal-
ization of the distribution pj, stating that the systemmust be in one of the states |ψj⟩. Note
that if pj=k = 1 for some j = k, and 0 for all j ̸= k, the state is pure and has density operator
ρ̂ = |ψk⟩⟨ψk| – in this case, the system is equally well described by the state vector |ψk⟩.
Regardless of being pure or mixed, the density operator can always be written as a matrix in
any orthonormal basis {|n⟩}n, where the diagonal elements ρnn = ⟨n|ρ̂|n⟩ are referred to
as populations and give us the probability to be in state |n⟩, while the off-diagonal elements
ρnm = ⟨n|ρ̂|m⟩ are referred to as coherences and originates from superpositions of basis
states. We note that if all coherences vanish, there exist no superpositions of basis states.
We will return to this point when discussing quantum measurements in Chapter 4, where
we will see that the coherences are exponentially damped when measuring continuously on
a quantum system. Before continuing, we note that all moments of an observable Â can be
calculated with the density matrix as ⟨Âk⟩ = tr{Âkρ̂}.

Above we pointed out that we need to describe a system with a density matrix when there
is an uncertainty about which state the system is in. This uncertainty can arise in various
situations – here we discuss two cases. First, imagine that we are preparing a state vector
for an experiment. Due to imprecisions in the lab equipment, it is not possible to know
with certainty which state the system is in. If this is the case, the system state is mixed, and
needs to be described by a density matrix.

As a second case, we consider an open quantum systems S coupled to an environment E,
as visualized in Fig. 3.1. The state of the combined unit S+ E is pure and can be written as

|ψ⟩ =
∑
jk

cjk |sj⟩ ⊗ |ek⟩ ,
∑
jk

|cjk|2 = 1, (3.5)

where |sj⟩ ⊗ |ek⟩ are orthonormal basis vectors for the composite state space of S + E,
while |sj⟩ and |ej⟩ are orthonormal basis vectors for S and E, respectively, and cjk = ( ⟨sj|⊗
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Figure 3.1: Illustration of an open quantum system that interacts with its environment. The system, referred to as S in the text,
has a bare Hamiltonian ĤS(t) and density operator ρ̂S. The environment (E) has a bare Hamiltonian ĤE and density
operator ρ̂E. The system and the environment interacts by exchanging energy and particles – this is described by
the interaction Hamiltonian Ĥint(t). By the rectangular box we highlight that the combined unit of system and
environment constitutes a closed system which is described by Hamiltonian ĤSE(t) and density operator ρ̂SE.

⟨ek|) |ψ⟩ are complex coefficients for which |cjk|2 is the probability to obtain outcome ξjk
when measuring the observable Â =

∑
jk ξjk |sj⟩⟨sj| ⊗ |ek⟩⟨ek|. The corresponding density

operator of S + E is given by ρ̂SE = |ψ⟩⟨ψ|. To find a description of system S alone, we
trace ρ̂SE over the environment, and find the system density matrix

ρ̂S = trE{ρ̂SE} =
∑
k

⟨ek|ψ⟩ ⟨ψ|ek⟩ =
∑
k

|ψ̃k⟩⟨ψ̃k| , (3.6)

where trE{·} denotes the partial trace over the environment (here computed in the basis
|ek⟩), and |ψ̃k⟩ =

∑
j cjk
∣∣sj⟩ is a vector in the state space of S. Note that |ψ̃k⟩ is not

normalized as
⟨ψ̃k|ψ̃k⟩ =

∑
j

|cjk|2 < 1. (3.7)

We therefore introduce |ψ̃k⟩ =
√pk |ψk⟩, for which ⟨ψk|ψk⟩ = 1, where pk = ⟨ψ̃k|ψ̃k⟩ is

interpreted as the probability to be in state |ψk⟩. It follows that

ρ̂S =
∑
k

pk |ψk⟩⟨ψk| , (3.8)

which coincides with the definition in Eq. (3.4). We see that by applying the partial trace
in Eq. (3.6), we lose all information encoded in the correlations between S and E, and thus
introduce uncertainty about the state of S. Therefore, open systems are prime examples
where we, in general, need the density matrix in order to describe the state of the system.

3.3 Dynamics

For a closed system described by a density matrix, as in Eq. (3.4), each state |ψj⟩ evolves in
time according to the Schrödinger equation (3.1). This implies that the density matrix can
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be translated in time according to ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0), where ρ̂(t0) is the density
matrix at time t0, and Û(t, t0) is the time evolution operator in Eq. (3.3). Differentiating
with respect to time, we find the von Neumann equation

∂tρ̂(t) = −i[Ĥ(t), ρ̂(t)]. (3.9)

This equation determines the dynamics of ρ̂(t) for closed systems, and can be regarded as
the Schrödinger equation for mixed states. Note that due to the unitary time evolution,
the eigenvalues of ρ̂(t) and the probabilities pj are stationary over time.

We now proceed with open quantum systems. As introduced above, an open system in-
teracts with its environment – see Fig. 3.1. By environment, we typically refer to one or
several thermal reservoirs, but it could also be a smaller system, such as a qubit. Due to
the possibly large dimensions of the environment, it is difficult, or impossible, to carry out
calculations with the composite density operator ρ̂SE of S+E. For instance, for a bath with
infinitely many energy modes, the von Neumann equation (3.9) of ρ̂SE would result in an
infinitely large hierarchy of coupled differential equations, which, in general, does not have
an exact analytical solution. Instead, we aim to work with the reduced density operator
ρ̂S = trE{ρ̂SE} of S.

For the combined unit S+ E, the total Hamiltonian reads

ĤSE(t) = ĤS(t) + ĤE + Ĥint(t), (3.10)

where ĤS(t) and ĤE are the bare Hamiltonians of S and E, respectively, and Ĥint(t) de-
scribes the interaction between S and E. The total density operator ρ̂SE can be translated
in time with the unitary operator (3.3). If ρ̂SE(t0) is the initial state of S+ E, and ρ̂S(t0) is
the initial state of S, the state of S at a later time t is given by

ρ̂S(t) = trE{Û(t, t0)ρ̂SE(t0)Û†(t, t0)} ≡ K(t,t0)ρ̂S(t0), (3.11)

where K(t,t0) is referred to as a dynamical map, and is always dependent on the unitary
Û(t, t0) and the initial state of the environment, i.e., ρ̂E(t0) = trS{ρ̂SE(t0)}. As ρ̂SE(t0)
might contain correlations between S and E, K(t,t0) is generally dependent on the initial
state of S as well. This is unsatisfactory as the map K(t,t0) will be dependent on the state it
acts on – we would like to have a map that is universal and can take any input state ρ̂S(t0) as
its argument. In fact, by choosing an uncorrelated initial state ρ̂SE(t0) = ρ̂S(t0)⊗ ρ̂E(t0),
we find a universal dynamical map (UDM)

ρ̂S(t) = trE{Û(t, t0)[ρ̂S(t0)⊗ ρ̂E(t0)]Û†(t, t0)} ≡ E(t,t0)ρ̂S(t0), (3.12)

where E(t,t0) only depends on Û(t, t0) and the initial state ρ̂E(t0) of the environment. This
map is independent on the initial state of S, and can therefore take any state ρ̂S(t0) as
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its argument for a fixed ρ̂E(t0). As ρ̂E(t0) is a positive operator, it can be written in a
spectral representation as ρ̂E(t0) =

∑
j λj |ej⟩⟨ej| with eigenvalues λj, for which 0 ≤ λj ≤ 1

and
∑

j λj = 1, and eigenstates
∣∣ej⟩. By computing the partial trace in Eq. (3.12) in this

eigenbasis, the UDM can be written as [2, 68, 73]

E(t,t0)ρ̂S =
∑
kj

Êkj(t, t0)ρ̂SÊ
†
kj(t, t0), (3.13)

with Kraus operators Êkj(t, t0) =
√
λj ⟨ek|Û(t, t0)|ej⟩, satisfying the completeness relation∑

kj Ê
†
kj(t, t0)Êkj(t, t0) = 1. The completeness relation ensures that E(t,t0) preserves the

trace of ρ̂S. We further note that E(t,t0) is linear and completely positive. Complete posit-
ivity ensures that any map E(t,t0)⊗1D, with 1D being theD-dimensional identity operator,
acting on the composite system of S and any external D-dimensional system is also a pos-
itive map. Finally, a remark: In general, the initial state of S + E contains correlations
between the subsystems and cannot be written as a product state as in Eq. (3.12). However,
when experimentally preparing the initial state of S, all correlations between S and E are
destroyed, such that ρ̂SE(t0) = ρ̂S(t0)⊗ ρ̂E(t0) is no serious restriction.

In general, it is desirable to find a Markovian equation of motion for ρ̂S, like the von Neu-
mann equation (3.9), rather than translating the state in time with E(t,t0). To this end, we
begin to note that we typically have the indivisibility condition E(t,t0) ̸= E(t,τ)E(τ,t0) for
t0 < τ < t. The maps E(t,t0) and E(τ,t0) are UDMs, but E(t,τ) is not a UDM as ρ̂SE(τ),
the joint state of S + E at time τ , can contain correlations between S and E. Therefore,
E(t,τ) depends on the the input state ρ̂S(τ) = trE{ρ̂SE(τ)}. However, when the correl-
ations between S and E are weak, and have a negligible effect on the dynamics of S, we
get the divisibility condition E(t,t0) = E(t,τ)E(τ,t0), where all maps E(t,t0), E(t,τ), and E(τ,t0)
are UDMs – compare to the Chapman-Kolmogorov equation (2.8) for classical stochastic
systems. The divisibility condition is typically justified when the coupling between S and
E is weak. We can thus use the divisibility condition to write down a Markovian master
equation [73]

∂tρ̂S(t) = lim
ϵ→0

ρ̂S(t+ ϵ)− ρ̂S(t)
ϵ

= lim
ϵ→0

E(t+ϵ,t) − 1
ϵ

E(t,t0)ρ̂S(t0) = L(t)ρ̂S(t), (3.14)

where we introduced the Liouville superoperator L(t) = limϵ→0[E(t+ϵ,t) − 1]/ϵ. Such a
Markovian master equation can always be written on Lindblad (or GKLS) form (named
after the persons that first derived it: Gorini, Kossakowski, Lindblad and Sudarshan) [68,
73–75] as

∂tρ̂S(t) = L(t)ρ̂S(t) = −i[Ĥ(t), ρ̂S(t)]

+
∑
k

γk(t)
[
L̂k(t)ρ̂S(t)L̂

†
k(t)−

1
2
{L̂†k(t)L̂k(t), ρ̂S(t)}

]
,

(3.15)
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where Ĥ(t) is an Hermitian operator, the coefficients γk(t) ≥ 0, and L̂k(t) are referred
to as Lindblad operators. We note that Ĥ(t), typically, do not exactly coincide with
the bare Hamiltonian ĤS(t) of S, but also contain terms originating from the coupling
between S and E [68, 73]. If the extra terms are negligible, the first term of the Lind-
blad equation (3.15) corresponds to the von Neumann equation (3.9), and describes the
coherent dynamics of S in the absence of E. The combinations of operators under the
sum in the Lindblad equation are commonly written on the compact superoperator form
D[L̂k(t)]ρ̂ = L̂k(t)ρ̂L̂

†
k(t) −

1
2{L̂

†
k(t)L̂k(t), ρ̂}, and describes how the environment affects

the system. Typically, the Lindblad operators are ladder operators of the system, describing
how the system gets excited or de-excited by interacting with the environment. In general,
this interaction can be considered as incoherent, and does not involve the off-diagonals of
the density matrix. The coefficients γk(t) are transition rates and can be expressed in terms
of the properties of the environment and the coupling between S and E – for an explicit
example, see the classical toy model in Chapter 7.

The Liouville superoperator, or Liouvillian, L(t) is said to be a generator of the UDM
E(t,t0), and we can write

E(t,t0) = T e
∫ t
t0
dsL(s)

, (3.16)

where T is the time ordering operator. IfL(t) is time independent, E(t,t0) = exp{L(t−t0)}
and only depends on the time difference τ = t − t0, such that E(t,t0) = Eτ . This UDM
satisfies the semigroup property EtEτ = Et+τ [73]. Starting from this property, we may
show the converse, i.e., that the semigroup property leads to a time independent Liouvillian
L [73], where all time dependence in the Lindblad equation (3.15) can be removed. For
such a time independent Liouvillian, we are typically interested in the stationary state of
the dynamics when t → ∞ [a time dependent L(t) does not necessarily have a stationary
state]. To motivate why we focus only on the stationary state, we note that for quantum
heat engines or feedback controlled devices, it is desirable that the system reaches a target
state that is stable over time. That is, we want to find the state ρ̂ss that satisfies Lρ̂ss = 0.
The total solution to the Lindblad equation can be written on the general form

ρ̂S(t) =
∑
j

cjeλj(t−t0)σ̂j, (3.17)

where cj are coefficients determined by the initial condition ρ̂S(t0), and λj are the eigenval-
ues of L with corresponding (linearly independent) eigenstates σ̂j. We thus see that there
exists one eigenvalue λ0 = 0 with c0σ̂0 = ρ̂ss corresponding to the stationary state, while
the other eigenvalues must have a negative real part such that only the j = 0 term survives
in the long time limit.
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Figure 3.2: (a) A standard setup for nanoscale experiments. A system (S) is coupled to one or several environments. We
are interested in investigating the intrinsic properties of S by measuring the particle exchange between S and the
environment labeled by R. This exchange can be measured via the particle current I(t), as marked in the figure. (b)
A schematic sketch of how the current I(t) changes over time. (c) The probability distribution Pt(n) of the number
of particles n exchanged between S and R after time t. By relating n(t) and I(t) as in Eq. (3.18), we may find the
moments and cumulants of Pt(n) directly from the current correlations.

3.4 Full counting statistics

The central idea of full counting statistics is to gain full knowledge about particle transport
in nanoscale systems. The probability distribution Pt(n) of having n transferred particles
during a time interval t can reveal intrinsic properties of these systems. For instance, in
electronic circuits on the microscopic scale, the role of current fluctuations becomes es-
sential for understanding a large variety of microscopic concepts [67]. Motivated by this,
we introduce full counting statistics with electronic transport [76] in mind, focusing espe-
cially on how Pt(n) can be obtained for systems described by Markovian master equations
[77, 78]. We note that this type of counting can be extended to any types of particles – for
instance, photons [79] and phonons [80].

We begin by studying the setup depicted in Fig. 3.2(a), where a system S exchanges particles
with one or several reservoirs – S is thereby an open quantum system. Our main objective
is to measure the statistics of exchanged particles between S and the reservoir labeled by
R during an arbitrary interaction time t. Such particle counting is, since roughly 20 years
ago, possible to conduct in electronic systems, where single electron transitions can be
detected [32, 44, 81–85]. As long as the response rate of the detector is much larger than the
electron transition rate, one can accurately infer the transport statistics. When the electron
transition rate is similar to, or larger than the detector response rate, it is no longer possible
to resolve all electron transitions, and the recorded data would give inaccurate transport
statistics. Instead, one could measure the current I(t) (here interpreted as a particle current
rather than an electronic current) to infer something about the transport statistics¹. In
Fig. 3.2(b), we have sketched a time trace of the current between S and R. The number of

¹In this thesis, we interpret I(t) as a classical current. This allows for straightforward manipulations when
calculating higher order statistics as in Eq. (3.20). In a full quantum treatment, the current is introduced as an
operator Î(t). This raises some subtleties, such as time ordering. For instance, Eq. (3.20) does not, in general,
hold when the current is an operator. For a full quantum treatment, see, for example, Refs. [76, 86, 87].
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particles exchanged with R after time t is obtained via

n(t) =
∫ t

0
dτ I(τ). (3.18)

Here we use the convention that I(t) > 0 when the current flows from S towards R,
such that n(t) > 0 when particles enter R. Since I(t) and n(t) are random processes, it
is difficult to draw general conclusions about the transport statistics from one single time
trace. Instead, by repeating the experiment a large number of times N, and keeping track
of n(t) for each run, we can find the number of times Kn where we observe n exchanged
particles after time t. The relative frequency of observing n particles is given by Kn/N, and
in the limit of large N, we get

lim
N→∞

Kn

N
= Pt(n), (3.19)

the probability of observing n exchanged particles after time t. Figure 3.2(c) illustrates a
typical distribution function Pt(n).

Note that the moments of Pt(n) may be calculated from the current as well. By taking an
average ⟨·⟩ over many experimental realizations [similar to Eq. (2.3)], we get

⟨nk(t)⟩ =
∫ t

0
dτ1 · · ·

∫ t

0
dτk⟨I(τ1) · · · I(τk)⟩, (3.20)

where we used Eq. (3.18). For k = 1, we get the average ⟨n(t)⟩. For long times t, the average
current ⟨I(t)⟩ reaches a stationary state, and becomes independent on time. In that case,
the average current can be moved outside the integral, and we get ⟨n(t)⟩ = ⟨I⟩sst. The
stationary current can thus be written on the intuitive form

⟨I⟩ss = lim
t→∞

⟨n(t)⟩
t

. (3.21)

We can further calculate the variance of Pt(n) via the current measurements as

⟨⟨n2(t)⟩⟩ = ⟨n2(t)⟩ − ⟨n(t)⟩2 =
∫ t

0
dτ1
∫ t

0
dτ2 [⟨I(τ2)I(τ1)⟩ − ⟨I(τ2)⟩⟨I(τ1)⟩] . (3.22)

From this, we find the second order current cumulant

⟨⟨I2(t)⟩⟩ = ∂t⟨⟨n2(t)⟩⟩ = 2
∫ t

0
dτ [⟨I(τ)I(t)⟩ − ⟨I(τ)⟩⟨I(t)⟩] . (3.23)

From these expressions, we can define a current correlator CI(t, t′) = ⟨I(t)I(t′)⟩−⟨I(t)⟩⟨I(t′)⟩.
We are interested in the stationary state of the current correlator, where it is translationally
invariant in time and only depends on the difference t− t′, i.e., CI(t, t′) = CI(t− t′). We
further assume that the system is Markovian, meaning that the correlator quickly decays
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to zero on some correlation time τc. Finally, we assume that the correlator is symmetric
under the exchange t ↔ t′, such that all points separated by t− t′ are correlated identically.
When the measurement time t greatly exceeds the correlation time τc, the variance of Pt(n)
becomes linear in time,

⟨⟨n2(t)⟩⟩ = t
∫ ∞

−∞
dτ [⟨I(τ)I(0)⟩ − ⟨I(τ)⟩⟨I(0)⟩] . (3.24)

This implies the stationary second current cumulant

⟨⟨I2⟩⟩ss = lim
t→∞

⟨⟨n2(t)⟩⟩
t

=

∫ ∞

−∞
dτ [⟨I(τ)I(0)⟩ − ⟨I(τ)⟩⟨I(0)⟩] . (3.25)

With the noise spectrum of the stationary current correlator [see Eq. (2.6)]

SI(ω) =
∫ ∞

−∞
dτ eiωτCI(τ), (3.26)

we find that the zero frequency noise SI(0) coincides with Eq. (3.25). Therefore, we under-
stand that the variance of n, in the long time limit, is given by

⟨⟨n2(t)⟩⟩ = SI(0)t. (3.27)

The variance thus grows linearly with time at a rate determined by the zero frequency noise
of the current correlator. This linear increase reflects that different trajectories of n(t)will be
less similar the longer we measure. The uncertainty in the number of exchanged particles
should therefore grow with time. This is similar to the variance of Brownian motion in
Chapter 2.

3.4.1 Full counting statistics in Markovian master equations

In the previous section, we described how the moments of the distribution Pt(n) can be
calculated by measuring particle currents. Here we discuss how Pt(n), and its moments
and cumulants, may be calculated from a Markovian master equation.

Our starting point is the Markovian master equation

∂tρ̂t = Lρ̂t, (3.28)

where the Liouville superoperator L is assumed to be on Lindblad form [see Eq. (3.15)].
This superoperator can be decomposed as L = L0 + J+ + J−, where L0 describes all
dynamics that leaves the number of exchanged particles with R unchanged, and the jump
superoperators J± describe how one particle is added (+) or removed (−) from R [see
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Fig. 3.2(a)]. We are interested in the n-resolved density matrix ρ̂t(n), representing the
system state when n particles have been exchanged with R. In particular, we note that
Pt(n) = tr{ρ̂t(n)} is the probability distribution of our interest, and that ρ̂t =

∑
n ρ̂t(n).

By taking the Laplace transform of the master equation (3.28), we can show (Appendix C)
that the number resolved density matrix evolves according to

∂tρ̂t(n) = L0ρ̂t(n) + J+ρ̂t(n− 1) + J−ρ̂t(n+ 1), (3.29)

providing an infinitely large system of coupled differential equations. Typically, the initial
condition is given by ρ̂t0(n) = δn,0ρ̂t0 , such that zero particles have been exchanged initially.
To solve this set of equations, we introduce the counting field χ via the discrete Fourier
transform

ρ̂t(χ) =
∑
n

ρ̂t(n)einχ. (3.30)

Note that the system state is recovered for zero counting field, ρ̂t = ρ̂t(χ = 0). Fourier
transforming Eq. (3.29) results in

∂tρ̂t(χ) = L(χ)ρ̂t(χ), (3.31)

where the counting field dependent Liouvillian reads L(χ) = L0 + eiχJ+ + e−iχJ−, and
the initial condition is given by ρ̂t0(χ) = ρ̂t0 . This master equation has the formal solution
ρ̂t(χ) = eL(χ)tρ̂t0 .

Since Pt(n) = tr{ρ̂t(n)}, we can define a moment generating function

Mt(χ) = tr{ρ̂t(χ)} =
∑
n

Pt(n)einχ, (3.32)

such that the moments of Pt(n) can be calculated as

⟨nk(t)⟩ = (−i)k∂kχMt(χ)
∣∣
χ=0. (3.33)

In a strict mathematical sense, Mt(χ) is the characteristic function of Pt(n), but as the
characteristic function exists for all distributions, it is more beneficial to work with com-
pared to the conventional moment generating function, which does not exist for all dis-
tributions [88]. Note that the first moment can conveniently be calculated as ⟨n⟩ =
−it tr{L′(χ)|χ=0ρ̂t}, where the prime denotes the derivative with respect to χ. One can
further define a cumulant generating function

Ct(χ) = ln[Mt(χ)], (3.34)

which provides the cumulants of Pt(n) via

⟨⟨nk(t)⟩⟩ = (−i)k∂kχCt(χ)
∣∣
χ=0. (3.35)
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As the moment and cumulant generating functions are related, one can write the cumu-
lants in terms of the moments. In particular, ⟨⟨n(t)⟩⟩ = ⟨n(t)⟩ is the mean of Pt(n), and
⟨⟨n2(t)⟩⟩ = ⟨n2(t)⟩ − ⟨n(t)⟩2 is the variance of Pt(n). In fact, the second and third cumu-
lants correspond exactly to the second and third central moments of Pt(n). We also note
that the third and fourth cumulants are related to the skewness and kurtosis of Pt(n). The
current cumulants are found by differentiating with respect to time,

⟨⟨Ik(t)⟩⟩ = ∂t⟨⟨nk(t)⟩⟩. (3.36)

With the definitions of the moment and cumulant generating functions, we can calculate
the probability distribution according to

Pt(n) =
1
2π

∫ π

−π
dχeCt(χ)−inχ. (3.37)

In general, this must be calculated numerically, even if we know the cumulant generating
function. However, the saddle point approximation [89–91] is useful for finding analytical
expressions in the long time limit.

