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Mathematical analysis of tumor-immune interactions based on Michaelis-Menten kinetics
with CAR-T immunotherapy

ERIK J. XIE, HARISH RAMASAMY, AND WEI FENG

ABSTRACT. In this paper, we study the dynamics of tumor growth under immune system surveil-
lance with a mathematical model based on Michaelis-Menten kinetics. In our three-component
differential equation system, we accounted for the factor of immunotherapy, its effect on tumor pop-
ulation, and synergy with immune cells. CAR-T, or Chimeric Antigen Receptor T cell, therapy is
chosen to be incorporated into the model as a form of immunotherapy due to its promising clinical
applications. The stability of the steady-state equilibria of the system is analyzed with parameters
from referred sources, and the various patterns of dynamics are demonstrated through numerical
simulations. The analysis shows different outcomes of the tumor population given different param-
eters and initial values, which provides insights into the clinical practicability of CAR-T treatment.
Earlier stages of tumor progression at which therapy begins, a critical time frame of therapeutic in-
jection to prevent tumor relapse, and improvement of antigen affinity of the receptors are found to
be factors that can enhance CAR-T efficiency and cancer patients’ life span. For further analysis,
we also propose an expanded system to investigate the potential off-target toxic effects of CAR-T
cells on normal host cells. Our instability results and oscillating numerical patterns suggest non-
cooperation between the cell types, posing potential clinical challenges to the therapy.

1. Introduction

As the second leading cause of death in the United States (CDC, 2022), cancer threatens the
lives of more than 1.7 million people each year. Tumors cells that proliferate excessively are the
underlying cause of cancer, and when tumor cells are detected in the body, the immune system
responds by deploying CD8+ cytotoxic T cells to inhibit tumor proliferation (Mahlbacher et al.,
2019). However, because tumor cells, such as those in solid tumors, have defense mechanisms
that resist host immunity (Bahrambeigi et al., 2019), in many cases, the tumor gains malignancy
and metastasizes by overcoming or evading the immune system actions (Marino-Enriquez and
Fletcher, 2014). While the host immune system is unable to exert its full strength in many cases, it
does have complicated processes to control neoplastic cell growth (Uehara et al., 2019). Different
mathematical models have also been proposed to study these interactions over the past century,
describing the dynamics between populations such as host, tumor, and immune cells (Das et al.,
2020); and cytokines and antigens. Different types of therapies, such as immune-checkpoint in-
hibitors, have also been modeled in terms of their impact on immune activation and tumor control
(Queirolo et al., 2019).

Due to the difficulty of controlling cancer growth, immunotherapies have been developed with
the intent to induce stronger anti-tumor responses by the host immune system, and in this study, we
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consider immunotherapy as an extra factor besides the tumor-immune interactions due to interests
in their effectiveness. One promising form of immunotherapy is the recently developed Chimeric
Antigen Receptor T cells (CAR-T cells), which are genetically engineered lymphocytic cells used
to kill tumor cells in the body. The genome of the lymphocyte receives in vitro injection of CAR
genes to express the desired antigen receptor specific to CD19+ antigens expressed by tumor cells
growing in the host (Pérez-Garcı́a et al., 2021). After clinical progress in recent years, CAR-T cells
are currently applied to treat lymphomas, acute myeloid leukemia, and multiple myeloma after
approval by the FDA in 2017. The focus of this paper is to perform an analysis of the interaction
of CAR-T cells with its target tumor cells and the host immune system.

2. Equations

A Michaelis-Menten based system describing the interaction between immune cells, tumor cells,
and host cells has been proposed by Das et al. (2020). The model presents as follows:

dH

dt
= αH

(
1− H

K1

)
− γ1TH (2.1)

dI

dt
=

n1TI

κ1 + T
− δTI − ρI (2.2)

dT

dt
= βT

(
1− T

K2

)
− γ2TH − n2TI

κ2 + T
, (2.3)

where H , I , and T represent the host cell population, the immune cell population, and the tumor
cell population, respectively. In this system, the host cell population follows a logistic growth
model with a carrying capacity of K1 and experiences inactivation by tumor cells at rate γ1. The
immune cell population is assumed to interact with tumor cells according to Michaelis-Menten
kinetics with rate n1 and stiffness coefficient κ1. The tumor population grows according to a
logistic function with carrying capacity K2 and is inactivated at rate γ2 by host cells and n2 by
immune cells.

