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Abstract

A hybrid technique to model the effects of mechanical uncertainties on the structural response of large composite trusses for space
application is presented and discussed: the proposed method is based on the Monte-Carlo evaluation of finite element stochastic
weighted integrals, which allows decoupling the structural discretization mesh from the stochastic one. A benchmark problem,
regarding the modal analysis and the harmonic response of an uncertain composite truss, is studied by means of the proposed
method: the full statistics of the truss response variables are calculated by Monte-Carlo based simulations and compared to those
obtained by perturbative approximated approaches. The implications of the results here obtained onto the design strategy of struc-
tures affected by sensible uncertainty levels, as those made of composites, are discussed.
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1. Introduction

Within the framework of a classical approach to ra-
tional continuum mechanics, it is usually assumed that
the mechanical properties and the geometrical configu-
rations featuring the structural members are fully deter-
ministic. Nevertheless actual structures are always
affected by uncertainties to some extents: the stiffness
and strength modules of actual materials often exhibit
a quite wide range of variation. Moreover the actual
structural geometry can be slightly different from that
assumed for design purposes, due to tolerances in assem-
bling constructive members. Real structures are usually
characterised by the following randomness sources [1]:

1. Uncertainties affecting the stiffness and strength mod-
ules of structural materials.
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2. Uncertainties regarding the actual geometrical config-
uration of constructions.

3. Uncertainties about the actual constraints applied to
the structure itself.

4. Uncertainties regarding the actual modules, direc-
tions and temporal dependence of the applied loads.

All the aforementioned uncertainty sources can con-
tribute to deeply alter the structural response, especially
regarding to the predictions obtained by a classical
deterministic FEM based design. Deterministic design
must be always verified by experimental testing. Never-
theless, for engineering purposes, it would be useful to
model the potential effect of combined uncertainties on
the global mechanical response before the structure itself
is built.

The effect of random loads on a deterministic struc-
ture, whose materials properties, geometry and applied
constraints are deterministic, can be described by classi-
cal FEM approaches involving Fourier transformation
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of the governing equations [2]. Nevertheless the basic
requirement for analysing random loads within the
framework of deterministic FEM is that the applied
forces must result ergodic [3]. From a statistical point
of view this latter requirement is often too strict, since
it implies that the applied loads must be stationary with
respect to time. This condition is rarely satisfied by ac-
tual applied forces, which are often far from being ergo-
dic. Moreover, any additional source of uncertainties
affecting either the mechanical properties or the geomet-
rical configuration of applied constraints cannot be
combined with random loads within the framework of
a deterministic FEM approach [4].

From the mathematical point of view, the best way to
model uncertainties in actual materials and structures is
to introduce proper stochastic processes (or random
fields), whose distribution and covariance properties
are deduced from experimental tests. Statistical charac-
terisation of the mechanical properties of actual materi-
als would require extensive testing investigations, so
some simplifying hypotheses must be introduced [5]:
according to the central limit theorem, the random fields
employed to model structural uncertainties can be as-
sumed [6] to be normal or log-normal, while their
auto-covariance structure is exponential. These latter
hypotheses strongly simplify the digital simulation of
random fields, since it allows reconstructing a stochastic
process by the midpoint method [7].

Several stochastic FEM (SFEM) approaches have
been presented in technical literature to deal with differ-
ent uncertainty sources during the structure design
stage: the simplest way of modelling this kind of prob-
lems relies upon Monte-Carlo brute force simulations
[8], where a huge number of possible configurations
for an assigned structure are digitally simulated and
analysed. The statistics of mechanical response variables
are obtained directly by calculating expected values onto
the whole set of sample configurations previously gener-
ated. The Monte-Carlo method is very expensive and
time-consuming from a computational point of view;
therefore several approximated techniques [9] have been
introduced to predict only a finite number of statistical
moments — usually two, the mean value and the stan-
dard deviation — featuring the response variables of
uncertain structures. These simplified approaches allow
to reduce the simulation computational costs, even
though they provide only limited statistical information
if compared to full Monte-Carlo approaches [10]. As it
will be shown later on, these partial data are not always
sufficient to develop a reliable design for actual complex
structures, thus care is required in employing approxi-
mated stochastic analysis techniques.

The main novelty element of this paper is the simu-
lation of the harmonic response of an uncertain truss
by means of the WIFEM method [11,12] (acronym
for “weighted integrals finite element method”) com-

bined with a full Monte-Carlo simulation of the ran-
dom fields representing the structural mass and elastic
stiffness.