In many cases, we can find an approximate expression for the cumulant generating function
in the long time limit. The solution of Eq. (3.31) can be written as

ρ̂t(χ) =
N−1∑
j=0

cjeλj(χ)tσ̂j(χ), (3.38)

where the coefficients cj are determined by the initial condition ρ̂0 (we use t0 = 0), λj(χ)
are the eigenvalues of L(χ) with corresponding eigenstates σ̂j(χ), and N is the dimension
of L(χ). We are interested in systems with a unique steady state. For such systems, there
exists one single eigenvalue for which λ0(0) = 0 (here labeled with j = 0), and where all
other eigenvalues λj(0) ̸= 0. Since the system tends to a stationary state, all eigenvalues
with j ̸= 0 must have negative real parts, such that all terms except j = 0 are vanishingly
small when t is large [see discussion below Eq. (3.17)]. This means that all eigenvalues for
finite χ must have negative real parts, with the real part of λ0(χ) being the largest, such
that we for large t find

ρ̂t(χ) ≈ c0eλ0(χ)tσ̂0(χ). (3.39)

The moment generating function now reads tr{ρ̂t(χ)} ≈ tr{σ̂0(χ)}c0eλ0(χ)t, and we may
approximate the cumulant generating function as

Ct(χ) ≈ λ0(χ)t, (3.40)

up to a correction term ln[c0 tr{σ̂0(χ)}] which has been neglected. In the long time limit,
it is justified to neglect this term as it is small compared to λ0(χ)t. Consequently, the
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number cumulants will have an error determined by the χ-derivatives of ln[c0 tr{σ̂0(χ)}].
However, in the current cumulants, this error will not be present as we take a time derivative
in Eq. (3.36). We note that the approximate form in Eq. (3.40) reproduces the linear-in-time
behavior of the number cumulants in Eq. (3.27). We emphasize that this formalism can be
extended to multiple counting fields, keeping track of the counting statistics in multiple
reservoirs simultaneously.
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Chapter 4

Quantum measurements

In this chapter, we present the basic theory of quantum measurements that is required
to describe continuous quantum measurements – this is later used in Chapter 6 to derive
Eq. (1.1). We begin by briefly reviewing the concept of von Neumann measurements (pro-
jective measurements) that is commonly discussed in basic quantum mechanics courses.
As this type of measurement often is an idealization of what can be performed in an ac-
tual experiment, we introduce generalized quantummeasurements, providing a framework
for describing any type of measurement, i.e., going beyond von Neumann measurements.
Building on this, we discuss Gaussian and continuous measurements, which are central for
the derivations in Chapter 6. As a measurement on a quantum system always affects the
system dynamics, we briefly outline the quantum Zeno effect at the end of the section,
and discuss how a continuous measurement may freeze, or prohibit, the dynamics of the
measured system. Before closing this chapter, we introduce two central results from the
field of continuous quantum feedback control that will be important references in the rest
of the thesis.

4.1 von Neumann and generalized quantum measurements

Fundamental to measurements in quantum mechanics is the concept of von Neumann
measurements – or projective measurements. This type of measurement describes how the
state of a quantum system is collapsed (projected) onto one of the eigenstates of the meas-
ured observable after performing a measurement. More precisely, any observable Â has
a diagonal representation in some orthonormal basis {|a⟩}Na=1, i.e., it can be written as
Â =

∑N
a=1 ξa |a⟩⟨a|, where {ξa}Na=1 are the (non-degenerate) eigenvalues of Â. In general,

the eigenvalues can be degenerate. If that is the case, the system state is projected onto a
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superposition of the corresponding eigenstates. In this thesis, however, we are interested
in distinguishing the state of the system, and will therefore not deal with degenerate ei-
genvalues. Note that we assume that there is a finite number N of eigenvalues, as this
typically will be the case in this thesis. Consider that we carry out a measurement on an
arbitrary quantum system, whose state, when written in the eigenbasis of Â, is given by
|ψ⟩ =

∑N
a=1 ca |a⟩, with complex coefficients ca satisfying

∑N
a=1 |ca|2 = 1. Upon measur-

ing, we obtain one of the eigenvalues ξa′ with probability |ca′ |2, and the state collapses to
|a′⟩. That is, we are certain that the system is in this state after the measurement. In terms of
the density operator formalism introduced in Chapter 3, we note that the pre-measurement
state is given by some density operator ρ̂ – pure or mixed – but the post-measurement state
will with probability |ca′ |2 be in the pure state ρ̂′ = |a′⟩⟨a′|.

A von Neumann measurement does not fully describe a realistic procedure for quantum
measurements. In reality, an experimenter rarely interacts directly with the system of in-
terest, but rather measures on a probe that interacts with the system. In addition, the von
Neumann measurement does not add any classical noise to the measurement outcome [57].
In general, this must be regarded as unrealistic as a measurement device typically adds noise
to the measurement signal. The idea of the system-probe model is to build up correlations
between the system and probe, and then perform a von Neumann measurement on the
probe, such that we can infer something about the system without collapsing its state. As
a first example of this, consider a nanowire quantum dot for which we want to measure
the charge state, i.e., if there is an electron or not in the dot. In general, this is done by
placing a probe in the vicinity of the dot – typically the probe is another quantum dot or
a quantum point contact – and measure the electrical current through the probe. If the
system-probe interaction is sensitive enough, the current will jump between discrete values
when an electron jumps on or off the dot, see for instance Refs. [81] and [32]. As a second
example, consider an atom interacting with an electromagnetic field. Here the field acts as
the probe, and by measuring on the field, for instance with a photo detector, we can infer
something about the state of the atom.

To find a mathematical description for the system-probe measurement, we consider the
following model. Assume that the system and probe initially are uncorrelated, and that
their joint state is given by ρ̂tot = |0⟩⟨0| ⊗ ρ̂, where the probe was prepared in some
state |0⟩ belonging to an orthonormal set {|m⟩}m of probe states, and the system was
prepared in an arbitrary state ρ̂. By letting the system and probe interact under some unitary
transformation Û, their states will become correlated. Now we make a von Neumann
measurement on the probe, projecting it onto one of the states |m⟩. After this procedure,
the joint state is proportional to

ρ̂′tot ∼ (|m⟩⟨m| ⊗ 1) Û (|0⟩⟨0| ⊗ ρ̂) Û† (|m⟩⟨m| ⊗ 1) = |m⟩⟨m| ⊗ K̂mρ̂K̂†
m, (4.1)

where we in the second equality introduced operators K̂m = ⟨m|Û|0⟩ acting on the sys-
tem state. This expression is only proportional to the true system-probe state as it is not
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normalized. Especially note that the mathematical procedure resembles how the UDMs
were introduced in Eq. (3.12) – in fact, any operation on an open quantum system may be
written like this [2].

We can now define a generalized quantummeasurement as follows. Consider a system with
state ρ̂ on which we perform a measurement described by a set of measurement operators
{K̂m}m, satisfying the completeness relation

∑
m K̂†

mK̂m = 1. When observing outcome
m, the state transforms as

ρ̂′ =
K̂mρ̂K̂†

m
pm

, (4.2)

where pm = tr{K̂†
mK̂mρ̂} is the probability of observing outcome m, and the measurement

operators are defined as in the previous paragraph. We emphasize here that Eq. (4.2) is ob-
tained by tracing out the probe in Eq. (4.1), i.e., ρ̂′ ∼ trP{ρ̂′tot}, and normalizing with pm.
The completeness relation

∑
m K̂†

mK̂m = 1 follows from probability conservation for pm,
but also follows directly from the definition of K̂m. Sometimes, this type of measurement
is referred to as a POVM (positive operator-valued measure) measurement [2, 57, 58], but
in this thesis, we refer to it as a generalized quantum measurement. We stress here that
the measurement operators K̂m are completely general, and do not necessarily represent
projective measurements. Below, in Sec. 4.2, we will discuss the special case of Gaussian
measurements. However, by considering projective measurement operators K̂m = |m⟩⟨m|
(where |m⟩ now represents basis states of the system), Eq. (4.2) boils down to the von Neu-
mann measurement discussed above.

It is important to note that ρ̂′ in Eq. (4.2) is conditioned on the measurement outcome
m. That is, it describes our state of knowledge of the system given that we observed m in
the measurement. Interestingly, this transformation is nonlinear in ρ̂. This is in contrast to
the von Neumann equation (3.9) and the Lindblad equation (3.15) which are linear. This
means that quantum measurements induce a nonlinear change in the system state. We
will return to this in Chapter 4.3. However, a linear description is obtained by multiplying
Eq. (4.2) by pm, but at the cost of introducing the un-normalized joint system-outcome
state ρ̂(m) = ρ̂′pm = K̂mρ̂K̂†

m. This will be used in Sec. 6 when we derive Eq. (1.1). We
note that summing the joint system-outcome state over all outcomes m gives us the post-
measurement state ρ̃ =

∑
m K̂mρ̂K̂†

m, which is the conditioned state ρ̂′ [Eq. (4.2)] averaged
over all outcomes. This is sometimes referred to as a non-selective measurement [68] as one
can interpret ρ̃ as the state of the system if we ignored which outcome that was obtained.
As an example, let us consider a two-level system with density operator ρ̂ = p0 |0⟩⟨0| +
α(|0⟩⟨1| + |1⟩⟨0|) + p1 |1⟩⟨1|, where p0 and p1 are the probabilities to be in state |0⟩ or
|1⟩, respectively, and α represents the coherence. By performing a projective measurement,
with measurement operators K̂0 = |0⟩⟨0| and K̂1 = |1⟩⟨1|, the post-measurement state,
averaged over all possible outcomes (0 or 1), is given by ρ̃ = p0 |0⟩⟨0| + p1 |1⟩⟨1|. That
is, after the measurement, the system will be in a statistical mixture of |0⟩ and |1⟩. This
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illustrates that the measurement destroys all coherence, but we do not know the exact state
of the system as we ignored the outcome.

Finally, we point out that quantum measurements induce a stochastic change to a system
state. To illustrate this, we consider many copies of the same system on which we perform
identical measurements. The state transformation in Eq. (4.2) depends on what outcome
m that was observed, and since each outcome occurs with probability pm, the measure-
ment operators applied on a specific system is random. Therefore, the post-measurement
state will not be the same for all copies. This implies that for a continuous measurement,
the conditioned state ρ̂′ evolves according to a stochastic master equation. This is further
discussed in Sec. 4.3.

4.2 Gaussian measurement operator and weak continuous meas-
urements

In many situations, it is common to perform a time-continuous measurement, rather than
making one single measurement, and to use ameasurement apparatus that outputs continu-
ous outcomes, rather than discrete ones. Even though one measures a discrete observable,
like a photon number operator, the measurement device adds noise to the signal, such that
a continuous outcome space is more appropriate than a discrete one. The type of meas-
urement, discrete or continuous in time, that is most suitable is determined by the type
of system and experiment one is studying. For instance, in electronic systems, such as
semiconductor quantum dots [32, 44, 92], it is possible to measure the charge occupation
continuously, which suggests that a time-continuous measurement is most suitable. As
another example, the state of superconducting qubits can also be monitored continuously
[6]. On the other hand, when distinguishing spin states in semiconductor quantum dots,
one is restricted to time-discrete measurements [93]. This is also the case when performing
quantum state tomography in rare earth ion qubits [94]. However, many control proced-
ures require continuous monitoring, such as certain schemes for quantum error correc-
tion [95], stabilizing Rabi oscillations [6], reversing quantum jumps [7], or implementing
an electronic Szilard engine [28]. Therefore, we dedicate this section to time-continuous
measurements with continuous outcomes. We begin by replacing the discrete outcomes
m from the previous section by continuous outcomes z. The theory presented above for
discrete outcomes still applies, but sums over m are typically replaced by integrals over all
real values of z. In the second part of this section, we discuss how we theoretically can
describe time-continuous measurements, and how the quantum Zeno effect emerges from
this description.
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In this thesis, we focus on Gaussian measurement operators [58, 96, 97]

K̂(z) =
(
2λ̄
π

)1/4

e−λ̄(z−Â)
2

, (4.3)

where Â is the measured observable (note that Â† = Â), and λ̄ parameterizes the strength
of the measurement. In the limit λ̄ → ∞, Eq. (4.3) describes a projective von Neu-
mann measurement, where all initial quantum coherence is destroyed, and where the post-
measurement state is projected onto one of the eigenstates of Â. In the opposite limit, when
λ̄→ 0, Eq. (4.3) describes a weak, non-intrusive measurement, preserving all quantum co-
herence. It thus provides the possibility of describing measurements with a wide range of
possible interaction strengths, and allows us to investigate how the strength affects themeas-
ured system. Additionally, Eq. (4.3) implies that the measurement noise in the outcome is
Gaussian (see discussion below). This is commonly the case due to many independent ran-
dom fluctuations in the electronic circuits of the measurement device. We also note (this
will be shown below) that Eq. (4.3) is suitable for analytical manipulations as it simplifies
many calculations, while still providing general results.

To illustrate the strong and weak measurement limits, we study a simple two-level system
with states |0⟩ and |1⟩. In the {|0⟩ , |1⟩}-basis, the system density operator reads ρ̂ =
p |0⟩⟨0| + α(|0⟩⟨1| + |1⟩⟨0|) + (1 − p) |1⟩⟨1|, where p and 1 − p are the probabilities of
occupying |0⟩ and |1⟩, respectively, and α represents the coherence (here assumed to be
real for simplicity, but without loss of generality). When measuring Â = |1⟩⟨1| − |0⟩⟨0|
¹, i.e., whether |0⟩ or |1⟩ is occupied, the state transformation is, according to Eq. (4.2),
proportional to

K̂(z)ρ̂K̂†(z) =

√
2λ̄
π

[
pe−2λ̄(z+1)2 |0⟩⟨0|

+ αe−2λ̄(z2+1) (|0⟩⟨1|+ |1⟩⟨0|) + (1− p)e−2λ̄(z−1)2 |1⟩⟨1|
]
.

(4.4)

For simplicity, we neglect the normalizing factor p(z) = tr{K̂†(z)K̂(z)ρ̂}. The effect of
the measurement is adding Gaussian weights, centered at −1,0, and 1, to the respective
elements of ρ̂, and the off-diagonal elements get suppressed by a factor e−2λ̄. The weights
of the respective elements are sketched in Fig. 4.1. For a weak measurement, we note that
a considerable amount of the coherence is preserved when the outcome lies in the range
−1 < z < 1. In the infinitely weak limit, λ̄ → 0, the Gaussian weights become uniform
distributions over all z, and all coherence is preserved. As λ̄ is increased in Fig. 4.1, the co-
herence is exponentially suppressed, and vanishes for strong measurements. For the strong
measurement, we note that only the |0⟩⟨0| or |1⟩⟨1| matrix element survives. Treating this

¹This corresponds to the Pauli-Z operator σ̂z.
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rigorously in the limit λ̄ → ∞, the diagonal Gaussian weights become Dirac delta func-
tions δ(z ± 1) centered at ±1, while the off-diagonal weights vanish, corresponding to a
projective measurement.

Figure 4.1: Qualitative sketch of how the Gaussian weights in Eq. (4.4) behave when going from a weak to a strong measure-
ment (from left to right with increasing λ̄). Note that for weak measurements, a substantial part of the coherence is
preserved for a larger range of outcomes than in the strong measurement case. This is due to the factor exp

{
−2λ̄

}
on the off-diagonal elements in Eq. (4.4).

For the example two-level system, the probability distribution of outcomes z is given by

p(z) = tr{K̂†(z)K̂(z)ρ̂} =

√
2λ̄
π

[
pe−2λ̄(z+1)2 + (1− p)e−2λ̄(z−1)2

]
. (4.5)

In the strong measurement limit, λ̄→ ∞, the Gaussian weights become Dirac delta func-
tions δ(z ± 1). That is, the information we gain from the measurement is very exact.
However, from Eq. (4.4), we noted that such a measurement destroys the coherence of the
system. In the weak limit, λ̄ → 0, the Gaussian weights become uniform distributions.
Therefore, the measurement can yield any value for the outcome z, but without affecting
the coherence of the system, as showed in Eq. (4.4) – this corresponds to not perform-
ing any measurement and randomly sampling the outcome from a uniform distribution.
The strength of the measurement thus becomes a trade-off – a weak measurement preserves
quantum coherence, but gives large measurement uncertainty, while a strong measurement
destroys quantum coherence and gives low measurement uncertainty.

Equation (4.5) is a mixed distribution, and can be interpreted as follows. Consider a ran-
dom variable x = −1, 1 for the system state, following a two-point distribution with
P(x = −1) = p and P(x = 1) = 1 − p being the probabilities of occupying |0⟩ and
|1⟩, respectively. Given that we know the system state x, the random variable z|x represents
the measurement outcome conditioned on the system state. This variable has a Gaussian
distribution with mean value x and variance 1/4λ̄. The unconditioned outcome z has the
distribution given in Eq. (4.5), and is obtained via the total law of probability according to

p(z) =
∑

k=−1,1

fz|x=k(z)P(x = k), (4.6)
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where fz|x(z) =
√

2λ̄/πe−2λ̄(z−x)2 is the probability density of z|x.

To describe a continuous measurement, we may use the measurement operator in Eq. (4.3).
The continuous description is achieved by first discretizing time, and then making success-
ive measurements at times separated by δt. To preserve the quantum coherence during
the continuous measurement, each measurement must be weak. Otherwise, the coherence
is quickly destroyed, prohibiting the system to evolve coherently – this is known as the
quantum Zeno effect [68, 98, 99]. The Zeno effect is typically explained by considering
the effect of repeated projective (strong) measurements on a Rabi oscillator – by repeatedly
projecting a coherently driven system onto one of the eigenstates of the observable, the co-
herent transition is blocked and the system cannot evolve in time. To avoid such a situation,
the measurement strength is postulated to be proportional to δt [58, 96, 97], i.e., λ̄ = λδt,
with λ being a fixed constant with units of inverse time, such that each measurement be-
comes infinitely weak in the continuous limit λδt → 0. For a continuous measurement, λ
is referred to as the measurement strength.

Even though each measurement in this discretized sequence of measurements is infinitely
weak, the system will be continuously disturbed when λδt → 0. That is, the vanishingly
small backaction of each measurement accumulates over time, collectively having an influ-
ence on the system dynamics. To understand such measurement backaction, we consider
a general system with Hamiltonian Ĥ and density operator ρ̂t, representing our state of
knowledge of the system at time t. During one discrete timestep δt, the system evolves
according to

ρ̂t+δt(z) = eLδtM(z)ρ̂t, (4.7)

where we introduced the compact superoperator notation Lρ̂ = −i[Ĥ, ρ̂] for the system
time evolution, andM(z)ρ̂ = K̂(z)ρ̂K̂†(z) for the measurement. Note that ρ̂t+δt(z) is the
joint system-outcome state at time t + δt. Expanding the right hand side to linear order
in δt, using ρ̂t+δt =

∫
dzρ̂t+δt(z), and taking the continuous limit δt → 0, provides the

following master equation for the system state,

∂tρ̂t = −i[Ĥ, ρ̂t] + λD[Â]ρ̂t. (4.8)

Note that this equation is written on Lindblad form [c.f. Eq. (3.15)]. The first term on the
right hand side is the standard von Neumann equation [see Eq. (3.9)], describing the time
evolution of the system in the absence of measurement. The second term represents the
measurement backaction. Note that this master equation is not a consequence of using
the Gaussian measurement operator in Eq. (4.3), but is rather a general result that holds
for all continuous quantum measurements [53, 57, 68, 99]. To understand the effect of the
backaction term, we ignore the first term of the master equation, and write the density
matrix in the eigenbasis of Â, and get, for element ρaa′(t) = ⟨a|ρ̂t|a′⟩,

ρ̇aa′(t) = −λ
2
(ξa − ξa′)

2ρaa′(t). (4.9)
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We thus see that the effect of the measurement is to exponentially dampen all coherences for
non-degenerate eigenvalues (ξa ̸= ξa′) at a rate proportional to the measurement strength
λ. The continuous measurement thus dephases the system, and in the long time limit, the
coherence vanishes. The coherent dynamics generated by the Hamiltonian in Eq. (4.8) is
thus blocked, and we observe the quantum Zeno effect. Note that if the dynamics were
incoherent, the backaction term would have no effect on the system.

Finally, we discuss measurement noise for the continuous measurement. For simplicity, we
focus on the two-level system in Eq. (4.4) and put p = 1. Equation (4.5) then becomes a
single Gaussian distribution centered around−1. Themeasurement noise is thus Gaussian,
and the outcome may be written as a random variable

z(t) = −1+
1√
4λδt

δW(t), (4.10)

where δW(t) is a normal distributed random variable with mean 0 and variance δt, which is
independent (and thereby uncorrelated) with itself at other times t′, i.e., ⟨δW(t)δW(t′)⟩ =
δtδt,t′ , with δt,t′ being the Kronecker delta function. In Chapter 2, we refered to δW(t) as
a Wiener increment, and as discussed in that chapter, when δt → 0, the ratio δW(t)/δt is
interpreted as a white noise process ξ(t) for which ⟨ξ(t)ξ(t′)⟩ = δ(t− t′).

The Gaussian noise profile resulting from Eq. (4.3) may appear restrictive as it is a very
specific type of noise. Let us instead look at another timescale δt′ ≪ δt, where we can use
a measurement operator K̂′(α), assumed to give an arbitrary noise profile in the meas-
ured signal α(t). Coarse graining over the larger timescale δt at any time t results in
δt−1 ∫ t+δt

t dsα(s) which is, by the central limit theorem, a Gaussian random variable. We
thus see that a Gaussian noise profile can be obtained at any timescale, and is, therefore,
not a restrictive choice [96].

4.3 Measurement and feedback in quantum systems

To put the results of this thesis into a wider perspective, this section introduces two of the
central results in the field of measurement and feedback in quantum systems – namely, the
Belavkin equation and the Wiseman-Milburn equation. To this end, we will use the rule
of Itô calculus (see Chapter 2).

Our starting point is the update rule [see Eqs. (3.16) and (4.2)]

ρ̂c(t+ δt) = eL(D)δt
K̂(z)ρ̂c(t)K̂†(z)

pt(z)
, (4.11)

where ρ̂c(t) is the system state at time t conditioned on the complete history of previous
measurement outcomes z(t), i.e., it may be written as ρ̂c(t) = ρ̂[t|zzz], where zzz denotes a
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trajectory of the outcomes. The measurement operator K̂(z) is given in Eq. (4.3). The
denominator pt(z) = tr{K̂†(z)K̂(z)ρ̂c(t)} is the conditional probability distribution for
obtaining outcome z at time t given the complete history of previous outcomes. From this
distribution, we find the average

⟨z⟩c =
∫

z tr{K̂†(z)K̂(z)ρ̂c(t)}dz = ⟨Â⟩c, (4.12)

where ⟨Â⟩c = tr{Âρ̂c(t)} is the average of the measured observable Â [see Eq. (4.3)] with
respect to ρ̂c(t). This implies, as discussed in Sec. 4.2, that the outcome can be written as
a random variable as

z = ⟨Â⟩c +
δW√
4λδt

, (4.13)

where δW is a Wiener increment. Feedback is incorporated in Eq. (4.11) via the Liouville
superoperatorL(D), whereD is the outcome observed on the detector at time t, see Fig. 1.1.
Note that L(D) has a completely general (and unspecified) dependence on D, and may
depend linearly as well as nonlinearly on D. The observed outcome D is related to z via
[57, 62, 63, 95, 100–103]

D(t) =
∫ t

−∞
dsγe−γ(t−s)z(s), (4.14)

where γ is the bandwidth of the detector (see Fig. 1.1). The bandwidth of a detector de-
termines the range of frequencies that are present in the detector signal. For an infinite
bandwidth, all frequencies are transmitted with equal weight, and thus contains diverging
frequencies. This corresponds to a white noise process, see Fig. 2.1(b) in Chapter 2. For
finite bandwidths, higher frequencies are filtered out, and the signal is less noisy. Note that
Eq. (4.14) adds a delay time 1/γ to the detector. As any real detector has a finite bandwidth
and delay time, i.e., we never observe diverging frequencies in reality, Eq. (4.14) adds a real-
istic element to the theory. Note that by differentiating Eq. (4.14) with respect to time, and
employing Eq. (4.13), we get the Langevin equation

Ḋ(t) = γ
[
⟨Â⟩c − D(t)

]
+

γ√
4λ
ξ(t), (4.15)

using that ξ(t) = limδt→0 δW/δt, as discussed in Chapter 2. That is, D(t) is an Ornstein-
Uhlenbeck process with Itô equation

dD = γ
(
⟨Â⟩c − D

)
dt+

γ√
4λ

dW, (4.16)

and thus describes a noisy relaxation towards ⟨Â⟩c on a timescale set by 1/γ. The detector
noise is determined by γ/8λ – see Chapter 2. We depict this in Fig. 4.2(a) for the example
two-level system in Sec. 4.2 undergoing a transition |0⟩ → |1⟩. Figure 4.2(b) illustrates
how the outcome D may be thought of as a Brownian particle in a harmonic potential,
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Figure 4.2: (a) Time traces of the system state S(t) and the outcome D(t) as observed on the detector screen during the state
transition |0⟩ → |1⟩ for the example two-level system in Sec. 4.2. Due to a finite bandwidth γ, the detector signal
lags behind the system state. (b) Illustration of D as a Browninan particle in a harmonic potential during the same
state transition as in (a). As the transition occurs, the potential moves from −1 to +1. The particle follows with
speed γ.

see discussion in Chapter 2. When the system jumps |0⟩ → |1⟩, the potential is moved
instantly from −1 to 1, and the detector outcome follows with speed γ.

