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Experimental exploration of a ribozyme
neutral network using evolutionary algo-
rithm and deep learning

Rachapun Rotrattanadumrong 1 & Yohei Yokobayashi 1

A neutral network connects all genotypes with equivalent phenotypes in a
fitness landscape andplays an important role in themutational robustness and
evolvability of biomolecules. In contrast to earlier theoretical works, evidence
of large neutral networks has been lacking in recent experimental studies of
fitness landscapes. This suggests that evolution could be constrained globally.
Here, we demonstrate that a deep learning-guided evolutionary algorithm can
efficiently identify neutral genotypes within the sequence space of an RNA
ligase ribozyme. Furthermore, we measure the activities of all 216 variants
connecting two active ribozymes that differ by 16 mutations and analyze
mutational interactions (epistasis) up to the 16th order. We discover an
extensive network of neutral paths linking the two genotypes and reveal that
these paths might be predicted using only information from lower-order
interactions. Our experimental evaluation of over 120,000 ribozyme sequen-
ces provides important empirical evidence that neutral networks can increase
the accessibility and predictability of the fitness landscape.

The fitness landscape of a biomolecule is a genotype–phenotype
map that represents its activity as a function of its sequence space1.
Molecular evolution can be conceptualized as an adaptive walk
along this landscape through a stepwise accumulation of
mutations2. How the topography of the fitness landscape affects this
adaptive walk is an important question in both natural3 and artificial
evolution4. Yet, empirical construction and exploration of these
landscapes have proven difficult because of the prohibitively large
combinatorial space of biomolecular sequences. However, recent
advances in high-throughput sequencing and DNA synthesis have
significantly expanded the sequence space amenable to experi-
mental analysis. The fitness landscapes of RNA enzymes, or ribo-
zymes, are particularly important models for molecular evolution,
and numerous large-scale empirical mappings of both natural and
artificial ribozymes have been reported5–15. In addition, because
ribozymes play critical roles in the RNA world hypothesis, the
topography of their fitness landscapes has important implications
regarding the origin of life16.

Many empirical studies on RNA fitness landscapes have revealed
that most wild-types (WTs) are located on or near the top of isolated
fitness peaks, where only a few mutational steps lead to a significant
reduction in fitness5–8,10,11,13,14. Two studies that comprehensively map-
ped almost the entire sequence space of GTP binding9 and self-
aminoacylating RNAs12 further revealed a high degree of ruggedness in
RNA fitness landscapes. In these landscapes, fitness peaks were spar-
sely distributed, and most adaptive walks would be blocked by
extensive fitness valleys9,12. This indicates that evolution away from
local optima and towards distant fitness peaks would be extremely
difficult (Fig. 1a)17. This empirical evidence contradicts earlier theore-
tical works that used predicted RNA secondary structures as a proxy
for fitness. These computational studies revealed that many connect-
ing sequences can fold into similar structures forming extensive neu-
tral networks18–20. A neutral network is a set of genotypes connected by
single mutations that share the same phenotype (e.g., structure, cat-
alytic activity). By accessing these networks, evolving molecular
populations can travel large mutational distances without detrimental
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effects on theirfitness. Contrasting evidencecan alsobe found in other
experimental studies that demonstrated that artificial evolution can be
used to engineer a ribozyme that adopts a new structure while
retaining its function21, or that acquires a new function22,23.

The absence of neutral networks in experimental fitness land-
scapes raises the question of how efficiently the exploration of rugged
landscapes can be achieved if most single mutations lead to deleter-
iousmutants. However, most empirical landscapes have beenmapped
under constant selection and do not represent the dynamic nature of
natural evolution. In a natural evolution, changing selection pressure,
variable environments, and genetic processes, such as recombination,
can influence how fitness landscapes are navigated. These processes
have been suggested as efficient ways to cross the fitness valleys24–26.
Therefore, an important goal is to systematically study how different
evolutionarymechanisms can help to efficiently explore ruggedfitness
landscapes.

In our previous studies, we used on-chip DNA synthesis and high-
throughput sequencing to experimentally measure the activities of
large libraries of ligase ribozyme variants15. The RNA ligase ribozyme
under study catalyses the phosphodiester bond formation between
the 3ʹ-hydroxyl group of one RNA fragment and the 5ʹ-triphosphate
group of another RNA fragment in a template-directed fashion. Liga-
tion chemistry is analogous to that catalyzed by modern RNA poly-
merase enzymes. Therefore, ligase ribozymes have been extensively
studied asmodels forprimitive self-replicating systems.Consequently,
ligase ribozymes havemuch longer artificial evolutionary lineages than
any other type of ribozyme27. Multiple structural motifs for ligase
ribozymes have been discovered, suggesting that RNA sequence space
might be well-populated with such phenotypes. This observation
implies that neutral networks of ligase ribozymes might be well con-
nected, possibly facilitating access to distant fitness peaks through
neutral networks.

