
ARTICLE IN PRESS 

JID: EOR [m5G; October 20, 2022;15:35 ] 

European Journal of Operational Research xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Decision Support 

Supporting strategy selection in multiobjective decision problems 

under uncertainty and hidden requirements 

Lauri Neuvonen 

a , b , ∗, Matthias Wildemeersch 

b , Eeva Vilkkumaa 

a 

a Department of Information and Service Management, School of Business, Aalto University, Ekonominaukio 1, Espoo, 02150, Finland 
b International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria 

a r t i c l e i n f o 

Article history: 

Received 8 September 2021 

Accepted 25 September 2022 

Available online xxx 

MSC: 

0 0 0 0 

1111 

Keywords: 

Decision support systems 

Multiobjective optimization 

Robustness 

Pruning 

Implementability 

a b s t r a c t 

Decision-makers are often faced with multi-faceted problems that require making trade-offs between 

multiple, conflicting objectives under various uncertainties. The task is even more difficult when consid- 

ering dynamic, non-linear processes and when the decisions themselves are complex, for instance in the 

case of selecting trajectories for multiple decision variables. These types of problems are often solved 

using multiobjective optimization (MOO). A typical problem in MOO is that the number of Pareto op- 

timal solutions can be very large, whereby the selection process of a single preferred solution is cum- 

bersome. Moreover, preference between model-based solutions may not be determined only by their ob- 

jective function values, but also in terms of how robust and implementable these solutions are. In this 

paper, we develop a methodological framework to support the identification of a small but diverse set 

of robust Pareto optimal solutions. In particular, we eliminate non-robust solutions from the Pareto front 

and cluster the remaining solutions based on their similarity in the decision variable space. This enables 

a manageable visual inspection of the remaining solutions to compare them in terms of practical im- 

plementability. We illustrate the framework and its benefits by means of an epidemic control problem 

that minimizes deaths and economic impacts, and a screening program for colorectal cancer that mini- 

mizes cancer prevalence and costs. These examples highlight the general applicability of the framework 

for disparate types of decision problems and process models. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Decision-makers (DMs) are often faced with complex decision- 

aking problems that require making trade-offs between multiple, 

onflicting objectives under various uncertainties. The task is even 

ore difficult when considering dynamic, non-linear processes and 

hen the decisions themselves are complex in form, for instance 

n the case of selecting profiles for multiple decision variables. Ex- 

mples of such complex decision-making situations can be found 

n, e.g., epidemic control ( Caulkins et al., 2020; 2021 ), pollution 

ontrol ( Lempert, Groves, Popper, & Bankes, 2006 ), water man- 

gement ( Kasprzyk, Nataraj, Reed, & Lempert, 2013 ), and produc- 

ion planning ( Lin, Liu, Hao, & Jiang, 2016 ). These types of com-

lex decision-making problems can be approached by (i) build- 

ng a model to capture the complex dynamics between underly- 

ng processes and decision variables (see, e.g., Araz, Lant, Fowler, 

 Jehn, 2013; Klein, Dittus, Roberts, & Wilson, 1993; Miller et al., 
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problems under uncertainty and hidden requirements, European Journ

036 
005; Van Der Zee & Van Der Vorst, 2005 ), and (ii) optimizing 

he values of these decision variables by using multiobjective opti- 

ization (MOO) techniques ( da Cruz, Cardoso, & Takahashi, 2011; 

a Cruz, Cardoso, & Takahashi, 2009; Falke, Krengel, Meinerzha- 

en, & Schnettler, 2016; Meng, Lou, Peng, & Prybutok, 2017; Ran- 

aiah, 2016; Deb, Pratap, Agarwal, & Meyarivan, 2002; Holzmann & 

mith, 2018; Miettinen & Mäkelä, 1995 ). The result of an MOO pro- 

ess is a set of Pareto optimal solutions, which cannot be improved 

ith respect to any objective without impairing performance on 

ome other objective. 

A common problem in MOO is that the number of Pareto op- 

imal solutions is in many cases very large ( Friedrich, Kroeger, & 

eumann, 2011; Sudeng & Wattanapongsakorn, 2015; Wismans, 

rands, Van Berkum, & Bliemer, 2014 ). Consequently, the task of 

irectly selecting a single preferred solution from this set can be 

ifficult. In particular, the objective function values and compli- 

nce with model constraints may not provide sufficient informa- 

ion for choosing the final solution suggested by the model but, 

ather, requirements related to the real-world implementability of 
his chosen solution must also be accounted for. This information 
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an, however, be hidden and therefore hard to elicit and quantify 

n such a manner that it could be included as a constraint in the 

ptimization problem. Specifically, the DM may be able to judge 

he implementability of a given solution only after having visual- 

zed this solution and its relevant characteristics in comparison to 

hose of other proposed solutions. But how can one offer the DM 

 small representative set of high-quality solutions, out of possi- 

ly hundreds of candidates so that such visual inspection can be 

arried out in a meaningful way? 

This problem can be addressed by pruning the Pareto front, 

.e., eliminating solutions from it based on one or more addi- 

ional criteria. Pruning is typically done in the objective space. 

n their recent paper, Petchrompo, Wannakrairot, & Parlikad 

2021) classify pruning methods in the objective space into three 

lasses: preference-based methods, efficiency-based methods, and 

iversity-based methods. In preference-based methods, solutions 

re eliminated based on the DMs preferences with respect to 

he objective-function values or trade-offs between them. Salo & 

ämäläinen (2010, 1995) , for instance, suggest the use of mul- 

icriteria models with incompletely specified criterion weights to 

dentify a subset of Pareto optimal solutions that are not domi- 

ated by any other feasible solution with respect to the DM’s pref- 

rence statements. Efficiency-based methods focus on identifying 

olutions that are efficient according to some pre-set indicators. 

ypically, methods in this class focus on identifying Pareto front 

nees, i.e., regions in which a small improvement in one objective 

ould significantly worsen performance on at least one other ob- 

ective ( Sudeng & Wattanapongsakorn, 2016; Wismans et al., 2014 ). 

iversity-based methods to prune the Pareto front in the objective 

pace aim at identifying a diverse subset of solutions that together 

over the range of different objective function values. 

Diversity-based methods include clustering algorithms which, 

n effect, eliminate solutions whose objective function values are 

oo close to one another. Taboada & Coit (2007) , for instance, use 

n iterative k-means algorithm to find a small number of mutually 

issimilar Pareto optimal solutions. Zio & Bazzo (2011) use a sub- 

ractive clustering approach for similar purposes. Yu, Zheng, Gao, 

 Yang (2017) integrate subtractive clustering with multi-criteria 

ournament decision and gain analysis methods to both maintain 

he shape of the Pareto front and consider the DM’s preferences 

n choosing the final set of representative solutions. Petchrompo 

t al. (2021) , apply k-medoids clustering to a portfolio asset man- 

gement problem with the objective of reducing the full set of 

areto optimal solutions to a smaller representative set. Li, Liao, & 

oit (2009) propose an approach in which self-organizing maps are 

rst applied to cluster similar solutions together, after which data 

nvelopment analysis is used to identify relatively efficient repre- 

entative solutions within each cluster. The Pareto front could also 

e pruned in the decision space by, for example, clustering solu- 

ions based on the similarity of the corresponding decision variable 

rofiles, and choosing a representative solution from each cluster. 

runing in the decision space would be particularly relevant from 

he perspective of implementability; yet, to our knowledge, these 

inds of approaches have not been presented in the literature. 

