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We measure the Kelvin–Helmholtz instability in between a layer of a diamagnetic fluid
flowing in a channel and a layer of ferrofluid resting on top. When the diamagnetic fluid
exceeds a critical flow velocity the interface in between both fluids becomes unstable
and waves develop. It has been predicted by Sutyrin & Taktarov (J. Appl. Math. Mech.,
vol. 39, 1975, pp. 520–524) that a homogeneous magnetic field, oriented horizontally,
stabilizes the liquid interface. To test this prediction we apply in a closed flow channel
a local periodic perturbation of the interface by magnetic or mechanic means. From the
measured growth and decay rates of the interface undulations we determine the critical
flow velocity for various driving frequencies and applied magnetic fields. In this way we
confirm quantitatively the stabilizing effect of the horizontal field. Moreover we measure
the dispersion relation of the interfacial waves.
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1. Introduction

And the same day, when the even was come, he saith unto them, Let us pass over unto
the other side. 4:36 And when they had sent away the multitude, they took him even as he
was in the ship. And there were also with him other little ships. 4:37 And there arose a
great storm of wind, and the waves beat into the ship, so that it was now full. 4:38 And he
was in the hinder part of the ship, asleep on a pillow: and they awake him, and say unto
him, Master, carest thou not that we perish? 4:39 And he arose, and rebuked the wind, and
said unto the sea, Peace, be still. And the wind ceased, and there was a great calm (Mark
4:35–39, KJV Emerald Text Bible 2006).

Indeed, since the beginning of navigation, men have been threatened by waves,
generated by wind blowing over the surface of water. The velocity difference across
the interface between the air and the water drives the waves, as was demonstrated in
early experiments by von Helmholtz (1868) and his friend Lord Kelvin (Thomson 1871).

† Email addresses for correspondence: armin.koegel@uni-bayreuth.de,
reinhard.richter@uni-bayreuth.de
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Their seminal works have given rise to the term Kelvin–Helmholtz instability (KHI) for
this phenomenon.

Besides being a hazard, water waves are also an economic nuisance. According to
Scheidt (2012), sea disturbances increase the fuel consumption of ships on all oceans by
3 %. Apart from divine intervention, oil poured onto the sea calms the waves, as reported
already by Aristotle, Plutarch and Pliny the Elder (Scott 1978). Landerer (1894) even
conducted test experiments to discover which type of oil has the best effect. However,
this method has become obsolete because of pollution control. In contrast, the calming
effect of rain on sea disturbances (Tsimplis 1991) is harmless, but does not happen on
schedule. However, externally applied electric and magnetic fields can be switched on at
will. But due to the tiny magnetic susceptibility of diamagnetic water (χ ≈ −10−5) the
latter have no effect for sea disturbances.

The same is not true for ferrofluid, a colloidal dispersion of magnetic nanoparticles
(Rosensweig 1985), which has a huge susceptibility in the range of 0 < χ < 10. It has been
established both theoretically (Gailitis 1977; Friedrichs & Engel 2001) and experimentally
(Cowley & Rosensweig 1967; Gollwitzer et al. 2007; Richter & Lange 2009) that a
magnetic field oriented normally to the static liquid layer destabilizes the interface. In
contrast, early experiments for the tilted field instability in a resting layer of ferrofluid
(Barkov & Bashtovoi 1977; Bercegol et al. 1987) have shown that a horizontal field
component can stabilize the interface. This has been quantitatively confirmed by theory
(Friedrichs 2002) and experiments (Reimann et al. 2005; Groh et al. 2007).

Also for the KHI, the stabilizing effect of a tangential magnetic field, or more precisely
the shift of the onset of the linear instability to higher flow velocities, was predicted
in a seminal theoretical work by Sutyrin & Taktarov (1975). Later it was modelled
by Rosensweig (1985), Malik & Singh (1992), Elhefnawy (1995) and Zakaria (2003).
Whereas most models consider two layers of inviscid liquids in two dimensions, and
are taking advantage of a velocity potential, more realistic calculations, such as those by
Elhefnawy & Moatimid (2001), are few and far between. Taking into account viscosity, a
three-dimensional confinement and a nonlinear magnetization curve, Yecko (2009, 2010)
simulated a low Reynolds number channel flow and concluded that the ‘stabilizing effect’
of a tangential magnetic field may be an oversimplification. This calls for an experiment.

For fluid under motion, the stabilizing effect of a horizontal magnetic field has so far
been measured only by Zelazo & Melcher (1969) for ferrofluid sloshing in a tank. To the
best of our knowledge, the magnetic stabilization of the KHI for a magnetic liquid interface
has never been explored experimentally in a macroscopic channel. This deficiency is
somewhat surprising, because in plasma physics the stabilizing effect of magnetic fields
on the KHI was examined in both theory (D’Angelo 1965) and experiment (D’Angelo &
Goeler 1966) long ago. Especially in the plasma of the solar corona, magnetic stabilization
has been observed to play an important role (Foullon et al. 2011). Recently Li et al. (2018)
showed evidence of the KHI emerging in between solar blowout jets guided by magnetic
flux tubes. This is happening in such a way that the magnetic field is inherently tangential
to the interface between the flux tubes.

