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a b s t r a c t

The L(2, 1)-labeling problem consists of assigning colors from the integer set 0, . . . , λ to
the nodes of a graph G in such a way that nodes at a distance of at most two get different
colors, while adjacent nodes get colorswhich are at least two apart. The aim of this problem
is to minimize λ and it is in general NP-complete. In this paper the problem of L(2, 1)-
labeling unigraphs, i.e. graphs uniquely determined by their own degree sequence up to
isomorphism, is addressed and a 3/2-approximate algorithm for L(2, 1)-labeling unigraphs
is designed. This algorithm runs in O(n) time, improving the time of the algorithm based
on the greedy technique, requiring O(m) time, that may be near to Θ(n2) for unigraphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The L(2, 1)-labeling problem [10] consists in assigning colors from the integer set 0, . . . , λ to the nodes of a graph G in
such a way that nodes at a distance of at most two get different colors, while adjacent nodes get colors which are at least
two apart. The aim is to minimize λ.

This problem has its roots in mobile computing. The task is to assign radio frequencies to transmitters at
different locations without causing interference. This situation can be modeled by a graph, whose nodes are the radio
transmitters/receivers, and adjacencies indicate possible communications and, hence, interference. The aim is to minimize
the frequency bandwidth, i.e. λ.

In general, both determining the minimum number of necessary colors [10] and deciding if this number is <k for any
fixed k ≥ 4 [9] is NP-complete. Therefore, researchers have focused on some special classes of graphs. For some classes –
such as paths, cycles, wheels, tilings and k-partite graphs – tight bounds for the number of colors necessary for an L(2, 1)-
labeling are well known in the literature and so a coloring can be computed efficiently. For many other classes of graphs
– such as chordal graphs [14], interval graphs [8], split graphs [2], outerplanar and planar graphs [2,6], bipartite permutation
graphs [1], and co-comparability graphs [5] – approximate bounds have been looked for. For a complete survey, see [4].

Unigraphs [11,12] are graphs uniquely determined by their own degree sequence up to isomorphism and are a superclass
including matrogenic graphs, matroidal graphs, split matrogenic graphs and threshold graphs. The interested reader can find
information related to these classes of graphs in [13].

In [7], all these subclasses are L(2, 1)-labeled: threshold graphs can be optimally L(2, 1)-labeled in time linear in ∆ with
λ ≤ 2∆, while for matrogenic graphs the upper bound λ ≤ 3∆ holds, where ∆ is the maximum degree of the graph. In the
same paper the problem of L(2, 1)-labeling the whole superclass of unigraphs is left open.

In this paper, a 3/2-approximate algorithm for the L(2, 1)-labeling of unigraphs is presented. This algorithm runs in O(n)
time, which is the best possible. Observe that a naive algorithm, based on the greedy technique, would obtain an O(m) time
complexity, that may be near to Θ(n2) for unigraphs.
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Fig. 1. (a) A split graph G; (b) its complement G; (c) its inverse GI .

Fig. 2. (a)mK2; (b) U2(m, s); (c) U3(m).

The techniqueused in the algorithm takes advantage of the degree sequence analysis. In particular, this algorithmexploits
the concept of boxes, i.e. the equivalence classes of nodes in a graph under equality of degree.

This paper is organized as follows.
In the next section all the information required for the rest of the paper is summarized. A recognition algorithm for

unigraphs and the corresponding characterization theorem on which it is based are outlined in Section 3. The core of the
paper comes in the following three sections. Section 4 provides optimal L(2, 1)-labeling without repetitions (i.e. L′(2, 1)-
labeling) for those graphs listed in the characterization of unigraphs, while an L(2, 1)-labeling for the same graphs is
presented in Section 5. Finally, in Section 6 a linear time (in n and in ∆) 3/2 approximate algorithm for L(2, 1)-labeling
of unigraphs is presented. Concluding remarks and open problems complete the paper.

2. Preliminaries

In this section all the definitions and known results that will be used in the rest of the paper are summarized.
We consider only finite, simple, loopless graphsG = (V , E), whereV and E are the node and edge sets ofGwith cardinality

n and m, respectively. Where no confusion arises, G = (V , E) is called simply G.
LetDS(G) = δ1, δ2, . . . , δn be the degree sequence of a graph G sorted by non-increasing values: δ1 ≥ δ2 ≥ · · · ≥ δn ≥ 0.

We call boxes the equivalence classes of nodes in G under equality of degree. In terms of boxes the degree sequence can be
compressed as dm1

1 , dm2
2 , . . . , dmr

r , d1 > d2 > · · · > dr ≥ 0, where di is the degree of the mi nodes contained in box
Bi(G), 1 ≤ mi ≤ n; hence

∑r
i=1 mi = n and

∑r
i=1 dimi = 2m.

We call a box universal (isolated) if it contains only universal (isolated) nodes, where a node x ∈ V is called universal
(isolated) if it is adjacent to all other nodes of V (no other node in V ); if x is a universal (isolated) node, then its degree is
d(x) = n− 1 (d(x) = 0).

A graph I induced by subset VI ⊆ V is called complete or clique if any two distinct nodes in VI are adjacent in G, stable or
null if no two nodes in VI are adjacent in G.

A graph G is said to be split if there is a partition V = VK ∪ VS of its nodes such that the induced subgraphs K and S are
complete and stable, respectively (see Fig. 1(a)).