In addition to objective function values and diversity, many 

tudies see robustness and risk considerations as important fac- 

ors in pruning the Pareto front ( Groetzner & Werner, 2021; Schö- 

el & Zhou-Kangas, 2021 ). By robustness we refer to the prop- 

rty of strategies to perform well in terms of objective func- 

ion values and/or risk measures under different realizations of 

ncertain model parameters. Techniques for accommodating ro- 

ustness considerations into multiobjective optimization problems 

ave been presented by, e.g., Dellnitz & Witting (2009) . A rela- 

ively recent contribution to accommodating robustness consider- 

tions into complex multiobjective decision-making problems is 

he many objective robust decision-making (MORDM) framework 
2 
 Kasprzyk et al., 2013 ). MORDM seeks to combine the computa- 

ional power of multiobjective evolutionary algorithms with robust 

ecision-making techniques to help identify strategies that perform 

ell across many different trajectories of the deep uncertainties 

ffecting the underlying process. Interactive visual analytics are 

uggested to enable the exploration of trade-offs, robustness mea- 

ures, and critical exogenous factors simultaneously. Such an inter- 

ctive approach is beneficial in generating a deeper understanding 

or the DM about both the model and the decision-making prob- 

em at hand, but can be prohibitively time-consuming in situations 

equiring fast decisions. In addition to parametric uncertainty, the 

otion of robustness can be applied to other types of uncertainty 

uch as variable uncertainty, which can be addressed by means 

f regularization robustness ( Eichfelder, Krger, Schbel, & Eichfelder, 

015 ). These kinds of techniques can be beneficial in case there are 

ncertainties related to how accurately a chosen strategy can, in 

act, be implemented. However, here we focus on parametric un- 

ertainty. 

In this paper, we propose a methodological framework for de- 

ermining a small representative set of non-dominated, robust 

trategies to support DMs in finding implementable solutions to 

ultiobjective decision-making problems under uncertainty. The 

ramework is designed to be flexible with regard to modeling and 

ptimization techniques, whereby it can be used in a wide range 

f problem settings. Importantly, the framework enables the uti- 

ization of existing models, which is beneficial in cases where it 

s possible to leverage the DM’s trust towards certain models with 

hich they are already familiar. In our proposed framework, we 

ombine a process model with an MOO formulation to find the 

et of Pareto optimal solutions. Then, we prune the Pareto front (i) 

y eliminating solutions whose objective function values are non- 

obust to small changes in the parameters of the process model, 

nd (ii) by clustering solutions in the decision space to identify a 

mall set of robust solutions that are sufficiently dissimilar from 

ne another. Finally, we present effective visualizations of the re- 

aining solutions to enable the DM to compare these solutions 

ot only in terms of relevant objective function values and other 

erformance metrics, but also their implementability. The general- 

ty of the framework is illustrated by means of two disparate case 

tudies. The first case study analyzes how to control the spread 

f the coronavirus, minimizing impacts on both health and the 

conomy for different strategy classes corresponding to lockdowns, 

ass testing, and combinations thereof. The second case study ex- 

mines the optimal screening strategy for colorectal cancer, mini- 

izing cancer prevalence and screening costs. 

The contributions of this paper to the literature are three- 

old. First, the paper presents a widely applicable methodological 

ramework for supporting decision-making in multiobjective prob- 

ems in situations where the recommended solutions should be 

oth robust as well as implementable. In particular, while imple- 

entability is a key consideration in various kinds of complex de- 

ision problems, no methods to support the identification of im- 

lementable solutions have previously been proposed. Second, in 

ontrast to most existing methods, we prune the Pareto front in 

he decision space rather than in the objective space. This is par- 

icularly important in situations where the decisions correspond to 

electing decision profiles, i.e. time-varying values for multiple de- 

ision variables, in which case the DM could be more interested 

n comparing a diverse set of such profiles rather than a set of 

imilar profiles leading to different objective function values. Fi- 

ally, our paper offers some insights into the effectiveness of dif- 

erent strategies for controlling the spread of the coronavirus and 

he prevalence of colorectal cancer. 

The rest of the paper is structured as follows: In Section 2 , 

e present the methodological framework. This framework is illus- 

rated in detail in Sections 3 and 4 through two example case stud- 
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es based on the COVID-19 epidemic and colorectal cancer screen- 

ng. Finally, in Section 5 , we present our conclusions and discuss 

he benefits and limitations of our proposed approach. 

. Methodological framework 

.1. Framework motivation 

We propose the framework to be a practical tool for decision- 

aking especially under the following conditions: (i) When DMs 

re dealing with multiple objectives, which in the absence of pref- 

rence information can result in a large set of alternative solutions. 

n this, clustering is a useful tool that allows DMs to evaluate a re-

uced set of diverse and representative non-dominated solutions. 

ii) When there is considerable parametric uncertainty, which can 

e due to the absence of data to estimate the model parameters or 

o exogenous sources of uncertainty, for instance related to human 

ehavior. The presence of model uncertainty requires us to study 

he robustness of non-dominated solutions. (iii) When there are 

idden requirements related to the practical implementability of 

he solutions that the DM finds difficult to recognize or articulate 

s model constraints. This requires the visual inspection of com- 

lex decision vectors for which intuition on optimality and feasi- 

ility is elusive. (iv) When there exists time pressure to provide 

olutions expeditiously, preventing multiple interactions between 

Ms and system modelers. These time constraints can cause addi- 

ional model uncertainty, stressing the need to analyze the robust- 

ess of non-dominated solutions. 

.2. Framework anatomy 

The proposed methodological framework is summarized in 

igure 1 . In the first stage, a problem-specific model is designed 

nd implemented to capture the most relevant problem character- 

stics and dynamics. This can be a model of any suitable type, e.g., 

n influence diagram, a simulation model, an agent-based model, 

r a dynamical systems model. In the second stage, MOO is used 

ogether with the problem-specific model to identify the set of 

areto optimal solutions. In some cases, it may be relevant to com- 

ute these sets for different classes of strategies, which results in 

ultiple Pareto fronts. These strategy classes represent operating 

odes allowing for different decision options which can be in- 

ependently parameterised. An example of strategy classes in the 

ontext of controlling the COVID-19 epidemic is given in Section 3 . 

In the third stage of the methodology, strategies that are 

on-robust against parametric uncertainty are eliminated from 

he Pareto fronts. When using complex models, it is possible 

hat integrating robustness considerations into the formulation of 

he optimization problem leads to numerical intractability. We 

herefore propose that non-robust solutions are eliminated post- 

ptimization. In practice this can be done, for instance, by sam- 

ling sets of simulator parameters and running the simulator with 

hese different parameter values for each Pareto optimal solu- 

ion. This results in solution-specific distributions for the values 

f selected indicators, which permit the calculation of risk metrics 

such as the probability of a given event or Conditional Value-at- 

isk) that can be used to screen out non-robust solutions. 

In the fourth stage of the process, multiple Pareto fronts are 

ombined into one to eliminate solutions that are dominated by 

hose belonging to another strategy class. This is done only after 

he robustness-based pruning, to avoid the risk of excluding robust 

olutions that are dominated by non-robust solutions. In the fifth 

tage, the solutions are clustered based on their similarity in the 

ecision space to obtain a small but diverse set of representative 

olutions. Clustering is done only after robustness-based pruning 
3 
nd combination of the Pareto fronts to make sure that no repre- 

entative solutions need to be eliminated in subsequent stages due 

o inefficiency or non-robustness. By following this order, the num- 

er of clusters corresponds to the number of solutions that are to 

e subjected to closer visual inspection. In the sixth stage, effec- 

ive visualizations are presented for the small set of remaining so- 

utions to provide the DM a comprehensive view of each solution 

ased on their objective function values, robustness, and imple- 

entability. The visualizations should present as many of the prop- 

rties of the solutions relevant to the decision-making as possible, 

n a format that allows these solutions to be easily compared. In 

he context of the case studies in this paper, these include objec- 

ive values, decision profiles and risk metrics. A careful inspection 

f such visualizations may reveal preferences or hidden require- 

ents that the DM was unable to articulate at the beginning of 

he modeling process. Such an instance might require a reiteration 

f the framework starting at stage 1 or 2. Finally, the DM chooses 

ne of the remaining solutions according to their preferences. 