Our goal is to use Eqs. (4.11) and (4.13) to derive a master equation for ρ̂c(t). To this end,
we aim to linearize the RHS of Eq. (4.11) in δt. The time evolution operator can be written
as eL(D)δt ≈ 1+L(D)δt, and by using Eqs. (4.3) and (4.13), and the Itô rule, we get [58, 96]

K̂(z)ρ̂cK̂†(z)
pt(z)

= ρ̂c + λδtD[Â]ρ̂c +
√
λδW{Â− ⟨Â⟩c, ρ̂c}, (4.17)

where the time arguments were omitted for brevity. From these linearizations, we can take
the continuous limit δt → dt and δW → dW to find the Belavkin equation [49] (see also
Refs. [57, 58, 96])

dρ̂c = dtL(D)ρ̂c + λdtD[Â]ρ̂c +
√
λdW{Â− ⟨Â⟩c, ρ̂c}. (4.18)

This stochastic master equation is one of the central results in the field of continuous meas-
urement and feedback control. The first term describes the feedback controlled time evol-
ution of the system, the second term describes measurement backaction, and the third
term describes how noise is induced into the system due to the randomness of the meas-
urement. We note that the equation is nonlinear in ρ̂c because of the average ⟨Â⟩c in the
anti-commutator in the noise term. This is in contrast to the von Neumann equation (3.9),
and is a result from the nonlinear transformation that describes a quantum measurement,
see Eqs. (4.2) and (4.11). The Belavkin equation, together with Eq. (4.16), can be used to
model any type of continuous feedback protocols, linear as well as nonlinear inD, but must,
in general, be solved numerically due to the stochastic noise term. We note that since there
exists infinitely many realizations of the noise process dW, the Belavkin equation has infin-
itely many solutions, where each solution defines a quantum trajectory of ρ̂c. In Fig. 4.3,
we show such a trajectory for a qubit in the absence of feedback control, illustrating how
noise is induced into our state of knowledge (the density matrix) given that we observed
the trajectory of D(t) in the rightmost panel.
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Figure 4.3: A solution to the Belavkin equation (4.18) and Eq. (4.16) for an uncontrolled qubit when measuring the Pauli-
Z operator σ̂z = |1⟩⟨1| − |0⟩⟨0|. The qubit has Hamiltonian Ĥ = gσ̂x, where σ̂x is the Pauli-X operator. (a)
The leftmost panel visualizes the diagonal density matrix elements ρaa = ⟨a|ρ̂c(t)|a⟩ of the conditioned density
matrix ρ̂c(t). (b) The middle panel shows the real and imaginary parts of the off-diagonal density matrix element
ρ01 = ⟨0|ρ̂c(t)|1⟩. (c) The rightmost panel is the corresponding time trace of the detector signalD(t) [see Eq. (4.16)],
and the expectation value ⟨σ̂z⟩c = tr{σ̂zρ̂c}. Here we used γ/g = 2, λ/g = 1/2, and dt/g = 10−3.

The stochastic evolution of the quantum trajectory in Fig. 4.3 makes it difficult to draw
conclusions about general trends in the system dynamics. By averaging over many traject-
ories zzz = {z(t0), z(t0 + dt), . . . , z(t)}, we obtain an unconditioned state ρ̂t = ⟨ρ̂c(t)⟩zzz
where such trends can be distinguished – by ⟨·⟩zzz, we denote an average over all possible
trajectories of zzz. As discussed in Chapter 2, this average can be evaluated as

⟨ρ̂c(t)⟩zzz =
∫

D[zzz]ρ̂c(t)P[zzz] =
∫

D[zzz]ρ̂t[zzz] = ρ̂t, (4.19)

using that ρ̂t[zzz] = ρ̂c(t)P[zzz], with P[zzz] being the probability of observing trajectory zzz.
Such averaging is always feasible in numerical simulations. Unfortunately, calculating this
averaging analytically is more complicated because of the unspecified dependence of D in
L(D). Here we consider two cases where the average is possible to compute.

In the absence of feedback, i.e., when L(D) → L, the Belavkin equation reduces to
Eq. (4.8) when averaging over all trajectories zzz. This average is possible to compute be-
cause the noise dW at time t is independent of ρ̂c(t), see Appendix A.

The second case is linear feedback based on a white noise detector signal [52, 57]. This
is sometimes referred to as Markovian feedback as it is possible to find a deterministic
Markovian master equation for the unconditioned system state ρ̂t. To this end, we use
the Liouville superoperator L(z) = L0 + zK, where L0 describes the system dynamics in
the absence of feedback, and K is a Liouville superoperator describing the feedback forces.
Note that we feed back z [Eq. (4.13)] (as opposed to a nonlinear function thereof ) because
of its white noise spectrum, see Chapter 2. To find the corresponding Belavkin equation,
we use the Itô rule to find that eL(z)δt ≈ 1+ δtL0 + ⟨Â⟩cδtK + δtK2/8λ+ δWK/

√
4λ,
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and get

dρ̂c = dtL0ρ̂c + λdtD[Â]ρ̂c +
dt
2
K{Â, ρ̂c}

+
dt
8λ

K2ρ̂c + dW
[√

λ{Â− ⟨Â⟩c, ρ̂c}+
1√
4λ

Kρ̂c
]
.

(4.20)

This is a stochastic master equation for the conditioned state ρ̂c under linear feedback con-
trol, where the measured signal has a white noise power spectrum. Averaging over all pos-
sible trajectories zzz, we get the Wiseman-Milburn equation [52, 57]

∂tρ̂ = L0ρ̂+ λD[Â]ρ̂+
1
2
K{Â, ρ̂}+ 1

8λ
K2ρ̂, (4.21)

which is another central result in the field of continuous measurement and feedback con-
trol. The first and second terms on the RHS corresponds to Eq. (4.8). The third term
describes how the feedback forces acts on the system. The fourth term, originating from
the noise term dW in L(z), describes how measurement noise is fed back to the system and
causes diffusion in the dynamics [57]. When λ is large, this diffusion effect is reduced, as
the detector noise becomes small – the magnitude of the noise scales as 1/λ as discussed
in Secs. 4.2. This equation has been applied in numerous contexts, including stabilizing
qubit states [104], manipulating entanglement [105–110], retarding decoherence [111, 112],
producing squeezed states [113–116], and charging quantum batteries [117]. Finding a cor-
respondingMarkovian master equation description for a generalL(D) is possible, but with
an alternative method. This method is one of the central results of this thesis, and is intro-
duced in Chapter 6.
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Chapter 5

Stochastic and information
thermodynamics

Stochastic thermodynamics [118–127] deals with small, fluctuating systems far from equi-
librium. Building on the prominent discoveries of the Jarzynski relation [128, 129] and
Crooks’ fluctuation theorem [130, 131], the last 25 years have resulted in many general laws
applicable to non-equilibrium systems. As such, stochastic thermodynamics extends its
conventional (macroscopic) counterpart beyond close-to-equilibrium scenarios. By defin-
ing quantities such as work, heat, and entropy at the level of single microscopic trajectories,
it is possible to understand how fluctuations affect the thermodynamics of small systems.
In particular, the second law is generalized to fluctuation theorems, stating that entropy
production is a fluctuating quantity which only needs to be non-negative on average. This
stands in contrast to classical thermodynamics, where entropy should always increase, and
where fluctuations are negligible. Stochastic thermodynamics is thus particularly good at
describing the thermodynamics of small systems such as colloidal particles [132], DNA
molecules [133], molecular motors [134], and nanosized electronic systems [135, 136], where
fluctuations play an important role. The experimental advancements over the last 20 years
[137] have made it possible to implement Maxwell’s demon [9–11], where measurement
and feedback is used to rectify thermal fluctuations. This concept ties together the fields of
information theory and thermodynamics, and has fueled the field of information thermo-
dynamics [23–25], where information processing is incorporated into the laws of stochastic
thermodynamics.

In this chapter, we begin by introducing some of the results from classical thermodynamics
in Sec. 5.1 that will be important for comparison in the proceeding sections. Section 5.2
is devoted to stochastic thermodynamics, and defines entropy, work, and heat on the level
of single microscopic trajectories. Especially, we introduce fluctuation theorems. Section
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5.3 introduces information thermodynamics, and we discuss a selection of results that are
important for understanding the thermodynamics of Maxwell’s demon.

5.1 Classical thermodynamics

With classical thermodynamics, we can describe the energetics and dynamics of macro-
scopic systems that are in equilibrium. With linear response theory, it is possible to get
some insights into non-equilibrium thermodynamics, but the results are only valid close to
equilibrium.

The first law of thermodynamics reads

ΔE = W+ Q, (5.1)

stating that a change in internal energy ΔE of a system can be decomposed into work W
and heat Q. While work is energy that is provided macroscopically, heat is energy that
is transferred by microscopic degrees of freedom. Here we use the sign convention that
W > 0 (W < 0) when work is done on (by) the system. Similarly, Q > 0 (Q < 0) when
heat is absorbed (released) by the system.

The second law of thermodynamics states that the entropy S of an isolated system (not
exchanging energy or particles with its environment) never decreases. Mathematically, we
write

ΔS ≥ 0. (5.2)

If the system makes a transition between two states for which ΔS = 0, the process is said
to be reversible, and the system can jump back and forth between these states without
restriction. A system transition with ΔS > 0 is said to be irreversible. That is, if the
transition x0 → x1, between system states x0 and x1, increases the system entropy, the
reverse process, x1 → x0, is prohibited by the second law, and will never be observed. This
notion of reversibility will be widened in Sec. 5.2 when we study thermodynamics on the
microscopic scale.

An equilibrium state can be described by the function E(S,V,N) for the internal energy E,
where S is entropy, V the volume of the system, and N the number of particles of a given
species. To avoid clutter, we only write out these three variables, but E could, in principle,
depend on other variables as well. Let us assume that we perform an experiment where
we cannot measure the entropy, but only have access to the temperature T, as well as V
and N. In this case, it is difficult to describe our observations with E(S,V,N). Instead,
we can make use of the Legendre transform [138] to make the following change variables,
S,V,N → T,V,N. Mathematically, this is done by introducing Helmholtz free energy
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(typically referred to as the free energy) as

F = E− ST, (5.3)

where F(T,V,N) depends on the temperature instead of the entropy. The free energy is a
thermodynamic potential, which means that it can be used to reconstruct all information
that we can derive from E(S,V,N). Note that the second law implies that the free energy
should be minimized in an isolated system, i.e., ΔF ≤ 0. Another example of a thermody-
namic potential is Gibbs free energy G = E− ST+ pV which depends on T, p (pressure),
and N.

Before closing this section, we study work extraction under isothermal transformations. We
consider a system that is in contact with an equilibrium heat bath at constant temperature
T. By assuming that the bath is much larger than the system, the system can only weakly
perturb the bath. Additionally, we assume that the bath relaxation time (to return to equi-
librium) due to a small perturbation is much faster than the system timescale, such that
the bath effectively remains in equilibrium at all times. We now drive the system between
two equilibrium states. Since the bath effectively is in equilibrium, the bath and system are
uncorrelated, and the total entropy change can be written as ΔStot = ΔSsys + ΔSB ≥ 0,
where ΔSsys and ΔSB are the entropy changes associated to the system and the bath, re-
spectively. As the bath is much larger than the system, the entropy production associated
to the bath can be written as ΔSB = −Q/T, with Q being the system heat. By using the
first law, we can express the second law for isothermal processes as

W ≥ ΔF. (5.4)

This establishes a minimal bound on the work that we need to do on the system to drive
it between the two states. Alternatively, by defining the extracted work as Wext = −W,
having a positive sign when the system do work on its environment, we find the upper
bound Wext ≤ −ΔF. The change in free energy thus puts a fundamental limit on how
much work that can be extracted from a system under isothermal transformations. Note
that equality only holds for reversible processes.

5.2 Stochastic thermodynamics

In this section, we discuss stochastic thermodynamics by studying systems described by
Markovian rate equations [139], but the results are general, and are typically applicable for
other systems as well – for instance, systems obeying Langevin dynamics [121].

We consider systems with discrete states x, each with an energy εx and number of particles
nx. For the purposes of this thesis, we involve only one particle species, but the results can
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be extended to include several species. The energies can be controlled by an external, time
dependent control variable λ(t), such that εx = εx[λ(t)]. The control variable could, for
instance, be an electric field. Here we assume that nx is fixed for all states x, and cannot be
controlled externally. The system is coupled to an arbitrary number of equilibrium reser-
voirs, labeled with indexes ν, having well-defined temperatures Tν and chemical potentials
µν [see Fig. 5.1(a)]. The system exchanges energy and particles with the reservoirs. The
reservoirs are assumed to be so large that the system can only perturb the reservoirs weakly,
and that their thermal relaxation time is so short compared to the system timescale that the
reservoirs effectively remain in equilibrium at all times. To describe the system dynamics,
we will use the following Markovian rate equation,

ṗx(t) =
∑
x′

∑
ν

[
M(ν)

xx′ px′(t)−M(ν)
x′x px(t)

]
, (5.5)

where px(t) is the probability to occupy state x at time t (typically, we will not write out the
time dependence unless necessary), and M(ν)

xx′ = M(ν)
xx′ [λ(t)] is the transition rate for the

transition x′ → xmediated by reservoir ν. As indicated, the transition rates will, in general,
be dependent on λ(t), but to avoid clutter, we will only write out the explicit dependence
on λ(t) when necessary.

Figure 5.1: (a) A microscopic system in state x coupled to an arbitrary number of equilibrium reservoirs with which the system
can exchange energy and particles. Each reservoir has a well-defined temperature Tν and chemical potential µν .
(b) Example trajectory of the system state [see trajectory definition in Eq. (5.10)]. Each state transition xj−1 → xj is
mediated by a reservoir νj for a fixed control parameter λj. Note that the control parameter can vary continuously
between transitions.

To incorporate thermodynamics into our model, we assume that the transition rates obey
local detailed balance, i.e.,

ln

(
M(ν)

xx′

M(ν)
x′x

)
=
εx′ − εx − µν(nx′ − nx)

kBTν
, (5.6)

where kB is the Boltzmann constant. This assumption is justified as long as the timescale of
λ(t) is much slower than the thermal relaxation time of the reservoirs, such that the system
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effectively interacts with equilibrium reservoirs at all times. To understand the origin and
physical meaning of local detailed balance, we begin to consider the case where the system
only interacts with one single reservoir. In the long time limit, the system thermalizes with
the bath, and reaches an equilibrium distribution

p(eq)x =
e−(εx−µνnx)/kBTν

Z
, Z =

∑
x

e−(εx−µnunx)/kBTν , (5.7)

with Z being the partition function. In equilibrium, there should, on average, be no net
flow of energy or particles. The probability current J(ν)xx′ = M(ν)

xx′ px′ − M(ν)
x′x px should,

therefore, vanish, giving the detailed balance condition

M(ν)
xx′ p

(eq)
x′ = M(ν)

x′x p
(eq)
x , (5.8)

and we recover Eq. (5.6). We thus see that the local detailed balance condition leads to a
proper description of thermalization, where we recover the equilibrium distributions from
statistical mechanics.

In the presence of several reservoirs, all with different temperatures and chemical potentials,
the situation is different. All reservoirs will try to impose an equilibrium distribution on
the system, but will fail due to the presence of the other reservoirs. Because of this non-
equilibrium setting, there will, on average, be a net flow of energy and particles between the
system and the reservoirs, and the stationary probability currents J(ν)xx′ ̸= 0. This is referred
to as a non-equilibrium steady state. As we, on a general level, do not know either the
stationary distribution p(st)x nor the stationary currents J(ν)xx′ , it is at this point difficult to
justify that the local detailed balance condition holds also for non-equilibrium scenarios.
For now, we claim that it holds, and show in the upcoming paragraphs that it leads to
a thermodynamically consistent definition of a non-equilibrium entropy, motivating why
local detailed balance should hold for both equilibrium and non-equilibrium scenarios.

Once we know the distribution px(t), we can calculate the average energy E =
∑

x εxpx and
the average number of particles N =

∑
x nxpx of the system. The average energy changes

at a rate
Ė = Ẇ+ Ẇchem + Q̇, (5.9)

where Ẇ =
∑

x px(t)∂tεx[λ(t)] =
∑

x px(t)λ̇(t)∂λεx[λ(t)] is the external work applied
on the system, Ẇchem =

∑
ν

∑
xx′ µνnxJ

(ν)
xx′ is the chemical work rate associated with the

particle exchange between system and reservoirs, and Q̇ =
∑

ν

∑
xx′(εx − µνnx)J

(ν)
xx′ is the

system heat current. Equation (5.9) thus shows that the first law of thermodynamics holds
for the average system energy E. Note that the additional chemical work term was baked
into one single term in Eq. (5.1).
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We now define system trajectories. Since the state of the system fluctuates randomly over
time, two separate measurements of the state trajectory would yield different results, see
the example trajectory in Fig. 5.1(b). To fully understand how these fluctuations affect the
thermodynamics of the system, we need to properly define work, heat, and entropy on the
level of single system trajectories. We define a trajectory starting in state x0 at time t0 with
control parameter λ0 and ending in state xn−1 at time tn with control parameter λn as

X = {(tj, λj, νj, xj)}n−1
j=1 , (5.10)

where tj specifies the time when the system jumps to a new state xj, by doing the transition
xj−1 → xj, λj is the value of the control parameter when the transition occurs, and νj
is the reservoir responsible for the transition. Note that the control variable λ(t) varies
continuously between transitions, but as we will see, we only need to care about its value at
the times the system undergoes transitions. The rate of external work applied on the system
at time t is given by ∂tεx[λ(t)] = λ̇(t)∂λεx[λ(t)] if the system is in state x. If the system
remains in this state during the interval [t, t+ Δt], the work applied on the system is given
by
∫ t+Δt
t dsλ̇(s)∂λεx[λ(s)] = εx[λ(t+ Δt)]− εx[λ(t)]. That is, we only need to know the

initial and final position of the energy level. The external work applied along trajectory X
may thus be written as

w[X] =
n−1∑
j=0

[
εxj(tj+1)− εxj(tj)

]
. (5.11)

For transition xj−1 → xj mediated by reservoir νj at time tj, the system heat is given by
εxj(tj)− εxj−1(tj)− µνj(nxj − nxj−1), and along X, we get the trajectory heat

q[X] =
n−1∑
j=1

[
εxj(tj)− εxj−1(tj)− µνj(nxj − nxj−1)

]
. (5.12)

With this definition, we follow our convention that q[X] > 0 when the system absorbs
heat, and q[X] < 0 when releasing heat. The chemical work done on the system along X
reads

wchem[X] =
n−1∑
j=1

µνj(nxj − nxj−1). (5.13)

Adding these contributions together, we get the first law of stochastic thermodynamics,

w[X] + wchem[X] + q[X] = εxn−1(tn)− εx0(t0), (5.14)

resembling Eq. (5.1).

Next we want to define a non-equilibrium entropy for the system. We aim to use the
Shannon entropy

Ssys(t) = −kB
∑
x

px(t) ln[px(t)], (5.15)
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and show that it gives reasonable results. If we interpret Ssys(t) as the system entropy at
time t, averaged over all possible trajectories X, we can define a stochastic entropy [140]

ssys(t) = −kB ln[px(t)], (5.16)

evaluated at time t when the system state is x. Averaging over all possible trajectories X, we
recover the Shannon entropy Ssys(t) = ⟨ssys(t)⟩X. To evaluate whether these definitions
give sensible results, it is useful to study the entropy change related to a single transition
x′ → x mediated by reservoir ν. During this jump, the system exchanges heat with the
reservoir, which can be calculated as q(ν)xx′ = εx − εx′ − µν(nx − nx′). As the reservoir is in
equilibrium, the change of entropy in the reservoir is given by

Δs(res)xx′ = −
q(ν)xx′

Tν
= kB ln

(
M(ν)

xx′

M(ν)
x′x

)
, (5.17)

where we used the local detailed balance condition in Eq. (5.6). From our definition of
stochastic entropy (5.16), the change in system entropy can be written as

Δ(sys)
xx′ = kB ln

(
px′
px

)
, (5.18)

and we find the total change of entropy

Δs(tot)xx′ = Δs(sys)xx′ + Δs(res)xx′ = kB ln

(
M(ν)

xx′ px′

M(ν)
x′x px

)
. (5.19)

From the definition of the Shannon entropy (5.15) and the definition of the rate equation
(5.5), the average system entropy production may be written as

Ṡsys(t) =
kB
2

∑
ν

∑
xx′

J(ν)xx′ ln

(
M(ν)

xx′ px′(t)

M(ν)
x′x px(t)

)
− kB

2

∑
ν

∑
xx′

J(ν)xx′ ln

(
M(ν)

xx′

M(ν)
x′x

)
, (5.20)

where the factor of 1/2 accounts for counting each jump twice in the double sums. With
the help of Eqs. (5.17) and (5.19), we identify the total entropy production rate

Ṡtot(t) =
kB
2

∑
ν

∑
xx′

J(ν)xx′ ln

(
M(ν)

xx′ px′(t)

M(ν)
x′x px(t)

)
, (5.21)

and the reservoir entropy production rate

Ṡres(t) =
kB
2

∑
ν

∑
xx′

J(ν)xx′ ln

(
M(ν)

xx′

M(ν)
x′x

)
, (5.22)
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such that Ṡtot(t) = Ṡsys(t)+ Ṡres(t). First, we note that J
(ν)
xx′ and ln[M

(ν)
xx′ px′(t)/M

(ν)
x′x px(t)]

always have the same sign, implying that Ṡtot ≥ 0 at all times. Second, when all reservoirs
have the same temperatures and chemical potentials, i.e., being in thermal equilibrium, we
get the stationary condition in Eq. (5.8), and Ṡtot(t) vanishes in the long time limit when
the system have thermalized to the reservoirs. Finally, the detailed balance condition in
Eq. (5.6) implies that the entropy production rate in the reservoirs reads

Ṡres(t) =
1
2

∑
ν

∑
xx′

J(ν)xx′

(
−q(ν)xx′

)
Tν

, (5.23)

as we would expect for a set of equilibrium reservoirs. These results show that the Shannon
entropy (5.15) is a sensible candidate for being a non-equilibrium entropy, and that the
assumption of local detailed balance (5.6) leads to a reasonable expression for the reservoir
entropy production.

We can now define a trajectory entropy production for X in Eq. (5.10) as [140]

Δstot[X] = kB ln
[

px0(t0)
pxn−1(tn)

]
+ kB

n−1∑
j=1

ln

(
M(νj)

xjxj−1

M(νj)
xj−1xj

)
, (5.24)

where we used Eqs. (5.17) and (5.18).

With the definitions from the previous paragraphs, it is possible to introduce a non-equilibrium
free energy. To this end, we consider a system exchanging energy with a single reservoir at
temperatureT – we neglect particle exchanges between the system and the reservoir for sim-
plicity. With the first and second law for averages, Eqs. (5.9) and (5.21), we get that Ẇ ≥ Ḟ,
where we introduced the (trajectory averaged) non-equilibrium free energy F = E−SsysT.
By integrating over time, we get the non-equilibrium inequality

W ≥ ΔF, (5.25)

resembling the classical equilibrium case in Eq. (5.4). Thismotivates us to define a stochastic
free energy f = εx − Tssys, with εx being the energy of the occupied system state x, and
ssys = −kB ln(px) the stochastic entropy of the system. In equilibrium, we have px =
exp{(F(eq)−εx)/kBT}, where F(eq) is the equilibrium free energy of the system, implying
that f(eq) = F(eq), such that the stochastic equilibrium free energy coincides with the
equilibrium free energy. Driving the system isothermally thus gives us the total trajectory
entropy production

TΔstot[X] = w[X]− Δf[X], (5.26)

where w[X] is the work applied along the trajectory, and Δf[X] is the difference in stochastic
free energy between the initial and final states of trajectory X. To obtain this relation, we
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used Eqs. (5.11), (5.24), and (5.6). If the initial and finial states are in thermal equilibrium,
we get Δf[X] = ΔF(eq), which is independent on the initial and final states – see the
equilibrium distribution above Eq. (5.26).