If G = (V , E) is a graph, its complement is G = (V , V ×V −E) (see Fig. 1(b)). If G = (VK ∪VS, E) is a split graph, its inverse
GI is obtained from G by deleting the set of edges {{a1, a2} : a1, a2 ∈ VK } and adding the set of edges {{b1, b2} : b1, b2 ∈ VS}

(see Fig. 1(c)).
Given a graph G, if its node set V can be partitioned into three disjoint sets VK , VS and VC such that K is a clique, S is a

stable set and every node in VC is adjacent to every node in VK and to no node in VS , then the subgraph induced by VC is
called crown.

In the following the definitions of some special graphs are recalled [15]:
mK2: it is the union ofm node-disjoint edgesm ≥ 1, also called perfect matching (see Fig. 2(a)).
U2(m, s): it is the disjoint union of a perfect matchingmK2 and a star K1,s, for m ≥ 1, s ≥ 2 (see Fig. 2(b)).
U3(m): for m ≥ 1, this graph is constructed as follows: fix a node in each component of the graph obtained as disjoint

union of the chordless cycle C4 and m triangles K3, and merge all these nodes in one (see Fig. 2(c)).
S2 = (p1, q1; . . . ; pt , qt): to obtain this graph, add all the edges connecting the centers of l non-isomorphic arbitrary

stars K1,pi , i = 1, . . . , t , each one occurring qi times, where pi, qi, t ≥ 1, q1 + · · · + qt = l ≥ 2 (see Fig. 3(a)). Without loss
of generality, in the following we assume p1 ≤ · · · ≤ pt .
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Fig. 3. (a) S2(p1, q1; . . . ; pt , qt ); (b) S3(p, q1; q2); (c) S4(p, q).

S3(p, q1; q2): take a graph S2(p, q1; p + 1, q2) where p ≥ 1, q1 ≥ 2 and q2 ≥ 1; add a new node v to the stable part of
the graph and add the set of q1 edges {{v, w} : w ∈ VK and degVS (w) = p}: the obtained graph is S3 (see Fig. 3(b)).

S4(p, q): it is constructed taking a graph S3(p, 2; q), q ≥ 1, adding a new node u to the clique part and connecting it with
each node of the stable except v (see Fig. 3(c)).

It is easy to see that S2, S3 and S4 are split graphs, where the clique part is constituted by the centers of the stars for S2
and S3, and by the centers of the stars and u for S4.

3. Characterization and recognition of unigraphs

In this section we recall a characterization of unigraphs in terms of superposition of a red and a black graph.

Theorem 3.1 ([3]). A graph G is a unigraph if and only if its node set can be partitioned into three disjoint sets VK , VS and VC such
that:
(i) VK ∪ VS induces a split unigraph F in which K is the clique and S is the stable set;
(ii) VC induces a crown H and either H or H is one of the following graphs:

C5, mK2, m ≥ 2, U2(m, s), U3(m);

(iii) the edges of G can be colored red and black so that:
a. the red partial graph is the union of the crown H and of node-disjoint pieces Pi, i = 1, . . . , z. Each piece Pi (or Pi, or P I

i or
P I
i ) is one of the following graphs:

K1, S2(p1, q1; . . . ; pt , qt), S3(p, q1; q2), S4(p, q),
considered without the edges in the clique;

b. the linear ordering P1, . . . , Pz is such that each node in VK belonging to Pi is not linked to any node in VS belonging to
Pj, j = 1, . . . , i− 1, but is linked by a black edge to every node in VS belonging to Pj, j = i+ 1, . . . , z. Furthermore, any
edge connecting either two nodes in VK or a node in VK and a node in VC is black.

In view of the previous lemma, although not explicitly mentioned, when we speak about a unigraph G we mean that its
node set is partitioned into the three sets VC , VK and VS , inducing the crown, the clique and the stable part, respectively.

It is worthy to be noticed that there is a basic difference between a matching inside the split part of a unigraph and a
matching constituting the crown: the nodes of the first one induce an S2(1, q) (i.e. the red edges of the matching plus the
black edges connecting as a clique the nodes that are in VK ); the second one corresponds to anmK2. An analogous difference
holds between the graph induced by the nodes of an antimatching inside the split part of a unigraph (S2(1, q)) and the
crown inducing an antimatching (mK2). This difference will be very important when we will L(2, 1)-label the pieces of the
unigraph, as we underline in Sections 4 and 5.

In Fig. 4 a unigraph is depicted, and its red and black partial graphs are highlighted. The pieces Pi defined by the previous
theorem are included in dotted rectangles. Observe that in this figure, and all over the paper, we depict all nodes belonging
to VK above all nodes belonging to Vs, that always lie on the bottom part of the drawing; moreover, we avoid to draw all the
edges of the clique, but we include the nodes of VK in a rectangle to underline that they induce a clique.

From the characterization stated in Theorem 3.1, and recalling that a unigraph is a graph uniquely determined by its own
degree sequence up to isomorphism, it is possible to derive a linear time recognition algorithm for unigraphs that identifies
the structure of the graph analyzing only its degree sequence [3]. In particular, this algorithm exploits the concept of boxes.
If there is not an isolated or universal box (K1 in item (iii).a of Theorem 3.1), a group of boxes can induce either a crown as
specified in item (ii), or one of the graphs S2, S3, S4 (or their complement, their inverse, or the inverse of their complement)
in item (iii).a. This algorithm for recognizing unigraphs works pruning the degree sequence dm1

1 , . . . , dmr
r of a given graph G.