In this article we report on earthbound experiments for a magnetic liquid interface
in order to fill the above-mentioned gap. The article is organized as follows. As an
introduction for the reader we present in § 2 the governing equations. Next, in § 3, the
experimental set-up and the ferrofluid are characterized. Besides exploring spontaneously
emerging interface waves we want to investigate as well waves of well defined frequency
(and wavenumber). Therefore we sketch in the same section two different methods of
periodic wave excitation. Our experimental results are reported in § 4. From the measured
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FIGURE 1. Illustrative sketch of the flow configuration.

growth and decay rates of the interface undulations we determine the critical flow velocity
for various excitation frequencies and applied magnetic fields. In addition we use the
driving to measure the dispersion relation of the interface waves. The article finishes with
a summary, discussion, and outlook (§ 5).

2. Governing equations

To deduce the dispersion relation for interfacial waves one may assume a
two-dimensional system as shown in figure 1. It consists of two superposed layers
of inviscid immiscible fluids of different densities ρa < ρb. In agreement with the
experiments the magnetic fluid with magnetic susceptibility χ is at rest in the top layer,
whereas the diamagnetic fluid below is moving with constant velocity U. Note that
this upside-down version of the classical arrangement (‘wind blowing over the sea’) is
motivated by the availability of immiscible diamagnetic and superparamagnetic fluids
(cf. § 3). For a flat interface the heights of the upper and lower layer are described by
a and b, respectively. The interfacial tension γ between the two fluids is stabilizing the
interface. Because we neglect viscosity and consequently shear stresses, we can assume
a non-continuous velocity profile. We apply a homogeneous magnetic field of magnitude
H parallel to the unperturbed interface. In a linear stability analysis all small disturbances
from the basic state are analysed into normal modes, i.e. they are described by the function
A(x, t) in the coordinate system given in figure 1. A linear wave, propagating in direction
of the flow, is described by

A(x, t) = A0 Re{ei(kx−ωt)}, (2.1)

where the wavenumber k or the frequency ω can be complex, and one obtains a linear
instability in space or time, respectively. An additional phase is not necessary for our
purposes and can be omitted. For Im(ω) > 0, surface undulations will grow exponentially
and the flat interface is unstable. Following the standard procedure of linear stability
analysis, the dispersion relation of linear interface waves for semi-infinite layers can be
derived (Sutyrin & Taktarov 1975; Rosensweig 1985), which reads in our notation

ω2ρa + (ω − kU)2ρb = kg(ρb − ρa) + k3γ + k2μ̃H2. (2.2)

Here g denotes the gravitational acceleration, and μ̃ = μ0χ
2/(χ + 2) is proportional to

the vacuum permeability μ0 and depends on the susceptibility χ . Note that we can neglect
here the effect of the finite layer thicknesses a and b, because the observed wavenumbers
are sufficiently high. The dispersion relation (2.2) can be written in the form

ω1,2 = kU
ρb

ρa + ρb︸ ︷︷ ︸
ω̂

±
√

k3γ

ρa + ρb
− k2U2ρaρb

(ρa + ρb)2
+ k2μ̃H2

ρa + ρb
+ kg

ρb − ρa

ρa + ρb︸ ︷︷ ︸
ω̃

, (2.3)
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FIGURE 2. Dispersion relation ω(k) of interfacial waves illustrated for H = 0 kA m−1 and
four different flow velocities U: U = 0 (a), U � U0

crit (b), U = U0
crit (c) and U � U0

crit (d). The
different colours show the two branches for ω1 and ω2. Solid lines represent the real part, dotted
lines the imaginary part of ω. The dashed line represents the convective term ω̂.

giving a convenient equation for the instability in time. The right-hand side of (2.3) is
made up of two terms. The first one, ω̂, describes a convective movement with the constant
velocity ω/k proportional to the flow velocity U. It vanishes for U = 0 (see figure 2a),
whereas it increases linearly with k for U > 0, as marked in figure 2(b–d) by a dashed
black line. The second term, ω̃, has a positive (negative) root, which is plotted in figure 2
by a green (blue) solid line, respectively. Under the root are three positive addends and one
negative one. Both the second and the third addend depend on k2. Obviously an increase
in terms U2 can be compensated by an increment in terms H2. As long as ω̃ is real, the
amplitude of the wave remains the same. For a negative discriminant, however, ω̃ becomes
imaginary, which leads to a stable and an unstable branch in the dispersion relation.
This destabilization occurs for a certain range of wavenumbers if the flow velocity U is
sufficiently high. On the other hand we can stabilize the system by increasing the surface
tension, the density difference or, in our case, the applied magnetic field.

Figure 2 shows the transition from a stable to a linearly unstable interface without an
applied magnetic field. If U = 0 m s−1, as displayed in figure 2(a), the dispersion relation
is the same as for ordinary interface waves with a capillary and a gravitational term. The
green (blue) branch is associated with waves moving in the positive (negative) direction,
respectively. When we increase the flow velocity U the two branches move closer together
(cf. panel b) and for the critical velocity U0

crit the branches touch each other at the critical
wavenumber k0

crit, as shown in panel (c). For higher velocities U > U0
crit there is a band of

unstable wavenumbers between k2 and k3 (panel d).
Of special interest is not only the velocity of the first occurrence of unstable waves

U0
crit, but also the critical velocity Ucrit for an arbitrary wavenumber k or wave frequency

f = ω/2π, corresponding to the neutral curve. The critical velocity depending on the
wavenumber can be calculated by solving the equation ω̃ = 0 s−1 for the velocity U. It is
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FIGURE 3. Stability maps for different magnetic fields H0 = 0 kA m−1 (green line) and
H1 = 10 kA m−1 (blue line). For system parameters please see § 3. The solid lines show the
dependency of the critical velocity Ucrit on the wavenumber k (a) and the frequency f (b). The
dots mark the wavenumbers and frequencies of the first occurrence of the instability. The dotted
lines connect these points.