We have now reached the heart of stochastic thermodynamics; fluctuation theorems. To
begin, we define a forward trajectory X of the system as specified in Eq. (5.10). To carry out
calculations, we discretize time intoN steps and define a time increment δt = (tn− t0)/N.
Between two system transitions, let us say tj−1 and tj, we get Nj = (tj − tj−1)/δt time
increments. Since time is discretized, the jump xj−1 → xj occurs at tj − δt, such that the
system dwells in xj−1 during Nj − 1 timesteps before making the transition. By using the
definitions of Markov processes (see Chapter 2), and that transition probabilities can be
calculated as P(xj|xj−1) = M(ν)

xjxj−1δt, the probability of observing the forward trajectory
reads

P[X] = [P(xn−1|xn−1)]
Nn

n−2∏
j=0

M(νj+1)
xj+1xj (λj+1)δt[P(xj|xj)]Nj+1−1

 px0(t0), (5.27)

where P(x|x) is the probability to dwell in state x during a time interval δt, and px0(t0) is
the probability to initially occupy x0. To derive a fluctuation theorem, we must consider a
time reversed trajectory as well, where we consider the time reversed versions of both the
system state and the control protocol. The time reversed trajectory of X is given by

Xtr = {tn−1, λn−j, νn−j, xn−j−1}n−1
j=1 , (5.28)

starting in xn−1 at tn with control variable λn, and ending in x0 at t0 with control variable
λ0, passing through the same system states and values of the control parameter as in the
forward trajectory, but in reversed order. Note that this corresponds to a scenario where
both x and λ are even under time reversal. The trajectory work and heat are odd under
the time reversed operation, i.e., w[Xtr] = −w[X], q[Xtr] = −q[X]. The probability of
observing the time reversed trajectory reads

Ptr[Xtr] =

n−2∏
j=0

[P(xj|xj)]Nj+1−1M(νj+1)
xjxj+1 (λj+1)δt

 [P(xn−1|xn−1)]
Nn p̃xn−1(tn), (5.29)

where the superscript ‘tr’ on Ptr expresses the fact that we consider a time reversed experi-
ment. Note that the initial distribution p̃xn−1(tn) of Xtr not necessarily coincides with the
final distribution pxn−1(tn) to be in xn−1 at time tn in the forward trajectory X. Experi-
mentally, these distributions are typically different as the experimenter first runs a series of
forward experiments, and then performs a series of backward experiments (time-reversing
the driving). The distributions thus depend on the preparation of the experiment. The
special case where the distributions coincide can, for example, be achieved by either letting
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the forward (backward) trajectory end (start) in a stationary state for a fixed control para-
meter, or letting the system thermalize to some environment after (before) the driving in
the forward (backward) experiment.

Here we consider the situation where p̃xn−1(tn) = pxn−1(tn), and use the definitions of
Eqs. (5.27), (5.29), and (5.24) to find the detailed fluctuation theorem

P[X]
Ptr[Xtr]

= eΔstot[X]/kB . (5.30)

This theorem relates the probabilities of observing the forward and time reversed trajectories
with the entropy production of the forward trajectory Δstot[X] as defined in Eq. (5.24). For
trajectories where P[X] = Ptr[Xtr], Δstot[X] = 0, and there is no bias towards either of the
trajectories, implying full microscopic reversibility. For Δstot[X] > 0, P[X] > Ptr[Xtr], and
there is a bias towards observing the forward trajectory. We stress that there still is a finite
probability to observe the time reversed trajectory, but it is less likely. When Δstot[X] ≫
1, Ptr[Xtr] becomes vanishingly small compared to P[X], indicating absolute microscopic
irreversibility. By averaging over all possible trajectories X, the detailed fluctuation theorem
(5.30) implies an integral fluctuation theorem⟨

e−Δstot[X]/kB
⟩
= 1, (5.31)

where the average is taken with respect to P[X], and
∑

X P
tr[Xtr] = 1. Jensen’s inequality

further provides the second law of stochastic thermodynamics,

⟨Δstot[X]⟩ ≥ 0. (5.32)

That is, averaged over all possible trajectories, the entropy must be non-negative. This
coincides with the conventional second law of thermodynamics. Further note that as
0 < e−Δstot[X]/kB < 1 for all trajectories with Δstot[X] > 0, it is necessary that there
exist trajectories with Δstot[X] < 0 such that the average in Eq. (5.31) holds. We thus un-
derstand that these fluctuation theorems are generalizations of the second law that hold for
microscopic systems far from equilibrium. In particular, we note that the second law is
probabilistic on the microscopic scale, allowing for observations of trajectories with negat-
ive entropy production. It is only on average that the entropy production must be non-
negative.

When isothermally driving a system coupled to a single reservoir between two equilibrium
states, Eqs. (5.26) and (5.31) can be used to recover the Jarzynski relation [128]⟨

e−w[X]/kBT
⟩
= e−ΔF(eq)/kBT. (5.33)

The power of this relation lies in its ability to determine the free energy difference ΔF(eq)

between two equilibrium states by performing measurements on a non-equilibrium system.
The Jarzynski relation further implies that ⟨w[X]⟩ ≥ ΔF(eq), a generalization of Eq. (5.4).
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Finally, we make some remarks. First, fluctuation theorems can be obtained by considering
alternative time reversed trajectories as well. The scenario discussed here, when restricting
ourselves to a system and a driving that are even under time reversal, is a special case. In
fact, it is possible to derive fluctuation theorems for systems and control protocols that are
odd under time reversal [127]. Note that this introduces several subtleties in the derivations.
The reason for studying the special case of even functions under time reversal is because of
its direct applicability on the classical toy model discussed in Chapter 7. Second, during
the course of last decades, many of the non-equilibrium theorems of stochastic thermody-
namics have been verified in various experimental platforms [137].

5.3 Information thermodynamics

The acquisition and processing of information come with a thermodynamic cost. This is
famously illustrated byMaxwell’s demon [9–11], where the acquisition of information about
the velocities of gas molecules can be used to rectify their thermal fluctuations, seemingly
violating the second law of thermodynamics. By considering the thermodynamics of in-
formation processing, i.e., accounting for the energy and entropy required to gather, store,
and erase information, one finds that Maxwell’s demon does not violate the second law.
This was first realized by Bennett [141], who argued, based on the Landauer principle [142],
that the apparent violation is resolved when the demon erases its memory, increasing the
entropy of its environment such that the second law is restored. During the past decades,
the thermodynamics of information [23–25] has been incorporated into stochastic ther-
modynamics. This has resulted in several generalizations of the second law, showing that
processes like Maxwell’s demon are not thermodynamically forbidden. In fact, several ex-
perimental implementations of the demon have been demonstrated over the last decade
[26–32]. The purpose of this section is to introduce some of the results from information
thermodynamics in order to clearly motivate why Maxwell’s demon does not violate the
second law.

To begin, we will shortly review some key concepts from information theory that will be
useful throughout this section. Our average uncertainty of a random variable X with dis-
tribution p(x) can be quantified via the (information theoretic) Shannon entropy

H[p(x)] = −
∑
x

p(x) ln[p(x)]. (5.34)

We call this the “information theoretic entropy” since it differs by a factor of kB from the
one defined in Eq. (5.15). In the case where p(x) = 1 for one specific x, our uncertainty
vanishes. That is, we will always know the value of X. When X is uniformly distributed over
N different values, each with probability p(x) = 1/N, the Shannon entropy is maximized,
corresponding to maximal uncertainty about X. Second, for two distributions p(x) and
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Figure 5.2: Illustration of the Szilard engine. A container with a single gas particle is in contact with a heat bath at temperature
T. (left) Initially, the gas is in thermal equilibrium. (middle) A demon (experimenter) inserts a partition in the middle of
the container, and measures on which side the particle is. Depending on the outcome, the demon applies feedback
by attaching a weight on the same side of the partition as the particle is. Via isothermal expansion, the gas can
lift the weight, extracting kBT ln(2) of work from the bath (dashed arrow). (right) As the expansion ends, the gas
returns to its initial state.

q(x) defined over the same outcomes x, we introduce the Kullback-Leibler divergence

D(p||q) =
∑
x

p(x) ln
[
p(x)
q(x)

]
. (5.35)

We note that D(p||q) ≥ 0, with equality if p(x) and q(x) are the same distribution. The
Kullback-Leibler divergence can thus be used as a measure of how similar two distributions
are. It vanishes for identical distributions and takes finite values otherwise. Finally, we
define the mutual information between two random variables X and Y as

I[X : Y] =
∑
x,y

p(x, y) ln
[

p(x, y)
p(x)p(y)

]
, (5.36)

where p(x, y) is the joint distribution of the random variables, and p(x) and p(y) are the
marginal distributions for X and Y, respectively. By definition, the mutual information
coincides with the Kullback-Leibler divergence for p(x, y) and p(x)p(y), and we thus get
that I[X : Y] ≥ 0. The mutual information gives a measure on how correlated the variables
X and Y are. If they are completely uncorrelated, p(x, y) = p(x)p(y) and I[X : Y] = 0.
Therefore, the mutual information is useful in measurement theory where the correlation
between a system observable X and the measurement outcomes Y is of interest.

To illustrate the issues of apparent violations of the second law, we will study the Szilard
engine – a simplified version of Maxwell’s demon. Its working cycle is visualized in Fig. 5.2.
A single gas particle is trapped inside a container of fixed volume, and is in contact with a
heat bath of temperature T. That is, the gas is initially in thermal equilibrium. A demon
(or experimenter) inserts a partition in the middle of the container, and measures whether
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the particle is on the left or the right side of the partition. Based on the outcome, the
demon performs feedback by attaching a weight to the partition. By quasistatic, isothermal
expansion, the gas particle can lift the weight, extracting work

Wext = −W =

∫ Vtot

Vtot/2
pdV = kBT ln(2), (5.37)

where Vtot is the volume of the container, and p = kBT/V is the pressure of the gas at
volume V and temperature T (ideal gas law for one particle). Finally, the demon removes
the partition, and lets the particle return to its initial state. As the container returns to its
initial state, the first law implies that the bath must have provided an amount of heat Q =
kBT ln(2) to the container, implying that the change of entropy in the bath ΔSB = −Q/T
is negative. Since the gas returns to its initial equilibrium state, the entropy of the container
does not change, and the total entropy, of both bath and container, is negative, appearing
as a clear violation of the second law. To resolve this issue, the demon must be treated as
a physical system whose entropy increases by an amount that at least matches the decrease
in the bath. To motivate why this is the case, we will now discuss the thermodynamics of
measuring, storing, and erasing information.

In the Szilard engine, the gas particle is initially in an equilibrium state with probability
distribution p(x = L) = p(x = R) = 1/2 (x denotes the state of the gas). That is, we find
the particle with equal probability on either side of the container. By measuring the state
of the gas, we obtain an outcome y = L,R, and update our knowledge of the gas according
to Bayes’ rule,

p(x|y) = p(y|x)p(x)
p(y)

, x, y = L,R, (5.38)

where p(y|x) is the likelihood function to get outcome y given that the state is x, p(x) is the
initial equilibrium distribution from above, and p(y) is the probability to obtain outcome
y. As p(x|y) does not necessarily coincide with the equilibrium distribution, a measurement
typically drives the system out of equilibrium. Therefore, the act of measuring should be
considered as a non-equilibrium process. To calculate the change of system entropy due to
the measurement, we use the Shannon entropy (5.34). Since H[p(x|y)]−H[p(x)] depends
on a specific value of y, we average this over all possible outcomes, and get

ΔSsys = kB
∑
y

p(y)
(
H[p(x|y)]−H[p(x)]

)
= −kBI[S : M], (5.39)

where I[S : M] is the mutual information between the system and the measurement out-
come. Since the mutual information is non-negative, ΔSsys ≤ 0, implying that by meas-
uring, our uncertainty of the system must at least stay the same or decrease. Assuming that
the measurement does not change the internal system energy, i.e., ΔE = 0, the free energy
change in the system becomes

ΔF = ΔE− TΔSsys = kBTI[S : M] ≥ 0, (5.40)
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where T is the temperature of the environment of the system. We thus see that the effect
of the measurement is to increase the free energy of the system, increasing the amount of
work that can be extracted isothermally. In fact, for a system initially at equilibrium and
coupled to a reservoir at temperature T, the following inequality holds true when feedback
controlling the system based on a single measurement [12]

W ≥ −kBTI[S : M] + ΔF. (5.41)

Here W is the average system work, and ΔF the change in free energy of the system. This
generalizes the result in Eq. (5.25) to feedback controlled systems. If ΔF = 0, we get the
following upper bound for the extracted work,

Wext = −W ≤ kBTI[S : M]. (5.42)

That is, the decrease in uncertainty about the system sets the limit on how much work that
can be extracted by doing feedback. For the Szilard engine, the system is described by the
equilibrium distribution p(x = L) = p(x = R) = 1/2. For an error free measurement,
the likelihood function is given by p(y = L|x = L) = p(y = R|x = R) = 1, and
p(y = L|x = R) = p(y = R|x = L) = 0. We thus get that I[S : M] = ln(2), i.e., the
measurement obtains one bit of information. In the end of the cycle, the system returns to
its initial state and ΔF = 0. Therefore, the work that can be extracted by the Szilard engine
obeys Wext ≤ kBT ln(2), providing an upper bound on how much work that is possible
to extract. This inequality was saturated in Eq. (5.37).

We now consider the work required to do ameasurement. The information acquired during
the measurement will be stored in a memoryM. Again, we obtain some outcome y that has
probability distribution p(y). The memory is in contact with a heat bath at temperature
T. Initially, the system, the memory, and the bath are uncorrelated, and the memory is in
thermal equilibrium. To perform the measurement, the memory interacts with the system.
By assuming that this interaction does not involve any heat exchange, the average work
[with respect to p(y)] performed onM during the measurement is bounded by [143]

W(meas)
M ≥ −kBT(H− I[S : M]) + ΔFM, (5.43)

where H = H[p(y)] is the Shannon entropy for the measurement outcome, and ΔFM is
the change of free energy in the memory during the measurement. This inequality states
that the work on the memory must at least be the change of free energy in the memory,
as expected from Eq. (5.25), plus an additional energetic cost due to the information ac-
quisition. The first term obeys the inequality 0 ≤ H − I[S : M] ≤ H, where the lower
bound is obtained for an error free measurement, and the upper bound when no inform-
ation is extracted, i.e., when I[S : M] = 0. We note that when H = I[S : M] (error free
measurement) and ΔFM = 0, W(meas)

M ≥ 0. There are thus scenarios when no energy is
needed to do the measurement. Note that there also exist scenarios where the lower bound
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on the work is negative, meaning that work can be extracted from the memory by doing
the measurement.

By assuming that M is in thermal equilibrium with its environment before resetting it to
the standard state, i.e., erasing it, the average work [with respect to p(y)] required to erase
the memory is bounded by [143]

W(eras)
M ≥ kBTH− ΔFM. (5.44)

It is interesting to study the case for which ΔFM = 0. For a measurement with two
outcomes where p(y = 0) = p(y = 1) = 1/2, W(eras)

M ≥ kBT ln(2). That is, to erase the
memory, at least kBT ln(2) of energy is required – this is the Landauer principle [142].

Combining Eqs. (5.41), (5.43) and (5.44) results in

WSM = W+W(meas)
M +W(eras)

M ≥ ΔFS, (5.45)

whereWSM is the average work for the combined unit of system andmemory. This inequal-
ity is in agreement with the conventional second law (5.4). We thus understand that the
apparent violation of the second law for the Szilard engine only appears when considering
the thermodynamics of the system alone. As the information processingmust be performed
by a physical system (demon), that system must also be included in the thermodynamic
book-keeping. By doing accordingly, no violations of the second law are observed.

The above discussion focused on feedback processes where only one single measurement
was made, and illustrated how information processing comes with a thermodynamic cost.
As this thesis concentrates on continuous measurement and feedback, we will now review
a few important fluctuation theorems valid for continuous information processing.

In the absence of measurement and feedback, backward or time reversed trajectories are
rather straightforward to define. However, when including measurement and feedback, it
is not clear how to define a backwards trajectory. In Fig. 4.2(a), we visualize a trajectory X
[marked as S(t)] of a two-level system together with a trajectory Y [marked as D(t)] of the
measurement outcomes from a continuous measurement. We note that the time reversed
trajectories of X and Y, going from right to left in the figure, yield an unphysical picture;
the measurement outcome will predict a system transition before it happens. Similarly, a
feedback protocol, with measurement dependent trajectory Λ(Y), will therefore be able to
act before a system transition occurs. This motivates why there exists no clear definition of
backward dynamics under feedback control. In fact, the backward trajectory can be defined
in different ways. This implies that each definition leads to a different fluctuation theorem
[22]. It is, however, possible to always write down a general detailed fluctuation theorem
for continuous feedback control [22]

PB[Xtr,Ytr]
P[X,Y]

= e−σ[X,Λ(Y)]−(It[X:Y]−Itrt [Xtr:Ytr]), (5.46)
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where P[X,Y] is the probability following the forward trajectories X and Y, PB[Xtr,Ytr] is
the probability for the (undefined) backward experiment following backward trajectories
Xtr and Ytr, σ[X,Λ(Y)] is the unitless entropy production along the forward trajectory
when applying feedback protocol Λ(Y), It[X : Y] is the transfer entropy for the forward
experiment, and Itrt [Xtr : Ytr] is the transfer entropy of the backwards experiment. The
power of Eq. (5.46) lies in that it is valid for any choice of backward experiment. This
indicates that each choice of backward experiment implies a choice-dependent fluctuation
theorem, rather than a universal theorem that holds for all scenarios.

As an instructive example, we consider the backward trajectory of Ref. [18]. The experiment
is executed as follows. First, we perform the forward experiment with feedback protocol
Λ(Y). Then, we run the backward experiment by randomly choosing an outcome trajectory
Y, and applying the time reversed protocol of Λ(Y), but do not perform any feedback. For
this type of experiment, one can derive the integral fluctuation theorem [18]⟨

e−σ−It
⟩
= 1. (5.47)

Jensen’s inequality implies that
⟨σ⟩ ≥ −⟨It⟩. (5.48)

This is a generalization of the second law, showing that under continuous measurement and
feedback, it is possible to observe a negative system entropy production. Again, including
the thermodynamics of the feedback controller would give a non-negative total entropy
production. One may also find a generalized Jarzynski relation [18]⟨

e−(w−ΔF)/kBT−It
⟩
= 1, (5.49)

where w is the system work, and ΔF the free energy change of the system. For the average
work, we get

⟨w⟩ ≥ −kBT⟨It⟩+ ΔF, (5.50)

resembling the single measurement inequality in Eq. (5.41).

Before closing this section, we review the special case where the presence of feedback control
modifies the local detailed balance as [144]

ln

(
M(ν)

xx′

M(ν)
x′x

)
=
εx′ − εx − µν(nx′ − nx)

kBTν
+ f(ν)xx′ . (5.51)

Here f(ν)xx′ is a feedback parameter assumed to be independent on the system energies εx.
In the absence of feedback, f(ν)xx′ = 0, and we recover the standard local detailed balance.
It is assumed that the timescale of the feedback is much faster than the system, but much
slower than the thermal relaxation time of the reservoirs. Again, so that the system always
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interacts with equilibrium reservoirs. This type of modified local detailed balance may arise
from deriving a Markovian master equation from the QFPME (1.1) by using the separa-
tion of timescales technique introduced in Chapter 6. This is the case for the classical toy
model presented in Chapter 7. We note that this type of modified detailed balance also was
observed in Ref. [145]. A difference from the cases discussed above is that we do not con-
sider any trajectory for the measurement outcomes or the control protocol – measurement
and feedback are effectively incorporated into the rates M(ν)

xx′ . The modified local detailed
balance (5.51) leads to the integral fluctuation theorem [144]⟨

e−(ΔStot+I)/kB
⟩
= 1, (5.52)

where I is an information term depending on the feedback parameters f(ν)xx′ . In the absence of
feedback, the information term vanishes, and we recover the standard fluctuation theorem
for non-equilibrium systems (5.31). With Jensen’s inequality, we get

⟨ΔStot⟩ ≥ −⟨I⟩, (5.53)

similar to Eq. (5.48). Again, the entropy production is bounded from below by an inform-
ation term.
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Chapter 6

Results I: Derivations

Having introduced all the theoretical background of this thesis in the preceding chapters,
we are now ready to derive the main result of the thesis, Eq. (1.1). We present two different
derivations, one based on conventional calculus in Sec. 6.1, and one based on stochastic
calculus in Sec. 6.2. In Sec. 6.3, we show how a Markovian master equation for the sys-
tem, independent of the detector, can be derived from Eq. (1.1) in the limit of a large
detector bandwidth. We provide two derivations of this. For linear feedback, we show that
the Markovian master equation reduces to the Wiseman-Milburn equation. For threshold
(bang-bang) feedback, we derive some general formulas that will be important in Chapter
7.

6.1 Derivation I: Conventional calculus

We may now derive the QFPME (1.1). To this end, we will use the compact measurement
superoperator notation M(z)ρ̂ = K̂(z)ρ̂K̂†(z), where K̂(z) is the Gaussian measurement
operator in Eq. (4.3). To describe a continuous measurement, time is discretized into n
intervals of length δt = (t − t0)/n, where t0 and t are the initial and final times of the
measurement, respectively. The initial state of the system in Fig. 1.1 is ρ̂t0 . To feedback
control the system, the outcome D observed on the detector (see Fig. 1.1) is used to control
the Liouville superoperator L(D) of the system. In this thesis, L(D) is assumed to be of
standard Lindblad form, as discussed in Chapter 3. The control is typically implemented in
the system Hamiltonian, or in the coupling rates between the system and its environment.

By successively applying measurement and feedback-controlled time evolutions on the ini-
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tial state, we obtain

ρ̂t({zj}nj=1) = M(zn)eL(Dn−1)δt · · ·M(z2)eL(D1)δtM(z1)eLδtρ̂t0 , (6.1)

representing the joint state of system and the sequence of outcomes {zj}nj=1, where zj is the
outcome at time tj = t0 + jδt. Note that z(t) = limδt→0{zj}nj=1 is the continuous stream
of outcomes produced in the measurement apparatus, while D(t) = limδt→0{Dj}nj=1 is
the stream of outcomes observed on the detector screen. These signals are connected via
the low-pass frequency filter (see Chapter 4.3)

D(t) =
∫ t

−∞
dsγe−γ(t−s)z(s), (6.2)

where the detector bandwidth γ (see Fig. 1.1) is introduced¹. As discussed in Chapter
4, all detectors have a finite bandwidth, and as such, Eq. (6.2) adds a realistic element
to our model, eliminating high frequency measurement noise, and introduces a detector
delay scaling as 1/γ. Furthermore, the frequency filtering makes it possible to execute
feedback protocols that depend nonlinearly on D. Due to the white noise of z(t) [see
Eq. (4.10)], higher orders of z(t) are ill-defined because of the diverging frequencies in the
power spectrum of z(t) [95, 100, 102] – this is further discussed in Sec. 6.1.1 below.

Since the observer only has access to the sequence {Dj}nj=1 from the measurement, it is
more favorable to work with the density operator ρ̂t({Dj}nj=1) rather than ρ̂t({zj}nj=1). To
this end, we discretize Eq. (6.2),

Dj = γδt
j∑

k=0

e−γδt(j−k)zk, (6.3)

and change variables ρ̂t({zj}nj=1) → ρ̂t({Dj}nj=1) via

ρ̂t({Dj}nj=1) =

∫
dzzz

n∏
r=0

δ

(
Dr − γδt

r∑
k=0

e−γδt(r−k)zk

)
ρ̂t({zj}nj=1), (6.4)

where dzzz = dz1 · · · dzn, and z0 is the initial value of z(t). Carrying out the integrals in
order, one by one, starting with z1, and using the standard properties of the Dirac delta
function, we get

ρ̂t({Dj}nj=1) = M(Dn|Dn−1)eL(Dn−1)δt · · · eL(D1)δtM(D1|D0)eLδtρ̂t0 , (6.5)

¹More generally, the filtering can be introduced as D(t) =
∫ t
−∞ dsf(t, s)z(s), where f(t, s) is an arbitrary

filter function. The choice of this function determines whether it is possible to derive a Markovian master
equation as in Eq. (1.1). In this section, we show that the choice f(t, s) = γe−γ(t−s), as done in Eq. (6.2),
yields a Markovian master equation [Eq. (1.1)]. Note that there might exist other choices of f(t, s) that result
in Markovian dynamics. This is not investigated in this thesis.
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with new measurement superoperators

M(D|D′) =
1
γδt

M
(
D− D′e−γδt

γδt

)
, (6.6)

for outcome D given that D′ was observed in the previous timestep.