Another system proposed by Pérez-Garcı́a et al. (2021) accounts for the dynamics of similar cell
populations with the addition of immunotherapy. It presents as follows:

dC

dt
= ρC(T + L+ C)C − 1

τC
C − αC2 + ρ1C (2.4)

dL

dt
= ρLL− αLC (2.5)

dT

dt
= g(T, L, C)− αTC, (2.6)

where C, L, and T represent the populations of CAR-T cells, tumor cells (leukemic T-cells), and
normal T-cells. The CAR-T cell population proliferates at rate ρ1 and is stimulated at rate ρC . The
parameter α represents CAR-T fratricide. The leukemic cells grow at rate ρL and are inactivated by
CAR-T cells at rate α. The normal T cell population is killed by tumor cells at rate α. g(T, L, C)
represents the production rate of normal T-cells, which is assumed to be negligible in the original
study.
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In this study, we propose a different model based on the two previously mentioned studies. The
equations describe the rate of change in cell populations of three types: tumor cells (T ), immune
cells (M ), and CAR-T cells (ϕ).

dT

dt
= αT (ln β − lnT )− n1T (M + ϕ)

T + κ1

(2.7)

dM

dt
=

n2TM

T + κ2

− p1M −K1TM (2.8)

dϕ

dt
= p2 +

n3TM

T + κ3

− 1

τc
ϕ+K2ϕM. (2.9)

To validate the mathematical model, a couple of assumptions are made about the tumor-immune
microenvironment. As represented by the first term of (2.7), it is assumed that the tumor population
follows a Gompertzian model that has been used to fit growth data of tumors (Jenner et al., 2019;
d’Onofrio et al., 2011). The model differs from the logistic growth model assumed by Das et al.
(2020) in the asymmetrically asymptotic behavior of the tumor population. A Michaelis-Menten
kinetics-based model is modified from the system proposed by Das et al. (2020) and represented by
the second term of (2.7), where it accounts for the clearance of the tumor population by immune
and CAR-T cells. Due to the CAR-T cells being an analogous component of the immune cell
population, the two populations have been combined by the additive term (M + ϕ) in the tumor
clearance rate. Used to describe cell interactions in this model, the Michaelis-Menten model was
initially adopted to describe enzyme kinetics, and it has also been applied to food chain dynamics
where similar interactions with capacities prevail (Holling, 1959; Xie et al., 2021). In this paper
and the study by Das et al. (2020), the model is adopted because it describes the interactions
between cell types more rigorously compared to a linear model which, unrealistically, represents
immune cells with no upper limit to their rate of tumor recognition and destruction (Srinivasan,
2021).

Equation (2.8) represents the rate of change in immune cell population, which we assume to
operate as a whole instead of separate components for simplification purposes. More complex
models have been proposed and studied in previous research to investigate the dynamics of in-
dividual immune components (Mahlbacher et al., 2019). The equation is adopted directly from
Das et al. (2020). The immune cells are activated by interacting with tumor cell antigens, and the
rate is represented by the first term based on Michaelis-Menten kinetics. The rate of activation
is dependent on the antigenicity of the tumor, which is the relative extent to which tumor cells
express molecules that are detectable for immune and CAR-T cells. The rate of natural mortality
and inactivation by tumor of immune cells are also accounted for in (2.8) by the second and third
terms.

The rate of change in CAR-T cell population, represented by ϕ, is modeled by (2.9), where
CAR-T cells activate and decay according to their natural life span τc, as included in the model by
Pérez-Garcı́a et al. (2021). The constant p2 accounts of the therapeutic process where CAR-T cells
may be injected into the host at constant rates after the initial treatment to prevent tumor relapses,
and it is an added term not used in previous studies. The second term is modified from Das et al.
(2020) and describes the Michaelis-Menten based synergistic activation of CAR-T cells by tumor
and immune cells (Robertson-Tessi et al., 2012). The last terms describes the activation of CAR-T
cells by individual immune components, and it is modified from the equation by Pérez-Garcı́a et al.
(2021) by the inclusion of the CAR-T cell population in the term to represent the dependence of
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FIGURE 2.1. A diagram illustrating the dynamics of the system. The external input
of CAR-T cells is not described in this diagram.