In this study, we combine a high-throughput experimental assay
and an evolutionary algorithm to explore the empirical neutral net-
work within the catalytic core of a small ligase ribozyme. Starting with
the WT, we evolve a population of ligase ribozymes toward distant
neutral regions in the fitness landscape through multiple generations.
Each generation of ribozyme variants is designed by performing in

silico selection, mutation, and recombination of the preceding ribo-
zyme population, whose fitness values were experimentally deter-
mined using deep sequencing (Fig. 1b). For the final generation, we
create a deep-learning model trained using data from previous gen-
erations. We perform 100 rounds of fully in silico selection, mutation,
recombination, and fitness estimation based on the model. The
population of computationally evolved ribozymes is experimentally
evaluated to identify functional ribozyme variants with as many as 17
mutations. We focus on a variant with 16 mutations that exhibits
activity comparable to that of the WT. We find that this mutant pos-
sessed a robust structural module that could tolerate multiple single
and double mutations. Experimental evaluation of all mutational
intermediates between the two sequences reveals a remarkable
abundance of neutral mutants, withmany neutral pathways that could
be accessed by single-step mutations. The topography of this region
suggests that the prediction of a neutral network could be possible
using information from lower-order mutational interactions alone. By
experimentally screening over 120,000 ribozyme sequences, we
demonstrate that a combination of genetic processes and deep
learning can facilitate the exploration of the rugged fitness landscape.

Results
Exploration of F1*U ligase ribozyme fitness landscape with an
evolutionary algorithm
In this study, we explored the fitness landscape of the 35 nt catalytic
core of the F1*U ligase ribozyme (Fig. 2a). The F1*U ligase was derived
from the catalytic core of the F1 ligase first reported by Robertson and
Joyce28. Ligated F1*U contains U22A and G80U substitutions intro-
duced inour previous study to allow the analysis of the regiospecificity
at the ligation junction15. The catalytic core of F1*U contains one
terminal loop, one internal loop, P4 and P5 stems, part of the P2 stem,
and the GAA bulge that lies close to the ligation junction.

Following our previous study15, we used custom on-chip DNA
synthesis to generate a template DNA library of the F1*U variants
(Fig. 1b). The in vitro transcribed RNA library was placed in a reaction
mixture with an excess substrate, which was then separated by dena-
turing polyacrylamide gel electrophoresis (PAGE). Isolated ligated and
unligated ribozymes were extracted from the gel fragments, barcoded
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Fig. 1 | Experimental and computational pipeline for a guided exploration of
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by reverse transcription, and processed by PCR to attach sequencing
adapters. The library was sequenced using IlluminaMiSeq or NovaSeq.
Ligated and unligated populations for each variant were identified
using the barcodes, and sequencing read countswere used to calculate
the fraction ligated (FL) values. Relative activity (RA) was calculated by
dividing the FL of eachmutant by that of the F1*UWT. Each librarywas
prepared and analyzed twice, and the RA values were calculated using
the mean of duplicate measurements (Supplementary Figs. 1, 11a, and
12a). We also calculated the standard deviation of the duplicate RA
values (Supplementary Fig. 2). We found almost no correlation
between the mean total read count for each variant and the standard
deviation (Pearson’s r =0.117) (Supplementary Fig. 2b). For the mean
RA and FL, we detected a weak positive correlation with standard
deviation (Pearson’s r =0.577 and 0.424, respectively) (Supplementary
Fig. 2c, d). For the majority of variants, the standard deviation was
smaller than 0.2 (Supplementary Fig. 2a).

Using RA as a proxy for fitness, we designed successive genera-
tions of variants using experimental screening combined with in silico
selection, recombination, and mutation (see “Methods” for details).
For each generation, tournament selection was used, where a variant
with the highest RA was selected from a random subset of variants
from the previous generation in repeated tournaments until a pre-
determined number of parents were selected. Genetic diversity was
generated by either recombination through one-point crossover,

mutation through a single random substitution, or a combination of
both. Each new generation was experimentally evaluated using a deep-
sequencing assay. Flowcharts detailing the algorithm used to design
each generation are provided in Supplementary Figs. 3–5. Each new
generation contained only mutants that had not been previously
analyzed to maximize the coverage of the sequence space. Eight
generations of ribozyme populations were analyzed experimentally.
The final generation was designed using a completely in silico evolu-
tionary algorithm guided by a multilayer perceptron model (MLP)
trained with the data collected from the preceding generations. The
model was trained to classify the variants into neutral (RA ≥0.2) or
deleterious (RA < 0.2) groups. Using generation 7 as the initial ribo-
zyme population, 100 rounds of in silico evolution were performed.
Each round consisted of in silico selection, recombination, and muta-
tion followed by MLP classification. The final population was desig-
nated generation 8 (Supplementary Fig. 5). In each generation, we
selected individual variants whose RA values were determined using
PAGE. The results revealed a good correlation with the RA values
determined by sequencing (Supplementary Figs. 6, 11b, and 12b).