At each step, the algorithm finds one of the node-disjoint pieces Pi of G, checking the first p and the last q boxes, according
to part (iii).a. of Theorem 3.1. The algorithm proceeds on the pruned graph G − Pi, that represents a unigraph if G is a
unigraph (part (iii).b of Theorem 3.1). This step is iterated until either G is recognized to be a unigraph or some contradiction
is highlighted because either part (iii).a or part (iii).b are recognized to be not true.
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Fig. 4. A unigraph where its crown C5 and its pieces S3(1, 2; 1), K1 and S2(2, 2)I are highlighted by dotted rectangles. Edges are colored according to
Theorem 3.1 (edges completely contained into the dotted rectangles and the edges of the crown C5 are red). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

a b c d

Fig. 5. Optimal L′(2, 1)-labeling: (a) of a C5; (b) of a K2; (c) of a 4K2; (d) of a 4K2 .

4. L′(2, 1)-labeling of the crown and of the pieces

An L′(2, 1)-labeling (also called L(2, 1)-labeling without repetitions) [8] is a one-to-one L(2, 1)-labeling into the set
0, . . . , λ′, with the aim of minimizing λ′.

In order to design the L(2, 1)-labeling algorithm for unigraphs, in this section we will show how to optimally L′(2, 1)-
label the graphs cited in Theorem 3.1 and, for each of them, we provide the number of used colors, taking into account the
black connections of Theorem 3.1. In the following it will be clear why we need to L′(2, 1)-label some pieces of a unigraph
in order to get an L(2, 1)-labeling of it.

We underline that, from now on, in the figures, when we depict complement and inverse graphs, we omit to draw all the
edges, except the absent ones, represented by dotted lines. Moreover, the unused colors are highlighted in a queue.

4.1. Crown

In order to L(2, 1)-label the VC nodes of the crown of a unigraph G, we have to consider whether there are other nodes
in the unigraph or it is constituted by the only crown; in other words, we have to distinguish if the crown is the only piece
in the graph or not. If at least another (split) piece exists, all the nodes in VC are at mutual distance two, since the crown is
completely connected to the nodes of VK . When VK = ∅ this condition is not required. It follows that in the first case we
have to L′(2, 1)-label the crown, while in the second case we have to L(2, 1)-label it.

In the following we will show how to optimally L′(2, 1)-label the crown.

Lemma 4.1 ([3]). Let G be a unigraph with VK ≠ ∅. If its crown H is:

• the cycle C5 = C5 then it can be optimally L′(2, 1)-labeled with 5 consecutive colors;
• a matching mK2, then it can be optimally L′(2, 1)-labeled with 2m consecutive colors if m > 1 and with 3 = 2m+ 1 colors

if m = 1; in this latter case one color remains unused.
• a hyperoctahedron mK2, then it can be optimally L′(2, 1)-labeled with 3m − 1 consecutive colors and m − 1 colors remain

unused.

In Fig. 5(a)–(d) L′(2, 1)-labeling of C5, K2,mK2 and mK2 when m = 4 are reported. It is to notice that the L(2, 1)- and
L′(2, 1)-labelings coincide for C5 and 4K2.

Lemma 4.2. Let G be a unigraph with VK ≠ ∅. If its crown H is:

• U2(m, s) then it can be optimally L′(2, 1)-labeled with 2m+ s+ 1 consecutive colors;
• U2(m, s) then it can be optimally L′(2, 1)-labeled with 3m+ 2s− 1 colors and m+ s− 2 colors remain unused;
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a b

Fig. 6. Optimal L′(2, 1)-labeling of: (a) U2(4, 3); (b) U2(4, 3).

a b

Fig. 7. Optimal L′(2, 1)-labelings of: (a) U3(3); (b) U3(3).

• U3(m) then it can be optimally L′(2, 1)-labeled with 2m+ 4 consecutive colors;
• U3(m) then it can be optimally L′(2, 1)-labeled with 3m+ 3 colors and m− 1 colors remain unused.

Proof. As U2(m, s) is the disjoint union of an mK2 and a star K1,s, in view of Lemma 4.1, if m ≥ 2, we need 2m colors for
mK2, let them be 1, . . . , 2m, while the star can be easily optimally L′(2, 1)-labeled with s+1 colors, assigning 0 to the center
of the star and colors 2m+ 1, . . . , 2m+ s to the leaves (see Fig. 6(a)). If m = 1 we need the same number of colors simply
arranging them in a different way (e.g. using 1 and 3 for the K2, 0 for the center of the star, and the other ones for its leaves).

U2(m, s) is given by a hyperoctahedron mK2 completely connected with the complement of a star K1,s. 3m − 1 colors
are needed to optimally L′(2, 1)-label the hyperoctahedron (see Lemma 4.1), and the unused colors cannot be used inside
the same U2 in view of the complete connection with mK2. In order to label the complement of the star we need 2s − 1
colors more, whose s− 2 are unused. Finally, we have to add a further color between the colors of the hyperoctahedron and
of K1,s because they are completely connected (see Fig. 6(b)), so also one more color remains unused. By summing all the
contributions, the thesis follows.