TABLE 2.1. Explanation of variables in the system

Variables Explanation Used by

α The proliferation rate of tumor cells Jenner et al. (2019)
n1, n2, n3 Rate constants of Michaelis-Menten kinetics Das et al. (2020)
κ1, κ2, κ3 Stiffness coefficients representing half-saturation pointsDas et al. (2020)
β The host tumor carrying capacity Jenner et al. (2019)
p1 Natural mortality rate of immune cell Das et al. (2020)
p2 Rate of external CAR T cell injection Original
K1 Rate of immune cell inhibition by tumor cells Das et al. (2020)
K2 Rate of CAR T cell activation by tumor and B cells Das et al. (2020)
τc Life span of CAR T cells (Pérez-Garcı́a et al., 2021)

the rate interaction on the CAR-T cell population size. In Table 2.1, the constants in the differential
equations are summarized and explained, and Figure 2.1 presents a schematic representation of the
interactions involved in this model.

3. Methods

In table 3.1, the parameters and initial values (T0,M0, ϕ0) used in the numerical simulation of the
model are gathered from previously validated research studies and summarized after adjustment.
The Michaelis-Menten-based parameters are mostly taken from the Kuznetsov et al. (1994), which
included estimated values based on BCL1 lymphoma in mice. The data for the tumor population
is taken and adjusted from previous studies by different authors (Vaghi et al., 2020; Barros et al.,
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TABLE 3.1. Parameters used in the model

Variables Values Units Reference

α 0.580 day−1 Vaghi et al. (2020)
n1 0.1245 day−1 Kuznetsov et al. (1994)
n2 0.45 day−1 adjusted from Itik and Banks (2010)
n3 0.15 day−1 adjusted from León-Triana et al. (2021)
κ1 2.02× 107 cells Kuznetsov et al. (1994)
κ2 3.5× 107 cells adjusted from Kuznetsov et al. (1994)
κ3 5× 107 cells León-Triana et al. (2021)
β 2.00× 109 cells adjusted from Barros et al. (2021)
p1 4.20× 10−2 day−1 Yates and Callard (2001)
p2 0 cells × day−1 estimated
K1 3.422× 10−10 day−1× cell−1 Kuznetsov et al. (1994)
K2 2.92× 10−11 day−1× cell−1 Pérez-Garcı́a et al. (2021)
τc 14 days Pérez-Garcı́a et al. (2021)

2021), and the parameters relating to CAR-T are adjusted from the values presented in the previ-
ously mentioned T-cell leukemia study by Pérez-Garcı́a et al. (2021). For preliminary analysis, it
is assumed that no external input of CAR-T cells (p2 = 0) is applied after the initial injection of
CAR-T cells defining ϕ(0). The injection rate and its effect on the system will be considered and
discussed in the next section.

To linearize the system of differential equations, the Jacobian of the system is obtained by taking
the partial derivatives of the differential equations in a 3 by 3 matrix.

Jacobian =

ln
(
β
T

)
α− α− n1(M+ϕ)

(T+κ1)2
−n1T
T+κ1

−n1T
T+κ1

n2M
T+κ2

− n2TM
(T+κ2)2

−K1M
n2T
T+κ2

− p1 −K1T 0
n3M
T+κ3

− n3TM
(T+κ3)2

n3T
T+κ3

+K2ϕ
−1
τc

+K2M

 . (3.1)

The steady-state coordinates of the system are obtained computationally using Maple, a mathe-
matical analysis software, and the data parameters are taken and estimated from cited sources. The
equilibria correspond to the points at which dT

dt
= dM

dt
= dϕ

dt
= 0, where none of the three popu-

lations is changing (Edelstein-Keshet, 2005). After excluding the equilibria involving negative or
imaginary values, the biologically relevant solutions are listed as follow and analyzed for stability.

(I)
{
T = 2.000× 109,M = 0, ϕ = 0

}
(3.2)

(II)
{
T = 3.723× 106,M = 2.381× 108, ϕ = 1.503× 108

}
(3.3)

(III)
{
T = 1.161× 109,M = 4.647× 108, ϕ = 1.195× 109

}
(3.4)

By evaluating the Jacobian matrix using the steady-state coordinates and the constant parameters
in Table 3.1, the eigenvalues for equilibrium (I) are calculated from the characteristic polynomial

P1(A) = A3 + .931A2 + .224A+ .0116 (3.5)

and stored in matrix
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A1 =

 −0.580
−0.280
−0.0714

 . (3.6)

This equilibrium represents the tumor population reaching its carrying capacity and the immune
components being correspondingly eliminated. No coexistence between the cell populations is
achieved in this scenario. The equilibrium is asymptotically stable based on the negative values
of the eigenvalues. Biologically, the host is in an unhealthy state (or deceased) at this equilib-
rium, where the tumor has out-competed the immune system and CAR-T therapy and potentially
metastasized.