2. The WIFEM method for stochastic structural analysis

A key-matter in developing reliable stochastic struc-
tural analysis is represented by the choice of a proper
discretization mesh: within the framework of determin-
istic finite element method, the local mesh refinement is
essentially dependent on the expected stress gradients.
Nevertheless, if the mechanical properties are assumed
to be random, we must consider that the size of the
“deterministic’” mesh must comply with the covariance
properties of the stochastic fields introduced. Taking
into consideration a one dimensional exponentially cor-
related random field, this stochastic process can be sim-
ulated [13] by a set of discrete random variables having
constant values over a sub-domain whose length is one
half of the correlation distance. Considering a one
dimensional mesh, if the element size were smaller than
one half of the correlation length, the spatial fluctua-
tions of the random field would be overestimated; if
the element size were greater than one half of the corre-
lation distance, the spatial variance of the stochastic
process would be underestimated. Therefore the correla-
tion length of the random fields provides a fixed scale
for the allowable size of the finite elements: therefore
the “geometric” mesh and the “stochastic” one are
not independent. The WIFEM approach to stochastic
structural mechanics provides an easy way to overcome
the problems related to the coupling between the allow-
able mesh size and the random field correlation dis-
tances. Let us assume to deal with a material having
random mechanical properties, which constitutes a
three dimensional linearly elastic solid. Following the
derivation of standard FEM approach, the stiffness ma-
trix of a finite element constituting the solid can be ex-
pressed as

K = [ B ar, (1)
Vv

where V' is the solid volume, B(x) is a matrix containing
the shape functions derivatives and C is the Cauchy’s
constitutive tensor. Since the properties of the material
are assumed to be random, without loss of generality,
we can assume that the Cauchy’s tensor itself can be split
into a mean part and a random fluctuating term

C=C+X), (2)

where C is the mean Cauchy’s tensor, [ is the identity
matrix and X is a matrix of suitable stochastic random
fields. Following Eq. (2), also the stiffness matrix in
Eq. (1) can be split into a mean part and a random
one as



G. Allegri et al. | Composites Science and Technology 66 (2006) 273-282 275

k= [Bwesmar k= [ Feexsmar,
®)

The integrand in the second right hand side equation
can be rearranged as

ByCruX 1B, = CZ»”X”W X im, 4)

where ¢/ are deterministic coefficients and the expo-
nents p, g, r are dependent on the index couples (i,j)
and (/,m). From Eq. (4) the random part of the stiffness
matrix can be rearranged as

AK) = e[l (5)
where ]E,i,) is a weighted integral whose expression is

19 = / YLK dV . (6)
v
Eq. (6) shows that a weighted integral is the projection of a
random field over a functional basis which is directly
dependent on the elemental shape functions: the introduc-
tion of weight integrals allows obtaining a coordinate
independent representation of the random fields here
introduced to model the mechanical uncertainties. The
weighted integral itself is a simple random variable, con-
stant over the entire element, not a position dependent
stochastic process: this means that the introduction of
weighted integrals allows avoiding the coupling between
the stochastic mesh and the geometric one. Similar con-
siderations can be easily introduced for the mass matrix
of a solid element, introducing a proper random field to
describe the uncertainties featuring the materials density.

3. Hybrid WIFEM Monte-Carlo approach for modal
analysis

As previously underlined, the Monte-Carlo brute
force method for stochastic structural simulations is
very time and cost consuming. The introduction of
weighted integrals allows overcoming the coupling be-
tween the size of the geometric mesh and of the stochas-
tic one. This feature contributes to strongly reduce the
computational cost of a Monte-Carlo approach based
on weighted integrals calculations and improves its geo-
metrical flexibility.

Let us assume to consider the classical eigenvalue
problem for normal vibration modes identification. If
the structure is uncertain, the mass and stiffness matrix
can be split into a mean deterministic part and a random
fluctuating one, as well as the corresponding eigenvalues
and the eigenvectors, thus yielding

(M + AM) " (K + AK)(w + Aw)
= (A+ AW+ Aw). (7)

Assuming 4 = ]\Zlflg, Eq. (7) can be rearranged in the
following form

Aw = Jw, (8)

where all the quantities involved are stochastic. Employ-
ing Neumann’s expansion [14] we can write
M= (4 AM) = M+ A

AT =3P )
k=0

where the P matrix is expressed as

P=M 'AM. (10)

Therefore from (9) we obtain the following expansion
for the 4 = A:471£ matrix

A=3-P'T 'K (1)