Sequence-activity dataset of the F1*U ligase ribozyme contained
epistatic and structural information
We experimentally screened a library of all 105 single, all 5355 double,
and 4540 randomly chosen triple mutants of theWT F1*U to serve as a
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starting point. The double mutant map indicated that almost all sub-
stitutions were tolerated in the terminal loop between G56 and A59
(Fig. 2b). The P5 stem was also relatively tolerant to mutations, espe-
cially compensatory substitutions that maintained base pairing.
Mutation 45G appeared to have a strong positive effect on other
neutral mutations. Mutation 76C was also well-tolerated, possibly
because it stabilized the P2 stem by base pairing with 25G. Mutations
in the GAA bulge were surprisingly well-tolerated considering its
proximity to the ligation junction. However, mutations within the P4
and P2 stems resulted in a complete loss of activity.

Epistasis is observed when mutational effects are combined in a
nonlinear manner. Epistasis is an important indicator of landscape
ruggedness and the accessibility of evolutionary paths29–32. Therefore,
we analyzed epistasis around the WT by calculating the expected RA
for each mutant from its constituent single mutants using the log-
additive model. In this model, the expected ln(RA) of a mutant was
calculated as the sum of ln(RA) of all its constituent single mutants. A
perfect correlation between the observed and expected RA values in
this model indicates the absence of epistasis. The fitness landscape
within the first three mutations of F1*U was relatively smooth, with
75.5% of the variants, particularly the double mutants, being pre-
dictable without epistasis (Fig. 2c). The low level of epistasis suggests
that the evolutionary path away from the WT may not be as severely
constrained as observed in earlier studies of fitness landscapes29–31.

In silico genetic processes, particularly recombination, increase
the probability of finding neutral mutants
Next, we investigated whether a combination of in silico selection,
recombination, mutation, and in vitro experimental screening could
be used to identify neutral mutants further away from the WT in the
fitness landscape. Previous empirical studies have shown that func-
tional genotypes are extremely rare in RNA fitness landscapes7,9–12.
Similarly, most genotypes in the F1*U fitness landscape were non-
functional, with most variants in generations 1–5 having an RA well
below 0.04 (Supplementary Fig. 7). For this study, we set an RA of 0.2
as the threshold for the neutral phenotype based on the following
reasoning. First, the standard deviation of the RA values estimated by
deep sequencing for the vast majority of the variants was less than 0.2
(Supplementary Fig. 2a). We also found RA≥0.2 could be reliably
detected by the PAGE assay. It could be argued that the threshold of
RA ≥0.2 is too low to be considered “neutral”. However, fitness is
highly context-dependent. Even though a small difference in catalytic
activity could result in rapid extinction of the weaker genotype when
selection occurs at the molecular level (i.e., not neutral), any activity
above a certain threshold would be selectively neutral if the catalyst is
part of a protocell whose replication rate is limited by another step
(e.g., reproduction of the compartment).

Generations 2–6 were successively designed using combinations
of in silico selection, recombination, and mutation. The experimental
analysis of generations 2 and 3 revealed a very low fraction of neutral
mutants (Fig. 2d). We increased the recombination frequency and
population size in generations 4 and 5, hoping to increase the chance
of detecting more neutral mutants in distant regions of the landscape
(Fig. 2e). However, this resulted in even lower fractions of neutral
mutants. The algorithm used to design generations 2–5 performed the
recombination of two selectedparents,with the resulting recombinant
immediately undergoing a random point mutation (Supplementary
Fig. 3). Random mutations are more likely to lead to deleterious
mutants than purely recombining parental genotypes that are already
known to be neutral. Owing to the algorithm design, most of the var-
iants experimentally assayed in generations 2–5 also underwent ran-
dom substitutions. This could explain why generations 2–5 had a very
low fraction of neutral mutants (Fig. 2d).