For equilibrium (II), the eigenvalues are obtained in a similar manner from the characteristic
polynomial

P2(A) = A3 + 0.0768A2 + 0.152A+ 0.00927 (3.7)

and shown in matrix

A2 =

−0.00766 + 0.388i
−0.0615

−0.00766− 0.388i

 . (3.8)

This equilibrium shows the suppression of tumor growth by the immune system, aided by CAR-
T cells; the tumor population is significantly below its maximum threshold, and the immune and
CAR-T cells maintain their population. This steady-state is indicative of the therapeutic effects
of CAR-T cells, which combine with immune cells to suppress tumors at a level three degrees of
magnitude below their carrying capacity (about 0.186 % of it). The equilibrium is asymptotically
stable as ℜ(A2) is uniformly negative, and the three populations are able to coexist at equilibrium
(II).

For the last equilibrium, the characteristic polynomial of the Jacobian is

P3(A) = A3 + 0.328A2 − 0.0180A− 0.00815. (3.9)

The eigenvalues of equilibrium (III) are shown in matrix

A3 =

 0.151
−0.183
−0.296

 . (3.10)

Rather than showing stability, this equilibrium is a saddle point because of the mixed signs of
the eigenvalues. The biological explanation of this equilibrium is that the immune system cannot
maintain stable levels under the dominance of the tumor population due to the inhibitory effects,
as the level of immune cells is substantially lower than that of the tumor cells at this equilibrium.
When immune cells are significantly out-competed, the CAR-T cells cannot suppress the tumor
population on their own despite having a population size comparable to that of the tumor.

Overall, two stable nodes are obtained based on the system of equation (I)-(III), and one unstable
node is obtained as a saddle point. No trivial steady-state involving all three populations going to
extinction (T = 0,M = 0, ϕ = 0) is obtained, as (2.7) would be undefined given T = 0. In
the next section, simulations of the behavior of the system are conducted using initial values, and
different patterns corresponding to the equilibrium nodes are observed and analyzed.



Mathematical Analysis of . . . 21

FIGURE 4.1. Tumor-immune dynamics. Left: Using T (0) = 108,M(0) = 2 ×
109, ϕ(0) = 109, our simulation graph shows tumor suppression by immune and
CAR-T cells beginning shortly after t = 0. Right: Using T (0) = 5× 108,M(0) =
2 × 109, ϕ(0) = 109, our simulation graph shows tumor dominating over immune
and CAR-T cells after a time period of approximately 80 days.

4. Results

4.1. Analysis of Initial Values

We now conduct numerical simulations of the model using different initial data and parameters
in order to visualize and interpret the behavior of the three populations. By changing the initial
tumor population and keeping the other parameters and initial conditions constant, different out-
comes can be observed. The outcome in Figure 4.1 corresponds to equilibrium (I), where the tumor
population starts with 5× 108 cells and eventually reaches the attractor steady-state of 2.00× 109

cells where the system achieves stability. Figure 4.1 corresponds to equilibrium (II), which is also
stable with a very low tumor population persisting under immune surveillance. With initial values
of immune and CAR-T cells kept constant, a qualitative bifurcation is observed at an initial tumor
population of around 4.8× 108 cells, where the system switches between the two equilibria shown
in Figures 4.1. The initial tumor size is comparable to the progress of the disease in the host; the
observation that the tumor is nearly eliminated when it starts with a relatively small population of
108 cells, while it is able to persist when starting with a larger population of 5× 108 cells, provides
the biological explanation that the CAR-T therapy is more effectively combined with the immune
system at an earlier stage of tumor development. Since the rate of tumor development is approx-
imately exponential before the population reaches about half of its carrying where an inflection
occurs, an earlier stage treatment could mean a significantly lower starting tumor population and
vice versa. Figure 4.2 is a 3D visualization of the trajectory taken by the system under two different
initial conditions.
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FIGURE 4.2. Phase portrait of tumor, immune, and CAR-T cell interactions. The
3D vector field represents one of the steady-state coordinates of the system. The
initial conditions are A1 = {T (0) = 5 × 108,M(0) = 2 × 109, ϕ(0) = 109} and
A2 = {T (0) = 108,M(0) = 2 × 109, ϕ(0) = 109}, where A1 eventually reaches
the tumor dominant equilibrium and A2 the suppressed equilibrium.