The property
∫
dDn−1 · · · dD1ρ̂t({Dj}nj=1) = ρ̂t(Dn) reduces Eq. (6.5) to

ρ̂t+δt(D) =
∫

dD′M(D|D′)eL(D
′)δtρ̂t(D′), (6.7)

where we have substituted Dn−1 → D′ and Dn → D. This provides an update rule for the
measurement and feedback process, including the effect of a finite detector bandwidth. To
derive Eq. (1.1), we use that M(D|D′) may be written, to first order in δt, as

M(D|D′)ρ̂ ≈ δ(D− D′)ρ̂

+ δt
[
λδ(D− D′)D[Â]ρ̂− γδ′(D− D′)A(D)ρ̂+

γ2

8λ
δ′′(D− D′)ρ̂

]
,
(6.8)

where δ′(D − D′) and δ′′(D − D′) denote the first and second derivative on δ(D − D′)
with respect to D. To obtain this expansion, we wrote M(D|D′) in the eigenbasis of the
observable Â, note that Â |a⟩ = ξa |a⟩, and used the identity√

2λ
πγ2δt

e
−2λδt

(
D−D′e−γδt

γδt −
ξa+ξa′

2

)2

≈ 1
2π

∫ ∞

−∞
dωe−iω(D−D′)e

1
8γωδt[4i(ξa+ξa′ )−

γ
λ
ω−8iD′],

(6.9)

where the LHS is expressed in terms of its inverse Fourier transform on the RHS. The ‘≈’
sign represents that we made use of the linearization e−γδt ≈ 1−γδt on the RHS. Equation
(6.8) follows from first expanding the second exponential under the integral in Eq. (6.9) to
first order in δt, and then carrying out the integration. Plugging Eq. (6.8) into the update
rule (6.7), using eL(D′) ≈ 1 + L(D′)δt, and taking the continuous limit δt → 0 yields
Eq. (1.1).

6.1.1 Motivation for Eq. (6.2)

We can now motivate why Eq. (6.2) makes it possible to execute nonlinear feedback pro-
tocols. To begin, we note that the correlation functions for z(t) and D(t) are given by

Cz(t′, t) =
1
4λ
δ(t− t′), and CD(t′, t) =

γ

8λ
e−γ|t−t′|, (6.10)
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where we used Eqs. (4.13) [in the continuous limit, with ξ(t) = limδt→0 δW/δt] and
(6.2). Because of the white noise process ξ(t), we know that the variance of z(t) is given
by ⟨z2(t)⟩ − ⟨z(t)⟩2 = Cz(t, t) = δ(0)/4λ. That is, the measurement noise diverges.
This reflects the uncertainty of an infinitely weak measurement – quantum coherence is
preserved, but at the cost of getting infinite uncertainty, see Eqs. (4.4) and (4.5). The
singularity in the variance explains why higher orders of z(t) are ill-defined. In fact, this
stems from the white noise process ξ(t) being an idealization – see Chapter 2.

To illustrate this further, we consider the useful example of bang-bang control, typically
referred to as threshold control in this thesis, which is the optimal control strategy in many
scenarios [60, 61]. For this type of control, the strategy is to apply two different proto-
cols depending on whether the measurement signal is above or below a predetermined
threshold value. For instance, in our example two-level system in Chapter 4, the system
can be controlled differently whether |0⟩ or |1⟩ is occupied. The natural threshold value
for distinguishing the two states would be 0, in-between −1 and +1 in Fig. 4.2(a).

Because of the singularity in the variance of z(t), it cannot be used for threshold control
in any meaningful way. The infinitely large fluctuations of z(t) makes it impossible to tell
whether |0⟩ or |1⟩ is occupied, leading to randomly applied feedback. On the other hand,
to understand why D(t) can be used for threshold feedback, we begin by noting that its
variance ⟨D2(t)⟩−⟨D(t)⟩2 = CD(t, t) = γ/8λ is finite. By tuning the ratio γ/λ, the noise
of D(t) can be adjusted such that it always is possible to distinguish which state the system
is in, see Fig. 4.2(a), where we clearly can see when |0⟩ or |1⟩ is occupied. Furthermore,
the power spectra of z(t) and D(t) are given by [see Eqs. (2.6) and (2.28)]

Sz(ω) =
1
4λ
, and SD(ω) =

1
4λ

γ2

γ2 + ω2 . (6.11)

The white noise spectrum Sz(ω) for z(t) contains diverging frequencies and explains the
singularity in the variance. For D(t), on the other hand, SD(ω) is a Lorentzian spectrum,
where high frequency noise is filtered out. This explains the finite variance ofD(t). Because
this type of frequency filtering always occurs in any electronic circuitry, Eq. (6.2) provides a
realistic model for signal processing. We note that in the infinite bandwidth limit, γ → ∞,
D(t) → z(t) as expected when diverging frequencies are allowed in the spectrum of D(t).

6.2 Derivation II: Stochastic calculus

In this section, we derive Eq. (1.1) by starting from the Belavkin equation (4.18). To establish
a connection between the conditional state ρ̂c(t) and the joint system-detector state ρ̂t(D),
we introduce the average

E[·] ≡
∫

D[DDD]⟨δ̃[DDD, zzz]·⟩zzz, (6.12)
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where DDD = {Dj}nj=1 is a trajectory of outcome D, ⟨·⟩zzz is an average over all trajectories
of the outcome z [see Eq. (4.19)], the path integral

∫
D[DDD], with D[DDD] = dD1 · · · dDn, is

taken over all possible trajectories of the observed outcome D, and

δ̃[DDD, zzz] =
n−1∏
j=0

δ
[
D(tj)−

∫ tj

−∞
dsγe−γ(tj−s)z(s)

]
(6.13)

ensures that the low-pass filter in Eq. (6.2) is incorporated, where tj = t0 + jdt. Note that
⟨δ̃[DDD, zzz]·⟩zzz corresponds to Eq. (6.4), and that ρ̂t(DDD) = ⟨δ̃[DDD, zzz]ρ̂c(t)⟩zzz. This implies that

ρ̂t(D) = E
[
δ[D(t)− D]ρ̂c(t)

]
, (6.14)

where the delta function ensures that the last (current) value of D(t) is preserved. From
these definitions, we see that taking the trace of Eq. (6.14) gives the detector probability
distribution Pt(D) = E[δ[D(t)−D]], and when integrating (6.14) overDwe get the system
state ρ̂t = E[ρ̂c(t)].

By using Eq. (6.14), we find the increment

dρ̂t(D) = E
[
d
(
δ[D(t)− D]ρ̂c(t)

)]
. (6.15)

To evaluate the RHS of this equation, we note that for functions f(D) and g(D), we get
a stochastic product rule d(fg) = (df)g + f(dg) + (df)(dg), where the last term (df)(dg)
scales as dt because df and dg contain terms proportional to the Wiener increment dW. We
further need the increment

dδ[D(t)− D] = γdt
[
⟨Â⟩c − D(t)

]
δ′[D(t)− D]

+
γ2dt
8λ

δ′′[D(t)− D] +
γ√
4λ

dW(t)δ′[D(t)− D],
(6.16)

which can be obtained from Eqs. (2.14) and (4.16). Together with the Belavkin equation
(4.18), we may evaluate the RHS of Eq. (6.15) and get (details in Appendix A),

dρ̂t(D) = dtL(D)ρ̂t(D) + λdtD[Â]ρ̂t(D)− γdt∂DA(D)ρ̂t(D) +
γ2dt
8λ

∂2Dρ̂t(D), (6.17)

which is Eq. (1.1).

6.3 Separation of timescales

As Eq. (1.1) includes the dynamics of both system and detector, it is typically difficult to solve
it analytically. In general, we are restricted to numerical solutions, where our qualitative
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insight is limited. This restriction is common in the field of continuous feedback control
as discussed in Chapter 4.3, where we pointed out that the Belvakin equation (4.18) can
describe any type of feedback numerically, but analytical tools are only available for linear
feedback [see the Wiseman-Milburn equation (4.21)].

In this Chapter, we show that Eq. (1.1) reduces to a Markovian master equation for the
system state ρ̂t when there exists a large separation in the system and detector timescales.
In particular, this equation allows for analytical treatment of nonlinear feedback protocols,
generalizing the Wiseman-Milburn equation (4.21), and makes qualitative investigations of
any type of continuous feedback possible.

The dominating timescale of the system 1/Γ is established by the first two terms of Eq. (1.1),
L(D) + λD[Â], while the detector timescale is given by 1/γ, as discussed in Chapter 4.3.
When γ ≫ Γ, i.e., when changes in the system occur at a rate much smaller than the
inverse relaxation time of the detector, the system evolves, to first order in γ−1, according
to

∂tρ̂t =
[
L0 + λD[Â] + γ−1Lcorr

]
ρ̂t, (6.18)

where L0 describes the system dynamics in the limit of an infinitely fast detector, λD[Â]
describes the effect of measurement backaction, andLcorr provides a correction toL0 when
there is a small but finite detector delay time γ−1. Explicit expressions and derivations of
L0 and Lcorr are provided in Secs. 6.3.2 and 6.3.3. We emphasize that the measurement
strength λ plays a subtle role in the timescales hierarchy. In general, it is required that also
γ ≫ λ, but there are cases where this requirement can be relaxed. Typically, this is related
to the dynamics of the system. In an effectively classical system, where the dynamics of
the diagonal and off-diagonal terms of the density matrix are uncoupled in the eigenbasis
of Â, D[Â], and thereby λ, does not affect the dynamics of the diagonal elements. The
measurement strength λ thus only affect the magnitude of the detector noise, as can be
seen in the last term of Eq. (1.1). Under these conditions, the ratio λ/γ may be chosen
arbitrarily without affecting the system dynamics. However, under a dynamical map where
diagonal and off-diagonal elements are coupled, we must keep γ ≫ λ to justify Eq. (6.18).

Finally, we stress that Eq. (6.18) holds for any type of feedback, linear as well as nonlinear. In
particular, it simplifies to the Wiseman-Milburn equation (4.21) for a linear (in D) L(D)
when taking the infinite bandwidth limit γ → ∞ as shown in Sec. 6.3.4. Therefore,
equation (6.18) generalizes the Wiseman-Milburn equation to nonlinear feedback.

Section 6.3.1, provides the basic formalism for deriving Eq. (6.18), while Secs. 6.3.2 and
6.3.3 detail two different derivations – the first using a multiple timescales perturbation
approach, and the second using Nakajima-Zwanzig projection operators. Section 6.3.4
provides general expressions of L0 and Lcorr for linear and threshold feedback.
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6.3.1 Mathematical tools

We begin by defining a Fokker-Planck superoperator for the last two terms of Eq. (1.1),

F(D) ≡ −γ∂DA(D) +
γ2

8λ
∂2D. (6.19)

By introducing a projection superoperator Vbb′,aa′ ρ̂ = ⟨a|ρ̂|a′⟩ |b⟩⟨b′|, for eigenstates |a⟩
and |b⟩ of the observable Â, such that Â |j⟩ = ξj |j⟩ with eigenvalue ξj (j = a, b), we may
write the Fokker-Planck superoperator as

F(D) =
∑
aa′

Faa′(D)Vaa′,aa′ , Faa′(D) = γ∂D

(
D− ξa + ξa′

2

)
+
γ2

8λ
∂2D, (6.20)

whereFaa′(D) are differential operators for Ornstein-Uhlenbeck processes with drift coeffi-
cientsD−(ξa+ξa′)/2, see Chapter 2. This illustrates how the superoperatorA(D) couples
the system and the detector such that the detector relaxes towards values determined by the
eigenvalues of Â.

Next, we introduce the generalized Hermite polynomials of variance σ = γ/8λ as

He[σ]n (x) =
(σ
2

)n/2
Hn

(
x√
2σ

)
, (6.21)

where Hn(x) = (−1)nex2∂nx e−x2 are the standard physicist’s Hermite polynomials. The
generalized Hermite polynomials obey the orthogonality condition∫ ∞

−∞
dx

He[σ]m (x)√
m!σm

He[σ]n (x)√
n!σn

e−x2/2σ
√
2πσ

= δmn. (6.22)

We will, furthermore, make use of the following properties,

He[σ]n (x+ y) =
n∑

k=0

(
n
k

)
He[σ]n (x)yn−k, (6.23)

for shifting the polynomials,

xHe[σ]n (x) = He[σ]n+1(x) + nσHe[σ]n−1(x), (6.24)

and
∂x

[
He[σ]n (x)e−x2/2σ

]
= − 1

σ
He[σ]n+1(x)e

−x2/2σ. (6.25)
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We are particularly interested in the generalized Hermite polynomials as these constitute
the left and right eigenfunctions of Faa′(D) with

Faa′(D)

He[σ]n

(
D− ξa+ξa′

2

)
√
n!σn

e−
(
D−

ξa+ξa′
2

)2/
2σ

√
2πσ


= −nγ

He[σ]n

(
D− ξa+ξa′

2

)
√
n!σn

e−
(
D−

ξa+ξa′
2

)2/
2σ

√
2πσ


(6.26)

defining the right eigenfunctions of Faa′(D) with eigenvalues−nγ. The eigenfunction for
n = 0, i.e., the eigenfunction with eigenvalue equal to zero, will be of special interest, and
is denoted as

πaa′(D) =
e−

(
D−

ξa+ξa′
2

)2/
2σ

√
2πσ

. (6.27)

The left eigenfunctions of Faa′(D) are defined byHe[σ]n

(
D− ξa+ξa′

2

)
√
n!σn

Faa′(D) = −nγ

He[σ]n

(
D− ξa+ξa′

2

)
√
n!σn

 , (6.28)

also with eigenvalues −nγ.

For our derivations of Eq. (6.18), it is useful to introduce a projection superoperator

P ρ̂(D) ≡ G(D)
∫ ∞

−∞
dDρ̂(D), (6.29)

where
G(D) =

∑
aa′

πaa′(D)Vaa′,aa′ . (6.30)

The property P2 = P illustrates that P is a projection. From the definition of πaa′(D), we
understand thatP projects densitymatrices onto the eigensubspace ofF(D) corresponding
to the eigenvalue equal to zero. Therefore, all states P ρ̂(D) describes a stationary state with
respect to F(D). In particular, we note that F(D)P = PF(D) = 0. Similarly, we define

Q = 1− P (6.31)

which is a projection onto the eigensubspace of F(D) corresponding to all nonzero eigen-
values. Again, we haveQ2 = Q as expected for a projection operator. We can, furthermore,
show that PQ = QP = 0, illustrating that P and Q are projecting onto subspaces that
are each other’s orthogonal complements.
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6.3.2 Multiple timescales approach

Whenever there is more than one timescale involved in a problem, it is usually beneficial to
apply a multiple timescales approach when performing perturbative calculations [146, 147].
When ignoring the presence of several timescales, regular perturbation theory can lead to
unphysical solutions with secular terms that grow linearly with time. The source of these
terms can usually be removed when taking themultiple timescales into account, prohibiting
unphysical solutions. In this section, we apply a multiple timescales perturbation approach
to derive Eq. (6.18).

Our starting point is to write the QFPME (1.1) as

∂tρ̂t(D) = L̃(D)ρ̂t(D) + γF̃(D)ρ̂t(D) (6.32)

such that L̃(D) = L(D) + λD[Â], and γF̃(D) = F(D). The characteristic timescale of
the system 1/Γ is determined by L̃(D), and the detector timescale is given by 1/γ. We
now define two timescales, one slow, τ1 = t, and one fast, τ2 = t/ϵ, where ϵ = Γ/γ ≪ 1,
assuming that the detector is much faster than the system. By replacing ρ̂t(D) with its two-
timed analogue ρ̂(D, τ1, τ2) [146], and using the chain rule to write ∂t = ∂τ1 + ϵ−1∂τ2 ,
the QFPME (6.32) transforms to

ϵ
[
∂τ1 − L̃(D)

]
ρ̂(D, τ1, τ2) = −

[
∂τ2 − ΓF̃(D)

]
ρ̂(D, τ1, τ2). (6.33)

By expanding the densitymatrix in powers of ϵ as ρ̂(D, τ1, τ2) = ρ̂(0)(D, τ1, τ2)+ϵρ̂(1)(D, τ1, τ2)+
ϵ2ρ̂(2)(D, τ1, τ2)+ . . . , Eq. (6.33) can be written as a recursive set of differential equations,[
∂τ2 − ΓF̃(D)

]
ρ̂(0)(D, τ1, τ2) = 0, (6.34a)[

∂τ2 − ΓF̃(D)
]
ρ̂(k)(D, τ1, τ2) = −

[
∂τ1 − L̃(D)

]
ρ̂(k−1)(D, τ1, τ2), k ≥ 1. (6.34b)

The solutions to these equations can be written as

ρ̂(0)(D, τ1, τ2) = eΓτ2F̃(D)ρ̂(0)(D, τ1, 0), (6.35a)

ρ̂(k)(D, τ1, τ2) = eΓτ2F̃(D)ρ̂(k)(D, τ1, 0)−
∫ τ2

0
dseΓ(τ2−s)F̃(D)

[
∂τ1 − L̃(D)

]
ρ̂(k−1)(D, τ1, s).

(6.35b)

By inserting 1 = P +Q after the exponential superoperator in Eq. (6.35a), the zeroth
order solution is split into P- and Q-space. Since all eigenvalues of F̃(D) in Q-space
are negative, and since we are interested in the limit ϵ ≪ 1, where τ2 is large, the Q-
space contribution becomes vanishingly small, such that ρ̂(0)(D, τ1, τ2) = P ρ̂(0)(D, τ1, 0)
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as shown in Appendix B.1. The zeroth order solution thus becomes independent on the
fast timescale τ2, and we understand that a fast detector quickly reaches and remains in
a stationary state with respect to F̃(D) before any system changes have time to occur.
Substituting back τ1 = t, we get the zeroth order solution

ρ̂
(0)
t (D) = G(D)ρ̂(0)t , (6.36)

where ρ̂(0)t =
∫∞
−∞ dDρ̂(0)t (D).

For k = 1 in Eq. (6.35b), the first term becomes independent on the fast timescale τ2, sim-
ilar to the zeroth order solution. Since the zeroth order solution also is independent on τ2, it
is only the exponential superoperator that is affected by the integral in the second term. By
inserting 1 = P +Q after the exponential, the integral can be split into P- and Q-space.
Since the eigenvalue of F̃(D) is zero in P-space, the integral in P-space becomes linear in
τ2, giving rise to a secular term. This term leads to an unphysical behavior in the long time
limit. The secular terms are removed by requiring that P[∂τ1 − L̃(D)]ρ̂(0)(D, τ1, τ2) = 0,
leading to the removal condition∫ ∞

−∞
dD
[
∂τ1 − L̃(D)

]
ρ̂(k−1)(D, τ1, τ2) = 0. (6.37)

Note that we have stated the removal condition for a general k ≥ 1. This may be done
as the solutions to Eq. (6.35) will be independent of τ2 when ϵ ≪ 1, as motivated in the
following paragraph.

Under the condition ϵ≪ 1, we know that τ2 is so large that the exponential superoperator
under the integral quickly decays to zero inQ-space. Therefore, we may substitute variables
z = τ2− s and replace the upper integration limit to+∞, such that the first order solution
becomes completely independent of τ2. Substituting back to τ1 = t, the first order solution
of Eq. (6.35) reads

ρ̂
(1)
t (D) = G(D)ρ̂(1)t + Γ−1F̃−1(D)Q

[
∂t − L̃(D)

]
G(D)ρ̂(0)t , (6.38)

where we have defined the Drazin inverse [148, 149] of F̃(D) as

F̃−1(D) = −
∫ ∞

0
dzezF̃(D)Q. (6.39)

Since all eigenvalues of F̃(D) are nonzero in Q-space, this inverse is well-defined. Note
that Q may be added between F̃−1(D) and [∂t − L̃(D)] in Eq. (6.38) because Q2 = Q.

Substituting back τ1 = t, and using that the solutions in Eq. (6.35) are independent of τ2,
the removal condition (6.37) leads to master equations

∂tρ̂
(k)
t =

∫ ∞

−∞
dDL̃(D)ρ̂(k)t (D), k ≥ 0, (6.40)
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for the system state ρ̂(k)t , where the detector has been integrated out. For k = 0, we get, by
using Eq. (6.36),

∂tρ̂
(0)
t = L̃0ρ̂

(0)
t , L̃0 =

∫ ∞

−∞
dDL̃(D)G(D). (6.41)

For k = 1, we begin to note that Eqs. (6.38) and (6.41) give that

ρ̂
(1)
t (D) = G(D)ρ̂(1)t − Γ−1F̃−1(D)QL̃(D)G(D)ρ̂(0)t (6.42)

because QG(D) = 0, as shown in Appendix B.2. Equations (6.40), (6.41) and (6.42) now
provides the following master equation for k = 1,

∂tρ̂
(1)
t = L̃0ρ̂

(1)
t + Γ−1L̃corrρ̂

(0)
t ,

L̃corr = −
∫ ∞

−∞
dDL̃(D)F̃−1(D)QL̃(D)G(D).

(6.43)

With ρ̂t = ρ̂
(0)
t + ϵρ̂

(1)
t + O(ϵ2), and Eqs. (6.41) and (6.43), we can derive Eq. (6.18) to

first order in ϵ, with

L0 =

∫ ∞

−∞
dDL(D)G(D), (6.44)

and
Lcorr = −

∫ ∞

−∞
dDL(D)F̃−1(D)QL(D)G(D), (6.45)

where we for Lcorr used that
∫∞
−∞ dDρ̂(D) =

∫∞
−∞ dDP ρ̂(D), PF̃−1(D)Q = 0 (see

Appendix B.2), and that [P,D[Â]] = [Q,D[Â]] = 0. Finally, we note that the joint
system-detector state to first order in ϵ reads

ρ̂t(D) =
[
1− γ−1F̃−1(D)QL(D)

]
G(D)ρ̂t, (6.46)

where we used Eqs. (6.36) and (6.42), and that QG(D) = 0. Note that the dynamics of
ρ̂t in this equation are determined by Eq. (6.18). That is, we can always recover the joint
system-detector state ρ̂t(D) to first order in ϵ provided that the system state ρ̂t is known.

6.3.3 Nakajima-Zwanzig approach

In this section, we provide an alternative derivation of Eq. (6.18), making use of Nakajima-
Zwanzig projection superoperators [68, 150, 151]. While the multiple timescales approach
systematically evaluates the effect of a finite detector bandwidth order by order in a perturb-
ation scheme, the Nakajima-Zwanzig approach provides a more straightforward treatment
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of the perturbation calculations. Despite the methods being different, they provide equi-
valent expressions for L0 and Lcorr [see Eq. (6.18)] as shown below.