To address this issue, wemodified the algorithm for generation 6
onward. Following tournament selection, a set of recombinants was

generated without substitutions. Another set of variants was then
created by selecting random variants from a pool of parents and
recombinants to undergo random substitution. The final population
comprised a combination of pure recombinants and randommutants
(Supplementary Fig. 4). The major difference in this new strategy was
that most variants in generation 6 onward were generated from the
recombination of parental sequences alone, with only a small fraction
generated by a random substitution applied to a parent or recombi-
nant. The exact number of pure recombinants and random mutants
created in each generation are listed in Supplementary Table 1. This
new algorithm dramatically increased the fraction of neutral mutants
to almost 0.5 in generation 6. This supports earlier observations in
directed evolution experiments in which recombination was shown to
better preserve function and structure than random substitution24,33.
Recombination of selected neutral mutants is more likely to result in a
neutralmutant iffitness is a result of linear combinations ofmutational
effects (i.e., when there is no epistasis). Indeed, most of the neutral
mutants identified in each generation were also identified from the
expected RA values using the log-additive model (Fig. 2d, hatched
bars). This indicates that the current algorithm identified neutral
mutants that were mostly free of epistasis.

Machine-learning-guided evolutionary algorithms could dis-
cover neutral mutants in distant and epistatic regions of the
fitness landscape
Next,we testedwhethermachine-learningmodels could learn epistatic
information from the dataset collected thus far and predict neutral
mutants in distant regions. Using data from generations 1–6, we
trained a group of models to classify the variants as neutral or dele-
terious. Because it was difficult to predict which model would best fit
the data, we decided to test several popular models with varying
degrees of complexity. Logistic regression (LR) and support vector
machine (SVM) with linear kernels are linear models used as perfor-
mance baselines. The k-nearest neighbor (k-NN) and gradient-boosted
decision trees (GBDT) are powerful nonlinear models that can learn
complex interactions, such as epistasis in the data. Finally, an MLP is a
neural network model that can potentially learn complex non-
linearities, such as higher-order epistasis. A more detailed description
and comparison of eachmodel is in “Methods”. To select the model to
be incorporated into the algorithm, precision and recall were used as
performance metrics. Precision is the fraction of positive (neutral)
predictions that are true positive. This represents the probability that
the variants predicted to be neutral are actually neutral when tested
experimentally. Recall is the fraction of neutral mutants in the
experimental data identified by the model. All models performed
relatively well, with MLP performing the best in terms of recall (0.93)
while maintaining good precision (0.77) (Fig. 3a). MLP recall also out-
performed other models in the prediction of neutral mutants with
higher Hamming distances from the WT (Supplementary Fig. 8).
Classification models often have a trade-off between recall and preci-
sion. We focused on recall as the key metric, while allowing for a small
trade-off in precision to maximize our chance of identifying rare
neutral mutants.

We then designed three populations to testwhetherMLP could be
used to increase the fraction of neutral mutants. For generation 7a,
becausewewere confident that pure recombinantsweremore likely to
be neutral than randommutants, we increased the proportion of pure
recombinants in the population to 80% from ~66% in generation 6
(Supplementary Table 1). Another smaller set of variants was created in
the same manner as in generation 7a, except that only the offspring
predicted to be neutral by the MLP were selected for the final popu-
lation (generation 7b). To determine whether the MLP prediction
remained accurate at higher Hamming distances, another test set was
created by recombining generation 7b at an average of 10 recombi-
nation events per variant. The variants created from this procedure
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were only selected if predicted to be neutral by the MLP (generation
7c). The fraction of neutral mutants increased to 0.74 in generation 7a,
possibly because of the larger pool of neutral parents from generation
6 and increased proportion of pure recombinants (Fig. 3b). MLP clas-
sification increased the fraction of neutral mutants to 0.89 in genera-
tion 7b. The fraction of neutral mutants remained the same, even with
a higher rate of recombination in generation 7c (Fig. 3b, c). This indi-
cated that despite sampling further away from the WT, the combina-
tion of in silico selection, recombination, mutation, and MLP could
identify neutral mutants with high accuracy (Fig. 3b, c).

Next, we tested whether the information from our experi-
mental screening could be used to identify neutral mutants with
larger Hamming distances from the WT. We created a complete in
silico evolutionary algorithm using the MLP model, which was
retrained with data collected from all seven generations. Starting
from generation 7, we performed 100 rounds of in silico selection,
recombination, mutation, and MLP classification to create genera-
tion 8, in which all variants were predicted to be neutral (Supple-
mentary Fig. 6). Experimental analysis showed that the fraction of
neutral mutants in generation 8 was only 0.28 (Fig. 3b). However,
the average Hamming distance from the WT in generation 8 was 13,
which was significantly higher than that of the preceding genera-
tions (Fig. 3c). The drop in MLP accuracy was expected, because the
model made predictions for variants with higher Hamming dis-
tances than those observed during training. However, the fraction
of neutral mutants was still significantly higher than that in gen-
erations 1–5 despite their lower average Hamming distances

(Fig. 2d, e). We identified neutral mutants with as many as 17
mutations and numerous mutants with RA comparable to the WT
across 16 mutational steps (Fig. 3d).