4.2. Bifurcation of Initial Values

It is noted that a bifurcation occurs in the system at certain initial values. In this section, we
consider the impact of initial tumor and immune populations on the outcome of the system, while
maintaining ϕ(0) constant at 1.0 · 109 cells. When the initial tumor and immune cell populations
are at comparable levels (108 cells), the convergence to steady-state II, where the tumor population
is suppressed, is observed only when the immune cell population begins at levels above a certain
threshold. The points in table 4.1 with 0.5 increments represent the convergence of the system
given different sets of initial conditions above and below the bifurcation point. Both asymptotically
stable steady-states I and II are observed, but the latter occurs at M(0) above the threshold for each
different initial tumor population, and the former at M(0) below it. Minimal CAR-T therapeutic
effects are observed as the tumor proliferates rapidly under conditions that lead to the convergence
to steady-state I.

When the immune cell population begins at levels much higher than the tumor cell population
(109 cells), the bifurcation between the two steady-states is observed with a different pattern, where
the system converges to steady-state II when the initial immune cell population is below the bifur-
cation point, and to steady-state I when the initial immune cell population is above it. Table 4.2
demonstrates this behavior with sets of initial conditions with 0.5 increments. With a immune cell
population starting at levels out of the range that leads to convergence to steady-state II, the tumor
will be uncontrolled and eventually reach its carrying capacity.
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TABLE 4.1. Bifurcation points of tumor immune dynamics

10−8· T(0) 10−8· M(0) 10−9 · ϕ(0) Convergence to Steady-State

1.0 3.0 1.0 I
1.0 3.5 1.0 II
1.5 3.5 1.0 I
1.5 4.0 1.0 II
2.0 4.5 1.0 I
2.0 5.0 1.0 II
2.5 4.5 1.0 I
2.5 5.0 1.0 II
3.0 5.5 1.0 I
3.0 6.0 1.0 II
3.5 5.5 1.0 I
3.5 6.0 1.0 II
4.0 6.5 1.0 I
4.0 7.0 1.0 II

TABLE 4.2. Bifurcation points of tumor immune dynamics

10−8· T(0) 10−9· M(0) 10−9 · ϕ(0) Convergence to Steady-State

1.0 6.0 1.0 I
1.0 5.5 1.0 II
2.0 5.5 1.0 I
2.0 5.0 1.0 II
3.0 5.0 1.0 I
3.0 4.5 1.0 II
4.0 4.0 1.0 I
4.0 3.5 1.0 II
5.0 3.0 1.0 I
5.0 2.5 1.0 II

4.3. Rate of Tumor Clearance

Another noted pattern in Figure 4.1 is a period of tumor suppression to a relatively negligible
(but non-zero) level until t ≈ 80 days. During this period, the tumor population is under the control
of immunotherapy and the level of immune cells is relatively high. We can prolong this period of
tumor suppression before the tumor population spikes and reaches its carrying capacity (at t ≈ 160
in Figure 4.3) by simulating increased rates of tumor clearance (n1 in Table 2.1 by CAR-T cells
and immune cells. Realistically, this could be achieved by artificially increasing the affinity of the
chimeric antigen receptors of CAR-T cells for the antigens expressed by the tumor cells, through
different laboratorial approaches which will be discussed in the next section.

Figure 4.4 compares the dynamics of two systems with different rates of tumor clearance, show-
ing that the tumor is inhibited for approximately twice as long under immune surveillance with a
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FIGURE 4.3. Tumor immune dynamics. Increasing the rate of tumor clearance
from n1 = 0.1245 to 0.15 allows the host to survive for a longer period of time. The
lines labeled ”2” represent the system with increased tumor clearance where the
tumor population takes approximately double the time to reach the carrying capac-
ity.

higher rate of clearance (t ≈ 80 with n1 = 0.1245 and t ≈ 160 with = 0.15) before it proliferates
if the CAR-T cells and immune cells are more efficient at killing the tumor. While not visualized,
we also obtain faster suppression of tumor populations by CAR-T and immune cells in equilib-
rium (II) given a higher rate of tumor clearance; this could potentially lead to a shortened therapy.
Based on the pattern, we conclude that CAR-T treatment can improve the life expectancy of cancer
patients with either higher specificity for the targeted tumor population or higher responsiveness
to the tumor antigens.