given by

Ucrit(k, H) =
√

ρa + ρb

ρaρb

(
kγ + μ̃H2 + g (ρb − ρa)

k

)
(2.4)

and is depicted in figure 3(a).
So far we have examined the instability in time. However, in our experiment it is

advected by the flow and examined in space. For the related stability map, showing
the critical velocity as a function of f , an analytical expression cannot be found easily,
as a cubic equation must be examined. The numerical solution, however, is shown in
figure 3(b). As one can see in figure 3 and (2.4) a magnetic field H > 0 stabilizes the
system and shifts the neutral curves to higher flow velocities for all wavenumbers and
frequencies (cf. blue lines). Its minimum, the velocity of the first unstable waves U0

crit,
occurs at the capillary wavenumber k0

crit = √
g(ρa + ρb)/γ (Cowley & Rosensweig 1967),

and is independent of the wavenumber k, as marked in figure 3(a) by the dotted vertical
line. In contrast, as illustrated in figure 3(b), the frequency of the minimum depends
linearly on the velocity U0

crit via the convective term ω̂ in (2.3) where ω̃ = 0.

3. Experiments

First we give an overview of the experimental apparatus (§ 3.1), and then we present
the material parameters of the two fluids used in the experiment (§ 3.2). Thereafter, the
method used to measure the flow velocity is described (§ 3.3). In § 3.4, we give details on
how the liquid interface is determined from the recorded pictures. Eventually we sketch the
magnetic (§ 3.5) and mechanical (§ 3.6) devices utilized for the local excitation of waves
of preset frequency.

3.1. Experimental set-up
The heart of our experimental set-up is sketched in figure 4(a). A straight section of
the flow channel, made from Perspex©, harbours the liquid interface in between the
ferrofluid on top and a more dense, immiscible and transparent fluid on the bottom. This
interface section of the channel has a length of 150 mm (x-direction), a width of 25 mm
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FIGURE 4. Sketch of the flow channel. In its interfacial section the ferrofluid rests on top of a
flow of transparent fluid (a). The interfacial section is part of a stadium-shaped conduit (b) and
is placed in the centre of a Helmholtz pair of coils. The magnetic field generated by these coils
is matched to the ferrofluidic section of the channel (c). The data points denote measurements of
the axial magnetic field, while the solid line denotes the calculated values for the applied current
of 3.0 A for a Helmholtz pair of coils according to (3.1). The vertical dashed line connecting
panels (a) and (c) marks the position of the exciter, the origin of our coordinate system. A photo
of the set-up can be found elsewhere (Völkel, Kögel & Richter 2020).

(y-direction) and a height of 45 mm (z-direction). Here the flow channel is vertically
divided into two sections. The upper one contains 100 ml of ferrofluid, marked black
in figure 4(a), and has a height of 20 mm. It has a wedged shape of inclination 45◦ to
the horizontal. This sharp edge at the upstream side (left-hand side) serves to foster the
shear flow. The ramp at the downstream side (right-hand side), with an inclination of
17◦, serves to suppress the standing waves in the channel. Note that the inclined edges
also reduce the discontinuity of the magnetization at the up- and downstream sides of
the channel. This is similar to the ‘radial ramp’ introduced by Gollwitzer et al. (2007)
for measuring the Rosensweig instability in a circular vessel. Moreover, by matching the
dimensions of the channel and the Helmholtz pair of coils we have created a ‘magnetic
beach’. In this way the magnetic field fades out at both ends of the interfacial section.
The resulting Kelvin force density μ0(M · ∇)H0 (Rosensweig 1985) plus the ramps are
sufficient to contain the ferrofluid within the interfacial section of the channel. There are
two openings at the top of the channel. The first one, at the upstream side, is used for
filling the upper section with ferrofluid, whereas the second one allows the insertion of a
magnetic (§ 3.5) or mechanical (§ 3.6) exciter, or a plug. The lower part of the flow channel
has a height of 25 mm and a width of 25 mm, and it guides a laminar flow of transparent
fluid.
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The interface is illuminated from the back by means of an electroluminescent sheet
(Zigan displays). To prevent the ferrofluid from wetting the side walls of the channel we
attach strongly repellent Teflon© tape (3MTM PTFE Extruded Film Tape 5490) to them.
Because the thickness of the tape is 0.09 mm it will hardly accelerate the flow within the
channel.

As shown in figure 4(b), the interface section of the flow channel, described above, is
part of a larger stadium-shaped duct, which is made up of two semi-circles (dinner = 290
mm, douter = 340 mm) and two straight sections (length = 340 mm), and which harbors
1200 ml of transparent fluid. The latter is put in motion by a propeller with a diameter of
20 mm (cf. right-hand side of figure 4b). The flow is relaminarized by a honeycomb
structure embedded in the straight section following the propeller. The propeller is driven
by an electric motor (Mattke MDR 230/2-4). The latter is controlled via an RS.232
interface by a computer. To minimize electromagnetic disturbances the propeller and the
motor are connected via a 340 mm long shaft. Note that a similar channel has worked
well for Barchan dunes (Groh, Rehberg & Kruelle 2009). The experimental channel is
positioned in the centre of a Helmholtz pair of coils, which allows us to apply a magnetic
field oriented parallel to the flow direction of the lower fluid and so parallel to the interface.
The coils have a usable clearance of 240 mm (diameter) and 88 mm (distance). Their
effective radius is R = 90 mm. We measure the magnetic induction B in the empty coils by
means of a Hall probe (Lakeshore, MMT-6J02-VH). The applied magnetic field H = B/μ0

obtained in this way is plotted in figure 4(c) by black points. The solid line displays a fit
by the equation (Bergmann & Schaefer 2006)