.3. Framework applicability 

The framework is applicable to many different decision-making 

roblems, and as a consequence the framework is not specific 

bout the optimization method, the clustering algorithm to prune 

he Pareto front, nor about the approach for robustness verifica- 

ion. The first two stages consist of setting up an MOO problem 

nd computing the Pareto front. The framework is indifferent to 

he optimization approach, as long as the model later allows com- 

uting objective and risk measure values for different parameter 

amples for the non-dominated strategies. Stages 5 and 6 consist 

f clustering and visual analysis. Clustering is based only on de- 

ision variable values, and a suitable clustering algorithm needs 

o be identified to deal with the specific structure of the multi- 

imensional decision vectors. Visual analysis of the solutions is a 

tage where some creativity is often needed. In general, the vi- 

ualizations are highly dependent on the specific problem setting. 

hat being said, there exist several effective techniques for visu- 

lizing, e.g., multidimensional objective and decision spaces, in- 

luding interactive visualizations as well as projections to two- or 

hree-dimensional spaces. 

We have applied the framework, with different algorithmic 

hoices within the stages, to analyze two multiobjective deci- 

ion problems. The differences between the approaches used to 

ackle these two problems are profound, including process mod- 

ling methods, optimization algorithm structure and methods, and 

ecision variable types. Yet, our proposed decision-support frame- 

ork can be readily applied to both cases by selecting suitable op- 

imization methods, clustering algorithms, and robustness metrics. 

. Case study 1: Epidemic control strategies for COVID-19 

roblem context 

We consider a hypothetical country with a population of 100 

illion people, and assume that there is a DM or a group of DMs 

n this country who wish to find an optimal strategy for control- 

ing the spread of COVID-19. For this purpose, an epidemiologi- 

al model has been built to capture the dynamics of the epidemic 

ubject to different control strategies. Assume that the DM uses 

he epidemiological model to consider between six control strat- 

gy classes (representing a catalog of strategies followed by differ- 

nt countries) shown in Table 1 : (i) mass testing with a capacity to 

arry out 3 million perfectly accurate tests per day, (ii) mass test- 

ng with a capacity to carry out 50 million tests per day with 85% 

ensitivity (i.e. probability q + of correct identification of infected 

ersons) and specificity (i.e. probability q − of correct identification 
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Fig. 1. The decision support process for arriving at a small diverse set of non-dominated, robust strategies starting from a complex model and multiobjective optimization 

and followed by visual inspection and a decision. 

Table 1 

Strategy classes available to the DM. In all classes control strengths are selected at 30-day intervals. 

Strategy class Decision variables q + & q − Max tests Contact tracing 

Mass testing τt 100% 3M no 

Imperfect mass testing τt 85% 50M no 

Lockdown λLD 
t - - no 

Lockdown with contact tracing λLD 
t - - yes 

Combination strategy λLD 
t , τt 100% 3M no 

Combination str. with imperf. testing λLD 
t , τt 85% 50M no 

o

s

d

t

t

r

l

m

b

P

l

f non-infected persons), (iii) a lockdown strategy, (iv) a lockdown 

trategy with contact tracing, (v) a strategy that combines lock- 

owns with the possibility to carry out 3 million perfectly accurate 

ests per day, and (vi) a strategy that combines lockdowns with 

he possibility to carry out 50 million imperfect tests per day 1 . We 
1 The numbers selected for this example case study are illustrative. Yet, they are 

ealistic in the sense that high-sensitivity tests are limited by lab capacity whereas 

ow-sensitivity antigen tests could be performed at much higher rates, as long as 

a

t

g

4

odel these different operating modes as separate strategy classes 

ecause we wish to evaluate their relative performance. 

Within each strategy class, the DM is interested in finding 

areto optimal strategies that minimize cumulative COVID-19 re- 

ated deaths and cumulative impact on the economy. A reasonable 

pproximation for economic output is that it scales with the total 
he production of lateral flow tests can follow the demand. Hence, our results help 

enerate qualitative, if not quantitative insights. 
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mount of active workers, i.e. those not in quarantine nor under 

ockdown ( Berger, Herkenhoff, & Mongey, 2020 ). The decision vari- 

bles for optimizing these strategies are the testing rate τt (i.e., the 

hare of the population that is tested at time t) and the meeting 

ate λLD 
t for individuals affected by lockdown measures. In the epi- 

emic model, we split the day into 14 time steps (cf. Berger et al.,

020 ). We allow the DM to adjust the decision profile at 30-day 

ntervals 2 (29 for the first interval) starting from day 1 and con- 

inuing until day 570. In addition to minimizing COVID-19 related 

eaths and economic impact, the DM wants to ensure that the 

trategy that is ultimately selected will not lead to a risk of over- 

oading the intensive care unit (ICU) capacity. Exceeding the ICU 

apacity significantly increases mortality and generates high social 

osts. Therefore, the DM wants to limit the probability of this hap- 

ening given the uncertainties in key epidemic model parameter 

alues. The DM is also interested in how much the suggested con- 

rol strategies vary over time, as too much variance would lead to 

he strategies being unimplementable, both from a practical and a 

olitical viewpoint. However, the DM has not been able to formu- 

ate their preferences regarding implementability into explicit opti- 

ization constraints. In what follows, we show how each stage of 

ur methodological framework could be carried out in the context 

f the case study. 

tage 1: Epidemic model 

Building on the work of Berger et al. (2020) , we develop a 12-

tate compartmental model to capture the progression of the epi- 

emic 3 . A visual representation of our model is shown in Figure 2 ,

ith a more detailed description given in S1 in the Supplemen- 

ary Materials. The model describes in discrete time t the fractions 

f the population that belong to each of the 12 different compart- 

ents. This model extends the commonly used SEIR model ( Berger 

t al., 2020; DeNegre, Myers, & Fefferman, 2020; IHME COVID-19 

orecasting team, 2021 ), the compartments of which correspond to 

usceptible (S), exposed (E), infected (I) and recovered (R) mem- 

ers of the population. In our model, the 12 compartments cor- 

espond to non-infected (N), infected (I), or recovered (R) people 

ho are either asymptomatic (A) or symptomatic (S). These people 

re either in quarantine (Q) or not in quarantine (NQ). The model 

ccommodates incomplete information about whether an asymp- 

omatic person is infected or not by differentiating between known 

nd unknown states. In the visual representation, compartments 

orresponding to known states for asymptomatics are denoted by 

sterisks. By means of testing, individuals can be moved from the 

nknown to the known compartments. Compared to the existing 

ork of Berger et al. (2020) , our model enables the accommoda- 

ion of the impacts of imperfect testing and contact tracing. Re- 

arding imperfect testing, the model includes compartments corre- 

ponding to false positive (FP) and false negative (FN) test results. 

he details of modeling contact tracing are presented in S1.2, and 

ariables related to contact tracing have the superscript index ‘CT’ 

n Figure 2 . 

The state equations capturing the dynamics of the compart- 

ents are compactly denoted by 

 t+1 = SEIR 

+ (X t , X t−1 , λ
LD 
t , τt ) (1) 
2 The 30-day interval is a simplification but reflects real limitations that a DM 

ight face: it is not possible to change national policies at a high rate due to issues 

f uptake, communication, and popular resistance to frequent policy changes. 
3 Agent-based models (ABMs) can also be used to model epidemic dynamics 

 Aleta et al., 2020; Basurto, Dawid, Harting, Hepp, & Kohlweyer, 2020; Hoertel et al., 

020 ), but due to the high computational complexity associated with ABMs, they 

re, in practice, often hard to combine with optimization models in situations with 

 large set of feasible solutions and a large agent population. 