In generation 7c, less than half of the neutral mutants could be
identified using the log-additive model (Fig. 3b, hatched bars). This
suggests an increasing contribution from epistasis at higher Hamming
distances. Epistasis limited the efficiency of our algorithm because the
recombination and mutation of selected neutral mutants were less
likely to lead to more neutral mutants because of the nonlinear com-
bination of mutational effects. In generation 8, almost all neutral
mutants identified were expected to be deleterious under the
epistasis-freemodel. This indicated that the neural networkwas able to
learn higher-order, nonlinear mutational effects, and identify distant
neutral mutants that would have been inaccessible through in silico
selection, mutation, and recombination alone.

Evolution along the F1*U neutral network led to a confined
region of higher mutational robustness
Computational and experimental evidence suggests that the accu-
mulation of neutral mutations can lead to increased mutational
robustness20,34,35. Therefore, we sought to determine whether a
mutant evolved by our algorithm gained mutational robustness. We
selected a mutant, F1*Um, which had the highest Hamming distance
(16) while retaining catalytic activity comparable to the WT (RA =
0.63). The RA of F1*Um was 0.72 when individually assayed using
PAGE (Fig. 4a). F1*Um was also predicted to fold into a secondary
structure that was very similar to that of the WT (Fig. 4d). The

Fig. 3 | Machine-learning-assisted evolutionary algorithm enables in silico
evolution towards distant regions of the fitness landscape. a Comparison of
classification metrics for logistic regressions (LR), k-nearest neighbors (k-NN),
support vector machine (SVM), gradient-boosted decision trees (GBDT), and
multilayer perceptron (MLP). The models were trained on 20,920 variants from
generations 1–6. Precision and recall were evaluated from a model prediction on a
held-out testing set of 8967 variants. b Fraction of neutral mutants identified by
different strategies. Generation 7a used in silico selection, recombination, and
mutation only. Generation 7b was generated by the in silico genetic process, and

only those that were predicted to be neutral by MLP were selected. Generation 7c
was created by shuffling generation 7b with a 10× recombination rate. and only
variants predicted to be neutral by the MLP were selected. Generation 8 was gen-
erated using a completely in silico evolutionary algorithm involving 100 rounds of
selection, recombination, mutation, and MLP classification. The hatched area
indicates the fraction of neutral mutants that was also identified by the epistasis-
free log-additive model. c Population distribution of generation 8 compared to
generations 7b and 7c according to Hamming distance from the WT. d RA and
Hamming distances of all 53,823 mutants screened over eight generations.
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mutations in F1*Um were almost exclusively within the P5 stem loop,
with an additional 76 C mutation. The mutational tolerance of the
P5 stem loop was consistent with previous reports showing that
ligase activity is retained even when the P5 stem is removed or
replaced with aptamer sequences15,36.

We experimentally assayed all 105 single, all 5355 double, and
4540 random triple mutants of F1*Um. Then we fitted the data to the
equation ωðnÞ= e�αnβ

, which is a directional epistasis model37. The
model fits the fraction of neutralmutantsω at theHamming distance n
from the reference sequence to mutational robustness α and direc-
tional epistasis β (“Methods”). Fitting the single-, double- and triple-
mutant data for both F1*U (generation 1) and F1*Um showed that α and
β were highly similar for both genotypes (Fig. 4b). This indicated that

the two genotypes had similar overall mutational robustness. Direc-
tional epistasis (β)wasgreater than 1 in both cases, indicating anexcess
of negative epistasis consistent with the landscapes of previously
studied ribozymes38.

However, we found that the fractions of neutral single and
doublemutants in the P5 region were higher in F1*Um than in theWT
(Fig. 4c). A comparison of the double mutant maps within the
P5 stem loop also revealed that some non-compensatory mutations
that were deleterious in the WT were neutral in F1*Um (Fig. 4e).
These results indicated that the effects of neutral mutants could be
highly confined. The stabilizing effects of mutations in one region
may not be sufficient to reduce sensitivity to mutations in other
parts of the molecule.
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decay parameter where lower α indicates higher mutational robustness. β is

strength of directional epitasis. β > 1 indicates an excess of negative epistasis and
β < 1 indicates an excess of positive epistasis. β equal to 1 indicates a balanced mix
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Combinatorial space between F1*U and F1*Um contains an
extensive neutral network
The structural and functional neutrality between F1*U (WT) and
F1*Um suggests that these two variants are connected by many
accessiblemutational pathways. To confirm this, we synthesized the
entire combinatorial space within the 16 mutated positions of F1*Um