H(x) = NI
2R

⎧⎨
⎩

[(
x − x0

R
− 1

2

)2

+ 1

]−3/2

+
[(

x − x0

R
+ 1

2

)2

+ 1

]−3/2
⎫⎬
⎭ , (3.1)

where x0 = 5.7 cm denotes the centre of the Helmholtz pair of coils, N = 640 is the
number of windings and I is the current. From the measurements we conclude that H does
not deviate more than 0.5 % along the visible part of the channel (Kögel 2017). The coils
are connected to a direct current source (LAB/SL 230/AI/LT from Eurotest Co.) which is
controlled via GPIB interface by the computer.

Pictures of the liquid interface are recorded by a charge-coupled-device (CCD) camera
(Lucam Lt225M, Lumenera Co.) which is triggered by a multichannel function generator
(TGA1244, TTi Co.) with a frequency of 100 Hz.

3.2. Properties of the fluids
For the upper fluid we select the ferrofluid Electro Magnetic Grade (EMG) 909 from
Ferrotec Co. Its material parameters are listed in table 1. The magnetization curve M(H)
of the ferrofluid has been recorded by means of a vibrating sample magnetometer (VSM),
namely Lakeshore 7404 from Cryotech, utilizing a spherical sample holder (Friedrich et al.
2012). The M(H) curve and its granulometric characterization by means of a superposition
of Langevin functions has been presented by Rehberg, Richter & Hartung (2019), yielding
the listed initial susceptibility χ0. The diamagnetic fluid below is the perfluoroether Galden
SV90 from Solvay Solexis, as utilized before (Sterr et al. 2008; Poehlmann, Richter &
Rehberg 2013). Its susceptibility has been measured by the VSM as well, and is included
in table 1 for the sake of completeness. Because of its tiny value it can be neglected.
The interfacial tension between the two fluids has been measured by means of a drop
volume tensiometer (Lauda TVT2). The densities of both fluids have been determined by
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Property EMG 909 Galden SV 90

density ρ (kg m−3) 982 1734
viscosity η (mPa s) 4.2 1.2 ± 0.1
initial volume susceptibility χ0 0.688 −8.14 × 10−6

interface tension γ (mN m−1) 4.39

TABLE 1. Properties of the fluids EMG 909 (Lot No. H030308A) from Ferrotec Co. and Galden
SV90 from Solvay (2017) Solexis.

an electronic density meter (DMA 4100, Anton Paar Co.). The viscosities of both fluids
were measured with the rheometer MCR 500 (Anton Paar Co.) utilizing the double gap
geometry (type DG 26,7).

3.3. Velocity measurement
We measure the velocity profile of the moving fluid with an ultrasonic Doppler velocimeter
(DOP 3000 from Signal Processing). We use polyamide particles (Griltex 2A P1) for
scattering particles with diameters from 50 to 80 μm and a density of 1005 kg m−3. As the
density of the particles is less than the density of the transparent fluid, we measured the
speed at which the particles ascend in the fluid. This speed is (3 ± 2) mm s−1 and therefore
much less than the flow velocity during the experiments, which is typically above 100 mm
s−1. Hence we can assume the particles essentially follow the streamlines of the moving
fluid. A velocity profile, averaged over six measurements, is shown in figure 5. The large
error bars for y � 18 mm are caused by a non-perfect coupling of the ultrasonic probe to
the lid of the channel. Likewise, the measurements are distorted by scattering on different
interfaces and the surface of the ultrasonic gel used. As we expect a symmetric velocity
profile, the measurements at y < 18 mm are sufficient for determining the whole profile.
The maximal flow velocity U in the channel was found (Kögel 2017) to depend on the
rotation frequency ν of the motor according to

U(ν) = (9.5 × 10−5 ν r.p.m.−1 − 4.5 × 10−2) m s−1.

3.4. Detection of the interface
In figure 6(a) we present a typical photo of the liquid interface between the ferrofluid
(above) and the transparent fluid (below). In panel (b) we plot the brightness along the
vertical line, marked green in (a). Each line can be fitted by the error function marked by
the red solid line in (b). The point of symmetry of the former defines the position of the
interface. Panel (c) indicates the detected interface by a yellow solid line.