T

t

h

t

p

u

w

5 
here X t represents the state of the system at time t , and SEIR 

+ 

s a vector-valued function. A detailed description of these equa- 

ions and the associated model parameters can be found in S1 

f the Supplementary Material. The arguments of the state equa- 

ions include the state at time t − 1 due to the accommodation of 

ontract tracing (see S1.2). 

tage 2: Multiobjective optimization 

We consider two objectives in the optimization problem, i.e., 

he minimization of the number of COVID-19 related deaths D 

tot 

nd the minimization of economic costs � over the considered 

ime horizon. The economic cost at time t is represented by a rel- 

tive loss of workforce and can be written as 

 e (t, λLD 
, τ) = 1 − λLD 

t 

λ

M 

NQ 
t 

N 

− λQ 

λ

M 

AQ 
t 

N 

(2) 

here t ∈ { 0 , . . . , T } , λLD = (λLD 
0 

, . . . , λLD 
T 

) , λLD 
t ∈ [0 . 5 , 1 . 0] , τ =

τ0 , . . . , τT ) , τt ∈ [0 . 0 , 0 . 1] , N represents the total population, and

 

NQ 
t and M 

AQ 
t denote the number of individuals that are not quar- 

ntined and asymptomatic quarantined, respectively, at time t . Pa- 

ameter λ is the default contact rate when no restrictions are in 

lace. 4 Let u = { λLD 
, τ} belong to the set A of admissible decision

ariables. Then, the optimization problem can be formulated as fol- 

ows. 

in 

u ∈A 
D 

tot = 

T ∑ 

t=0 

D (t, λLD 
, τ) + S D tot (T , λLD 

, τ) (3) 

in 

u ∈A 
� = 

T ∑ 

t=0 

C e (t, λLD 
, τ) + S �(T , λLD 

, τ) (4) 

ubject to X t+1 = SEIR 

+ (X t , X t−1 , λ
LD 
t , τt ) (5) 

 

test 
t ≤ N 

test , max 
t , t ∈ { 0 , . . . , T } u ∈ A (6) 

As to the terminal costs S X (T , λLD 
, τ) corresponding to each ob- 

ective, we assume linear recovery after T over a recovery time 

T rec (cf. Caulkins et al., 2021 ). The costs incurred after T over the

conomic recovery time �T rec can therefore be written as follows 

 

tot 
D (T , λLD 

, τ) = 

�T rec 

2 

D (T , λLD 
, τ) , 

S �(T , λLD 
, τ) = 

�T rec 

2 

(
1 − λLD 

T 

λ

M 

NQ 
T 

N 

− λQ 

λ

M 

Q 
T 

N 

)
. (7) 

lthough the assumption of linear recovery for all objectives is a 

implification, it allows us to incorporate a consistent logic for all 

erminal costs. Moreover, the terminal cost is an aggregated cost, 

nd therefore this cost term can capture different dynamics after 

erminal time T , depending on the value of �T rec . 

We use the Non-dominated Sorting Genetic Algorithm II (NSGA- 

I, Deb et al., 2002 ) to find optimal decision profiles subject to the 

wo objectives of minimizing deaths and economic impact. The 

etails of the application of this algorithm are presented in S1.3. 

he NSGA-II algorithm is fairly commonly used to find Pareto op- 

imal solutions for multiobjective decision problems but, due to its 

euristic nature, cannot guarantee optimality. However, exact op- 

imization algorithms cannot in practice be combined with com- 

lex simulation models due to computational issues. The choice of 
4 As we do not consider a structured population model, the shares of individ- 

als that are not quarantined and asymptomatic quarantined are the same in the 

orkforce and in the total population. 



L. Neuvonen, M. Wildemeersch and E. Vilkkumaa European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; October 20, 2022;15:35 ] 

Fig. 2. Extended SEIR compartmental epidemic model. Compartments where the state of the members is known are noted with ∗ . False information compartments are 

highlighted with red borders. 
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sing a compartmental simulation model in conjunction with the 

SGA-II algorithm is our way of balancing between sufficient re- 

lism in modeling epidemic dynamics and the desire to use op- 

imization to find high-quality solutions to the complex decision- 

aking problem. This choice enabled us to carry out all compu- 

ations required for developing decision recommendations in our 

ethodological framework within 4 days on a computing cluster 

sing array runs. 

The two-objective optimization problem (3) - (6) was solved sep- 

rately for each of the six strategy classes. This resulted in six 

areto fronts shown in Figure 3 a. Each of these fronts includes 

0 solutions, totaling 360 solution candidates. The solutions are 

ell spread between the extremes as a result of a diversity prefer- 

nce in the NSGA-II algorithm. The Pareto fronts corresponding to 

trategies without perfect testing coincide at the high-output ex- 

remity, corresponding to roughly 229 0 0 0 deaths (0.229% of the 

otal population) and 99.1% economic output (i.e., 0.9% loss) com- 

ared to what would be obtained if there was no epidemic nor 

ny control measures. These objective function values reflect the 

utcome of applying practically no control strategy at all. Perfect 

esting does not present any tradeoff, since perfect testing both 

mproves economic output and lowers COVID-19 related deaths. 

owever, the optimal strategy with perfect testing (green dot in 

igure 3 a corresponding to 128 0 0 0 deaths and 0.995 percent of 

conomic output) is determined by the maximum number of tests. 

he combined strategy with perfect testing dominates the other 

trategies with economic outputs higher than approximately 0.95. 

m

6 
or lower values of economic output as well as deaths, the strate- 

ies with imperfect mass testing become dominating. At the other 

xtreme of the fronts, there are solutions with slightly fewer than 

0 0 0 deaths and minimum output (0.5). 

tage 3: Elimination of non-robust solutions 

Next, uncertainty in the epidemic parameter estimates is con- 

idered from the viewpoint of such uncertainties creating a risk 

f exceeding the ICU capacity when a Pareto optimal solution is 

mplemented. To mitigate this risk, we eliminate solutions from 

he Pareto front that are non-robust in terms of resulting in a 

rohibitively high probability of exceeding the ICU capacity given 

mall deviations from the parameters of the epidemic model. In 

articular, we exclude the solutions where the following proba- 

ilistic constraints cannot be met 

 

[ 
p · ISQ (t, λLD 

, τ) − Q hos > 0 

] 
≤ ε E , ∀ t. (8) 

n these constraints, p is the probability that a symptomatic person 

equires ICU treatment, ISQ is the fraction of the population that is 

nfected, symptomatic, and in quarantine (and can therefore be as- 

umed to require hospital care), Q hos is the hospital ICU capacity, 

nd ε E is the highest acceptable probability for exceeding the ICU 

apacity at any time t . Ideally, these constraints would already be 

ncluded in the optimization task itself, but this would lead to nu- 

erical intractability. 
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Fig. 3. Progression of the pruning process as seen in the objective space. 
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To estimate the probabilities on the left-hand side of 

quations (8) , we apply post-optimization sensitivity analysis on 

arameters R 0 (basic reproduction rate) and δ (symptom gener- 

tion rate) that were found to have the strongest combined im- 

act on model outcomes in simulations performed with strate- 

ies selected from the Pareto fronts (see section S1.4 in the Sup- 

lementary Materials for details). Specifically, we generated 10 

 0 0 parameter value samples from the distributions of these 

wo parameters (see Table S4 for details), and estimated the 

robability of exceeding the ICU capacity for each strategy as 

he share of samples for which p · ISQ (t, λLD 
, τ, φ) ≥ 0 for any t ,

here φ = (R 0 , δ) is an individual sample. The solutions for which 

his share was higher than ε E = 10% were eliminated from the 

areto front. The remaining 230 robust solutions are shown in 

igure 3 b. 