In order to label U3(m), let 0 be the color of the maximum degree node. It is not difficult to give different colors to all the
other nodes in order to get an optimal L′(2, 1)-labeling with a number of colors equal to the number of nodes (see Fig. 7(a)).

Observe that U3(m) is constituted by a hyperoctahedron mK2, completely connected to three nodes, two of which are
connected, and the third one is adjacent to a degree 1 node. Consequently, 3m − 1 colors are necessary to label the
hyperoctahedron (see Lemma 4.1); one of the colors unused by the hyperoctahedron can be used for the degree 1 node.
4 more consecutive colors are necessary for the remaining three nodes, since the first of them cannot be used (see Fig. 7(b)).
The unused colors are hencem− 1. �

We highlight that the L(2, 1)- and L′(2, 1)-labelings coincide on U2 and U3 graphs as they have diameter 2.

4.2. Split pieces

Each split piece Pi (S2, S3 and S4 of Theorem 3.1) must be colored using colors at mutual distance at least two in the clique
part.

For what concerns the stable part, we have to distinguish two cases, according to the fact that Pi is the first piece in
the linear ordering of item iii.(b) of Theorem 3.1 (i.e. i = 1) or not (i.e. i > 1). Indeed, black edges defined in item iii.(b)
impose to use different colors for the nodes in the stable part of each Pi, i > 1, hence for this piece we have to provide an
L′(2, 1)-labeling. Only colors in the stable part of P1 can be eventually repeated.

In this subsection we show how to L′(2, 1)-label split pieces.

Lemma 4.3. Let G be a unigraph. If one of its pieces Pi, i > 1, is
• S2(p1, q1; . . . ; pt , qt) then it can be optimally L′(2, 1)-labeled with

∑t
i=1(pi + 1)qi consecutive colors;

• S2(p1, q1; . . . ; pt , qt)
I
then it can be optimally L′(2, 1)-labeled with

∑t
i=1(pi + 1)qi colors; if q1 > 2 and p1 = 1 then it can

be optimally L′(2, 1)-labeled with
∑t

i=1(pi + 1)qi + ⌊q1/2⌋ colors and ⌊q1/2⌋ of them remain unused;
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a b c d e

Fig. 8. Optimal L′(2, 1)-labelings of: (a) S2(2, 2; 4, 1); (b) S2(1, 1; 2, 1); (c) S I2(2, 2; 4, 1); (d) S
I
2(1, 5; 2, 1); (e) S2(2, 2; 4, 1).

• S2(p1, q1; . . . ; pt , qt) then it can be optimally L′(2, 1)-labeled with 2
∑t

i=1 piqi − 1 colors and
∑t

i=1 qi(pi − 1)− 1 of them
remain unused; if p1 = 1 then both the number of used and unused colors must be incremented by ⌊q1/2⌋;
• S2(p1, q1; . . . ; pt , qt)I then it can be optimally L′(2, 1)-labeled with 2

∑t
i=1 piqi − 1 colors and

∑t
i=1 qi(pi − 1)− 1 of them

remain unused; if t = 1 and q1 = 1 then it can be optimally L′(2, 1)-labeled with 2p1 + 1 colors and p1 of them remain
unused.

Proof. For the
∑t

i=1 qi centers of the stars of S2, that are connected in a clique, 2
∑t

i=1 qi − 1 colors are necessary, and∑t
i=1 qi − 1 of them are unused. Let U be the set of these unused colors. Colors from U are assigned to the leaves of each

star taking into account to avoid those colors at distance one from the color assigned to the center (see Fig. 8(a)). In order to
complete the labeling, further

∑t
i=1(pi − 1)qi + 1 consecutive colors will be necessary. The number of used colors is hence∑t

i=1 piqi+
∑t

i=1 qi, that is exactly the number of nodes of S2. Observe that, if
∑t

i=1 qi = 2, in order not to discard any color,
the nodes in the clique must be labeled with a different rule (see Fig. 8(b)). Indeed, if the clique was labeled with 0 and 2,
color 1 would be discarded.

For what concerns S2
I
, again a number of colors equal to the number of nodes is necessary and sufficient, but the labeling

must be performed in the following way: label the first of the pi leaves of each star with the first available color c; label the
center of the star with color c + 1, and the remaining pi − 1 leaves with colors c + 2, . . . , c + pi (see Fig. 8(c)). This method
works if p1 ≥ 2. But, if it holds that q1 > 2 and p1 = 1, then the first q1 stars constitute a matching and more colors are
necessary. Namely, for each color g assigned to a node of thematching in the clique, both g−1 and g+1 cannot be assigned
to any node in the clique and to any node in the stable set, except its mate; hence one between g−1 and g+1must remain
unused (see Fig. 8(d)).