=0 o

Moreover the expansion (11) is equivalent to

— A, (12)

=k
0

IEN

o0
k=

where the expansion coefficients are related by the fol-
lowing set of recursive equations

%4/( = Aﬁékq‘ (13)
The first term of the expansion (12) is simply

—1
4,~1'K. (14

Therefore, for an assigned structure, we can calculate
the mean parts of the mass matrix and the stiffness ma-
trix by a standard FEM approach and the random fluc-
tuating ones by the WIFEM method. Once these
calculations are performed, we can employ the recursive
set of Eq. (13), starting with (14), to evaluate the coeffi-
cients of the Neumann’s expansion (12) for the matrix
A = M "underlineK. The expansion itself can be trun-
cated after a suitable number of terms Q: the truncation
condition must rely upon the relative magnitude of the
expansion terms, as for example

4,:1

) (15)

4,

11~

where 0 is a prescribed tolerance regarding to the trace
of the expansion terms themselves. Therefore the A ma-
trix can be calculated for each simulated configuration
complying with a prescribed tolerance, which makes
possible to take into consideration also random fields
featured by large stochastic variations. Once the matrix
has been calculated for each simulated configuration of
the structure, the corresponding eigenvalues problems
(8) are solved and a set of samples of modal frequencies
and eigenvectors are evaluated. Finally, a statistical
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analysis can be performed on the simulation data to ob-
tain the actual distribution of the modal frequencies and
displacements for a normalised set of eigenvectors. If S
is the total number of configuration generated according
to the Monte-Carlo hybrid approach, the mean values
and covariance of modal vibration frequencies v; are ex-
pressed as

4. Hybrid WIFEM Monte-Carlo approach for harmonic
response

The harmonic response of an assigned structure can
be evaluated by means of the same simulation technique
presented and discussed in Section 3. In this case the ma-
trix representation of the structural problem is the
following

—o’Mg" + (1+ jG)Kq" = O, (17)

where g* are the complex nodal displacements, G is the
coefficient of structural damping, O* are the external
harmonic forces and w the pulsation of these latter.
Considering a structural damping proportional to the
mass matrix terms implies that all the terms in Eq.
(17) are stochastic. Eq. (17) can be rearranged in the fol-
lowing form

K(w)g =2, (18)

where K(w) is the stochastic imaginary structural stiff-
ness. Solving Eq. (18) for complex displacements for a
set of discretized values of pulsation requires the inver-
sion of the complex stochastic stiffness matrix. This latter
can be achieved by means of the Neumann’s expansion,
just discussed in Section 3. In fact the vector of unknown
imaginary displacements can be expressed as

M
i=0

where the expansion coefficients are determined by a set
of recursive equation

E*g*(z) — Ag*g*(i*l)7 (20)

where the random part of the complex stiffness matrix is
calculated by means of the WIFEM approach. The
expansion (19) is truncated to the Mth term, provided
that the following conditions is verified

*(M+1)

7‘< 0, (21)

where 9 is a prescribed tolerance. Once the terms of the
expansion (19) have been calculated by the recursive Eq.
(20) for each simulated configuration, the statistics of
magnitude and phase for each nodal degree of freedom
can easily obtained. For the mean value of nodal dis-
placements absolute magnitude and phase shift, calcu-
lated over N samples, we have

||_*Z||q

]q/ ]qz
Z arctan —————,
k + l

(22)

the second equation being written for the /th degree of
freedom. Similarly for the standard deviation of dis-
placements absolute magnitude and phase shift

1
q = Nkzl(q

g

1 N
Op = N Z

5. Benchmark problem: an uncertain composite truss for
space applications

The theoretical presentation of the hybrid WIFEM
Monte-Carlo technique for stochastic structural
mechanics, developed in the previous sections, is suitable
for modelling a wide set of problems. As an example of
this method, let us consider a reticular structure, as
sketched in Fig. 1. Each tubular filament wound mem-
ber has an internal radius of 0.08 m and a thickness of
3 mm and it is assumed to be manufactured by a stan-
dard carbon/epoxy composite whose mean density is
1700 kg/m>. Let us consider an angle-ply lamination se-
quence for the truss members, having a +£45° character-
istic orientation to the beam axis: this laminate is
supposed [15] to have a mean Young’s modulus of
8.13 GPa, while the shear stiffness is 15.4 GPa. The
whole truss is 6 m long and 1 m wide and it has 25 mem-
bers with the same cross-section: longitudinal and trans-
versal beams are 1 m long, while the diagonal members
are 1.4142 m long. The layout of the truss here proposed
is typical of reticular structures for space applications:
on the international space station, ISS, trusses constitute
the primary supporting skeleton for manned modules
and solar panels. The truss is supposed to be fixed at
the x axis edges; a summary of the tubular beams
cross-section properties is presented in Table 1.