3.5. Magnetic excitation
In order to excite a surface wave with a defined frequency f , either a local
electric excitation (Leiderer, Ebner & Shinkin 1982), a local blowing (Mahr,
Groisman & Rehberg 1996), or a local magnetic excitation (Browaeys et al.
1999) has been used for measuring the dispersion relation of a quiescent liquid
layer. In our case the challenge was to apply a magnetic induction B⊥, oriented
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FIGURE 5. Averaged velocity profile v( y) after six measurements at a motor speed of 2000
rpm. The dashed lines indicate the lid (y = 25 mm) and the bottom (y = 0 mm) of the channel.
The red solid line shows a parabolic fit, as a convenient approximation.
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FIGURE 6. Typical photo of the interface (a) and greyscale along one vertical line (b), which is
marked green in panel (a). The red solid line denotes a fit by the function h( y) = A erf(B( y −
y0)) + h0, where erf denotes the error function. The detected typical interface is marked in
yellow in panel (c). For display purposes the detected interface was rounded to full pixels.

normal to the interface, at and only at a position x0 of the interface; i.e.
B⊥(x) ≈ B0

⊥ · δ(x − x0). At the same time the induction B⊥ should not vary across
the channel; i.e. B⊥( y) = const. For that purpose an iron sheet (thickness of
2 mm, length of the stem 55 mm, height of the blade 12 mm) was wrapped by a wire
(∅ 1.0 mm, 70 windings), as shown in figure 7(a). The iron sheet has a grater-like shape,
with a triangular cutting edge at its lower end (b). In this way it guides the magnetic
flux towards a position 2 mm above the interface. The corners of the blade next to the
channel walls are slightly rounded in order to suppress fringe fields there (b). As shown
in figure 8(a), the magnetic induction, measured by means of a Hall probe immediately
beneath the blade, is still higher at the corners, but does not vary more than 25 %
across the width of the channel. Likewise, figure 8(b) presents both components of the
induction, measured in the centre of the channel for increasing distance from the exciter.
The solid lines indicate fits by an exponential decay, and thus illustrate that the type of
excitation is sufficiently local.The magnetic driving is based on the Kelvin force density
fK = MFF(H) · ∂B/∂z which is acting upon the ferrofluid with magnetization MFF(H). We
vary fK by a periodic modulation of ∂B/∂z by modulating the magnetization Mst(t) of the
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FIGURE 7. Magnetic driving of the interface by means of a local coil with soft iron core (a),
mounted 2 mm above the interface (b).
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FIGURE 8. Spatial variation of the magnetic induction: (a) Vertical component measured
directly beneath the blade of the magnetic exciter, where the dashed vertical lines indicate
the walls of the channel. (b) Horizontal and vertical component of the exciter measured in a
distance x down the stream. Here the solid lines mark fits by an exponential decay: B‖(x) ≈
5.5 mT · exp(−x/11.0 mm), B⊥(x) ≈ 4.6 mT · exp(−x/4.7 mm). For the measurements a Hall
probe (type MNA-1904-VH, from Lakeshore Co.) connected to a Gaussmeter (type 450, from
Lakeshore Co.) was used.

steel sheet. This is achieved by driving the coils by a current source (LAB/SL 30 from
Eurotest Co.), connecting its voltage contol input to the voltage output of a function
generator (TGA1244 from TTi Co.) connected to the computer. For all experiments
we selected UDC = 2.5 V and UAC = 5.0 V, where U = UDC + UAC sin (2πft) gives the
overall applied control voltage.

Figure 9(a) displays the discrete Fourier transform (DFT) of the temporal evolution
of the interface at distances of x = 20 mm (blue), 30 mm (red) and 40 mm (green)
downstream of the magnetic exciter. The dominating peaks at 8 Hz prove the efficiency
of the driving. The inset provides a zoom of the peaks, which decay with increasing
distance x . Likewise, the time-averaged autocorrelation function in figure 9(b) shows a
decay as well. From its first relative maximum, marked by a red dot, the wavelength λ can
be determined.

From the results above as well as from our experience, it follows that the magnetic
exciter allows a reliable and smooth driving of the interface. However, an unwanted side
effect is the fact that the soft iron core will be magnetized not only by the driving current,
but also by the horizontal induction impressed by the static field applied by the Helmholtz
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FIGURE 9. Dynamics of the interface for a driving frequency of f0 = 8 Hz, a flow velocity
U = 0.126 m s−1 and a magnetic field H = 8.0 kA m−1: (a) Digital Fourier transform ỹ of the
wave amplitude for three sample x-positions. The inset gives a zoom around the peaks at 8 Hz.
(b) Averaged autocorrelation function Y vs space. The estimated data are marked by dots, the
solid line indicates a fit by a cubic spline, and the red dot denotes the first local maximum.
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FIGURE 10. Set-up of the mechanical wave exciter, with a horizontal bar at the interface,
attached to a vertical shaft (a), and detail of the lead-through with O-ring sealing (b). Panel
(b) is rotated against panel (a) by 90◦.

pair of coils. We therefore investigated as a reference method a mechanical excitation,
which is presented next.

3.6. Mechanical excitation
The mechanical exciter is sketched in figure 10(a). The interface is perturbed by
a horizontal bar (see blow-up in panel b) connected via a vertical shaft to an
electro-mechanical vibration exciter (Brüel & Kjær, type 4810, with amplifier type 2706).
The bar has a length of 24.7 ± 0.1 mm, thus filling almost the whole width of the
channel. A lead-through with adjustable O-ring allows a leak-tight reciprocating motion
of the shaft. Bar, shaft and lead-through are made from brass, a material with negligible
susceptibility. The shaft is attached to a U-shaped module (made from aluminium), which
transfers the motion, bypassing one of the coils.
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FIGURE 11. Decay of the constant stray field vs distance measured by means of a Hall probe
(filled red circles). The red solid line represents a fit by Bz(z) = μ0 m/(2πz3), with m = (1.23 ±
0.03) Am2. The open black squares give the data of the magnetic background.