We begin by writing the QFPME (1.1) as

∂tρ̂t(D) = L̃(D)ρ̂t(D) + F(D)ρ̂t(D), (6.47)

where L̃(D) = L(D) + λD[Â]. By making use of Eqs. (6.29) and (6.31), we may split
Eq. (6.47) into two coupled differential equations,

∂tP ρ̂t(D) = PL̃(D)P ρ̂t(D) + PL̃(D)Qρ̂t(D), (6.48a)

∂tQρ̂t(D) = QL̃(D)P ρ̂t(D) +QL̃(D)Qρ̂t(D) +QF(D)Qρ̂t(D). (6.48b)

To arrive at these equations, we used that PF(D) = F(D)P = 0 and 1 = P +Q. The
formal solution to Eq. (6.48b) reads

Qρ̂t(D) = eQ[L̃(D)+F(D)]Q(t−t0)Qρ̂t0(D)

+

∫ t

t0
dseQ[L̃(D)+F(D)]Q(t−s)QL̃(D)P ρ̂s(D),

(6.49)

where Qρ̂t0(D) specifies the initial state in Q-space. As specified above, L̃(D) ∼ Γ and
F(D) ∼ γ, where 1/Γ and 1/γ determines the timescales of the system and the detector,
respectively. Here, we assume that γ ≫ Γ, such that the effect of L̃(D) in the exponentials
in Eq. (6.49) is vanishingly small, and thus can be removed to leading order. Since the
exponentials only act in Q-space, they will decay with time in the eigenbasis of F(D) (see
Appendix B.1). Therefore, we can putQρ̂t0(D) = 0, as we, typically, only are interested in
the long time limit. Plugging this back into Eq. (6.48a) gives

∂tP ρ̂t(D) = PL̃(D)P ρ̂t(D) + PL̃(D)Q
∫ t

t0
dseQF(D)Q(t−s)QL̃(D)P ρ̂s(D). (6.50)

If the state P ρ̂t(D) remains constant over the timescale 1/γ, during which the exponential
under the integral decays to zero, we may change variables t − s = z, extend the upper
integration limit to +∞, and replace ρ̂s(D) → ρ̂t(D). We now get

∂tP ρ̂t(D) = PL̃(D)P ρ̂t(D)− PL̃(D)QF−1(D)QL̃(D)P ρ̂t(D), (6.51)

where the (Drazin) inverse of F(D) is defined as

F−1(D) = −
∫ ∞

0
dzeQF(D)QzQ. (6.52)

In Appendix B.3, we show that this inverse is equivalent to the one in Eq. (6.39) – note
that we put a tilde on top of the superoperator F depending on whether the factor of γ
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is included or excluded in the operator, see definition below Eq. (6.32). Equation (6.51)
provides a Markovian master equation for the joint system-detector state P ρ̂t(D). As the
first term scales as Γ, and the second as Γ2/γ, we may think of the first term as the leading
order term for an infinitely quick detector (γ → ∞), while the second term can be thought
of as a correction due to a finite detector response time γ−1. By integrating Eq. (6.51) over
D, we find Eq. (6.18) with

L0 =

∫ ∞

−∞
dDL(D)G(D), (6.53)

and
Lcorr = −γ

∫ ∞

−∞
dDL(D)QF−1(D)QL(D)G(D). (6.54)

Equation (6.53) is presented in an identical form as in Eq. (6.44), while Eq. (6.54) appears
slightly different compared to Eq. (6.45). These two representations of Lcorr are, however,
identical – note thatF(D) = γF̃(D), and that the leftmostQ in Eq. (6.54) can be absorbed
into the inverse F−1(D) as demonstrated in Appendix B.3.

6.3.4 Explicit expressions for linear and threshold feedback

Equations (6.44), (6.45), (6.53), and (6.54) are general expressions for the leading order
and first order correction of the system dynamics when the relaxation time of the detector
is small. While L0 can be calculated straightforwardly, the inverse of the Fokker-Planck
superoperator in Lcorr complicates the evaluation of the correction term. In this section,
we provide a general method for evaluating this term. In particular, we focus on the spe-
cial cases of linear and threshold (bang-bang) feedback. For linear feedback, we recover
the Wiseman-Milburn equation (4.21) with additional correction terms due to a finite de-
tector bandwidth. For threshold feedback, we demonstrate how Eq. (6.18) can be used for
nonlinear feedback – this will be important for the results presented in Chapter 7.

The feedback Liouville superoperator L(D) can be written as

L(D) =
∑
aa′,bb′

Lbb′,aa′(D)Vbb′,aa′ , (6.55)

where Lbb′,aa′(D) are the matrix elements in the Liouville space representation [152] of
L(D), evaluated in the eigenbasis of the observable Â. These matrix elements can be ex-
panded in terms of the left eigenfunctions (6.28) as

Lbb′,aa′(D) =
∞∑
n=0

L(n)
bb′,aa′

He[σ]n

(
D− ξa+ξa′

2

)
√
n!σn

, (6.56)

77



where Eq. (6.22) provides the following expression for the expansion coefficients,

L(n)
bb′,aa′ =

∫ ∞

−∞
dD

Lbb′,aa′(D)√
2πn!σn+1

He[σ]n

(
D− ξa + ξa′

2

)
e−

(
D−

ξa+ξa′
2

)2/
2σ
. (6.57)

With these definitions, the correction term [here we use Eq. (6.54)] may be written as

Lcorr =

∞∑
n=1

1
n

n∑
k=0

√
n!/k!

(n− k)!

∑
aa′,bb′,cc′

(ξa + ξa′ − ξc − ξc′)
n−k

(2
√
σ)n−k

× L(n)
bb′,cc′L

(k)
cc′,aa′Vbb′,aa′ ,

(6.58)

where ξj are the eigenvalues of Â corresponding to the eigenstate |j⟩. To obtain this ex-
pression, we made use of Eqs. (6.22) and (6.23). Note that the sum over n starts at 1 –
this is due to the Q projectors in Eq. (6.54), making sure that the inverse only is taken
in the eigensubspace of F(D) with nonzero eigenvalues. This equation specifies a general
expression for Lcorr for arbitrary feedback protocols L(D), linear as well as nonlinear in
D.

Linear feedback

For the special case of linear feedback, we consider a feedback Liouvillian

L(D) = L+ DK, (6.59)

where L is the Liouville operator of the system in the absence of feedback, and K is a
Liouville superoperator describing the feedback forces applied on the system. The meas-
urement outcomeD can here be considered as the strength at which these forces are applied.
For linear feedback, Eq. (6.57) becomes

L(n)
bb′,aa′ = Lbb′,aa′δ0,n +

√
σKbb′,aa′δ0,n−1 +

ξa + ξa′

2
Kbb′,aa′δ0,n, (6.60)

where we employed Eqs. (6.22) and (6.24). Together with Eqs. (6.53) and (6.58), this
provides

L0 = L+KA(0), Lcorr =
γ

8λ
K2 +K[L,A(0)] +K[K,A(0)]A(0), (6.61)

where A(0)ρ̂ = 1
2{Â, ρ̂}. Plugging this into Eq. (6.18) gives us the Markovian master

equation

∂tρ̂t = Lρ̂t + λD[Â]ρ̂t +KA(0)ρ̂t +
1
8λ

K2ρ̂t

+ γ−1K[L,A(0)]ρ̂t + γ−1K[K,A(0)]A(0)ρ̂t.
(6.62)
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This is the Wiseman-Milburn equation (4.21) with two additional correction terms due to
a finite detector bandwidth γ. In the infinite bandwidth limit, we recover Eq. (4.21). The
fact that we may recover the result of Wiseman and Milburn indicates that there is a clear
connection between the main results of this thesis and earlier work [52]. As detailed before,
Eqs. (1.1) and (6.18) thus provides a generalization of the result in Ref. [52], able to describe
arbitrary feedback protocols, linear as well as nonlinear in D.

Finally, we make a remark. The separation of timescales approach assumes that γ is the
largest parameter in the problem, such that F(D) dominates over L(D). As the increment
dD in Eq. (4.16) scales as γ, the Liouville superoperator in Eq. (6.59) is unbounded, breaking
the assumption of F(D) being the dominant contribution in Eq. (1.1)². Because of this,
there is one term in Lcorr that scales with γ, contributing to leading order in γ−1. We
thus stress that the separation of timescales technique should be treated with care for linear
feedback. However, in the infinite bandwidth limit, we recovered the Wiseman-Milburn
equation, which is a sensible result.

Threshold feedback

Threshold feedback, or bang-bang control, is a special case of nonlinear feedback, where the
controller instantaneously switches between two different protocols, J and K, dependent
on whether the measurement outcome D is above or below a predetermined threshold
value. Using D = 0 as threshold, the feedback Liouville superoperator can be written as

L(D) = θ(D)J + [1− θ(D)]K, (6.63)

where θ(D) is the Heaviside step function. We begin to note that the leading order term
(6.53) is given by

L0 =
∑
aa′

[(1− ηaa′)J + ηaa′K]Vaa′,aa′ , (6.64)

where

ηaa′ =
1
2

(
1− erf

[√
λ

γ
(ξa + ξa′)

])
, (6.65)

with erf(·) being the error function.

To find the correction term (6.58), we use Eq. (6.57) to show that L(0)
bb′,aa′ = [L0]bb′,aa′ for

n = 0, while nonzero n gives

L(n)
bb′,aa′ = (J −K)bb′,aa′

(−1)n−1
√
2nn!π

e−
(ξa+ξa′ )

2

8σ Hn−1

(
ξa + ξa′√

8σ

)
, (6.66)

²Note that this assumption breaks down for all feedback protocols where L(D) = L+ f(D)K contains an
unbounded function f(D). Therefore, one needs to treat the separation of timescales technique with care for
unbounded feedback protocols.
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whereHn(·) is the standard physicist’sHermite polynomials. This was derived using Eq. (6.25)
and the fact that He[σ]n (−x) = (−1)nHe[σ]n (x). Plugging this into Eq. (6.58), gives the cor-
rection superoperator

Lcorr = (J −K)(J̃ − K̃ − L̃0), (6.67)

where the matrix elements of L̃0 are given by

[
L̃0
]
bb′,aa′ = [L0]bb′,aa′

∞∑
n=0

[√
λ
γ

(
ξb + ξb′ − ξa − ξa′

)]n+1

(n+ 1)(n+ 1)!
√
π

× e−
λ
γ
(ξb+ξb′ )

2
Hn

[√
λ

γ
(ξb + ξb′)

]
,

(6.68)

and the elements of J̃ − K̃ are given by

(J̃ − K̃)bb′,aa′ = (J −K)bb′,aa′
∞∑
n=0

n∑
k=0

(
n
k

)[√λ
γ

(
ξb + ξb′ − ξa − ξa′

)]n−k

2k+1(k+ 1)(n+ 1)!π

×e−
λ
γ [(ξa+ξa′ )

2+(ξb+ξb′ )
2]Hk

[√
λ

γ
(ξa + ξa′)

]
Hn

[√
λ

γ
(ξb + ξb′)

]
.

(6.69)

We note that the sums appearing in Eqs. (6.68) and (6.69) can be converted into integrals
that are straightforward to evaluate numerically. For the single sum in Eq. (6.68), we get
∞∑
n=0

[
√
α(b− a)]n+1

(n+ 1)(n+ 1)!
√
π
e−αb2Hn

[√
αb
]
=

1
2

∫ 1

0
dy
erf [

√
αb]− erf [

√
α(b[1− y] + ay)]

y
,

(6.70)
for α > 0 and arbitrary constants a and b. This was obtained using 1/(n+ 1) =

∫ 1
0 dyyn

twice, and that exp
{
2xt− t2

}
=
∑∞

n=0 t
nHn(x)/n!. The double sum in Eq. (6.69) can be

converted into the following integrals,
∞∑
n=0

n∑
k=0

(
n
k

)
[
√
α(b− a)]n−k

2k+1(k+ 1)(n+ 1)!π
e−α(a2+b2)Hk

[√
αa
]
Hn
[√
αb
]
=

=
sgn(a)− erf(

√
αa)

4

∫ 1

0
dy
erf{

√
α[b(1− y) + ay]} − erf{

√
αb(1− y)}

y
+

+
1
2π

∫ 1

0
dy
∫ 1

0
dz

{
e
−α

[
a2+b2 (1−y)2

1−y2z2

]
√
1− y2z2

−
√
παe−α[b(1−y)+ayz]2

×

[
|a|+ a erf

(
√
α
by(1− y)z− a(1− y2z2)√

1− y2z2

)]}
.

(6.71)
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In Appendix B.4, we provide details on how to find this integral representation.
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Chapter 7

Results II: Toy models

In this chapter, we illustrate how the QFPME (1.1) and the separation of timescales tech-
nique (Chapter 6.3) can be applied on specific systems. To this end, we consider two simple
information engines using measurement and feedback for producing power. First, we con-
sider a classical two-level system coupled to a thermal environment that can excite and
de-excite the system. Through a simple feedback protocol, energy can be extracted from
the thermal environment. Second, we study a coherently driven qubit. By applying the
same feedback protocol as in the classical model, it is possible to extract energy from the
drive in the long time limit, while simultaneously preserving the quantum coherence of the
system.

7.1 Full counting statistics

We begin by showing how full counting statistics can be used in the QFPME (1.1). By
extending the system-detector density matrix to include the number of transported particles
as ρ̂t(D) → ρ̂t(D, n), we find the probability distribution over n via

Pt(n) =
∫ ∞

−∞
dD tr{ρ̂t(D, n)}. (7.1)

The joint system-detector density matrix is recovered by summing over all possible n,
ρ̂t(D) =

∑
n ρ̂t(D, n). By introducing a counting field χ, we can find the counting field

dependent density matrix ρ̂t(D, χ) =
∑

n ρ̂t(D, n)e
inχ. The QFPME can now be written

as

∂tρ̂t(D, χ) = L(D, χ)ρ̂t(D, χ)+λD[Â]ρ̂t(D, χ)−γ∂DA(D)ρ̂t(D, χ)+
γ2

8λ
∂2Dρ̂t(D, χ),

(7.2)
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with the counting field dependent Liouville superoperator L(D, χ). The moment gener-
ating function can be defined as

Mt(χ) =

∫ ∞

−∞
dD tr{ρ̂t(D, χ)}. (7.3)

In steady state, we find

⟨n⟩ = −i∂χMt(χ)|χ=0 = −it
∫ ∞

−∞
dD tr {[∂χL(D, χ)]χ=0ρ̂ss(D)} , (7.4)

where ρ̂ss(D) is the stationary joint system-detector density matrix.

7.2 Classical toy model

We consider a classical two-level system with states |0⟩ and |1⟩ separated by energy Δ as
depicted in the inset of Fig. 7.1(a). The system is in contact with a thermal reservoir at
temperature T, with which the system can exchange energy quanta at a rate given by Γ.
We continuously monitor the state of the system by measuring the observable Â = σ̂z =
|1⟩⟨1| − |0⟩⟨0|. For an ideal detector, with low noise and delay, this means that whenever
the measurement outcome D < 0, the system resides in |0⟩, while the system resides in
|1⟩ for D ≥ 0. Note that while we use the notation of quantum mechanics, the diagonal
and off-diagonal elements of the system density matrix ρ̂t(D) are decoupled, such that
[ρ̂t(D), σ̂z] = 0 at all times, and the backaction term of Eq. (1.1) has no effect on the
system dynamics. Therefore, we refer to the system as classical.

The feedback protocol works as follows. Upon detecting an excitation in the system, i.e., by
observing a change of sign for D, the levels are immediately flipped according to the solid
arrows in the inset of Fig. 7.1(a), extracting energy from the reservoir. The Hamiltonian
under this feedback is given by

Ĥ(D) = [1− θ(D)]Δ |1⟩⟨1|+ θ(D)Δ |0⟩⟨0| , (7.5)

with θ(D) being the Heaviside step function. Since [Ĥ(D), σ̂z] = 0, the density matrix
remains diagonal in the energy basis at all times. The feedback protocol is thus represented
by the following Liouville superoperator,

L(D) = [1− θ(D)]L− + θ(D)L+. (7.6)

Here L−ρ̂ = ΓnBD[σ̂†]ρ̂ + Γ[nB + 1]D[σ̂]ρ̂ is the protocol applied for D < 0, and
L+ρ̂ = Γ[nB + 1]D[σ̂†]ρ̂ + ΓnBD[σ̂]ρ̂ is the protocol applied for D ≥ 0, with D[̂c]ρ̂ =
ĉρ̂̂c† − {̂c†ĉ, ρ̂}/2 for an arbitrary operator ĉ, σ̂ = |0⟩⟨1|, and nB = [exp(Δ/kBT)− 1]−1
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Figure 7.1: Power production of the classical (a) and quantum (b) toy model as a function of λ/γ. Dashed lines correspond
to analytical calculations, solid lines to numerical calculations. (a) The inset visualizes the classical toy model and
its feedback protocol. When an excitation (dashed arrow) is detected, the levels are flipped according to the solid
arrows. The black, dashed line corresponds to Eq. (7.11), while the colored dashed lines correspond to Eq. (7.25).
For λ ≫ γ (strong measurement), feedback is consistently applied correctly, and nB sets an upper bound on how
much energy that can be extracted from the bath (grey, dashed line). For λ ≪ γ (weak measurement), feedback is
applied randomly, leading to dissipation of energy. Here we used Δ/kBT = 1. (b) The inset illustrates the quantum
toy model, where a qubit is driven by an external semiclassical field. Measurement and feedback are performed
exactly as in the classical model. The dashed lines correspond to Eq. (7.34). For λ ≫ γ, the power vanishes – this
illustrates the quantum Zeno effect. For λ ≪ γ, feedback is applied randomly, and no power can be extracted due
to the symmetric driving (see discussion in Sec. 7.3). From the numerics, we note that the separation of timescales
approximation breaks down when γ is comparable in size to all other timescales. (c) Visualization of the numerically
calculated ρ̂t(D) for the quantum toy model in steady state for t = τ = 2π/Δ (period of driving field), with matrix
elements ρab(D) = ⟨a|ρ̂t(D)|b⟩. Here we use g/Δ = 0.01 and γ = Δ = λ. Upper panel shows the diagonal
elements of ρ̂t(D). Bottom panel visualizes the real and imaginary part of ρ01(D). Figure taken from Paper I.

is the Bose-Einstein distribution giving the average occupation of the reservoir at energy
Δ. By writing the density matrix as a vector ρ = (ρ00, ρ11)

T, with ρaa = ⟨a|ρ̂|a⟩, we can
write L− and L+ in matrix representation, including counting fields (see Sec. 3.4), as

L−(χ) =

(
−ΓnB Γ(nB + 1)e−iχ

ΓnBeiχ −Γ(nB + 1)

)
, L+(χ) =

(
−Γ(nB + 1) ΓnBeiχ

Γ(nB + 1)e−iχ −ΓnB

)
.

(7.7)
We recover L− and L+ in Eq. (7.6) by putting χ = 0 in these matrices.

To find the system dynamics under feedback, we use the separation of timescales technique
from Chapter 6, and find, by using Eqs. (6.63) and (6.64), the following counting field
dependent feedback Liouvillian to leading order in γ−1,

L0(χ) = [(1− η)L−(χ) + ηL+]V00,00 + [ηL−(χ) + (1− η)L+(χ)]V11,11 =

= Γ

(
−(1− η)nB − η(nB + 1) (1− η)nBeiχ + η(nB + 1)e−iχ

(1− η)nBeiχ + η(nB + 1)e−iχ −(1− η)nB − η(nB + 1)

)
.
(7.8)

Here we have introduced the feedback error probability

η =
1
2

[
1− erf

(
2

√
λ

γ

)]
. (7.9)

The error probability is bounded by 0 ≤ η ≤ 1/2, and depends solely on the ratio λ/γ,
which directly determines the magnitude of the detector noise, see Chapter (6). For strong
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measurements (λ≫ γ), the detector noise becomes infinitesimal and the error probability
vanishes. This makes intuitive sense, for a detector with low noise, the feedback protocol
will be applied correctly at all times. For a weak measurement (λ≪ γ), the measurement
outcome fluctuates violently, and the error probability is maximized (η = 1/2). That is, for
a noisy signal, it is difficult to distinguish the system state, and feedback is applied randomly.
We thus see that Eq. (7.8) provides an effective description of the system dynamics under
feedback, where each transition rate is weighted in a way corresponding to how probable
it is to occur.

By counting the number of extracted and dissipated energy quanta n, we can evaluate the av-
erage power as P = ∂tΔ⟨n⟩. Employing the techniques presented in Chapter 3.4, Eq. (7.8)
provides the following cumulant generating function to leading order in γ−1,

Ct(χ) = λ0(χ)t = Γt
[(
eiχ − 1

)
(1− η)nB +

(
e−iχ − 1

)
η(nB + 1)

]
, (7.10)

where λ0(χ) is the eigenvalue of L0(χ) which vanishes for χ = 0. This cumulant generat-
ing function corresponds to a bidirectional Poisson process [124]. From Eq. (3.35), we find
the average steady state power production to leading order,

P0 = ΓΔ [(1− η)nB − η(nB + 1)] , (7.11)

where the subscript ‘0’ denotes that this is the power corresponding to the leading order
separation of timescales Liouvillian in Eq. (7.8). Note that P0 > 0 when extracting energy
from the reservoir. When measuring strongly, the error probability vanishes (η → 0), and
the feedback is always applied as intended. In this limit, we reach the maximum power
production P0 = ΓΔnB, which is limited by the rate Γ and the average occupation of the
bath nB. In the weak measurement regime (η → 1/2), feedback is applied randomly, and
as the excitation and de-excitation rates are asymmetric, energy is dissipated to the bath
in this limit. The maximum dissipation rate is given by P0 = −ΓΔ/2. Equation (7.11) is
plotted in Fig. 7.1(a) as the black, dashed line.

With Eqs. (3.37) and (7.10), we find the probability distribution Pt(n), giving the probab-
ility to have n extracted energy quanta after time t. The distribution is visualized in Fig. 7.2
for various values of Γt and η. For η = 0, the probability distribution traverses in the
direction of positive n, always being 0 for n < 0. That is, with no feedback errors, energy is
only extracted. For η ̸= 0, the distribution spreads over negative n as well, illustrating that
feedback errors lead to dissipation. This effect is most pronounced for η = 1/2, where the
average of the distribution becomes negative, as discussed below Eq. (7.11).

We may also calculate the second power cumulant to leading order in γ−1 as

⟨⟨P20⟩⟩ = ΓΔ2 (η + nB) , (7.12)

where we used Eq. (3.35). This corresponds to the zero frequency noise of the power cor-
relator as discussed in Chapter 3.4.
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Figure 7.2: Visualization of the distribution Pt(n) of the number of extracted energy quanta n after time t in the classical toy
model. Each column is evaluated at a specific value of Γt specified on the top of the figure. The rows are evaluated
for different values of the error probability η. (a)-(c) η = 0. When no errors occur, the distribution is only non-zero
for n ≥ 0, and moves along the positive n-axis. (d)-(f) η = 0.3. The presence of feedback errors lead to dissipation
of energy (n < 0). (g)-(i) η = 0.5. As the error probability is maximized, the distribution moves towards the negative
n-axis as the asymmetry in excitation and de-excitation rates leads to dissipation. In these plots, we used nB = 1.

For zero counting field, Eq. (7.8), can be written as

L0 =

(
−M(−)

10 −M(+)
10 M(−)

01 +M(+)
01

M(−)
10 +M(+)

10 −M(−)
01 −M(+)

01

)
. (7.13)

where M(ν)
ab is the transition rate going from state b to a with level configuration ν = ±,

with (−) representing the configuration with |0⟩ as ground state, and (+) the configuration
with |1⟩ as ground state. The matrix elements read

M(−)
01 = M(+)

10 = ηΓ(nB+ 1), M(−)
10 = M(+)

01 = (1− η)ΓnB. (7.14)

87



We note that these rates satisfy the following modified local detailed balance relation,

ln

(
M(±)

01

M(±)
10

)
= ∓

[
Δ
kBT

− ln

(
1− η

η

)]
. (7.15)

The form of this relation is identical to Eq. (5.51), and the methods of Ref. [144] may be
employed to derive a fluctuation theorem. The forward system trajectory can be defined as
[similarly as in Eq. (5.10)]

X = (tj, νj, xj)nj=1, (7.16)

where the system makes the transition xj−1 → xj at time tj with level configuration νj.
The time reversed trajectory Xtr can be defined similarly as in Eq. (5.28). As the average
number of extracted energy quanta ⟨n⟩ grows linearly in time [see Eqs. (3.35) and (3.40)], the
entropy change in the two-level system will be vanishingly small compared to the average
steady state entropy production in the bath Δsres = ⟨n⟩Δ/T. Therefore, we obtain the
following detailed fluctuation theorem in the stationary limit,

P(Xtr)
P(X)

= eN(X)
[

Δ
kBT

−ln
(

1−η
η

)]
, (7.17)

where N(X) is the number of extracted energy quanta along trajectory X, Δ/T is the en-
tropy change in the bath due to the exchange of a single energy quantum, and ln[(1−η)/η]
is an information term due to the measurement and feedback process. This term is writ-
ten on the form of the log odds of not making a feedback error, and corresponds to the
difference in information content¹ between correctly and incorrectly applying feedback.
Interestingly, most information obtained from the continuous measurement is discarded –
it is only the information related to changes in N(X) that plays an important role. In the
error free limit, η → 0, the information term diverges, and P(Xtr) becomes vanishingly
small compared to P(X), illustrating absolute irreversibility. In this limit, all excitations are
extracted. The fluctuation theorem may be rewritten on a more convenient form by intro-
ducing the probability P(n) =

∑
X:N(X)=n P(X) of observing n extracted energy quanta.