tage 4: Combining the Pareto fronts 

After robustness-based pruning, the Pareto fronts corresponding 

o different strategy classes are combined to eliminate solutions 

hat are dominated by other solutions from a different class. In our 

ase study, the combination of the Pareto fronts resulted in a set 

f 74 remaining solutions, which are illustrated in Figure 3 c. 
7 
tage 5: Clustering the remaining Pareto optimal solutions 

Next, we cluster the remaining solutions in the decision space 

o obtain a small number of representative solutions that to- 

ether cover a diverse set of decision profiles. The k-medoids al- 

orithm is suitable for when solutions correspond to correlated 

ecision profiles over time. The k-medoids algorithm minimizes 

 distance metric with respect to a representative object in the 

luster ( Kaufmann & Rousseeuw, 1987 ). As we aim to cluster so- 

ution profiles with similar decision profiles, we use the Pearson 

istance to group highly correlated solution profiles in a single 

luster. Strategies from different strategy classes are set to feature 

 large Pearson distance between them, resulting in no mixing of 

trategy classes within clusters. Let u ∗i and u ∗ j be the control vec- 

ors of two Pareto optimal solutions and let r u ∗i u ∗ j be the Pearson 

orrelation coefficient. Then, we can define the Pearson distance as 

 u ∗i u ∗ j 
. = 

√ 

1 

2 

(1 − r u ∗i u ∗ j ) . (9) 

he clustering algorithm selects one of the members of a cluster as 

 medoid, i.e., a representative solution for the considered cluster. 

We cluster the remaining 74 solutions into 10 clusters based on 

trategy class and Pearson distance. The results of the clustering 
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Fig. 4. Summary of results after all pruning steps for visual inspection. In the strategy graphs, red lines depict testing strategies and blue lines lockdown strategies. Solutions 

selected by the DM for final comparison are highlighted with red dots in the strategy graphs and red circles in the Pareto front. The maximum risk level (%) over the con- 

sidered time window is indicated next to each Pareto point. (MT = mass testing, LD = lockdown, CT = contact tracing, s&s = sensitivity & specificity, combo = combination 

strategy with lockdown and testing). 

a

c

d

b

a

S

p

t

d

t

D

b

e

t

l

t

g

u

t

a

l

k

t

t  

t

b

t

s

l

b

(

d

r

3

2

s

o

t

m

S

e

s

d

o

s

c

s

s

d

f

re shown in Figure 3 c, where solutions corresponding to different 

lusters are depicted by different colours. Even though clustering is 

one in the decision space, we can see that there is little overlap 

etween clusters in the objective space. The 10 remaining medoids 

re shown in Figure 3 d. 

tage 6: Visual inspection of representative solutions 

At this stage, the number of Pareto optimal solutions has been 

runed from 360 to 10, corresponding to a 97% reduction from 

he original set. The remaining solutions represent robust, non- 

ominated, and relatively dissimilar control strategies, and hence 

hey are attractive candidates to be chosen as the final solution. 

ue to the small number of these solutions, visual inspection can 

e applied to compare them with one another. An example of an 

ffective visualization is shown in Figure 4 , where red lines in 

he small, solution-specific figures depict the testing rate and blue 

ines depict the strength of lockdown at each time period. 

The DM can now make judgements on the implementability of 

he solutions based on 1) their decision profiles and 2) the pro- 

ression of the epidemic under the remaining strategies (see Fig- 

re S2 in the Supplementary material section S1.5). Assume that 

he DM holds large temporal fluctuations in the decision profiles 

s unimplementable, and is interested in further investigating so- 

utions at the extremes of the remaining Pareto front and in the 

nee region (where a small improvement in one objective leads 

o a significant deterioration in the other). Based on visual inspec- 

ion of the medoids presented in Figure 4 , such a DM might select

he first, seventh, and tenth medoid (counting clockwise from the 
8 
ottom left) for further consideration. The characteristics of these 

hree solutions are shown in Table 2 . Strategy 1, where a relatively 

trong lockdown is imposed throughout the entire time horizon, 

eads to a low number of deaths, but also to the economic output 

eing reduced to one half. Here, the risk of ICU overload is small 

only 1.0%). Strategy 3, where a combination of relatively mild lock- 

owns and low testing rates with perfectly accurate tests is used, 

epresents the other extreme: economic output is reduced by only 

%, but the number of deaths is approximately 86 0 0 0. Strategy 

, which corresponds to mass testing with imperfect tests, can be 

een as a compromise between the two extremes: the economic 

utput is only 4 percentage points lower than with strategy 3, but 

he number of deaths is cut down by a factor of four approxi- 

ately. 

trategy implications and insights for controlling COVID-19 

During the decision support process and related analyses, sev- 

ral insights were gained into the differences between alternative 

trategies and their implications from the viewpoint of the epi- 

emic’s progression. These insights would be hard to obtain with- 

ut the use of optimization and the ability to ultimately focus on a 

mall set of representative solutions that together cover the main 

haracteristics of different strategies. Yet, the nature of these in- 

ights should be considered qualitative instead of quantitative as 

ome of the underlying model assumptions have not been vali- 

ated by experts or based on peer-reviewed literature. 

The first insight is related to the positioning of strategies of dif- 

erent class on the Pareto front (cf. Figure 3 a). In particular, strate- 
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Table 2 

Remaining non dominated solutions after risk and clustering based pruning and assumed DM prefer- 

ences. 

Strategy # Strategy class Deaths Economic output ICU overload risk 

1 Lockdown 920 0.5 1.0% 

2 Mass testing (sens & spec 85%) 22238 0.93 6.1% 

3 Combination (sens & spec 100%) 86080 0.97 8.6% 

g

f

a

c

t

b

n

a

t

i

T

C

e

t

r

n

S

c

t

c

t

f

P

i

b  

l

f

q

4

P

h

o

i

e

c

i

u

i

c

t

a

m

T

e

g

t

r

i

p

o

N

r

l

w

s

p

i

i

m

a

w

p

c

t

r

t

i

t

n

p

c  

a

t

a

d

s

s

s

t

(  

t  

p

p

i

d

t

p

c

g

r

t

w

a

a

d

S

p

i  

c

s

a

c

o

ies at the low death rate, low economic output end of the Pareto 

ront use lockdowns, whereas those resulting in high death rates 

nd high economic output correspond to testing with perfectly ac- 

urate tests (at a restricted capacity). Most strategies of the lat- 

er class are nevertheless eliminated in stage 3 of the framework 

ased on robustness considerations, since a high death rate is con- 

ected to a high risk of overloading the ICU capacity. In the knee 

rea, Pareto optimal strategies use mass testing with imperfect 

ests. Specifically, all of these strategies use high volumes of test- 

ng in the beginning, which significantly slows down the epidemic. 

he longer these high testing volumes are maintained, the fewer 

OVID-19 related deaths there will be. 

The second insight concerns a so-called ‘lockdown by testing’ 

ffect related to strategies that use mass testing with imperfect 

ests. This effect stems from the large number of false positive 

esults in these strategies, which lead to a large portion of the 

on-infected population being quarantined (cf. Figure S2 in the 

upplementary material). Thus, direct lockdown measures may be- 

ome obsolete. In fact, pure lockdown strategies are dominated by 

hose that utilize imperfect tests as long as there is enough testing 

apacity. Nevertheless, issues related to accountability and public 

rust may render strategies utilizing the ‘lockdown by testing’ ef- 

ect unimplementable in real-life situations. 

Our third insight is that all strategies which remain in the 

areto front after robustness-based pruning incorporate lockdowns 

n some way, either directly or indirectly through the ‘lockdown 

y testing’ effect (cf. Figure 4 ). To mitigate the risk of ICU over-

oads (and, thereby, high death rates) with strategies utilizing per- 

ect tests and no lockdowns, a large testing capacity would be re- 

uired. 