We have measured the magnetic stray field of the exciter by means of a Hall probe (type
MNT-4E02-VG, from Lakeshore Co.), as marked in figure 11 by red circles. The solid line
displays the characteristic decay of B(z) on the axis of a dipole. Already at a distance of
200 mm the stray field is below the bias (marked by squares) determined by the earth’s
magnetic field. Thus we have positioned the shaker 220 mm above the flow channel. For
a reliable, stick-free driving it is important to fine-tune the position of the shaker in the
plane by a micrometre stage for the x- and by one for the y-direction.

The mechanical driving might be expected to outperform the magnetic one, because it
does not perturb the applied magnetic field. However, it turned out to depend sensitively
on the position of the meniscus at the driving bar, as illustrated in figure 12. In panel
(a) the interface is pinned by the lower edge of the bar, as indicated by the red arrow,
whereas in panel (b) the interface is not pinned. In panel (c) we plot the driving amplitude
vs the distance from the exciter, measured for two sample flow velocities. The driving
amplitude shows only a weak dependence on the flow velocity for the pinned menisci (solid
lines) but a strong dependence for the unpinned menisci (dashed lines). Therefore, prior to
measurements, the meniscus was carefully pinned at the lower edge. More details are given
by Fischer (2017). As in § 3.5 we show in figure 13 the DFT of the temporal evolution of the
interface for three chosen driving frequencies. The amplitude at the excitation frequency
(indicated by arrows) is clearly dominating the spectra.

4. Experimental results

In the following we give experimental evidence of a calming of the waves by a magnetic
field (§ 4.1) and present exemplary measurements of the growth rates of the interface
undulations (§ 4.2), the stability diagrams derived therefrom (§ 4.3), and eventually the
measured dispersion relation (§ 4.4).

4.1. Experimental evidence
The application of a tangential magnetic field has immediate impact on the amplitude
of the interfacial waves. Figure 14(a) shows a snapshot of spontaneous waves. When an
induction of B = 10 mT is applied, the amplitudes are considerably damped, as presented
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FIGURE 12. Effect of the pinning of the meniscus on the driving: pinned (a) and loose
(b) menisci, as indicated by red arrows, at the horizontal bar of the exciter, and related amplitudes
A vs distance x from the exciter measured for two different flow velocities U, as denoted by the
inset (c).
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FIGURE 13. Frequency spectrum of the interface at a distance of 10 mm downstream of the
mechanical exciter, for an excitation with f0 = 3 Hz (blue), 10 Hz (red) and 20 Hz (green). The
excitation frequency is annotated by arrows. The flow velocity was 0.145 m s−1.

in figure 14(b). From the snapshot in figure 14(a) it becomes clear that the spontaneously
generated waves show a broad spectrum of wavelengths. For a sensible comparison with
the model of § 2 it is advantageous to excite waves of a preset frequency f (and wavelength)
by magnetic or mechanical means, as shown in figures 14(c) and 14(e), respectively.
Likewise figures 14(d) and 14( f ) demonstrate the calming effect of a horizontal magnetic
field at the same parameters. Next we exploit this arrangement for measuring the growth
rates of the interfacial waves.
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(a)

(b)

(c)

(d )

(e)

( f )

FIGURE 14. Experimental evidence for a calming of the interfacial waves at U = 0.192 m s−1.
Spontaneously emerging waves without an externally applied magnetic induction (a), and for
B = 10 mT (b). Magnetically generated waves without (c) and with (d) applied induction B = 10
mT. Mechanically generated waves without (e) and with ( f ) applied induction B = 10 mT. A
movie demonstrating this effect when switching on B can be accessed at https://doi.org/10.1017/
jfm.2020.642. The frames have a size of 117 mm × 10 mm.

4.2. Growth rates
First we utilize the magnetic exciter (see § 3.5), which defines the position x = 0 mm in
our frame of reference, and apply a driving with frequency f ∈ [6 Hz, 20 Hz]. For each
position x along the interface we determine the amplitude A(x) of surface undulations by
means of a DFT. As an example we illustrate the outcome of this procedure in figure 15(a)
for f = 11 Hz and four sample flow velocities U. For the subcritical flow velocities (·, ◦)
the amplitude decays, whereas for supercritical values (�, �) it grows downstream of the
exciter. In the interval [0 mm, 20 mm] the amplitude A(x) appears to follow an exponential
law

A = A0 exp(αx), (4.1)

where α denotes the growth or decay rate along x . The corresponding fits are marked in
figure 15(a) by solid lines. Further from the exciter the growth of A(x) does not follow
the linear stability analysis (4.1), possibly due to the viscosity and the friction at the side
walls, which is not taken into account in the simple ansatz.

The growth rates α determined from these fits depend sensitively on U, but also on the
horizontally applied magnetic field H, as shown in figure 15(b). For a fixed field H the
growth rate α increases with U, becoming unstable at α(Ucrit) = 0. Increasing the field H
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FIGURE 15. Growth of surface waves: (a) amplitude vs the distance from the exciter along the
direction of the flow at a driving frequency of f = 11 Hz without horizontal magnetic induction,
i.e. Bx = 0 mT. The inset indicates the symbols marking four different flow velocities. The
straight lines denote an exponential fit by (4.1). (b) The data points indicate the measured growth
rates vs the flow velocity for different values of the horizontally applied magnetic induction. To
guide the eyes the data points are interpolated by cubic splines (solid lines).

shifts the α(U) curves to the right, thereby shifting Ucrit to higher velocities. In this way
the interface remains stable up to a higher velocity.