We now get
P(−n)
P(n)

= en
[

Δ
kBT

−ln
(

1−η
η

)]
. (7.18)

Note that n > 0when extracting energy, and n < 0when dissipating energy. This illustrates
how the QFPME (1.1) may be used to highlight the connection between thermodynamics
and information theory in conitnuously feedback controlled systems. Note that we can
remove the ‘tr’ on the time reversed probability as the forward and backward experiments
are identical, and as we consider the stationary limit where the distributions of the initial
and final states can be neglected.

¹The information content for a random event x is given by I(x) = − ln[p(x)], where p(x) is the probability
of observing x.
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As the final part of this section, we study the first order correction to Eq. (7.8). Using
Eqs. (6.67), (6.70) and (6.71), we find the counting field dependent correction

Lcorr(χ)

Γ2 = C11−
[
nBeiχ − (nB + 1)e−iχ] {nBeiχ[C2 + (1− η)C0]− (nB + 1)e−iχ[C2 − ηC0]

}
I

+ C1
[
nBeiχ − (nB + 1)e−iχ]σx − {nBeiχ[C2 + (1− η)C0]− (nB + 1)e−iχ[C2 − ηC0]

}
σx,

(7.19)
where I is the two dimensional identity matrix, and σx is the Pauli-X matrix. The coeffi-
cients C0, C1, and C2 are defined as

C0 =
1
2

∫ 1

0
dy
erf(2

√
α)− erf[2

√
α(1− 2y)]

y
, (7.20)

C1 =
η

2

∫ 1

0
dy
erf(2

√
α)− erf[2

√
α(1− y)]

y

+
1
2π

∫ 1

0
dy
∫ 1

0
dz

{
e
−4α

[
1+ (1−y)2

1−y2z2

]
√
1− y2z2

−
√
4παe−4α[1−y+yz]2

×

[
1+ erf

(
2
√
α
yz(1− y) + y2z2 − 1√

1− y2z2

)]}
,

(7.21)

C2 =
η

2

∫ 1

0
dy
erf[2

√
α(1− y)]− erf[2

√
α(1− 2y)]

y

+
1
2π

∫ 1

0
dy
∫ 1

0
dz

{
e
−4α

[
1+ (1−y)2

1−y2z2

]
√

1− y2z2
−
√
4παe−4α[1−y−yz]2

×

[
1− erf

(
2
√
α
yz(1− y)− y2z2 + 1√

1− y2z2

)]}
,

(7.22)

where α = λ/γ. At zero counting field, we get, to first order in γ−1, the total feedback
Liouvillian

Lfb = L0 + γ−1Lcorr =
{
Γ [(1− η)nB + η(nB + 1)]

− Γ2

γ
[C0(nB + η) + C1 − C2]

}(−1 1
1 −1

)
.

(7.23)

Because of the symmetry of this matrix, the stationary system state is given by ρ̂ss = 1/2,
with 1 being the identity matrix in two dimensions. With full counting statistics, we find
the following correction to the average power production,

Pcorr = −iΔ tr{L′
corr(χ)|χ=0ρ̂ss} = −Γ2(2nB + 1)[(nB + η)C0 − C1 − C2], (7.24)
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where the prime denotes the derivative with respect to χ. The average power production
to first order in γ−1 now reads

P = ΓΔ [(1− η)nB − η(nB + 1)]− Γ2

γ
(2nB + 1)[(nB + η)C0 − C1 − C2]. (7.25)

This equation is plotted in Fig. 7.1(a) as colored, dashed lines. The solid lines in Fig. 7.1(a)
were calculated numerically with Eq. (7.4) by solving the full QFPME (1.1) according to
the method outlined in Appendix D, without any restrictions on the timescales. When the
detector timescale is larger than the system timescale, there is a good agreement between
Eq. (7.25) and the numerical solution. However, as the timescales become similar in size,
the separation of timescales approximation breaks down [see blue lines in Fig. 7.1(a)]. We
further note that the maximal extracted power decreases with the ratio γ/Γ. When the
detector and system timescales become similar in size, the detector cannot resolve all excit-
ation events in the system, missing opportunities to extract energy.

7.3 Quantum toy model

The quantum toy model is depicted in the inset of Fig. 7.1(b). It consists of a coherently
driven qubit with energy splitting Δ. Similar to the classical toy model, we continuously
measure σ̂z = |1⟩⟨1|−|0⟩⟨0|. Again, we assume thatD < 0 when the system resides in |0⟩,
and D ≥ 0 when the system resides in |1⟩. Feedback is applied by flipping the levels [solid
arrows in Fig. 7.1(b)] when an excitation [dashed arrow in Fig. 7.1(b)] is detected. Energy
can thus be extracted from the driving field. This feedback protocol is represented by the
Liouville superoperator Lt(D)ρ̂ = −i[Ĥt(D), ρ̂], where the Hamiltonian is given by

Ĥt(D) = [1− θ(D)]Δ |1⟩⟨1|+ θ(D)Δ |0⟩⟨0|+ g cos(Δt)σ̂x, (7.26)

where g is the strength of the drive, and σ̂x is the Pauli-X operator.

With the separation of timescales technique (Chapter 6), Eqs. (6.63) and (6.64) provide
the leading order system dynamics

L0ρ̂ = −ig cos(Δt)[σ̂x, ρ̂]. (7.27)

We can further find the first order correction with Eqs. (6.67)-(6.71),

Lcorrρ̂ =
Δ2 ln(2)

2
D[σ̂z]ρ̂− 2ΔgD0 cos(Δt)σ̂x, (7.28)

where D0 =
√
4λ/πγF2F2(1/2, 1/2; 3/2, 3/2;−4λ/γ), withF2F2(·) being a generalized

hypergeometric function. Note that the first term adds additional dephasing to the system
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beyond the backaction due to the continuous measurement. The second term is a source for
quantum coherence. Without this source term, the stationary state of the system is given by
the maximally mixed state. Note that the source term can give rise to negative eigenvalues
in the density matrix. This should not be an issue in the separation of timescales regime,
where this term scales as 1/γ. To first order in γ−1, the system evolves according to

Lfbρ̂ =
(
L0 + λD[σ̂z] + γ−1Lcorr

)
ρ̂t

= −ig cos(Δt)[σ̂x, ρ̂t]ρ̂t + λ̃D[σ̂z]−
2Δg
γ

D0 cos(Δt)σ̂x,
(7.29)

where we get the effective dephasing rate λ̃ = λ+ Δ2 ln(2)/2γ.

Because of the periodic driving, the system tends to a periodic stationary state. To this end,
we use the following ansatz to solve the equation of motion,

ρ̂t = ρ̂(0) + ρ̂(s) sin(Δt) + ρ̂(c) cos(Δt), (7.30)

where ρ̂(0), ρ̂(s), and ρ̂(c) are coefficient operators. To avoid higher order harmonics in the
solution, we require that 0 = [σ̂x, ρ̂

(s)] = [σ̂x, ρ̂
(c)]. With these assumptions, we find the

periodic steady state

ρ̂t =
1
2
− 2Δg

γ
D0

2λ̃ cos(Δt) + Δ sin(Δt)
Δ2 + 4λ̃2

σ̂x. (7.31)

To leading order, i.e., in the limit γ → ∞, this becomes the maximally mixed state as
discussed above.

The power in the system is defined as

P(t) =
∫ ∞

−∞
dD tr{∂tHt(D)ρ̂t(D)}. (7.32)

Since ∂tĤt(D) = −Δg sin(Δt)σ̂x, the stationary power can be calculated with Eq. (7.31),

P(t) =
4g2Δ2

γ
D0 sin(Δt)

2λ̃ cos(Δt) + Δ sin(Δt)
Δ2 + 4λ̃2

. (7.33)

Averaging this power over one driving period τ = 2π/Δ, we get

P̄ =
1
τ

∫ τ

0
dtP(t) =

2g2Δ
γ

D0
Δ2

Δ2 + 4λ̃2
. (7.34)

This equation is plotted in Fig. 7.1(b) as dashed lines. For strong measurements (λ ≫ γ),
the power goes to zero due to the quantum Zeno effect, see discussion in Chapter 4. For
weak measurements (λ≪ γ), the feedback is applied randomly (see discussion in Sec. 7.2),
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and due to the symmetric driving, no power can be extracted on average. To go beyond the
separation of timescales approximation, we also calculated the power numerically under
weak driving, i.e., we assume g ≪ Δ – see the solid lines in Fig. 7.1(b). As for the classical
model, we find that the separation of timescales approximation breaks down as γ becomes
similar in size to the other system parameters.

Finally, we briefly outline how the power was calculated numerically by solving the full
QFPME (1.1). As the system tends to a periodic stationary state, we can expand the system-
detector density matrix as a Fourier series,

ρ̂t(D) =
∞∑

q=−∞
ρ̂q(D)eiqΔt, (7.35)

where the expansion coefficients can be calculated via

ρ̂q(D) =
1
τ

∫ τ

0
dtρ̂t(D)e−iqΔt. (7.36)

Inserting this in the QFPME (1.1) yields

0 =
[
L̃(D)− iqΔ

]
ρ̂q(D) + L̂

[
ρ̂q−1(D) + ρ̂q+1(D)

]
, (7.37)

with

L̃(D)ρ̂ = −i[ĥ(D), ρ̂] + λD[σ̂z]ρ̂− γ∂DA(D)ρ̂+
γ2

8λ
∂2Dρ̂,

L̂ρ̂ = − ig
2
[σ̂x, ρ̂],

(7.38)

where ĥ(D) = [1−θ(D)]Δ |1⟩⟨1|+θ(D)Δ |0⟩⟨0|. To simplify calculations, we concentrate
on the weak driving regime where g ≪ Δ. Under this assumption, we expand the expansion
coefficients to first order in g/Δ as ρ̂q(D) ≈ ρ̂

(0)
q (D)+ g

Δ ρ̂
(1)
q (D). Together with Eq. (7.37),

we get the following set of equations,

0 = [Δ−1L̃(D)− iq]ρ̂(0)q (D), (7.39a)

0 = [Δ−1L̃(D)− iq]ρ̂(1)q (D) + g−1L̂[ρ̂(0)q−1(D) + ρ̂
(0)
q+1(D)]. (7.39b)

Equation (7.39a) yields complex solutions for the diagonal density matrix elements for
q ̸= 0. Therefore, these solutions must be neglected, and we can solely focus on the case
q = 0. To zeroth order we get

ρ̂
(0)
q=0(D) =

1
2

√
4λ
πγ

[
e−

4λ
γ
(D+1)2 |0⟩⟨0|+ e−

4λ
γ
(D−1)2 |1⟩⟨1|

]
. (7.40)
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To find the first order solution ρ̂(1)q (D), we solve Eq. (7.39b) for q = ±1 with the nu-
merical method outlined in Appendix D. With Eq. (7.32), we find the system power. The
time averaged power is visualized as solid lines in Fig. 7.1(b). In Fig. 7.1(c), we plot the
numerically calculated density matrix elements for t = τ = 2π/Δ.
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Chapter 8

Summary and outlook

In this thesis, we derived and discussed the quantum Fokker-Planck master equation in
Eq. (1.1). This equation describes the joint system-detector dynamics of a continuously
feedback controlled quantum system. The novelty of this equation lies in its ability to
describe feedback protocols that depend linearly as well as nonlinearly on the measured
signal. Two derivations of this result were provided. One based on conventional calculus,
and one based on stochastic calculus. We showed how the quantum Fokker-Planck master
equation can be reduced to a Markovian master equation describing the system dynamics
alone. In particular, we noted that this master equation generalizes the Wiseman-Milburn
equation to nonlinear feedback protocols. To illustrate the usefulness of the developed
formalism, two information engines based on nonlinear feedback were studied. First, we
discussed a classical model where continuousmeasurement and feedback was used to extract
energy from a heat bath. In particular, we derived a fluctuation theorem that provides
insight into the thermodynamics of information. Second, we studied a quantum model,
where we demonstrated that energy can be extracted from an external driving field, while
simultaneously stabilizing quantum coherence in the long time limit.

With the classical model, we demonstrated that the quantum Fokker-Planck master equa-
tion can provide insights into the connection between thermodynamics and information
theory. Building on this, future studies of the derived formalism could investigate the
thermodynamics of continuous measurements and feedback. This could provide insights
about the energetic costs of performing a continuous measurement. In addition, exploring
the possibility of deriving general, system independent fluctuation theorems for the joint
system-detector description could lead to an increased understanding of the thermodynam-
ics of continuous information processing. Of fundamental interest is also to extend these
fluctuation theorems to the quantum realm.
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A number of possible extensions of the formalism are of interest. First, by including the
description of multiple simultaneous measurements of different observables, the formalism
could be used to describe more complex feedback protocols. Additionally, if these observ-
ables are non-commuting, the formalism could shine light on the fundamental limits of
feedback control in quantum systems. Second, as the quantum Fokker-Planck equation
is restricted to Markovian systems, it is of interest to extend it to include the description
of non-Markovian dynamics. Another interesting extension would be to include state-
estimation feedback [55, 153] and delays in the application of feedback.

In Chapter 4, we noted that linear feedback has been used to improve entanglement pro-
duction in systems where entanglement can be generated autonumously. Inspired by this,
future studies should investigate the possibility to improve the entanglement production
with nonlinear feedback. The quantum Fokker-Planck master equation is a promising tool
for deriving analytical results in this direction. A concrete candidate for investigating this
is the system discussed in Ref. [154], where a quantum heat engine is used to produce en-
tanglement in the long time limit.
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Measurement and feedback control are essential features of quantum science, with applications ranging
from quantum technology protocols to information-to-work conversion in quantum thermodynamics.
Theoretical descriptions of feedback control are typically given in terms of stochastic equations requiring
numerical solutions, or are limited to linear feedback protocols. Here we present a formalism for continuous
quantum measurement and feedback, both linear and nonlinear. Our main result is a quantum Fokker-
Planck master equation describing the joint dynamics of a quantum system and a detector with finite
bandwidth. For fast measurements, we derive a Markovian master equation for the system alone, amenable
to analytical treatment. We illustrate our formalism by investigating two basic information engines, one
quantum and one classical.

DOI: 10.1103/PhysRevLett.129.050401

Introduction.—Quantum measurement and feedback
control are key elements for emerging quantum techno-
logies, enabling a wide range of applications, including
quantum error correction [1], deterministic entanglement
generation [2], atomic clocks [3], and quantum state
stabilization [4–6]. The past two decades have also wit-
nessed a large number of fundamental experiments on
feedback control of quantum systems [7–18]. Of special
interest are experiments in quantum thermodynamics [19]
—by using measurement and feedback, processes that are
otherwise forbidden by the second law of thermodynamics
may be realized, compellingly illustrated by Maxwell’s
demon [20–22]. Over the past ten years, the demon has
been realized in a wide range of experimental settings, both
in classical [23–29] and, recently, quantum systems [30–
34]. This activity has inspired further work investigating
the connection between thermodynamics and information
theory [35–37], and has resulted in generalizations of the
second law for feedback controlled systems [38–48]. A
promising platform for exploring feedback control within
quantum thermodynamics is solid-state electronic systems
[49], ranging from semiconductor quantum dots [50] to
superconducting qubits [51]. Key features in these systems
are large and fast tunability of system properties [52–54]

and time resolved measurements [55,56]. Moreover, both
discrete [29,57,58] and continuous [6,27] feedback proto-
cols have been demonstrated experimentally.
The theoretical description of feedback control in quan-

tum systems is typically based on stochastic differential
equations [59–70]—powerful tools that can describe dis-
crete as well as continuous feedback protocols. In general,
these equations must be solved numerically, providing
limited qualitative insight. An important exception, ame-
nable to analytical treatment, is the Wiseman-Milburn
equation [63], a Markovian master equation for continuous
feedback protocols that depend linearly on the measured
signal. However, optimal control often requires nonlinear
protocols, for instance, bang-bang control [71,72] which
has promising thermodynamic applications in solid-state
architectures [27,73–75]. For such continuous, nonlinear
feedback protocols, no master equation description exists,
emphasizing a need for further analytical tools. We stress
that the word “nonlinear” here refers to the protocol’s
dependence on the measured signal, not to the system’s
dynamics.
In this Letter, we satisfy this need by developing a

general framework for continuous measurement and feed-
back control in quantum systems, able to provide analytical
insight into nonlinear feedback protocols. Our main result,
Eq. (1) below, is a quantum Fokker-Planck master equation
describing the joint dynamics of a quantum system and a
detector with finite bandwidth (see Fig. 1). This equation is
applicable to any quantum or classical system undergoing
continuous feedback control. For fast measurements,
Eq. (1) reduces to a Markovian master equation for the
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system alone, generalizing the Wiseman-Milburn equation
to nonlinear feedback protocols. The broad scope of Eq. (1)
suggests that our results will impact a wide variety of topics
where nonlinear, continuous feedback control can be
applied, such as quantum error correction [1], entanglement
generation [2], quantum state stabilization [6], Maxwell’s
demon [74,75], and machine learning [76].
To illustrate our formalism, we investigate two toy

models, a classical and a quantum two-level system,
operated via nonlinear feedback protocols. For the classical
model, we also derive a fluctuation theorem, highlighting
the role of continuous measurement and feedback in
information thermodynamics.
Fokker-Planck master equation.—A general setup for

continuous measurement and feedback is depicted in Fig. 1.
We consider an open quantum system whose dynamics, in
the absence of measurement and feedback, are described by
a Liouville superoperator L. A detector continuously
measures a system observable Â. The measurement
strength λ determines the magnitude of the measurement
backaction, the limit λ → 0 (λ → ∞) corresponds to a
weak, nonintrusive (strong, projective) measurement pre-
serving (destroying) the quantum coherence of the system.
Weak measurements thus reduce backaction, but increase
measurement uncertainty. To provide a realistic detector
description, we consider a finite bandwidth γ, acting as a
low-pass frequency filter, eliminating high frequency
measurement noise at the cost of introducing a time delay
scaling as 1=γ. Feedback control is incorporated by con-
tinuously feeding back the measurement outcome D into
the system, controlling the system Liouville superoperator
via LðDÞ.

Our main result is the following deterministic Fokker-
Planck master equation (derivation outlined below),

∂tρ̂tðDÞ ¼ LðDÞρ̂tðDÞ þ λD½Â�ρ̂tðDÞ

− γ∂DAðDÞρ̂tðDÞ þ γ2

8λ
∂
2
Dρ̂tðDÞ; ð1Þ

describing the joint system-detector dynamics under con-
tinuous measurement and feedback control. The density
operator ρ̂tðDÞ represents the joint state of system and
detector, where ρ̂t ≡

R
dD ρ̂tðDÞ is the system state for

an unknown measurement outcome D, and PtðDÞ≡
trfρ̂tðDÞg defines the probability distribution of the meas-
urement outcome D. Note that

R
dDPtðDÞ ¼ 1 and

trfρ̂tg ¼ 1; see Supplemental Material (SM) [77]. The first
term on the rhs of Eq. (1) describes the feedback-controlled
evolution of the system. This term allows for feedback
protocols that are nonlinear in D. The second term, where
D½Â�ρ̂ ¼ Â ρ̂ Â− 1

2
fÂ2; ρ̂g (note Â† ¼ Â), describes how

the system is dephased in the eigenbasis of Â at a rate
proportional to λ due to measurement backaction. The last
two terms constitute a Fokker-Planck equation describing
the detector time evolution. These terms define an
Ornstein-Uhlenbeck process [87] with a system dependent
superoperator drift coefficient AðDÞρ̂≡ 1

2
fÂ −D; ρ̂g and

diffusion constant γ=8λ. This describes a noisy relaxation
of the measurement outcome toward a value determined by
the system state. The derivation of Eq. (1) is rather
involved; see details in SM [77]. The main text instead
aims to highlight its implications and applications.
However, we sketch the derivation at the end of the Letter.
Equation (1) is, like most formalisms for continuous

measurement and feedback, typically restricted to numeri-
cal solutions. However, when there exists a wide separation
between the system and detector timescales, Eq. (1) sim-
plifies to a Markovian master equation for the system state
ρ̂t, allowing for analytical treatment. The detector timescale
1=γ appears in the last two terms in Eq. (1), and the system
timescale 1=Γ is determined by LðDÞ þ λD½Â�. The role of
λ, the measurement strength, is subtle; see below. When
γ ≫ Γ, ρ̂t evolves, to first order in 1=γ, according to

∂tρ̂t ¼ ½L0 þ λD½Â� þ γ−1Lcorr�ρ̂t; ð2Þ

with zeroth order Liouville superoperator L0 and
first order correction Lcorr. L0 is obtained by appro-
ximating the system-detector density operator as
ρ̂tðDÞ ¼ ½Paa0 πaa0 ðDÞVaa0 �ρ̂t, with

πaa0 ðDÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4λ=πγ

p
e−ð4λ=γÞ½D−ðξaþξa0 Þ=2�2 ; ð3Þ

and superoperators Vaa0 ρ̂≡ hajρ̂ja0ijaiha0j, where we used
the eigenvalues and eigenvectors of the measured operator
Â ¼ P

a ξajaihaj. In this approximation, the detector is

FIG. 1. Illustration of a generic measurement and feedback
setup, consisting of an open quantum system and a detector
with finite bandwidth γ. The detector continuously measures an
arbitrary system observable. The measurement strength λ
determines measurement backaction. Continuous feedback is
applied using the measurement outcome D to control the
Liouville superoperator LðDÞ of the system. The time traces
visualize trajectories for the system state SðtÞ and the measure-
ment record DðtÞ.
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always in a system dependent stationary distribution
πaa0 ðDÞ. This is justified for γ ≫ Γ, where changes of
the system occur with a rate much smaller than the inverse
detector relaxation time. Inserting this approximation in
Eq. (1) results in L0 ¼

R
dDLðDÞ½Paa0 πaa0 ðDÞVaa0 �,

describing the system dynamics for a detector with zero
delay time. The first order correction γ−1Lcorr accounts for
the lag of the detector due to its finite response time γ−1. As
usual in linear response theory, this correction can be
written in terms of time-integrated correlation functions;
see SM [77]. Note that λ plays a special role in the
separation of timescales since it appears in both the first
and second line of Eq. (1). In general, Eq. (2) is thus only
justified for λ ≪ γ. Here we keep λ=γ arbitrary as there are
scenarios where Eq. (2) also holds for strong measure-
ments; see below.
We emphasize that Eq. (2) describes arbitrary feedback

protocols, both linear and nonlinear in D. As a consistency
check, we recover the Wiseman-Milburn equation [63]
from Eq. (1) by employing the separation of timescales
approximation to first order in 1=γ, using a linear feedback
Liouville superoperator LðDÞρ̂ ¼ Lρ̂ − iD½F̂; ρ̂�, with
feedback Hamiltonian F̂, and taking the infinite bandwidth
limit (see SM [77]). Our formalism thus generalizes the
important earlier work of Ref. [63] to nonlinear feedback
protocols.
In the following, we highlight the usefulness of Eq. (1)

by studying protocols for power production in two toy
models.
Classical toy model.—By classical system, we refer to a

situation with discrete energy levels, but where the density
matrix remains diagonal in the energy basis at all times.