4.4. Injecting CAR-T

We now turn our attention to the injection of CAR-T cells which, initially assumed to be none,
can also be controlled as a human factor in this model. By substituting a logistic growth model
into p2 (refer to Table 2.1), we can control the amount of CAR-T cells injected into the system and
the time at which the injection initiates. The function we substitute for the injection rate is

p2(t) =
6.5× 107

1 + e(a−t)
(4.1)

where a represents the time at which the injection initiates and 6.5× 107 represents the amount of
CAR-T cells injected per day. Due to the new system no longer being autonomous with a function
of t on the RHS of the differential equations, the equilibria will not be analyzed. However, using
graphical analysis, we observe different outcomes in tumor response to CAR-T immunotherapy
by comparing different times of injection while keeping other factors constant. Figure 4.5 is a
visualization of the response of the tumor population over time.
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FIGURE 4.4. Effect of CAR-T injection on tumor population. Three lines showing
the outcomes of tumor population in response to CAR-T injection at different times.
The tumor is successfully eliminated by CAR-T cells if the injection happens before
day 85, after which the tumor will persist and out-compete immunotherapy.

A constant rate of CAR-T injection is set at 6.5 × 108 cells day−1, and after simulating with
different starting times of the injection, remarkably disparate outcomes are obtained over a one-
day difference at t = 84 and 85. With CAR-T injection beginning at day 84 or earlier, the tumor
is successfully controlled by the therapy, while with injection beginning after day 85, the tumor
proliferates after a temporary suppression at t ≈ 100 and approaches its carrying capacity, leading
to health deterioration of the host. This provides substantial support for the importance of the
time frame of cancer treatment with CAR-T immunotherapy by showing that a delayed secondary
therapy will be less likely to successfully control the tumor growth within the host.

5. Extended Model

In the last part of this paper, we now consider an extended version of the system, with the
introduction of host cells (H). This extension is made to account for the off-target toxicity of
CAR-T cells, as the therapy is known to have side effects affecting the body (León-Triana et al.,
2021). The extra terms included are designed to model the inhibition of tumor cells by host cells
via defense mechanisms at rate γ (in (5.1)), the activation of immune cells by host cells through
antigen presenting at rate δ (in (5.2)), logistic growth of host cells at rate p3 (adopted from Das
et al. (2020)) and carrying capacity κ4, destruction of host cells by tumor cells at rate K3, and lastly
the effect of CAR-T toxicity on host cells at rate K4 (in (5.4)) (Das et al., 2020).
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FIGURE 5.1. Oscillating dynamics of host, tumor, immune and CAR-T. The oscil-
lating relationships show competition between the populations due to inhibitory ef-
fects. Parameters used in this graph that are not in Table 3.1 are γ = 1.5×10−10, δ =
2.5 × 10−11, p3 = 0.5, κ4 = 5 × 109, K3 = 8.0 × 10−11, K4 = 3 × 10−10. All are
estimated for numerical simulation.

dT

dt
= αT (ln β − lnT )− n1T (M + ϕ)

T + κ1

− γHT (5.1)

dM

dt
=

n2TM

T + κ2

− p1M −K1TM + δHM (5.2)

dϕ

dt
= p2 +

n3TM

T + κ3

− 1

τc
ϕ+K2ϕM (5.3)

dH

dt
= p3H

(
1− H

κ4

)
−K3TH −K4ϕH. (5.4)

A different set of parameters are used to numerically simulate this model, with p1 = 0.5, p2 =
8 × 10−11, p3 = 9 × 10−10, α = 1.5 × 10−10. Observation of an oscillating pattern is obtained,
involving competition between the four populations as shown by Figure 5.1.