It is easy to see that for labeling S2(p1, q1; . . . ; pt , qt) and S2(p1, q1; . . . ; pt , qt)I , 2
∑t

i=1 piqi − 1 colors are always
necessary and sufficient. Indeed, they are necessary for L′(2, 1)-labeling the clique containing all the leaves of the stars,
and each center of a star may be colored with one of the colors unused during the labeling of the leaves opportunely chosen
(see Fig. 8(e)). It follows that

∑t
i=1 qi(pi − 1) − 1 colors remain unused. Observe that if p1 = 1 in S2, arguments similar to

those explained for S2 can be used, and the thesis follows. Finally, if t = 1 and q1 = 1 in S I2, it is easy to see that 2 colors
more are needed since S I2 is a clique with p+ 1 nodes. �

Lemma 4.4. Let G be a unigraph. If one of its pieces Pi, i > 1, is

• S3(p, q1; q2) then it can be optimally L′(2, 1)-labeled with pq1 + (p+ 1)q2 + q1 + q2 + 1 consecutive colors;
• S3(p, q1; q2)I then it can be optimally L′(2, 1)-labeled with pq1 + (p+ 1)q2 + q1 + q2 + 1 consecutive colors; if q1 > 2 and

p1 = 1 then it can be optimally L′(2, 1)-labeled with pq1+ (p+ 1)q2+ q1+ q2+ 1+⌊q1/2⌋ colors and ⌊q1/2⌋ of them are
unused;
• S3(p, q1; q2) then it can be optimally L′(2, 1)-labeled with 2p(q1 + q2) + 2q2 + 1 colors and pq1 + pq2 − q1 − 1 of them

remain unused; if p1 = 1 then it can be optimally L′(2, 1)-labeled with 2p(q1 + q2) + 2q2 + 1 + ⌊q1/2⌋ colors and
pq1 + pq2 − q1 − 1+ ⌊q1/2⌋ of them remain unused;
• S3(p, q1; q2)I then it can be optimally L′(2, 1)-labeled with 2p(q1 + q2) + 2q2 + 1 colors and pq1 + pq2 − q1 − 1 of them

remain unused.

Proof. Remind that S3(p, q1; q2) is obtained adding a node v to the stable set of a graph S2(p, q1; p + 1, q2), p ≥ 1, q1 ≥
2, q2 ≥ 1 and v is connected to the first q1 centers. Consequently the methods for labeling S3, S3, S I3 and S I3 are the same
presented for S2, S2, S I2 and S I2 only taking care of node v. In order not to overburden the exposition we omit further details
and we present only Fig. 9(a) in which the labeling of S3(2, 1; 1) is depicted. �

Lemma 4.5. Let G be a unigraph. If one of its pieces Pi (cf. Theorem 3.1) is

• S4(p, q) then it can be optimally L′(2, 1)-labeled with 2p+ qp+ 2q+ 4;
• S4(p, q) then it can be optimally L′(2, 1)-labeled with 2pq+ 4p+ 2q+ 1 colors and pq+ 2p− 3 of them remain unused; if

p = 1 then it can be labeled with 2pq+ 4p+ 2q+ 2 colors and pq+ 2p− 2 of them remain unused;
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a b c d

Fig. 9. Optimal L′(2, 1)-labelings of: (a) S3(2, 2; 1); (b) S4(2, 1); (c) S4(2, 1); (d) S4(1, 2).

• S4(p, q)I then it can be optimally L′(2, 1)-labeled with 2pq+ 4p+ 2q+ 2 colors and pq+ 2p− 2 of them remain unused;
• S4(p, q)

I
then it can be optimally L′(2, 1)-labeled with 3q+ 2p+ qp+ 4 colors and q of them remain unused.

Proof. The clique part of S4(p, q) requires 2(q + 3) − 1 colors, whose q + 3 are used. Node u in the clique part is colored
with 0. All the nodes in the stable part (except v) are connected to u and hence at mutual distance two and require distinct
colors. The colors discarded while labeling the clique can be opportunely used in the stable part, and in particular node v
is labeled with 1. The centers of the two stars with p leaves cannot receive color 2. The remaining nodes are labeled with
consecutive new colors (see Fig. 9(b)). Totally, the number of necessary colors is the same as the number of nodes of S4.

The clique part of S4 can be labeled with all the even colors from 0 to e = 2(2p+ (p+ 1)q). The odd colors, opportunely
used, are sufficient to label the stable part, and pq + 2p − 3 colors remain unused (see Fig. 9(c)). In the special case when
p = 1, one color must be unused, hence one color more is necessary, as shown in Fig. 9(d).

Analogous considerations hold for S I4. In this case, color e is assigned to node u and node v must have a new odd color
e+ 1. The number of unused colors is one more than in the previous case, i.e. pq+ 2p− 2.

Finally, an optimal labeling of S I4 is obtained using qp + 2p + 3q + 5 colors. Indeed 2(q + 3) − 1 colors are required by
the clique. Let 0, 2 and 4 the colors assigned to v and to the centers of the stars with p leaves each one. Color 3 is suitable for
labeling u. Moreover color 1 can be assigned to one of the leaves of the star with center labeled with 2. No other odd colors
from 5 to 2(q+ 3)− 3 can be utilized in the stable part so, q colors must remain unused. Since nodes in the stable part must
have different colors (in view of the fact that each pair is at distance two), we have to add 2p + qp + q − 1 consecutive
different colors for completing the coloring of S I4. �

5. L(2, 1)-labeling of the crown and of the pieces

5.1. Crown

We recall that the L(2, 1)- and L′(2, 1)-labelings of C5 and mK2 coincide (see Fig. 5(a) and (d). Furthermore, in view of
their structure,U2 andU3 are graphswith diameter 2, hence even their L(2, 1)- and L′(2, 1)-labelings coincide and theymust
be labeled with all different colors, independently of the rest of the unigraph. Finally, in U3 only one node can be labeled
re-using a color (the node labeled by 1 in Fig. 7(a)) hence the number of colors necessary to L′(2, 1)- and to L(2, 1)-label U3
is the same, but in the latter case one color remains unused. So, it remains to prove the following lemma.