In order to check the reliability of the magnetic driving we have performed similar
experiments utilizing the mechanical exciter described in § 3.6. Figure 16 compares the
two methods of excitation for two representative values of the applied magnetic field.
Data points obtained with the mechanical bar are denoted by squares (�), and those with
the magnetized wedge by a triangle (�). To guide the eyes the data are interpolated by
splines. For both types of excitation the critical growth rate Ucrit is shifted with H to higher
values by about the same amount (dashed, �Ucrit.mech = 0.017 m s−1; solid, Ucrit.mag =
0.018 m s−1). Indeed, the differences for �Ucrit are well situated in the range of the error
bars. Because the magnetic driving is more robust – it does not sensitively depend on the
proper pinning of the meniscus – we present in the remainder of the article solely the data
obtained by magnetic excitation.

4.3. Stability diagrams

4.3.1. Periodically excited waves
We have determined Ucrit for different driving frequencies and applied magnetic fields.

Three exemplary sets of data are shown in figure 17(a) together with solid lines calculated
via (2.4) for the material parameters of table 1. The data points for zero magnetic field (·)
are well described by the basic inviscid model. This is especially true for the interval
[10 Hz, 20 Hz]. At lower f the increase of the experimental values is delayed when
compared with the inviscid model. At a magnetic field of H = 4.0 kA m−1 the experiment
(◦) and the inviscid model are in closer agreement in the same interval, i.e. [5 Hz, 10 Hz].
Here, however, the experimental data exceed the model predictions in between 14 and
20 Hz. For H = 8.0 kA m−1 (�) the agreement seems to become better again. However,
here the error bars are quite large, because Ucrit needs to be estimated by extrapolation.
Comparing the three curves in figure 17(a) it is obvious that with increasing magnetic
field the stability curves are shifted to higher values. This reflects the calming of the
waves. Indeed, as shown in figure 17(b) for an exemplary driving frequency of f = 10
Hz, the measured critical velocity follows very well the predicted curve (blue solid line).
At lower H (red line) the agreement is less convincing.
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FIGURE 16. Comparison of the growth rates for waves generated with a modulated magnetized
iron wedge (�) and mechanical driving with a bar with square cross-section (�) for different
horizontally applied fields H and various flow velocities at f = 10 Hz. The amplitude of the
mechanical exciter was 0.14 mm. To guide the eyes the data are interpolated by splines (omitting
the outlier at U = 0.166 m s−1 for H = 2.0 kA m−1).
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FIGURE 17. (a) Critical flow velocity vs driving frequency for three exemplary magnetic fields.
The dashed vertical lines indicate the frequency scans for f = 6.0 and 10.0 Hz displayed in panel
(b). The solid lines represent the inviscid model (2.4).

All in all the basic inviscid model, which has no free parameter, captures the measured
stability diagrams rather well. Deviations may stem from the difficulty of defining an
effective jump of the flow velocity in the experiment. For an in-depth discussion the reader
is referred to § 5.

4.3.2. Spontaneously emerging surface waves
So far we have investigated the stability of surface waves generated by a periodic driving.

Two exemplary curves without (with) a magnetic field are marked in figure 18 by black
data points. The solid lines indicate the predictions by the basic inviscid model. With
respect to these stability diagrams it is interesting to see that the spontaneously generated
surface waves, denoted by red diamonds, are situated slightly above, but apparently fit
rather well to the theoretical stability curve (black solid line). However, we point out that
the agreement along the x-axis is less convincing because the spontaneously generated
waves are not located at the minimum of the stability curve. The minimum is situated in
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FIGURE 18. Comparison of the measured critical velocity for periodically excited waves (black
points) and spontaneously emerging waves (red diamonds), without magnetic field (a), and with
H = 2.0 kA m−1 (b). The solid line indicates the prediction by the basic inviscid model.
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FIGURE 19. Dispersion relation for U = 0.126 m s−1 (a) and U = 0.180 m s−1 (b) and three
different magnetic fields. The open (filled) data points mark experimental results for stable
(unstable) surface waves, respectively. The lines indicate the outcome of the inviscid model (2.2).

figure 18(a) at 16.5 Hz and in figure 18(b) at 17.2 Hz. These large differences in f may be
attributed to the broad footing of the stability curves.

These spontaneous surface waves emerge because the flow generated by the propeller is
not completely laminar. Despite a relaminarization duct realized by a honeycomb structure
in the straight section following the propeller, fluctuations of the interface may emerge.
This is in agreement with the Reynolds number ranging from Re = 4600 to Re = 6300 for
the measurements in figure 18.

4.4. Dispersion relation
In § 2 we have presented in (2.2) the dispersion relation for interfacial waves at the KHI.
Our experimental arrangement can also be used to measure this relation. Experimental
results are plotted in figure 19 for three representative magnetic fields. We have measured
the dispersion relation for nine different velocities U ∈ [0.1, 0.207] m s−1. For brevity and
clarity we selected one U with fully stable surface waves (a) and one U exhibiting the
transition to unstable surface waves (b). Figure 19(a) shows the measured data for U =
0.126 m s−1 and compares it with the predictions of the simple inviscid model (marked
by solid lines). The f (k) curves, numerically obtained from (2.2), increase monotonically,
and with increasing H their inclination rises. This is true for the measured data as well as
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for the numerical results. However, the latter overestimate the measured data considerably.
For example, at k = 400 m−1 and H = 8.0 kA m−1, experiment and model differ by 13 %.