The oscillation, when compared to the steady-state equilibria of the three-equation system,
demonstrates that CAR-T toxicity impacts the healthy host cells to certain degrees by showing the
lack of stability and cooperation between the host cells and CAR-T cells. To investigate whether
stability exists in this system, the Jacobian matrix of the system is obtained using the parameters:
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Jacobian =


J11, J12, J13, J14
J21, J22, J23, J24
J31, J32, J33, J34
J41, J42, J43, J44

 (5.5)

where,

J11 = 0.580 ln

(
2 · 109

T

)
− 0.580− 0.1245 · (M + ϕ)

T + 2.019 · 107
+

0.1245 · T · (M + ϕ)

(T + 2.019 · 107)2
− 1.5 · 10−10 ·H

(5.6)

J12 =
−0.1245 · T

(T + 2.019 · 107)
(5.7)

J13 =
−0.1245 · T

(T + 2.019 · 107)
(5.8)

J14 = −1.50 · 10−10 · T (5.9)

J21 =
0.35 ·M

T + 3.50 · 107
− 0.35 · T ·M

(T + 3.50 · 107)2
− 3.40 · 10−10 ·M (5.10)

J22 =
0.35 · T

T + 3.50 · 107
− 0.042− 3.40 · 10−10 · T + 2.50 · 10−11 ·H (5.11)

J23 = 0 (5.12)

J24 = 2.50 · 10−11 ·M (5.13)

J31 =
0.1 ·M

T + 1 · 107
− 0.12 · T ·M

(T + 1.0 · 107)2
(5.14)

J32 =
0.12 · T

T + 1.0 · 107
+ 4.92 · 10−11 · ϕ (5.15)

J33 =
−1

14
+ 4.92 · 10−11 ·M (5.16)

J34 = 0 (5.17)

J41 =
−H

1.25 · 1010
(5.18)

J42 = 0 (5.19)

J43 =
−9 ·H
1010

(5.20)

J44 = 0.5− 2.00 · 10−10 ·H − T

1.25 · 1010
− 9 · ϕ

1010
. (5.21)

We also solve for the steady-states and obtain the eigenvalues of the 4 steady-states (out of the 30
total solutions) that are biologically relevant using the same method as mentioned in the analysis
section.
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(I)
{
T = 2.000× 109,M = 0, ϕ = 0, H = 0

}
(5.22)

(II)
{
T = 6.245× 108,M = 0, ϕ = 0, H = 4.500× 109

}
(5.23)

(III)
{
T = 4.993× 106,M = 3.972× 108, ϕ = 3.059× 108, H = 0

}
(5.24)

(IV)
{
T = 8.658× 108,M = 7.656× 108, ϕ = 2.690× 109, H = 0

}
. (5.25)

There is one tumor-dominant equilibrium (I), two host cell-free equilibria (III) and (IV), and one
immune-CAR-T free equilibrium (II). Their eigenvalues and stability are listed respectively, as
followed.

(I) [−0.5800,−0.3780,−0.07142, 0.3400] (5.26)

(II) [0.1896,−0.07143,−0.3202,−0.7098] (5.27)

(III) [0.2243, 0.05916 + 0.3495 · i,−0.06105, 0.05916− 0.3495 · i] (5.28)

(IV) [0.2023,−0.1708 + 0.1157 · i,−1.990,−0.1708− 0.1157 · i] . (5.29)

All four sets of eigenvalues have mixed signs, and two of them involve imaginary numbers. The
eigenvalues of the four equilibria show that none of systems are asymptotically stable. Rather than
converging to constants steady-states, the populations will only enter oscillating states as seen in
Figure 5.2, regardless of the starting populations. An additional suggestion of competition within
the extended model also comes from the comparison of the outcome to the predatory-prey Lotka-
Volterra model, where similar oscillation is observed between predator and prey populations. The
conclusion we can draw from this model is limited as this extended model needs further analysis
of steady-state behavior: we are only able to obtain a number of unstable nodes from this system
using estimated parameters, which doesn’t provide support for the coexistence of cell populations
based on the model. Further modifications, which are discussed in the next section, are needed
to more accurately describe the sustainability of the relationship between the host and CAR-T
treatment while accounting for more possible factors that could affect the success of the treatment.

6. Conclusion

In this study, differential equations are introduced to model the relationship between tumor,
immune, and CAR-T cell populations based on the rates of change. Using these equations, different
parameters are tested to understand how the relationship between the three cell types is affected
based on certain conditions. These conditions are then used to find the steady states and stability of
the equations based on the Jacobian matrix of the system. Different scenarios are presented where
the tumor, immune, and CAR-T cells maintained stable populations through the steady states.
Through in silico testing of different values for parameters, it is shown that the time between
CAR-T injections can play a major role in a host surviving, increasing tumor clearance can help
a host survive longer with a tumor, and a host can survive while possessing tumors under certain
conditions.