to obtain a library of 65,536 (216) variants (WT/Mut). Experimental
screening of the library showed that the fraction of neutral mutants
in this region was significantly higher than that of the single, double,
and triple mutants of the WT screened in generation 1 (Fig. 5a). At
the neutrality threshold of 0.2, the fraction of neutral mutants was
0.11 in generation 1 compared to 0.60 in the WT/Mut library. Many
mutants with an RA similar to that of the WT were also identified
across different Hamming distances (Supplementary Fig. 13). Fur-
thermore, we identified many accessible single-step mutational
paths with nearly 10% of 106 randomly sampled paths accessible at a
neutrality threshold of 0.2 (Fig. 5a). We also identified 39 paths that
maintained RA above 0.6. These results revealed that F1*U and
F1*Um are indeed connected by neutral networks, and many acces-
sible paths exist that connect the two genotypes through sequential
substitutions.

Next, we assessed the predictability of this landscape using the
same MLP model used to design generation 8, with no additional
training, to classify the variants in the neutral network. Despite
having seen only 441 mutants (~0.7%) in this neutral network, the
model was able to identify most of the neutral mutants across all
Hamming distances (Fig. 5b). The accuracy of the model was 0.71,
substantially higher than the accuracy of generation 8 (0.28 accu-
racy) (Fig. 5c). This suggests that the model was overfitted to this
neutral network. However, the accuracy was higher than the null
accuracy (0.60) with balanced recall and precision (F1 score = 0.77).
A null accuracy is achieved if the model predicts the majority class
for all variants. Because the model outperforms null accuracy, we
can assume that it is not simply biased towards making a positive
prediction for the neutral network. The improved accuracy of the
MLP could be attributed to the reduced diversity of the WT/Mut
library compared to generation 8 (average Hamming distance = 8
vs. 13). However, the manner in which mutations interact also
determines landscape predictability. Therefore, we investigated
how nonlinear interactions of mutations or epistasis could influ-
ence the predictability of the neutral network between F1*U
and F1*Um.

The neutral network between F1*U and F1*Um is relatively
smooth compared to the region sampled by the evolutionary
algorithm
Smooth neutral paths can potentially help evolution traverse an
otherwise rugged fitness landscape. To investigate this, we quantified
the ruggedness of the neutral network between F1*U and F1*Um, and
compared it to that of the nearby sequence space. Pairwise reciprocal
sign epistasis occurs between two genotypes that differ by two
mutations when both genotypes exhibit lower or higher fitness than
their two intermediate single mutants (Fig. 6a). Reciprocal sign epis-
tasis is a particularly severe form of epistasis that can restrict evolu-
tionary paths within the fitness landscape29,31. Therefore, a high
proportion of reciprocal sign epistasis has been used as an indicator of
landscape ruggedness39,40.

First, we searched for all unique 22 subgraphs representing pairs
of sequences that differed by two mutations and their intermediate
single mutants (Fig. 6a). In total, we identified 214,068 subgraphs in
generations 1–8 and all 3,932,160 possible subgraphs in the WT/Mut
library. Next, we designated the sequence in each subgraph with the
smallest Hamming distance to the WT as the reference genotype “ab”.
We then determined whether each subgraph exhibited reciprocal sign
epistasis. The analysis showed that the fraction of reciprocal sign
epistasis increased substantially at higher Hamming distances in the
sequences sampled between generations 1 and 8 (Fig. 6b). Between
Hamming distances 1–6, the fraction of reciprocal sign epistasis in
generations 1–8 ranged from ~0.08 to ~0.175 compared to less than 0.1
in the WT/Mut dataset. We also identified reciprocal sign epistasis at
Hamming distances greater than 6. However, the total number of
subgraphs identified at these distances was too low for a reliable
comparison (Supplementary Table 2). The dataset from generations
1–8 represents a biased and partial sampling of the fitness landscape,
and only indicates the ruggedness of the sequence space sampled by
the evolutionary algorithm. However, our results indicate that the
neutral network between F1*U and F1*Um appears to be quantitatively
smoother than the nearby sequence space, which may facilitate
evolution.