No uncertainties featuring either the geometric con-
figuration of the structure or the applied constraints
are taken into account, while random mechanical prop-
erties for the carbon/epoxy composites are introduced:
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123456

Fig. 1. Geometric configuration of the truss.

Table 1

Cross-sectional properties of filament wound carbon/epoxy tubes

A (m?) Ly (m") Ly (m?) J (m?) Ay (m?) 4, (m?)
1.96x 1073 597x 1076 597x10°6 1.19x10°° 1.04x10°? 1.04x 1073

A, cross-section area; Iyy.l,,, inertia moments; J, polar inertia moment; 4,4, shear areas.

we assume that both the beam axial Young’s modulus
and shear stiffness can be modelled by a Gaussian dis-
tributed and exponentially correlated random field.
The same assumption is valid for the mass density of
the material; statistical independence is supposed to
hold between the stiffness and mass random fields.

Basing on Philippidis’ experimental results [15], it has
been demonstrated that carbon/epoxy filament wound
composites can present a sensible dispersion of elastic
modules: for a +45° angle-ply laminate the longitudinal
stiffness standard deviation is about 10% of the corre-
sponding mean values. Moreover a variable void con-
tent can cause randomness in the composite material
density: usually this effect is sensibly smaller than that
affecting the elastic modules, since void content can be
easily controlled during the manufacturing process. In
the following analyses we will assume a fixed 5% vari-
ance coefficient for the material mass density.

Since the data reported by Philippidis are limited only
to a single material and a single manufacturing process,
they cannot be employed directly for general probabilis-
tic design purposes, still they provide a general estima-
tion for expected mechanical properties dispersions: so
it is worth to investigate the effects of a finite variation

range of the mechanical properties on final structural re-
sponse variables. The sensitivity of these latter on uncer-
tainties sources can provide further information about
the construction performances: thus three different val-
ues of Young’s modulus and shear stiffness variances
have been selected, namely 5%, 10% and 15%; from
now on we will denote these variance values, respec-
tively, as case A, case B and case C. Since Philippidis
has tested samples 12.5 cm long, the correlation distance
for both the mass density and stiffness stochastic fields
as been assumed equal to 25 cm. This assumption will
lead to a correct reconstruction of the random fields
by the midpoint method.

The beam elements have been modelled by standard
Hermite’s cubic shape functions for bending, and linear
shape functions for extension/compression and torsion:
each node has six degrees of freedom. A probabilistic
WIFEM-Monte-Carlo simulation algorithm has been
implemented in the MATLAB environment: the pro-
posed code, denoted as WIFEMTRUSS, performs both
the calculation of the deterministic solution and the fur-
ther statistical analysis. The deterministic part of the
code has been validated comparing the results obtained
by NASTRAN code numerical solution: a summary of
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ness matrixes are calculated by means of the WIFEM
method discussed in Section 3. The number of samples
which must be generated to obtain accurate results for

~
T

o
m

Table 2
Deterministic modal frequencies for the truss
Mode NASTRAN: frequency (Hz) WIFEMTRUSS: frequency (Hz)
1 element/beam 2 element/beam 4 element/beam 1 element/beam

1 10.168 10.161 10.158 10.162
11 26.719 26.849 26.835 26.913
111 30.929 36.315 37.958 38.721
v 39.698 39.723 39.738 39.916
A% 48.749 50.080 50.088 50.577
VI 55.654 66.194 68.629 70.043
VII 71.013 76.875 77.053 78.732
VIII 75.162 81.584 81.686 83.373
IX 81.532 91.225 93.804 96.153
X 87.550 101.930 102.647 106.193
oe, Young's and shear modulus standard deviation; g,, mass density stan-
the modal frequencies deterministic values is reported in 2r
Table 2. The introduction of one single element for each i gl . .
beam member is sufficient to capture accurate values of £ " "'.._ﬁ S Sp—
the deterministic modal frequencies. § 19 N e

i .