After analyzing the data, it is clearly shown that the efficiency of CAR-T treatment is affected by
certain parameters. One insight of this study is that early action is critical in two phases of cancer
treatment. The first is tumor detection. The analysis shows that CAR-T therapy can successfully
control an initial tumor population of 108 cells, but not a population of 5× 108 cells. Realistically,
a lower initial tumor population corresponds to an earlier detection of the tumor in the body. In
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FIGURE 5.2. Oscillating dynamics of host, tumor, immune and CAR-T. Oscillation
starts almost immediately with initial values closer to the equilibrium values of
steady-state (III) of the extended system. Initial values are {T (0) = 5 ·106,M(0) =
2 · 108, ϕ(0) = 108, H(0) = 107}.

order for a successful CAR-T therapy to be applied, a tumor size of less than around 5× 108 cells
is necessary with the parameters used in the calculations. With more frequent screening for tumors
in the body, many patients can experience more successful treatments based on this conclusion.

The strength of the host’s immunity is also a factor that influences the system. With a larger
M(0), or amount of immune cells initially present in the host, the tumor will more likely be sup-
pressed. The relationship between the initial immune and tumor cell count is modeled in this study,
and a function is applied to fit the minimal host immunity to suppress different tumor sizes tem-
porarily. From this, we draw the reasonable conclusion that individuals with very weak immunity,
such as patients of auto-immune diseases or the immuno-compromised may not be suitable for
CAR-T treatment, because the therapy wouldn’t be able to produce enough synergistic effect with
the severely weakened immune system to successfully put the tumor population under control.
However, this doesn’t mean that other types of treatment, such as chemotherapy, are unavailable
to such patients.

A second critical phase of CAR-T treatment is injection time. In treating many different dis-
eases, relapses are frequently countered by continuous or periodic treatment. Based on the model,
we found a critical time frame before which a continuous CAR-T treatment must begin to prevent
the relapse of the tumor. While the time frame varies with the amount of injection applied, for a
continuous CAR-T injection of 6.5× 107 cells per day, we found that a continuous treatment is re-
quired to begin before day 84 after the initial CAR-T therapy, otherwise, the tumor population will
be able to out-compete the immune cells and overcome the CAR-T therapy. For different amounts
of CAR-T cells injected per day, the critical moment may differ significantly. Modeling the rela-
tionship between the amount of injection and the time frame of tumor suppression is a valuable
subject of further research, and the finding may impose limitations on the practical application of
CAR-T treatment.
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CAR-T treatment can also be improved in the laboratory. With an increased affinity for tumor
antigens, CAR-T cells would have increased rates of tumor clearance, which, as shown by the
analysis and numerical simulations, leads to improvement of the treatment efficiency by prolong-
ing the period of tumor suppression in patients. This conclusion points to multiple directions to
improve the therapeutic effect of CAR-T immunotherapy. Genetic recombination of engineered
receptors that are more affinitive or specific to tumor antigens can prevent tumor cells from evad-
ing detection and destruction. Some previously unnoticed tumor antigens may also be exploited
by chimeric antigen receptors to achieve similar objectives and potentially prevent some off-target
CAR-T attacks. The longer lifespan of CAR-T cells can allow them to persist in the host system
longer and improve their activities. Chemical treatment can be combined with CAR-T cells as
a means of control and activity boost for tumor destruction... These subjects are all of interest
for further research despite belonging to different fields, and improvement of CAR-T therapy will
bring us further to the solution of cancer as a global health problem.

Another subject of further research proposed in this study is often overlooked. To reiterate a
previous point, CAR-T cells are known to not be side-effect free, and during clinical applications,
toxic responses have been recorded in patients, leading to compromises in the outcome of the ther-
apy. In the end, in section 4 we proposed a four-equation system based on our original model to
account for the toxic effect of CAR-T cells on an off-target host cell population. Preliminary sta-
bility analysis and numerical simulations conducted yield an oscillating pattern between the four
populations with a lack of stability in the four steady states, which directs future research to inves-
tigate the pattern of coexistence within four cell populations. Potential approaches include further
modifications to the model and analysis of parameters to find values that would provide stability
based on the Routh-Hurwitz criteria. While this topic isn’t thoroughly discussed in this paper,
future research may built on this extended model and produce significant results regarding the
severity and toxicity of CAR-T therapy and whether that poses challenges to clinical applications
of cancer treatment.
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