Epistasis within the neutral network between F1*U and F1*Um is
largely captured by lower-order interactions
Higher-order epistasis has been shown to substantially influence the
topography and predictability of fitness landscapes41. Therefore, we
chose to explore the effects of higher-order epistasis in the neutral
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network between F1*U and F1*Um. Epistasis of any order can be inves-
tigated by examining how a combination of different numbers of
mutations gives rise to theRAof eachvariant.We examined the variant
7G/8C/19U as an example (Fig. 6c). Mutational effects can be observed
by mapping the RA values to log space, where a variant with higher or
lower activity than the WT results in ln(RA) > 0 or ln(RA) < 0, respec-
tively. The first-order interaction or epistatic terms are simply ln(RA)
for the single mutants 7G, 8C, and 19U. If all mutations act indepen-
dently, then ln(RA) of the triple mutant will be the sum of the first-
order terms (yellow). This is the sameas the log-additivemodel used in
previous sections. Nonlinearity arises if mutational effects are com-
bined non-independently. If pairs of mutations interact, then ln(RA) of
the triple mutant depends on second-order terms (pairwise epistasis).
This can be quantified as the difference between the ln(RA) of a double
mutant and the sumof ln(RA) of its constituent singlemutants. Adding
up all the second- and first-order terms provide ln(RA) of the triple
mutant if only pairwise interactions are present (gray). However, the
observed ln(RA) of 7G/8C/19U was different from both scenarios
(blue). This indicated that there was a contribution from third-order
epistasis, and the combined effects could not be estimated only from
the second- or first-order terms. This is the influence of higher-order
epistasis, which limits fitness landscape predictability.

With a combinatorially complete neutral network, we can inves-
tigate epistasis by extending the calculation described above across all
interaction orders. In the above example, epistasis was calculated
whenmutational effects were considered relative to a single reference,
the WT. We can also measure epistasis when mutational effects are
averaged across all genotypic backgrounds that occur using the

Walsh–Hadamard (WH) transform (see “Methods” for details)42. This
method has been shown to capture the interactions across the entire
sequence space better than the single-reference method7,41,43. Impor-
tantly, this operation is a linear transformation of the RA values into
non-additive epistatic terms. Therefore, the RA values can be retrieved
by performing an inverse operation on the epistatic terms.

We calculated the WH transform of the WT/Mut library and then
reconstructed the ln(RA) values with all epistatic terms higher than the
second-order set to zero. TheR2 (coefficient of determination) scoreof
the reconstructed and observed ln(RA) was 0.54 (Fig. 6d). This indi-
cates that the background-averaged first- and second-order epistatic
terms, which comprise only 0.2% of all epistatic terms, could explain
the fitness effects of more than half of the landscape. To achieve an
almost perfect prediction, background-averaged epistatic terms up to
the 7th order were required (Fig. 6e). When the R2 values were calcu-
lated using only variants with Hamming distance higher than the
maximum order of the included interaction terms, the results
remained qualitatively unchanged (Supplementary Table 3). When
epistatic terms were calculated frommutational effects that were only
considered in the background of theWT, as depicted in Fig. 6c, almost
all epistatic terms were required to achieve similar accuracy (Supple-
mentary Fig. 14). Consistent with other works7,43,44, epistatic informa-
tion was encoded in much fewer terms when mutational effects were
averaged across different genotypic backgrounds. Although analysis
of background-averaged epistasis up to the 7th order would be inac-
cessible for most experimental set-ups, a significant gain in predictive
power can be achieved by including only the 3rd or 4th order
background-averaged epistatic terms. In fact, only the 3rd order terms

Fig. 6 | Neutral network between F1*U and F1*Um is relatively smooth at higher
Hamming distance with fitness largely influenced by lower-order mutational
interaction (epistasis). a Illustration of reciprocal sign epistasis involving two
genotypes that differ by two substitutions (ab and AB). Reciprocal sign epistasis is
observed when both the reference genotype (ab) and the double mutant (AB) has
higher or lower fitness than both intermediate single mutants (Ab and aB). This
leads to landscape ruggedness and can restrict evolutionary paths. b Fraction of
pairwise reciprocal sign epistasis in generation 1 to 8 (blue) and WT/Mut library
(yellow) categorized by the Hamming distance of the reference genotype ab from
the WT. Higher fractions indicate the higher ruggedness of the landscape.
c Diagram illustrating ln(RA) of the sub-landscape between the WT and a triple-

mutant 7G/8C/19U. Experimentally observed values are in blue. ln(RA) of the triple
mutant when only first-order WT-relative epistatic terms were considered is in
yellow. ln(RA) of the triple mutant when only first- and second-order WT-relative
epistatic terms were considered is shown in gray. dObserved ln(RA) values of WT/
Mut library and the expected ln(RA) from a background-averaged epistatic model
that only includes the first- and second-order epistatic terms. e Coefficients of
determination (R2) values between the observed ln(RA) and the expected ln(RA).
Expected ln(RA) was calculated at each step by cumulatively adding background-
averaged epistatic terms of successively higher order. For each step, R2 scores were
calculatedusing all the variants in the library. The fraction of all epistatic termsused
to calculate the expected ln(RA) at each step is shown by the yellow line.
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were required to achieve an accuracy similar to that of the currentMLP
model (R2 ≈0.72). These results suggest that for this neutral network,
MLP can achieve highprediction accuracy by learning the background-
averaged terms of lower-order interactions. Successive rounds of
selection, recombination, andmutation could potentially facilitate this
process without the knowledge of the complete landscape. By retain-
ing mutational combinations that were persistently neutral after
rounds of diversification, MLP could learn which combinations of
mutational effects remained significant in different genetic
backgrounds.