> .
5.1. Analysis of natural vibration modes probability 8 &

. . . 'E -

distribution T

E -

The random fluctuating parts of the mass and stiff- n 1751°"

g

@

=
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response statistics depend both on the variance of the
random fields and on the geometrical configuration of
the structure: the statistical convergence of the hybrid
method here proposed must be checked by verifying that
at least second order moments have reached a stable
asymptotic value after N runs [10]. To validate the sto-
chastic part of the code we have considered a simple
composite cantilever 1 m long, whose cross-section and
random material properties are identical to those featur-
ing the case B truss beam members. This simpler valida-
tion strategy has been adopted since a brute-force
Monte-Carlo analysis of the whole truss would have
required a huge computational time: in Fig. 2 the con-
vergence of the Monte-Carlo simulations for the single
beam example is clearly shown versus the total number
of generated configurations (iterates). In Fig. 3 we
present a plot of the values of first modal frequency
standard deviation versus the variance of mass density
and longitudinal stiffness. The three curves there
reported are referred to a WIFEM hybrid approach, a
brute-force Monte-Carlo analysis and a stochastic Ray-
leigh—Ritz’s method (SRRM) [16]: the agreement of the
numerical results is clearly pointed out.

In Tables 3 and 4 the output data for the statistical
analysis of the truss natural vibration frequencies are re-
ported: the standard deviations affecting the modal fre-
quencies are increasing functions of the random field
variances and they are also dependent on the modes
shapes. These latter results can be explained by observing

16 . . | . . . . . | )
1] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Numer of MonteCarlo runs

Fig. 2. Convergence of Monte-Carlo simulations for the single beam
example.

T 2407 | —#—MCFEM
c —-—
§ 190 WIFEM
K] —4&— SRRM
2 .
A& 1.40 1
e
5 0,90
=
&3
9 0,40 :
o o o o
QQ Q Q.'\ er' Qr

Standard Deviation

Fig. 3. Standard deviation of the I modal frequency for the single
beam example.

Fig. 4, where the whole set of frequencies corresponding
to the ensemble of Monte-Carlo runs for case B are pre-
sented: due to the uncertainties featuring the mechanical
properties of the material, the actual modal vibration fre-
quencies can span wide intervals. As an example, for case
B scenario (Fig. 6), the probability of having a third vibra-
tion frequency lower than its deterministic counterpart is
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Table 3
Mean values of modal frequencies versus uncertainties levels
Mode WIFEMTRUSS: frequency (Hz)
Deterministic Mean values Mean values Mean values
o:= 5%, 6,= 5% oz =10%, 6, = 5% oz =15%, 6, = 5%
I 10.162 10.162 10.113 10.086
II 26.913 26.841 26.062 25.232
11 38.721 36.954 35.271 34.510
v 39.916 41.167 42.118 42.668
\Y 50.577 50.588 50.858 51.553
VI 70.043 70.047 69.974 69.959
VII 78.732 78.698 78.335 77.965
VIII 83.373 83.390 83.944 84.879
IX 96.153 96.153 96.059 96.101
X 106.193 106.192 106.081 106.044

o:, Young’s and shear modulus standard deviation; o,, mass density standard deviation.

Table 4

Standard deviations of modal frequencies versus uncertainties levels

Mode WIFEMTRUSS: standard deviations (Hz)
o:= 5%, 6,= 5%

1 0.027

11 0.590

11 2.995

v 3.092

\'% 0.212

VI 0.184

VII 0.328

VIII 2.320

IX 0.277

X 0.340

oz =10%, 6, = 5% oz =15%, 6, = 5%
0.549 0.546
2.948 4.058
4.587 5.073
4.599 5.107
1.976 3.178
2.044 2.075
2.528 2.909
4.683 5.814
2.811 2.885
3.122 3.178

o:, Young’s and shear modulus standard deviation; o,, mass density standard deviation.

Wau ) A, e l-

[m1]
o

Frequency (Hz)

borla
MMWH

LJMMM b MNWWWMWWML

0 200 400 600 800 1000 1200
Monte Carlo Runs

Fig. 4. Ensemble of modal frequencies versus Monte-Carlo runs.

about 33%. Moreover, as shown in Fig. 4, permutation of
actual vibration modes can occur: for example the fourth
mode, corresponding to in-plane bending, tends to ex-
change with the first three ones, which are, respectively,
represented by single and double-wave out-of-plane
bending and pure torsion.

0.8}

08¢
v
IX

I v VIII

Probability
&

04t VII

0.2} IT1

0 . L L _J L f L
0 20 40 80 80 100
Frequency (Hz)

Fig. 5. Modal frequencies distributions: case A.