The dispersion relation is more complex at a flow velocity of U = 0.180 m s−1, as
displayed in figure 19(b). Whereas for H = 8 kA m−1 all measured data (brown squares)
indicate a stable interface, as do the numerics (solid line), one finds for H = 4 kA m−1

(marked green) above k ≈ 300 m−1 the emergence of a convective unstable state, indicated
by filled symbols. The numerical solution of (2.2) also predicts a band of unstable
wavenumbers, albeit starting at higher k, namely at the kink at k ≈ 500 m−1. Likewise,
for H = 0 kA m−1, convective unstable waves are measured for k � 300 m−1, whereas the
kink predicted by the model is situated at k ≈ 400 m−1. Again all qualitative features of the
dispersion relation are met by the basic inviscid model, whereas one finds a quantitative
discrepancy in the onset of the unstable band.

5. Summary, discussion and outlook

In a tabletop flow channel we have measured the linear stability of interface waves in
between a flow of diamagnetic liquid (on the bottom) and a resting layer of ferrofluid (on
the top) – a realization of the Kelvin–Helmholtz instability. We have provided the first
experimental evidence that a magnetic field oriented tangential to the liquid surface is
capable of calming spontaneously emerging waves. To enable a quantitative comparison
with the basic inviscid model reported by Rosensweig (1985), we have periodically
perturbed the interface by magnetic or mechanical means. From the zero point of the
measured growth rates we have determined the critical flow velocity Ucrit(f , H). For H = 0
and H = 10 kA m−1 the basic inviscid model (2.2) captures Ucrit(f , H) well, when taking
into account that there is no free parameter. It is notable that the characteristic increase in
the critical velocity, which is similar to a hyperbolic curve, is also seen in the experiment.
Moreover we have presented experimental data of the dispersion relation f (k, H) at two
sample flow velocities. Again the basic inviscid model (2.2) predicts an increase of the
wavenumber with the driving frequency, in agreement with the experimental findings.
Bands of unstable wavenumbers are found both in the model and in the experiments, albeit
over different ranges of k.

In summary, the experiment provides evidence for a calming of interface waves under
impact of a tangential magnetic field. Both the critical flow velocity Ucrit(f , H) and the
dispersion relation f (k, H) display most of the qualitative features predicted by the basic
inviscid model.

Quantitative discrepancies may stem from three simplifications:

(i) The measured velocity, as shown in figure 5, is apparently not constant across the
channel, a simplifying assumption used in § 2. In contrast, for deriving the governing
equations, Rosensweig (1985) assumes a jump in the velocity profile at the interface
which is only possible for an inviscid moving fluid. In our experiments, however, the
moving fluid has a finite viscosity which leads to a continuous velocity profile that
is zero at the channel walls. To compare the inviscid model with our measurements,
a characteristic velocity had to be chosen. For simplicity we selected the maximum
velocity in the centre of the channel. When instead the average velocity was selected
(not shown here), the agreement was less convincing.

(ii) Moreover, quantitative deviations may stem from the fact that due to the finite
viscosities of both fluids the quiescent upper fluid is advected by the lower one, and
consequently the velocity gradient at the interface is further diminished. To estimate
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FIGURE 20. A section (110 mm × 19.2 mm) of the upper part of the flow channel. Instead of
ferrofluid it is filled with a suspension of tracer particles in water. The impressed flow velocity
was U = (0.207 ± 0.006) m s−1, the exposure time texp = 500 ms. The black dashes mark
streaks, indicating the propagation of the tracer particles during texp.

that effect, the ferrofluid was replaced by a suspension of tracer particles (Iriodin 100
Perlglanz) in water. A vertical laser sheet was oriented parallel to the inner vertical
wall of the channel in a distance of 5 mm. Figure 20 presents the recorded image,
in which the greyscale has been inverted. The black layer on top indicates the lid of
the upper channel, the ramp can be seen on the left, and the liquid interface to the
transparent perfluoroether can be seen at the bottom. The black streaks demonstrate
the amount of advection. The flow velocity estimated from these streaks is 6 mm s−1

when averaged over all parts of the upper section, and 17 mm s−1 at its maximum.
The flow velocity in the lower channel is therefore 12 (respectively, 33) times higher
than the advected flow.

(iii) The detection of the liquid interface had to be recorded at the side walls of the
vessel, where the flow is attenuated. The use of a light sheet to record the evolution
of the interface in the centre of the channel was prevented by the poor reflectivity
of ferrofluid. A more advanced method, namely the attenuation of X-rays, would
in principle allow the interface to be measured far away from the container edges
(Richter & Bläsing 2001). This method is well established for static interfaces of
the Rosensweig instability (Richter & Lange 2009), and has recently been utilized
by Poehlmann et al. (2013) for measuring the related Rayleigh–Taylor instability
in a rotating tangential magnetic field. However, in its present implementation this
method is too slow to catch the fast evolution of the interface at the KHI. For that
purpose an X-ray source with much higher luminosity and a faster detector are
essential.

Notwithstanding the difficulties in comparing a basic model with measurements, the
tried and tested macroscopic flow channel has its benefits: it confines a suitable volume
of the expensive ferrofluid in its interfacial section by means of two inclined ramps and a
carefully matched magnetic field, which is also ramped. In this way it permits for the first
time the continuous measurement of the KHI for a superparamagnetic/diamagnetic liquid
interface. This would not be possible in a tilting-tube configuration as used by Thorpe
(1968, 1969), which generates an accelerated flow.
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