. Case study 2: Colorectal cancer screening 

roblem context 

In Finland, colorectal cancer (CRC) is a crucial concern for public 

ealth. Incidence rates have increased over the last decades, and as 

f 2017, CRC is the sixth most common cause of death. Screening 

s an effective method to catch and treat potential cancers in their 

arly stages, thus improving the prognosis of CRC patients signifi- 

antly. Screening for CRC is a multi-period process, where partic- 

pants are screened in, e.g., 2-year intervals. The Finnish program 

tilizes faecal immunochemical testing (FIT) to first filter partic- 

pants for further examination. Then, those whose FIT result ex- 

eeds a cut-off level are invited for a colonoscopy ( Finnish colorec- 

al cancer screening expert groups, 2021 ). During the colonoscopy, 

 visual inspection of the colon is performed, and detected abnor- 

alities in the bowel are recorded, sampled and possibly removed. 

hese abnormalities include small benign growths (polyps), differ- 

nt sizes and stages of larger growths (adenomas), and cancerous 

rowths (cancers). The samples are then studied to diagnose po- 

entially cancerous growth, and depending on the results, the cor- 

ect treatment is performed. 

In this example case study, we apply the proposed methodolog- 

cal framework to help improve the current Finnish CRC screening 

rogram. For the purposes of properly demonstrating each stage 

f our framework, we modify the actual case study presented in 
9 
euvonen et al. (2022) , where the model was built in collabo- 

ation with practitioners. In the current program, the FIT cut-off

evel is assumed to be the same for both sexes and all age groups, 

hich may result in a suboptimal allocation of colonoscopy re- 

ources. Moreover, due to uncertainties related to FIT results and 

articipation in the program, there is a risk of exceeding the exist- 

ng capacity of 18 0 0 0 colonoscopies, which could lead to failures 

n carrying out the program or costly rearrangements. To accom- 

odate these considerations, we develop a multistage optimization 

pproach based on multiobjective influence diagrams. Specifically, 

e optimize the age- and sex-specific FIT cut-off levels for a five- 

eriod screening program in view of minimizing both expected 

ancer prevalence and expected costs in the total target popula- 

ion with given colonoscopy resources. Moreover, to mitigate the 

isk of exceeding colonoscopy capacity, we aim to eliminate solu- 

ions that have a higher than 10% chance of exceeding this capac- 

ty. We further assume that the DM is interested in ensuring that 

he strategies make sense from a behavioral perspective, but has 

o quantitative metrics for formally including such considerations. 

A schematic description of the multistage optimization ap- 

roach is shown in Figure 5 . All relevant details of this approach 

an be found in Neuvonen et al. (2022) . In phase 1 (performed sep-

rately for both sexes), influence diagrams (IDs) are used to cap- 

ure how abnormal bowel states are found and costs generated in 

 given period as a function of screening decisions. An ID can, un- 

er certain assumptions, be transformed into a decision tree and 

olved accordingly ( Howard & Matheson, 2005 ). The case-study- 

pecific IDs will be presented in more detail in the description of 

tage 1 of the methodological framework. Within a single period, 

he Modified Augmented Weighted Tchebychev (MAWT) algorithm 

 Holzmann & Smith, 2018 ) is used to optimize the ID for a given

arget segment defined by sex ( g) and age group ( k ), given starting

revalences ψ g,k,b for different bowel states b in this segment. This 

roduces a set of Pareto optimal solutions with respect to min- 

mizing expected costs and maximizing the expected number of 

etected abnormal bowel states. Corresponding to each such solu- 

ion, the starting prevalences of different bowel states for the next 

eriod are produced through prevalence update rules that also ac- 

ount for the effects of aging. This process is repeated until all tar- 

et segments have been optimized for all possible decision histo- 

ies, i.e., strategies until that period. In phase 2, the Pareto fronts of 

hese sex-specific strategies are combined into full strategies, after 

hich dominated strategies are removed. The number of strategies 

vailable is nearly 26 billion, which, together with chance events 

nd parametric uncertainties, makes this a numerically complex 

ecision-making problem. 

tage 1: Cancer screening model 

The cancer screening process for an individual member of the 

opulation in a given period and with a given starting prevalence 

s modeled by an ID. This ID, shown in Figure 5 , is based on the

urrent Finnish CRC screening programme. The ID contains deci- 

ion nodes (squares), chance nodes (circles), and utility nodes (di- 

monds). An instance where exactly one value is realized for each 

hance and decision node is called a path through the ID. A choice 

f a combination of values for the decision nodes (given the real- 
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Fig. 5. Schematic description of the multistage optimization approach to solve the CRC screening optimization problem. 
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zations of chance nodes preceding these decision nodes, in case 

here are any) is called a strategy . Thus, a strategy is a collection 

f paths corresponding to all possible realizations of chance nodes 

hat can be attained given the choice of values for the decision 

odes. 

In Figure 5 , the decision nodes 1, 2, and 3 correspond to deci- 

ions about 1) what FIT cut-off value to use to select participants 

or a colonoscopy in the given target segment, 2) whether to use 

n incentive to boost participation rate among invitees in this seg- 

ent (specifically, we assume that an incentive worth 10 euros 

alves the number of non-returned samples) and 3) whether to 

nvite the target segment to the screening program. Let us denote 

y s j ∈ S j the alternatives for decision j. Here, the sets S j of such

lternatives are S 2 = S 3 = { yes, no} and S 1 = { 10 , 20 , 30 , 40 , 50 } μg

g/g of blood in the stool sample. Let (g, k ) with g ∈ G = { F , M} , k ∈
 1 , 2 , 3 , 4 , 5 } be the target segment, where F and M refer to fe-

ale and male, respectively, and numbers k to the screening pe- 

iod. These periods correspond to a participant’s age in 2-year in- 

ervals so that period 1 refers to 60-year-olds, period 2 to 62-year- 

lds etc. The decisions regarding which alternatives s j to select 

or each target segment are modeled as binary decision variables 

 g,k (s j ) ∈ { 0 , 1 } so that z g,k (s j ) = 1 if and only if alternative s j is

elected for segment (g, k ) . A full screening strategy Z is a collec-
10 
ion of these decision variables for all target segments and can be 

ritten as Z = 

⋃ 

g,k Z g,k where the segment-specific strategies are 

efined as Z g,k = 

⋃ 

j∈ D z g,k (s j ) , ∀ g, k . 

Chance nodes correspond to returning a FIT sample, FIT re- 

ults, continued participation, the discovery of polyps and polypec- 

omy in a colonosopy, and adverse effects from the colonoscopy. 

n particular, nodes 5 and 8 reveal information about the par- 

icipant’s bowel state. Here, we assume that the bowel state b ∈ 

 = { N , B , L , R } of a participant can be Normal (N), Benign growth 

B), Large growth (L) or CRC (R). These bowel states are reflected 

t the population level by prevalences ψ g,k,b = N g,k,b /N g,k , where 

 g,k,b is the number of participants in segment (g, k ) with bowel 

tate b, and N g,k is the total number of participants in segment 

g, k ) . The starting prevalences ψ F, 1 ,b , ψ M, 1 ,b , ∀ b ∈ B as well as the

egment-specific conditional probabilities for chance nodes are ob- 

ained from the literature. 