Lemma 5.1. Let G be a unigraph constituted only by its crown. If G is:

• mK2, then it can be optimally L(2, 1)-labeled with 3 colors and one color remains unused;
• U2(m, s) then it can be optimally L(2, 1)-labeled with s+ 2 colors and one color remains unused.

Proof. The L(2, 1)-labeling of amatching with 3 colors is trivial: 0 and 2 can be used for adjacent nodes, and color 1 remains
unused (see Fig. 10(a)).

AsU2 is constituted by the disjoint union of amatching and a star, we can optimally label the star with s+2 colors, whose
one color is unused; for the matching, it is possible to re-use a couple of not adjacent already used colors (see Fig. 10(b)).
It is to notice that the pair (1, 3) for labeling the matching is also feasible, but the choice of not using a color will be useful
later and will be clear during the presentation of the algorithm. �

5.2. Split pieces

Observe that S2 is a diameter 2 graph, if
∑t

i=1 qi > 2, hence there is no difference between the L(2, 1)- and L′(2, 1)-
labelings. Furthermore, if

∑t
i=1 qi = 2, then the centers of the two stars are at distance three, but there is no way to assign

them the same color using the minimum number of colors.
For what concerns S I2, the number of used colors is the same as in the case without repetitions, as the maximum number

of necessary colors is given by the clique part, but some colors can be replicated in the stable part, hence
∑t

i=1 piqi−3 colors
remain unused.
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a b

Fig. 10. Optimal L(2, 1)-labelings of: (a) 4K2; (b) U2(4, 3).

S I2 is a diameter 2 graph, when
∑t

i=1 qi > 2 and hence its L(2, 1)-labeling coincides with its L′(2, 1)-labeling. If∑t
i=1 qi = 2, S I2 coincides with S2.
Similar considerations hold for S3, S I3, S

I
3, S4, S

I
4 and S I4. Finally, in S4 the only node that is at distance three from some

leaves is u, and hence it is the only node that can receive a repeated color. It follows that the L(2, 1)-labeling of S4 is identical
with respect to the L′(2, 1)-labeling, except for node u. Hence, in order to study the L(2, 1)-labeling of the split graphs in
item iii(a) of Theorem 3.1, it is enough to prove the following result.

Lemma 5.2. Let G be a unigraph. If its first split piece P1 (cf. Theorem 3.1) is

• S2(p1, q1; . . . ; pt , qt) then it can be optimally L(2, 1)-labeled with

2

∑t
i=1 qi − 1


+ max


0, pt + x−

∑t
i=1 qi − 1


colors, where x = 1 if qt ≤ 2 and x = 2 otherwise;
• S3(p, q1; q2) then it can be optimally L(2, 1)-labeled with


2

∑t
i=1 qi − 1


+ y + max{0, pt + x −

∑t
i=1 qi − 1


} colors,

where x = 1 and y = 1 if qt ≤ 2 and x = 2 and y = 0 otherwise.

Proof. S2 is composed by starswhose
∑t

i=1 qi centers are connected in a clique. So, at least 2
∑t

i=1 qi−1 colors are necessary.
The first color must be assigned to one among the qt centers of the maximum size stars. Each time two distance 2 colors are
assigned in the clique, the color in between remains unused. All such colors can be opportunely assigned to some nodes in
the stable part, possibly many times, paying attention that no leaf of a center of a star labeled c takes label c − 1 or c + 1.
Observe that the pi leaves of each star must receive all different colors, as they are at mutual distance two. Consider now
the qt stars of maximum size pt . If the unused colors are not enough to label its leaves, some colors must be added. Their
number is pt −

∑t
i=1 qi − 2


if qt ≤ 2 (indeed at most one unused color must be discarded, see Fig. 11(a)) and is one color

more if qt ≥ 3. Finally, if pt is sufficiently small, the unused colors are enough to label all the leaves of the maximum size
stars and then no other colors must be added.

S3 is obtained from an S2 by adding a node to the stable part. It is easy to see that the number of colors necessary to label
S2 are enough for S3, as the added node v can receive either an already used color or one among the colors unused during
the labeling of the clique part (see Fig. 11(b)). Only if qt ≤ 2 then one color more is necessary for v, and it must be labeled
1, as shown in Fig. 11(c). This is the meaning of y in the formula of the number of colors. �

6. An algorithm for L(2, 1)-labeling unigraphs

The labelings presented in the previous two sections will be used for the linear time algorithm for labeling the whole
unigraph detailed in this section.