This can be achieved either by suppressing quantum
coherence by environmental noise or by decoupling the
diagonal and off-diagonal elements of ρ̂t (see SM for details
[77]). Under these conditions, ½ρ̂tðDÞ; Â� ¼ 0 and the
backaction term in Eq. (1) has no influence on the
dynamics. To facilitate a comparison between the classical
and quantum models, we use the same notation. We
consider a classical two-level system, with states j0i and
j1i, coupled to a thermal reservoir at temperature T; see
inset of Fig. 2(a). The system and reservoir exchange
energy quanta with energy Δ at rate Γ. The state of the
system is continuously monitored by measuring the observ-
able Â ¼ σ̂z, with Pauli-Z operator σ̂z ¼ j1ih1j − j0ih0j,
such that whenever the measurement outcome D < 0
(D ≥ 0) for an ideal detector (low noise and delay), the
system resides in j0i (j1i). Feedback is incorporated by
flipping the levels according to the solid arrows in Fig. 2(a)
when an excitation is detected, i.e., when D changes sign,
thereby extracting energy from the reservoir. The
Hamiltonian is given by ĤðDÞ ¼ ½1 − θðDÞ�Δj1ih1jþ
θðDÞΔj0ih0j, where θðDÞ is the Heaviside step function.
Note that ½ĤðDÞ; Â� ¼ 0, ensuring that ρ̂tðDÞ remains
diagonal in the energy basis. The feedback protocol is
represented by the Liouville superoperator,

LðDÞ ¼ ½1 − θðDÞ�L− þ θðDÞLþ; ð4Þ

where L−ρ̂ ¼ ΓnBðΔÞD½σ̂†�ρ̂þ Γ½nBðΔÞ þ 1�D½σ̂�ρ̂ is the
protocol applied for D < 0, and Lþρ̂ ¼ Γ½nBðΔÞ þ
1�D½σ̂†�ρ̂þ ΓnBðΔÞD½σ̂�ρ̂ is the protocol applied for
D ≥ 0, with system ladder operator σ̂ ¼ j0ih1j, and

(a) (b) (c)

FIG. 2. Steady state power for classical (a) and quantum (b) toy models, varying the measurement strength λ. Solid lines obtained by
numerically solving Eq. (1), dashed lines obtained analytically using the separation of timescales technique. The separation of
timescales assumption breaks down when system and detector timescales are comparable. (a) The inset illustrates a feedback protocol of
a classical two-level system coupled to a thermal reservoir. When excited (dashed arrow), the levels are flipped (solid arrows), extracting
energy. For strong measurements (λ ≫ γ), the average occupation of the bath [nBðΔÞ] sets an upper limit on extracted power, see dashed
grey line, and is only reached for fast detectors (γ=Γ ≫ 1) [cf. Eq. (6)]. For weak measurements ðλ ≪ γ), feedback is applied randomly
and energy is dissipated into the reservoir. (b) The inset depicts a feedback protocol for a qubit, coherently driven by an external driving
field. The protocol is identical to (a). For strong measurements, the power vanishes because of the quantum Zeno effect. For weak
measurements, no power can be extracted as feedback is applied randomly. (c) Visualization of ρ̂tðDÞ for the quantum toy model, with
stationary matrix elements ρabðDÞ ¼ hajρ̂tðDÞjbi. Here we use g=Δ ¼ 0.01 and γ ¼ Δ ¼ λ. Top panel: diagonal elements of ρ̂tðDÞ.
Bottom panel: real and imaginary part of ρ01ðDÞ.
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Bose-Einstein distribution nBðxÞ ¼ ½expðx=kBTÞ − 1�−1,
with x denoting energy and kB the Boltzmann constant.
Employing the separation of timescales technique, using

γ ≫ Γ with Eqs. (2) and (3), the system evolves, to zeroth
order in 1=γ, according to the feedback Liouville super-
operator,

L0¼½ð1−ηÞL−þηLþ�V00þ½ηL−þð1−ηÞLþ�V11; ð5Þ

where we introduced the feedback error probability η ¼
½1 − erfð2 ffiffiffiffiffiffiffi

λ=γ
p Þ�=2 for a single feedback event, where

erfð·Þ is the error function and 0 ≤ η ≤ 1=2. Feedback is
applied incorrectly when the measurement outcome does
not reflect the true system state. Note that weak (strong)
measurements yield high (low) detector noise and increase
(decrease) the error probability.
To zeroth order in 1=γ, the average power production

reads

P ¼ ΓΔ½ð1 − ηÞnBðΔÞ − η½nBðΔÞ þ 1��; ð6Þ

where P > 0 corresponds to extracting energy from the
bath. For strong measurements (η → 0), feedback is con-
sistently applied correctly and energy is only extracted
from the reservoir. The maximum extraction rate P ¼
ΓΔnBðΔÞ is limited by the coupling Γ and the average
occupation nBðΔÞ of the bath. For weak measurements,
feedback errors together with the asymmetry between
excitation and deexcitation rates lead to a net dissipation
of energy. Interestingly, the maximum dissipation rate P ¼
−ΓΔ=2 is independent of nBðΔÞ. Equation (6) is plotted
with a black, dashed line in Fig. 2, illustrating the behavior
for weak and strong measurements. Additionally, we
computed the power by (i) numerically solving Eq. (1)
(solid colored lines) and (ii) using the separation of time-
scales technique to first order in 1=γ (dashed colored lines)
(see SM for details [77]). As γ decreases, the extracted
power decreases because the detector can no longer resolve
fast changes in the system, missing opportunities to extract
energy. The separation of timescales approximation gradu-
ally breaks down as γ and Γ become comparable.
Following Ref. [88], in the longtime limit, Eq. (5)

implies the detailed fluctuation theorem,

Pð−mÞ
PðmÞ ¼ emðΔ=kBT−ln½ð1−ηÞ=η�Þ; ð7Þ

for the number of extracted energy quanta m, where m > 0
(m < 0) corresponds to extracting (dissipating) energy
from the bath. The term Δ=T is the entropy change in
the bath related to the exchange of a single quantum. The
information term ln½ð1 − ηÞ=η� is given by the log-odds of
not making an error and can be interpreted as the difference
in information content between correctly and incorrectly
applying feedback. Note that most information from the

continuous measurement is discarded—it is only the
information during a change in the system state that
matters. In the error-free limit, η → 0, the information
term diverges, illustrating absolute irreversibility; i.e., all
excitations are extracted. See SM for a derivation of
Eq. (7) [77].
Quantum toy model.—We consider a qubit coherently

driven by an external driving field; see inset of Fig. 2(b).
Measurement and feedback are identical to the classical toy
model, now extracting energy from the driving field. The
feedback protocol is described by LtðDÞρ̂ ¼ −i½ĤtðDÞ; ρ̂�
with Hamiltonian

ĤtðDÞ¼ ½1−θðDÞ�Δj1ih1jþθðDÞΔj0ih0jþgcosðΔtÞσ̂x;
ð8Þ

where Δ is the qubit level spacing, g the strength of the
qubit-driving field coupling, and σ̂x the Pauli-X operator.
Separating system and detector timescales to first order

in 1=γ results in system Liouville superoperator (details in
SM [77]),

½L0 þ λD½σ̂z� þ γ−1Lcorr�ρ̂ ¼ −ig cosðΔtÞ½σ̂x; ρ̂� þ λ̃D½σ̂z�ρ̂

−
2Δg
γ

D0 cosðΔtÞσ̂x; ð9Þ

with effective dephasing rate λ̃ ¼ λþ Δ2 lnð2Þ=2γ, and
coefficient D0 ¼ 2

ffiffiffiffiffiffiffiffiffiffi
λ=πγ

p
2F2ð1=2; 1=2; 3=2; 3=2;−4λ=γÞ,

where 2F2ð·Þ is a generalized hypergeometric function. The
first term on the rhs of Eq. (9) represents the coherent drive,
while the second term describes dephasing due to meas-
urement and feedback. The third term is a source for
quantum coherence, stabilizing the coherence in the long-
time limit. We emphasize that the first order correction is
essential to compute the power as the steady state coher-
ence vanishes to leading order, and hence, no power can be
extracted. Note that the third term, which goes beyond
leading order, can lead to negativities in ρ̂t, which is of no
concern in the separation of timescales regime where the
term is small. We stress that this term is trace preserving as
σ̂x is traceless.
The average power of the system is given by

PðtÞ ¼ trf½∂tĤðDÞ�ρ̂tg, where power is extracted [dissi-
pated] when PðtÞ > 0 [PðtÞ < 0]. Over one driving period
τ ¼ 2π=Δ, the time averaged power reads

P̄ ¼ 2g2Δ
γ

D0

Δ2

Δ2 þ 4λ̃2
: ð10Þ

For strong measurements λ ≫ γ, the power vanishes
because of the quantum Zeno effect. For weak measure-
ments λ ≪ γ, large detector noise leads to completely
random feedback, and the power goes to zero because of
the symmetric driving. This is highlighted in Fig. 2(b),
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where we plot Eq. (10) as dashed lines. The solid lines were
computed numerically by solving the full Eq. (1). The
corresponding steady state matrix elements of ρ̂tðDÞ are
visualized in Fig. 2(c) (details in SM [77]). Similar to
the classical toy model, the separation of timescales
assumption breaks down when system and detector time-
scales are comparable.
Outline derivation main result.—To outline the main

steps in the derivation of Eq. (1), we start by describing the
continuous measurement. For a single instantaneous meas-
urement, the system state ρ̂t transforms as

ρ̂tðzÞ ¼ K̂ðzÞρ̂tK̂†ðzÞ; ð11Þ

where K̂ðzÞ is the measurement operator for obta-
ining outcome z, obeying the completeness relationR
dz K̂†ðzÞK̂ðzÞ ¼ 1, trfρ̂tðzÞg is the probability of obta-

ining z, and
R
dz ρ̂tðzÞ is the system state for an unknown

measurement outcome. Stressing that temporal coarse
graining results in Gaussian noise for any measure-
ment operator [89], we consider Gaussian measurement
operators [89,90],

K̂ðzÞ ¼
�
2λδt
π

�
1=4

e−λδtðz−ÂÞ
2

; ð12Þ

where δt is the time between measurements. A weak
continuous measurement is obtained by repeatedly meas-
uring the system, taking the limit λδt → 0 for a fixed
measurement strength λ. In this limit, the sequence of
outcomes becomes a continuous signal zðtÞ.
The detector bandwidth γ is introduced through a low-

pass frequency filter [1,12,91–95],

DðtÞ ¼
Z

t

−∞
ds γe−γðt−sÞzðsÞ; ð13Þ

such that the measurement outcome DðtÞ is a smoothened
version of the signal zðtÞ. The filter reduces the high
frequency measurement noise and introduces a detector
delay. This provides a realistic detector model, but the filter
is also necessary for nonlinear feedback protocols because
higher orders of zðtÞ are ill defined due to its white noise
spectrum which includes diverging frequencies [1,12,93].
Feedback is incorporated by controlling the system time

evolution in between measurements, i.e., making the
Liouville superoperator LðDÞ dependent on the frequency
filtered measurement outcome D. Combining time evolu-
tion due to measurements and due to the Liouvillian, we
find Eq. (1) in the continuous limit δt → 0. The derivation
can be carried out either in the framework of stochastic
calculus following the methods outlined in Refs. [68,89] or
under the rules of conventional calculus. See details in
SM [77].

Conclusions.—We have derived a Fokker-Planck master
equation for continuous feedback control, describing the
joint system-detector dynamics for detectors with finite
bandwidth. By separating system and detector timescales,
we obtain a Markovian master equation for the system
alone, opening a new avenue for analytical modeling of
nonlinear feedback protocols. The Markovian description
further implies fluctuation theorems, providing insight into
the connection between thermodynamics and information
theory. With two simple toy models, we highlighted the
usefulness of our formalism, showing that it can be applied
to a large variety of systems in both the classical and
quantum regimes. Future endeavors include extensions of
the formalism to include non-Markovian effects and state-
estimation feedback [61,96].
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Appendix





Appendix A

Averaging using path integrals

In Chapter 2, we introduced the Itô stochastic differential equation

dX(t) = a[X(t)]dt+ b[X(t)]dW(t), (A.1)

where the stochastic process X(t) and the Wiener increment dW(t) at time t are statistically
independent. Due to this independence, we argued that averages ⟨f[X(t)]dW(t)⟩ should
vanish as ⟨dW(t)⟩ = 0. Here, we prove that this is true. We evaluate

⟨f[X(t)]dW(t)⟩ =
∫

D[XXX]f[X(t)]dW(t)P[XXX] =
∫

dxjdxj+1f(xj)dWjP[xj, xj+1], (A.2)

where we used that t = t0 + jdt, with 0 < j < n− 1, can be any time in between t0 and
t0 + (n− 1)dt. Note that we need to integrate over both xj and xj+1 under the integral in
the last equality as xj+1 is dependent on dWj. To proceed, we make use of Bayes rule to
rewrite P[xj, xj+1] = P[xj+1|xj]P[xj], and get∫

dxjdxj+1f(xj)dWjP[xj, xj+1] =

∫
dxjf(xj)P[xj]

∫
dxj+1dWjP[xj+1|xj]. (A.3)

The conditional probability P[xj+1|xj] may be found since we know that the probability
distribution of dWj is (see Chapter 2.3)

P[dWj] =
e−dW2

j /2dt
√
2πdt

, (A.4)

and that xj+1 = xj+a(xj)dt+b(xj)dWj from the Itô equation. The conditional probability
is obtained via

P[xj+1|xj] =
∫

d[dWj]δ
(
xj+1 − [xj + a(xj)dt+ b(xj)dWj]

)
P[dWj] =

e
−(

xj+1−[xj+a(xj)dt])
2

2b2(xj)dt√
2πb2(xj)dt

,

(A.5)
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where we used that the delta function is an even function, and that δ(αx) = δ(x)/|α| for a
constant α. We understand that once xj is known, xj+1 is a Gaussian random variable with
mean xj + a(xj)dt and variance b2(xj)dt. This mean and variance agrees with what we find
from the Itô equation assuming X(t) = xj at time t. The rightmost integral in Eq. (A.3)
can now be evaluated using dWj = [xj+1 − xj − a(xj)dt]/b(xj),∫

dxj+1dWjP[xj+1|xj] =
∫

dxj+1
xj+1 − xj − a(xj)dt

b(xj)
P[xj+1|xj] = 0, (A.6)

and we get ⟨f[X(t)]dW(t)⟩ = 0.

A.1 Details Chapter 6.2

Evaluating the RHS of Eq. (6.15) gives three terms,

E
[
d
(
δ[D(t)−D]ρ̂c(t)

)]
= E

[(
dδ[D(t)−D]

)
ρ̂c(t)

]
+E
[
δ[D(t)−D]dρ̂c(t)

]
+E
[
dδ[D(t)−D]dρ̂c(t)

]
.

(A.7)
By using the path integral formulations from Chapter 2, the first term becomes

E
[(

dδ[D(t)−D]
)
ρ̂c(t)

]
= γdtE

[
δ′[D(t)−D]⟨Â⟩cρ̂c(t)

]
+γdt∂D[Dρ̂t(D)]+

γ2dt
8λ

∂2Dρ̂t(D),
(A.8)

where the prime denotes differentiation with respect to D(t). The second term reads

E
[
δ[D(t)− D]dρ̂c(t)

]
= dtL(D)ρ̂t(D) + λdtD[Â]ρ̂t(D), (A.9)

and for the third term, we get

E
[
dδ[D(t)− D]dρ̂c(t)

]
= −γdt

2
∂D{Â, ρ̂t(D)} − γdtE

[
δ′[D(t)− D]⟨Â⟩cρ̂c(t)

]
. (A.10)

Adding the three terms of Eq. (A.7) gives Eq. (6.17).
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Appendix B

Derivations Chapter 6

B.1 Exponential superoperator

We begin to note that for an integer j,

F̃ j(D) =
∑
aa′

F̃ j
aa′(D)Vaa′,aa′ (B.1)

as Vbb′,aa′Vdd′,cc′ = δadδa′d′Vbb′,cc′ . The exponentiated Fokker-Planck superoperator acting
on an arbitrary state ρ̂(D) may be evaluated as

eΓτ2F̃(D)ρ̂(D) =
∑
aa′

∞∑
j=0

(Γτ2)
j

j!
F̃ j
aa′(D)Vaa′,aa′

∑
bb′

∞∑
n=0

cbb′,nλ
(R)
bb′,n(D) |b⟩⟨b

′| =

=
∑
aa′

∞∑
j=0

∞∑
n=0

(−nΓτ2)j

j!
caa′,nλ

(R)
aa′,n(D) |a⟩⟨a

′| =

=
∑
aa′

∞∑
n=0

e−nΓτ2caa′,nλ
(R)
aa′,n(D) |a⟩⟨a

′| =

=
∑
aa′

caa′,0πaa′(D) |a⟩⟨a′|+
∑
aa′

∞∑
n=1

e−nΓτ2caa′,nλ
(R)
aa′,n(D) |a⟩⟨a

′| ,

(B.2)

where we in the last double sum of the first line expanded the density matrix ρ̂(D) in terms
of the right eigenfunctions λ(R)aa′,n(D) of F̃(D) given by Eq. (6.26). In the last equality we
separated the n = 0 term from the sum over n such that the first term corresponds to the
projection onto P-space and the second term corresponds to the projection ontoQ-space.
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When τ2 is very large, the second term becomes vanishingly small, and we get

eΓτ2F̃(D)ρ̂(D) ≈ P ρ̂(D) = G(D)ρ̂, (B.3)

where ρ̂ =
∫∞
−∞ dDρ̂(D). That is, when τ2 is large, the state ρ̂(D) quickly becomes the

steady state with respect to F̃(D).

B.2 Superoperator identities

For an arbitrary state ρ̂(D), for which ρ̂ =
∫∞
−∞ dDρ̂(D), the following equalities,

QG(D)ρ̂ = Q
∑
aa′

πaa′(D)Vaa′,aa′ ρ̂ = QP ρ̂(D) = 0 (B.4)

show that QG(D) = 0, as QP = 0. Note that we used that ρ̂ =
∫
dDρ̂(D).

The following equalities prove why PF̃−1(D)Q = 0,

PF̃−1(D)Q = −P
∫ ∞

0
dzezF̃(D)Q = −P

∫ ∞

0
dz

∞∑
j=0

zj

j!
F̃ j(D)Q = −

∫ ∞

0
dzPQ = 0,

(B.5)
where we in the first equality used the definition of F̃−1(D) in Eq. (6.39), that Q2 = Q,
and that PF̃ j(D) = 0 for all j ̸= 0 in the third equality.

B.3 Equivalence of Eqs. (6.39) and (6.52)

Starting from the inverse in Eq. (6.39), we have

F−1(D) = −
∫ ∞

0
dzezF(D)Q = −

∫ ∞

0
dzezQF(D)QQ, (B.6)

where we in the second equality inserted 1 = P +Q on both sides of F(D) in the expo-
nential.

We further show that Lcorr in Eqs. (6.45) and (6.54) are equivalent by demonstrating that
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the leftmost Q in Eq. (6.54) can be absorbed into the inverse F−1(D). We have

QF−1(D) = −Q
∫ ∞

0
dzezQF(D)QQ = −Q

∫ ∞

0
dz

∞∑
j=0

zj

j!
[QF(D)Q]jQ =

= −
∫ ∞

0
dz

Q+
∞∑
j=1

zj

j!
[QF(D)Q]jQ

 =

= −
∫ ∞

0
dz

∞∑
j=0

zj

j!
[QF(D)Q]jQ = F−1(D),

(B.7)

where we used Eq. (6.52) in the first equality, expanded the exponential superoperator in
the second equality, isolated the j = 0 term and used the property Q2 = Q in the third
equality.

B.4 Derivation Eq. (6.71)

To convert the double sum in Eq. (6.71) into the integral representation, we begin to note
that the factors 1/(n+ 1) and 1/(k+ 1) can be rewritten as

1
n+ 1

=

∫ 1

0
dzzn. (B.8)

Secondly, we can remove the sum over k by using the following property,

Hn(x+ y) =
n∑

k=0

(
n
k

)
(2y)n−kHk(x). (B.9)

With the identity

Hn(x) =
2n√
π

∫ ∞

−∞
dy(x+ iy)ne−y2 , (B.10)

we may rewrite the double sum as
∞∑
n=0

n∑
k=0

(
n
k

)
[
√
α(b− a)]n−k

2k+1(k+ 1)(n+ 1)!π
e−α(a2+b2)Hk

[√
αa
]
Hn
[√
αb
]
=

=
e−α(a2+b2)

2π2

∫ ∞

−∞
dw
∫ ∞

−∞
dx
∫ 1

0
dy
∫ 1

0
dze2z(

√
αb+ix)[

√
α(b−a[1−y])+iyw]−x2−w2

.

(B.11)

Performing the integral over x followed by the one over y results in

e−αa2

4π

∫ ∞

−∞
dw
∫ 1

0
dz
e−w2 {erf [

√
α(az+ b[1− z])− erf [

√
αb(1− z)− iwz]]}

z(
√
αa+ iw)

.

(B.12)
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Finally, we use that

erf(x+ iy) = erf(x) +
2iy√
π
e−x2

∫ 1

0
dzey

2z2−2ixyz, (B.13)

and perform the integration over w to get Eq. (6.71).
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Appendix C

n-resolved density matrix

To derive the n-resolved master equation (3.29), we begin by introducing the Laplace trans-
form of the density matrix,

ρ̃z =

∫ ∞

0
dte−ztρ̂t, (C.1)

where the hat and tilde indicate whether the density matrix belongs to the time domain or
the Laplace domain. In Laplace space, master equation (3.28) reads

ρ̃z = Ω(z)ρ̂0, Ω(z) =
1

z− L0 − J+ − J−
, (C.2)

where Ω(z) is the Laplace space propagator. Making use of the Neumann series, we can
write the Laplace space propagator as an expansion in J+ + J− as

Ω(z) =
∞∑
n=0

Ω0(z)[(J+ + J−)Ω0(z)]n, (C.3)

where Ω0(z) = 1/(z− L0). Investigating the sum term by term, we identify

n = 0 : Ω0(z),
n = 1 : Ω0(z)J+Ω0(z) + Ω0(z)J−Ω0(z),
n = 2 : Ω0(z)J+Ω0(z)J+Ω0(z) + Ω0(z)J−Ω0(z)J−Ω0(z)
+ + Ω0(z)J+Ω0(z)J−Ω0(z) + Ω0(z)J−Ω0(z)J+Ω0(z),
...

(C.4)

We see that the first term (n = 0) leaves the number of particles in the reservoir un-
changed. The second term (n = 1) contains one part increasing the number of particles
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in the reservoir by one, and one term decreasing the number of particles by one. The third
term (n = 2) contains two parts where the reservoir particle number is either increased
or decreased by two, and two terms where the net particle number is left unchanged. By
using Eqs. (C.2) and (C.3), we note that different combinations of the terms in the sum
can be interpreted as number resolved states ρ̃z(±n). We write ρ̃z(0) = Ω0(z)ρ̂0, and
ρ̃z(±1) = [Ω0(z)J±Ω0(z)+ . . . ]ρ̂0, where ‘. . . ’ denotes all possible combinations of Ω0
and J± that results in±1 particles in the reservoir. By using this recursively, we may write
down similar expressions for a general ρ̃z(±n), and we obtain the following Laplace space
relation for the number resolved density matrix,

ρ̃z(n) = Ω0(z)J+ρ̃z(n− 1) + Ω0(z)J−ρ̃z(n+ 1). (C.5)

Transforming this back to the time domain, using the initial condition ρ̂0(n) = δn,0ρ̂0, we
get Eq. (3.29).
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Appendix D

Numerical method

In this appendix, we briefly describe the numerical method used to solve the full QFPME
(1.1). Here we are only interested in finding the steady state solution for two-level systems,
but the method can be generalized to include time dependence and larger systems. We
begin by expanding the system-detector density matrix in terms of the generalized Hermite
polynomials (6.21) as

ρ̂t(D) =
N−1∑
n=0

Mn
He[σ]n (D)√

n!σn
e−D2/2σ
√
2πσ

, Mn =

(
an cn
c∗n bn

)
, (D.1)

where we truncate the sum at N terms. The matrix Mn is written in the basis {|0⟩ , |1⟩},
and an, bn, and cn are expansion coefficients for the density matrix elements. Inserting this
in the QFPME, multiplying with He[σ]m (D)/

√
m!σm, and integrating over all D, results in

a relation
0 = fffm({an, bn, cn}

N−1
n=0 ), (D.2)

where fffm is a vector valued function of the expansion coefficients. Equation (D.2) can
be rewritten as a matrix equation that can be solved numerically to find the expansion
coefficients an, bn, and cn. With the normalization condition 1 =

∫∞
−∞ dD tr{ρ̂t(D)} =

a0 + b0, we find the normalized density matrix ρ̂t(D). For threshold feedback, we use the
following integral to find fffm,∫ ∞

0

He[σ]m (x)√
σmm!

He[σ]n (x)√
σnn!

e−x2/2σ
√
2πσ

dx =


1/2, n = m,
0, n+ m even,
Cnm, n+ m odd,

(D.3)

with

Cnm =
(−1)(n+m−1)/2m!!(n− 1)!!√

2πn!m!(m− n)
, (D.4)
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which is given for even n and odd m, and we note that (−1)!! = 1.
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