The progression of the prevalences of different bowel states are 

ffected by two factors: natural progression and screening. The 

atural progression of colorectal cancer is reflected by transition 

robabilities T 

g,k 

b,b ′ between bowel states b, b ′ ∈ B. We assume that 

his progression follows the adenoma-carcinoma sequence, mean- 

ng the transition through bowel states can be represented by a 

inear recurrence relation. Screening, on the other hand, helps de- 
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rease the prevalences of abnormal bowel states in the popula- 

ion, depending on the selected FIT cut-off level and incentive. In 

articular, we assume that any benign growth, large growth, or 

RC found during the screening pathway is removed and that the 

owel returns to a normal state. Taken together, the starting preva- 

ences in period k + 1 can be computed using the following differ- 

nce equations: 

 g,k +1 ,B (Z g,k ) = (ψ g,k,B − ˜ ψ g,k,B (Z g,k ))(1 − T 

g,k 
B , L 

) + ψ g,k, N T 

g,k 
N , B 

(10) 

 g,k +1 , L (Z g,k ) = (ψ g,k, L − ˜ ψ g,k, L (Z g,k ))(1 − T 

g,k 
L , R 

) 

+ (ψ g,k, B − ˜ ψ g,k, B (Z g,k )) T 

g,k 
B , L 

(11) 

 g,k +1 , R (Z g,k ) = ψ g,k, R − ˜ ψ g,k, R (Z g,k ) 

+(ψ g,k, L − ˜ ψ g,k, L (Z g,k )) T 

g,k 
L , R 

(12) 

 g,k +1 , N (Z g,k ) = 1 −
∑ 

b∈{ B , L , R } 
ψ g,k +1 ,b (Z g,k ) , (13) 

here ˜ ψ g,k, B (Z g,k ) stands for the fraction of participants found to 

ave bowel state b in period k as a result of applying screening 

trategy Z g,k . 

Finally, the utility nodes describe the outcomes of a given path 

hrough the ID. Here, the ‘Cost’ node sums all costs accrued within 

he path, whereas nodes ‘Found R’, ‘Found L’ and ‘Found B’ obtain 

 value of 1 if CRC, large adenoma, or benign growth are found 

long the path, respectively, and a value of 0 otherwise. Node ‘P 

ol.’ collects information about whether a colonoscopy was carried 

ut within the path. A strategy is associated with a distribution 

f outcomes for each utility node, where these distributions are 

etermined by the probabilities of the paths corresponding to this 

trategy. These distributions can be used to formulate objectives or 

onstraints for the optimization problem. 

tage 2: Multiobjective optimization 

We assume that the DM wants to minimize the combined ex- 

ected prevalence of colorectal cancer across all target segments 

R (Z) = 

∑ 

g,k N g,k, R (Z) / 
∑ 

g,k N g,k as well as the total expected costs 

(Z) so that the expected total number of colonoscopies N Col (Z) 

oes not exceed the capacity of 18 0 0 0. The multi-period optimiza- 

ion problem can thus be formulated as follows: 

min 

Z 

R (Z) (14) 

min 

Z 
�(Z) (15) 

.t. N Col (Z) ≤ 180 0 0 . (16) 

s illustrated in Figure 5 , the optimization of strategies for the 

omplete screening program is carried out in two phases. In phase 

, the MAWT algorithm ( Holzmann & Smith, 2018 ) is used for find-

ng the set of Pareto optimal solutions for each segment (g, k ) in

iew of minimizing expected costs and maximizing the probability 

f finding abnormal bowel states (B, L, R). The MAWT algorithm 

as chosen as it helps generate the complete Pareto front for a 

iscrete multiobjective optimization problem with any number of 

bjectives relatively efficiently compared to other existing meth- 

ds. Specifically, phase 1 of the screening optimization algorithm 

tarts by identifying the Pareto optimal solutions for the first pe- 

iod for both sexes based on starting prevalences that have been 
11 
stimated from data. Subsequently, for each of these solutions, up- 

ated prevalences are computed using Equations (10) - (13) to gen- 

rate a list of possible starting prevalence vectors for the next pe- 

iod. This process is repeated in the next period for each possi- 

le starting prevalence vector and continued until the last screen- 

ng period. This results in a strategy tree, where each branch cor- 

esponds to a complete screening strategy. Dominated strategies 

s well as those for which the expected total number of colono- 

copies exceeds the capacity of 18 0 0 0 are cut out during the pro-

ess. In phase 2, a single Pareto front is produced for the multi- 

eriod optimization problem defined in (14) - (16) by first creating 

ll possible combinations of the female and male strategies, and 

he expected cancer prevalences and costs corresponding to these 

trategy combinations. Then, the Pareto front is obtained by re- 

oving all dominated strategy combinations from this set. The re- 

ult is depicted in Figure 6 a. At this stage, the front consists of 181

olutions. 

tage 3: Elimination of non-robust solutions 

In stage 3, the aim is to eliminate those solutions from the 

areto front for which the probability of exceeding the capacity 

or colonoscopies is, due to uncertainties in the model parame- 

ers, higher than 10%. The most important parameters in this re- 

pect are the probability of returning a FIT sample (cf. chance 

ode 4 in the ID) and the sensitivity (i.e., true positive rate) and 

pecificity (i.e., true negative rate) values of the FIT with a given 

ut-off level determining a positive result (cf. chance node 5 in 

he ID). This is because the probability of returning the sample 

as estimated from previous trials where a different sampling 

ethod was used, and because the FIT sensitivity and specificity 

stimates were based on literature regarding non-Finnish popu- 

ations. Furthermore, the probability of a colonoscopy being per- 

ormed depends on these parameters through equations defining 

he ID (see Section S2.1 in the Supplementary Material for de- 

ails). We, nevertheless, assume that the parametric uncertainty re- 

ated to continuing in the program after a positive FIT result is 

ow because the probability of continuation can be reliably esti- 

ated based on previous screening trials in the Finnish popula- 

ion. Furthermore, we assume that the starting prevalences and 

ransition probabilities have been accurately estimated, whereby 

ncertainty related to prevalences produced by the model in sub- 

equent periods can be excluded from this robustness analysis as 

ell. 

To estimate the probability of exceeding the capacity of 18 0 0 0 

olonoscopies, we created 10 0 0 0 samples of the chosen param- 

ters using the following distributions: The FIT return rate is as- 

umed to follow a truncated normal distribution with expected 

alue at the original parameter value estimate and a standard de- 

iation of 10% of the expected value. FIT sensitivity is sampled as a 

roportional deviation from the original estimate, where the devia- 

ion is assumed to follow a truncated normal distribution between 

1 and 1, with a standard deviation of 0.1 and expected value of 

. The deviation is the same for all FIT sensitivity parameters per 

ample, i.e., all FIT sensitivity parameters are assumed to be per- 

ectly correlated. FIT specificity samples are modeled in a simi- 

ar fashion. Their deviations are assumed to be independent from 

hose of the sensitivity parameter. An estimate for the probability 

f exceeding the maximum colonoscopy capacity for a given strat- 

gy Z is obtained as the ratio of samples in which this capacity 

as exceeded to the total number of samples. The solutions for 

hich this estimate was higher than 10% were removed, which led 

o the low-risk Pareto front in Figure 6 b. The number of solutions 

emaining in the Pareto front after robustness-based pruning was 

37. 
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Fig. 6. Progression of the pruning process as seen in the objective space. 
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tage 4: Combining the Pareto fronts 

Since we did not consider different strategy classes in this case 

tudy, stage 4 can be omitted. 

tage 5: Clustering the remaining Pareto optimal solutions 

Strategies in this case study can be considered categorical by 

ype, in that two out of three decision variables (whether to in- 

ite the target segment to the program and whether to use an in- 

entive to boost participation) are binary (yes / no), and the third 

ariable (the FIT cut-off value) only has five possible values. Hence, 

e apply the k-modes approach ( Chaturvedi, Green, & Caroll, 2001 ) 

o cluster the remaining 137 strategies in the decision space into 

0 clusters. The k-modes approach uses a similarity measure that 

ounts matches in categories between the members of a cluster. 

lustering was performed using the ‘kmodes’ (v.0.11.1) package for 

ython ( de Vos, 2015–2021 ). The effect of clustering in the objec- 

ive space can be seen in Figure 6 c. 

tage 6: Visual inspection of the representative solutions. 