In Section 3, we have claimed that it is possible to identify the structure of a connected unigraph analyzing only its degree
sequence, so the following L(2, 1)-labeling algorithm will deal with the representation of a graph G = (V , E) in terms of
boxes with degree sequence dm1

1 , dm2
2 , . . . , dmr

r , d1 > d2 > · · · > dr .
Let us call ki the largest color used for labeling the clique part of Pi separately, considering that each split piece Pi must

be colored using colors at mutual distance at least two in the clique part.
The algorithm labels each piece in two phases. In the first phase, only ki+1 colors are considered, and in the second phase

the labeling is completed. In particular, the algorithm first puts in a queue S the pieces Pi, with clique part Ki and stable part
Si described in Theorem 3.1, that it recognizes according to the algorithm in [3], and the crown H , if it exists. Then, the
algorithm partially labels each piece Pi dequeued from the queue according to its own structure. In order to explain the
partial labeling of piece Pi, let ci−1 − 1 be the last color used for the partial labeling of pieces P1, . . . , Pi−1. We label with
colors from ci−1 to ci − 1 = ci−1 + ki + 1 all nodes in the clique and possibly some nodes in the stable set according to the
rules of the previous section. In general, some nodes in the stable set remain unlabeled.

Not used colors from ci−1 to ci − 1 will be inserted into a queue Q together with the information that they have been
enqueued by Pi.

If some nodes in Si remain uncolored, Pi is again queued in S together with the information of the number of its uncolored
nodes ui. The labeling of the partially labeled pieces will be completed by the last part of the algorithm. Only the crown and
the first piece are immediately completely labeled.

The crown, if it is not the unique piece of G, is completely L′(2, 1)-labeledwhile the first piece, independently fromwhich
piece it, is completely L(2, 1)-labeled since the nodes in its stable part are not extremes of any black edge and so repetitions
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of colors are possible. Notice that, if the unigraph is constituted by the only crown, it is the first (and unique) piece, and
hence it is correctly L(2, 1)-labeled.

Observe that a disconnected unigraph consists in a connected one and an isolated box. Hence, if the unigraph is not
connected, we can assign the same color to all nodes of the isolated box and run the algorithm for L(2, 1)-labeling the non-
trivial connected component. For this reason, as input of the algorithm only connected unigraphs are considered.

Finally, we say that color k is thrown out if we decide not to use it; after k has been thrown out it is not available anymore.
Procedure Recognize-Pieces(G, S, num) takes in input unigraph G, recognizes its num pieces Pi and put them in S.

The L(2, 1)-labeling algorithm is the following:

ALGORITHM L(2, 1)-Label-Unigraphs
INPUT:a connected unigraph G by means of its degree sequence dm1

1 , . . . , dmr
r

OUTPUT: an L(2, 1)-labeling for G.
Initialize-QueueColors Q = ∅;
Recognize-Pieces(G,S,num);
PHASE 1.
REPEAT

DequeuePiece Pi from S;
Step 1 // P1 is completely L(2, 1)-labeled;
IF i = 1
THEN completely L(2, 1)-label P1

(details in Sections 5.1 and 5.2);
ELSE
Step 2
IF Pi split component

THEN Partially L′(2, 1)-label Pi appropriately with new colors from ci−1 to ci−1 + ki + 1
(details in Section 4.2);

FOR EACH unused color d between ci−1 and ci−1 + ki + 1
EnqueueColor (d, Pi) in Q ;
ci ← ci−1 + ki + 2;

IF Pi is partially L′(2, 1)-labeled and ui among its nodes are not labeled
THEN EnqueuePiece(Pi, ui) in S;

Step 3
IF Pi crown

L′(2, 1)-label Pi appropriately with new colors starting from ci−1
(details in Section 4.1);

FOR EACH unused color u in the L′(2, 1)-labeling of the crown
EnqueueColor(d, Pi) in Q ;

UNTIL(i = num);
PHASE 2.
REPEAT

DequeuePiece(Pi, ui) from S;
WHILE (ui > 0 AND Q ≠ ∅) DO

DequeueColor(d, Pj) from Q ;
IF (j ≤ i)
THEN throw d out;
ELSE use d to L′(2, 1)-label one uncolored node in Pi;

decrease ui by 1;
IF Q = ∅
THEN L′(2, 1)-label the ui uncolored nodes of Pi with mi consecutive new colors from

ci−1 to ci−1 +mi − 1;
UNTIL (S = ∅).

Theorem 6.1. Algorithm L(2, 1)-Label-Unigraphs correctly L(2, 1)-labels a unigraph G in O(n) time.

Proof. The correctness of procedure Recognize-Pieces follows from [3]. We will prove that the labeling found by the
algorithm is feasible. Indeed, nodes in VK are labeled with colors at mutual distance at least two. Moreover, each node in VS
cannot be colored with a color at distance ≤ 1 to the colors of all its adjacent nodes (in VK ) in view of the following three
facts:

1. Each piece Pi is feasibly labeled according to Sections 4 and 5;
2. The only L(2, 1)-labeled piece is the first one, since its nodes in the stable part are not extreme of any black edge;
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a b c

Fig. 11. Optimal L(2, 1)-labelings of: (a) S2(2, 3; 4, 2); (b) S3(2, 3; 3); (c) S3(2, 3; 2).

3. Each dequeued color d (enqueued by Pj) is used only for labeling nodes in the stable part of piece Pi with i < j, so that
black edges cannot join the node labeled w with nodes labeled either w + 1 or w − 1.