The distribution of the vibration modes for the three
scenarios reported in Figs. 5-7, are far from being
Gaussian, especially for modes affected by reciprocal
permutations: therefore the distributions featuring
structural response variables can hugely differ from
Gaussian ones, even though the uncertainties are
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Fig. 6. Modal frequencies distributions: case B.

modelled by normally distributed random fields. Thus
approximated stochastic FEM methods, which provide
predictions about a limited number of statistical mo-
ments featuring the response variables of an uncertain
complex structure, are not always suitable for probabi-
listic design purposes, since actual probability distribu-
tions are very difficult to be inferred.

5.2. Analysis of harmonic response

The set of applied loads selected for the harmonic re-
sponse of the truss structure are presented in Fig. 8: this

1234

123456

1 T T T
09r ( B
v
08 B
07¢F 4
06f X 1
05 B

VIl X
- 1 |

Probability

D3F E

o2r I VI ]

I e I A 4

0 20 40 B0 100

60
Frequency (Hz)

Fig. 7. Modal frequencies distributions: case C.

set of applied forces and torques has been chosen to pro-
vide an excitation of both the in-plane and the out-of-
plane dynamics of the truss itself. The absolute value
of each applied force is 5 N, while it is 3 N m for nodal
torques. The deterministic solution for the harmonic re-
sponse problem is reported in Fig. 9: this plot refers to
the y translation of the node D in Fig. 8. The maximum
displacement magnitude is centred on the frequency va-
lue which also identifies the fourth modal vibration fre-
quency; this latter corresponds to single-wave in-plane
bending. In Fig. 10 we present the case A node D har-
monic response curves for each Monte-Carlo simulated

Fig. 8. FEM model for harmonic response analysis.
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Fig. 9. Deterministic harmonic response of the truss.
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Fig. 10. Ensemble of harmonic response curves for case A analysis.

configuration: the mode permutation phenomenon is
clearly highlighted, since the peak of maximum displace-
ment tends to shift towards frequency values lower than
the deterministic ones. This result confirms that the
fourth mode tends to exchange with the first three ones,
as already shown by probabilistic natural vibration
modes analysis. Moreover a second low frequency re-
sponse peak appears around 80 Hz for some simulated
configurations: this effect depends on the mode exchang-
ing between the seventh and the eighth modal frequen-
cies. This peculiar behaviour of uncertain structures
has deep implications about both passive and active
control systems, since the vibration suppression capabil-
ities of deterministic synthesised control devices can re-
sult to be out of the frequency range of actual natural
modes.

6. Conclusions

According to the results of experimental investigations
[15], the mechanical properties of fibre reinforced com-
posites show a sensible statistical dispersion around the
mean values which are usually employed in conventional
deterministic design. The effects of mechanical uncertain-
ties, especially regarding to the stiffness modules, can be
considered negligible if we take into consideration struc-
tures characterised by simple geometrical configurations,
such as a single beam or a plate. Nevertheless the struc-
tural response variability due to mechanical uncertainties
of composites can attain significant levels for complex
geometrical configurations, as in the case of reticular
structures. Several approximated techniques, all hinged
upon stochastic finite element methods, have been pro-
posed to predict the structural response variability of
complex uncertain structures: nevertheless these pertur-
bations based approaches are able to provide information
only about a finite number of statistical moments, usually
two —mean value and standard deviation —, featuring the
response variability. Full Monte Carlo simulations allow
obtaining the complete statistical distributions of random
response variable: the hybrid technique here proposed
combines stochastic weighted integrals with a Monte-
Carlo simulation strategy, avoiding coupling between
the finite elements size and the correlations distances fea-
turing the random fields. The main contribution of the
authors is hinged on applying the outlined simulation ap-
proach to the harmonic response of reticular structures.

The hybrid Monte-Carlo simulation technique has
been implemented in the MATLAB environment, devel-
oping a stochastic finite element code which is able to ana-
lyse the vibration response of large three-dimensional
composite made trusses with random material mechani-
cal properties. A benchmark problem, involving the
modal analysis and the harmonic response of a typical
reticular structure for space application has been studied;
the structure here considered is assumed to be manufac-
tured by composites tubes having a circular cross-section.

The simulations have pointed out that the vibration
modes sequence for actual structures can results in being
considerably different from that predicted by standard
deterministic FEM analyses. In fact the actual vibration
modes can appear in a permutated order with respect to
those featuring the deterministic solution. The effects of
mechanical uncertainties are clearly pointed out also by
the harmonic response analysis of the same structure
and have deep implications on the final performances
and on the control of actual constructions.
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