The representative solutions for each of the 10 clusters are pre- 

ented along with their objective values in Figure 7 . The 10 re- 
12 
aining solutions represent 5.5% of the initial 181 solutions. The 

robability of exceeding the capacity for colonoscopies is indicated 

ext to the marker for the representative solution in the objec- 

ive space. It can be seen that solutions for which this probability 

s highest are mostly found in the high-cost end of the spectrum. 

his, however, is to be expected as a large portion of possible costs 

re related to the colonoscopy operation, and treatment and ad- 

erse effects depending on its outcome and results. 

The DM can use Figure 7 to review the representative strate- 

ies and visually assess their implementability. In this particular 

ase, the implementability of a strategy could be judged by con- 

idering whether the use of incentives within a strategy makes 

ense from a behavioral perspective. For example, the two incen- 

ivized strategies could be considered unimplementable due to in- 

entives being used for some invited age groups but not all. This 

ind of an incentive structure could prove to be difficult to com- 

unicate to program invitees and, at worst, lead to the youngest 

ge groups not participating at all. The rest of the strategies could 

e considered equally implementable and, coincidentally, equally 

obust in that each of them also has a 0.0% probability of exceeding 

he colonoscopy capacity. Among these strategies the DM might 

hen choose, e.g., the one that minimizes the expected total can- 
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Fig. 7. Summary of CRC case study results after all pruning steps for visual inspection. In the strategy graphs, red triangles depict the selected strategy for females and blue 

triangles for males. The solution potentially selected by the DM is highlighted with a red dot in the strategy graph and a red circle in the Pareto front. The risk of exceeding 

the maximum colonoscopy limit (%) is indicated next to each Pareto point. 
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er prevalence in the population (i.e., the strategy corresponding 

o the lower-left corner strategy graph). 

nsights from the cancer screening case study. 

Several insights were gained as a result of the application of the 

ramework to this problem. As in the epidemic case study, these 

nsights should be considered qualitative by nature. The first in- 

ight is that in most cases, screening with a low FIT cut-off level 

s preferred (cf. strategy graphs in Figure 7 ). Specifically, the cut- 

ff levels used in most representative strategies vary between 10- 

0 μg Hg/g, whereas the cut-off level used in the current Finnish 

creening strategy is 25 μg Hg/g. A possible explanation for the 

reference for low cut-off levels is that the use of a higher cut-off

evel decreases the number of performed colonoscopies, whereby 

 larger share of abnormal bowel states could go undetected. This, 

n turn, would lead to lower health benefits. Nevertheless, the spe- 

ific reasons for why the suggested cut-off levels differ from cur- 

ent practice merits a more thorough investigation. 

Our second insight is that for females, the lowest FIT cut-off

evel is used for nearly all age groups that are invited to the 

creening program. On the other hand, males in many represen- 

ative strategies should start with a higher cut-off level which is 

hen decreased in the older age groups. This can be interpreted 

o mean that for females the improved hit rate in screening re- 
13 
ulting from the age-related increase in cancer prevalence does 

ot cancel out the benefits gained from catching earlier stages 

n cancer development early on, whereas for males the situa- 

ion might be reversed. A third insight is that, under these as- 

umptions, incentives would not be very cost-effective, and are 

ot used except for males in the high-cost end of the Pareto 

ront. 

. Conclusions and discussion 

In this paper, we have developed a methodological framework 

o support the identification of a small but diverse set of robust 

areto optimal solutions to complex, non-linear decision-making 

roblems. The main benefit of our framework is that it helps prune 

 possibly very large set of Pareto optimal solutions to a handful 

f robust, non-dominated solutions that represent a diverse set of 

ecision alternatives. The small number of such solutions enables 

heir thorough visual inspection, which can help make judgments 

bout the relative characteristics and implementability of these so- 

utions in view of practical and political criteria that are not easily 

onverted into constraints for the optimization model. Visual in- 

pection in the decision space can be particularly helpful when the 

umber of objectives is large so that comparisons in the objective 

pace become difficult. Another benefit of our framework is that 

etween initial problem structuring and the visual inspection of 
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he remaining solutions, no interaction with the DM is necessarily 

equired. This can be useful in cases where time constraints are a 

ajor issue. If time permits, more interaction can of course be in- 

roduced to different stages of the framework to enhance learning 

nd produce a sense of ownership of both the model and the de- 

ision recommendations ( Franco & Montibeller, 2010 ). Such inter- 

ction could, for instance, include the iteration of the optimization 

odel to include constraints related to implementability require- 

ents that were hidden at the start of the decision process, but 

ltimately discovered through visual inspection. Finally, our frame- 

ork is generic in that it can be applied to various types of process

nd optimization models (including black box models), as long as 

he computational burden required for solving the Pareto fronts or 

arrying out the robustness analysis does not become excessively 

igh. 

We have illustrated our framework using two example case 

tudies: epidemic control and cancer screening program design. 

oth case studies demonstrated the potential of our framework 

or generating insights into complex decision problems that would 

ave been hard to obtain without the use of optimization and the 

bility to ultimately focus on a small set of representative solu- 

ions. Although the epidemic case study is more stylized by nature, 

t nonetheless allowed us to get qualitative insights into optimal 

olution pathways. For instance, the framework helped discover a 

o-called ‘lockdown by testing’ effect related to strategies that use 

ass testing with imperfectly accurate tests. Moreover, it showed 

hat given adequate testing capacity, mass testing even with imper- 

ect tests can dominate pure lockdown strategies as well as strate- 

ies based on perfect tests but lower capacities. On the other hand, 

n the cancer screening case study, the framework suggested much 

ower cut-off levels for positive FIT results than those currently 

sed in the screening program. 

The main limitation of our proposed framework is the high 

omputational effort required to solve the sets of Pareto opti- 

al solutions and to perform the robustness analysis in a situa- 

ion where the dynamics of the underlying processes and decision 

ariables are captured by a complex, nonlinear model. In many 

ases long yet manageable computation times (such as the four- 

ay computation time in the epidemic control case study) do not 

onstitute a major barrier for the application of our framework 

iven that it is intended to support large-scale and infrequent (if 

ot one-off) decisions. If needed, this effort could be decreased 

y reducing precision in the optimization, or even in the process 

odel. The complexity of the system description is a balancing act 

etween the numerical tractability of the optimization algorithm 

nd the realism of the process model. Often using even inexact al- 

orithms or heuristics to solve an optimization problem that cor- 

ectly represents the decision at hand can yield considerable ben- 

fits compared to using exact algorithms to solve a much simpler 

roblem, or not using an optimization approach at all. Therefore, 

implifying the process model should be carefully considered be- 

ause this would inevitably reduce the real-life relevance of the 

odel results. Finally, the visualization of solutions and objectives 

s an important phase in the proposed framework. Yet, such visual- 

zations in more than three dimensions are known to be difficult. 

owever, there exist techniques, such as animations and projec- 

ions, that can help in this task. 

This research opens up several interesting avenues for future 

ork. First, it would be important to test the framework in differ- 

nt kinds of contexts in collaboration with real DMs. Potential con- 

exts include, for instance, environmental decision-making and en- 

rgy policy decisions. These kinds of context-specific applications 

re likely to reveal limitations in the applicability of our framework 

s it is currently presented. Some of these limitations could be 

vercome by improving the ways in which the stages in our frame- 

ork are carried out. For instance, compared to how we conducted 
14 
he robustness-based pruning of the Pareto fronts in our case stud- 

es, more advanced sampling techniques could be required in real- 

ife applications to enable a larger sample size. Moreover, sensitiv- 

ty analyses could be extended to cover not only the process model 

arameters but also the decision profiles. In the context of the 

OVID-19 case study, for instance, these kinds of sensitivity analy- 

es could be used to examine the impact of small changes in the 

iming and strength of controls on relevant risk metrics. 
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