In order to compute the time complexity, we have to add the contribution of the following four actions: the recognition
procedure—requiring O(n) time [3], the labeling of P1, the partial labeling of each piece and the completion of the labeling.
In order to label each piece Pi with ni nodes we need O(ni) time. Each piece Pi is enqueued in S at most twice, once when it
is recognized and possibly a second time if it is only partially labeled. It follows that the algorithm, without the recognition
part, requires no more than

∑t
i=1 O(ni) = O(n) time; consequently, the whole algorithm needs O(n) time. �

Theorem 6.2. Algorithm L(2, 1)-Label-Unigraphs has a performance ratio of 3/2.

Proof. The nodes of a unigraph are partitioned into three classes, VK , VS and VC .
Nodes of the clique induced by VK must be labeled with colors at mutual distance at least two. Hence, 2|VK | − 1 colors

are necessary in any labeling for these nodes, but only |VK | of them are used to label VK . Due to the unigraph structure, the
VK −1 remaining colors could be used for some nodes in VS but not for the nodes in the crown, as each of them is connected
to every node in VK . For this reason, the nodes in VC must be at distance of at least two from the colors used for VK . Hence
the color successive to the maximum used for the clique cannot be used for the crown, so one more color must be added.

Moreover, nodes in the crown induced by VC must all be different from each other (except for the special case when the
unigraph coincides with its crown). Let |VC | + α, where 0 ≤ α ≤ |VC |/2 − 1, be the optimum number of colors necessary
for labeling these nodes. Among the |VC | + α colors, only |VC | are really used, while α colors could be used for other nodes
in VS .

For nodes in VS , we have to distinguish whether they belong to P1 or not, as only in the first case some colors can be
repeated (cf. Section 5). Let us call β, β ≤ |P1 ∩ S| the optimum number of colors necessary to label nodes of P1 ∩ VS and S ′
the set of nodes in S not belonging to P1, i.e. S ′ = S − {P1 ∩ S}.

In the worst case, algorithm L(2, 1)-Label-Unigraphs is not able to use colors that remain unused after the coloring
of VK and VC . So, the number of used colors is upper bounded by 2|VK | − 1+ |VC | + α + 1+ β + |S ′|.

Let us now consider the optimum solution. We have to distinguish two cases according to the fact that the number of
colors not used in VK ∪ VC is sufficient for labeling VS or not:

• If β+|S ′| ≤ |VK |+α, the number of colors used by the optimum solution is lower bounded simply by 2|VK |−1+|VC |+

α + 1.
• If, on the contrary, β + |S ′| > |VK | + α, we have to add |S ′| + β − |VK | − α colors in order to obtain a lower bound for

the optimum solution of 2|VK | − 1+ |VC | + α + 1+ (|S ′| + β − |VK | − α) = |VK | + |VC | + |S ′| + β .

Now we compute the approximation ratio in the two cases, using as measure the ratio between the number of colors
used by our algorithm and the number of colors used by the optimum solution, i.e. λ+1

λ∗+1 . By exploiting that α ≤ |VC |/2− 1
and hence |VC | ≥ 2α + 2 > 2α, that α ≥ 0 and the relationships between β + |S ′| and |VK | + α we have:

• If β + |S ′| ≤ |VK | + α then

λ+ 1
λ∗ + 1

≤
2|VK | + |VC | + |S ′| + α + β

2|VK | + |VC | + α
≤ 1+

|S ′| + β

2|VK | + |VC | + α
<

3
2
.

• If β + |S ′| > |VK | + α then

λ+ 1
λ∗ + 1

≤
2|VK | + |VC | + |S ′| + α + β

|VK | + |VC | + |S ′| + β
≤ 1+

|VK | + α

|VK | + |VC | + |S ′| + β
<

3
2
. �

Observe that when the unigraph is constituted only by its crown our algorithm provides the optimum labeling, according
to the theorems of Section 5.1. Furthermore, it is not difficult to see that, if the input unigraph is either a threshold or a
matrogenic graph then our algorithm behaves exactly in the same way as the known algorithms specifically designed for
these classes of graphs and hence, in the case of threshold graphs, it provides the optimum labeling.
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7. Concluding remarks and open problems

In this paper we have answered the open problem left in [7] to present an L(2, 1)-labeling for unigraphs. In Theorem 6.2
we prove that its approximation ratio is 3/2, nevertheless a large number of examples show that our algorithm discards
very few colors, thus achieving a number of used colors which is very close to the optimal value, so we suspect that its
performance is even better.

We would like to conclude this paper with two considerations concerning the number of colors used by our algorithm
in comparison to the minimum value λ.

First, observe that the number of colors used by any optimal L(2, 1)-labeling must respect the following facts:

1. the nodes in VK must be labeled with colors at a mutual distance of at most two;
2. the nodes in VC must all be different from each other and at distance of at least two from the colors used for VK (except

for the special case when the unigraph coincides with its crown);
3. the nodes in VS ∩ Pi, i > 1 must all use different colors.

The foregoing facts imply that our algorithm may use a larger number of colors than is strictly necessary in the worst
case; this number may be equal to the number of discarded colors.

Second, it is important to note that the use of optimal labelings for all pieces allows us to get a minimal (not a minimum)
labeling of the whole unigraph so we cannot guarantee it is optimal. The reason for this is that a different arrangement of
colors of the nodes in the clique may lead to less new colors being used in the second REPEAT cycle. From this consideration
we conjecture that the L(2, 1)-labeling problem may be NP-hard for unigraphs, and we leave the proof of this as an open
problem.
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