Finally, some of the nonlinearities identified in this library could
be attributed to global noise fromexperimental errors.Weused theRA
values calculated from the mean of the two replicates to reduce
experimental errors. Furthermore, anyglobal nonlinearitieswouldalso
have affected theMLP predictions, because the same dataset was used
to train it. Therefore, our conclusion remains robust in terms of the
predictability of this dataset using the current model. Further statis-
tical tests could be performed to remove global nonlinearities, which
could improve model performance43,45,46.

Discussion
The fitness landscapes of ribozymes can provide important informa-
tion about the emergence of catalytic properties and how they could
evolve toward more complex living systems16,18,47,48. Of particular
interest is how catalytic genotypes are distributed within the land-
scape, and recent observations suggest that these are rare and sparsely
distributed5,12. Therefore, accessing these genotypes would be chal-
lenging even when starting from a genotype with a known function.
Here, we implemented a simple evolutionary algorithm that, at its
optimum, could identify functional genotypes with almost 90% effi-
ciency. Accurate prediction of fitness landscapes by machine-learning
models are limited by epistatic effects. Collecting informed training
data is already difficult because of “holey” fitness landscapes49. The
rarity of functional genotypes indicates that random sampling of the
ribozyme fitness landscape would yield a dataset that is highly biased
towards deleterious (nonfunctional) variants. The scarcity of positively
labeled data limits the amount of learning that can be achieved using
machine-learning models. We overcame these problems by using in
silico selection, recombination, and mutation to guide adaptive walk
along paths that are smooth and relatively free of epistasis. This gen-
erated a dataset with a more balanced distribution of neutral and
deleterious mutants. This dataset provided information on key com-
binations of mutations that are neutral in different mutational back-
grounds. This information can then be learned by a deep neural
network to identify functional variants in distant regions using data
acquired only from the first few mutational steps.

In this study, we tested several popular machine-learning models
with nooptimizationbeyond thedefault hyperparameters providedby
the software package. MLP outperformed other models by a small
margin (Fig. 3a) and was used for subsequent analysis. However, it
should be noted that theother testedmodels also performed relatively
well, and further optimization of the hyperparameters may yield
improved performance possibly with less overfitting. Large-scale
experimental fitness landscape data such as those generated in this
study have become available only relatively recently. More focused
studies that systematically compare how well various models—with
optimized hyperparameters—can capture the characteristics of the
experimental fitness landscape data are needed to elucidate which
types of models are better suited for analyzing such datasets.

The relative ease with which our algorithm traversed this land-
scape contradicts previous observations from other landscapes in
which long evolutionary paths are mostly blocked by deleterious
mutants6,7,9–13,17,30,50. We suspect that large neutral networks within our
landscape could facilitate adaptive walk. To investigate this, we map-
ped all 65,536 mutational intermediates between two neutral mutants

separated by 16 mutations, F1*U and F1*Um. We demonstrated that the
two sequences are connected by an extensive neutral network. The
combinatorial space is highly abundant in functional mutants and
contains many accessible evolutionary paths.

We discovered an extensive neutral network between the struc-
turally and functionally similar F1*U and F1*Um. This suggests that
neutral networks might be more common among ribozymes of the
same family, but this may not always be the case. The most compre-
hensive ribozymefitness landscapes published thus far is of a 21 nt self-
aminoacylating ribozyme12. In this study, very few viable pathways
were found even among closely related motifs. The best pathway
involved a variant with almost a tenfold reduction in activity. This
suggests that even amongst ribozymes of the same family, large
extensive neutral networks, such as those found in this study, can be
surprisingly rare. The neutral network between ribozymes which are
more structurally and functionally different could be even rarer.
Another study resulted in the construction of the complete combina-
torial landscape within 14mutated positions of an 88 nt ribozyme that
could transform a ligase structural motif into a self-cleaving motif6.
Mutational paths within this landscape were highly constrained, and
activity diminished significantly after only a fewmutational steps away
from either motif.

It is important to understand how evolutionary adaptation and
innovation can occur if neutral networks are rare. In this study, we
showed that the adaptive paths between F1*U and F1*Um led to a more
mutationally robust P5 stem. Our combinatorial map was limited to 16
mostly contiguous positions within the ribozyme. The robustness and
high connectivity of this confined region implies that it could be a
good starting point for the evolution of a new function or adaptation
to a new environment. This conclusion is supported by another study
which showed that a self-splicing ribozyme possesses an intramole-
cular buffer module that can accumulate large number of mutations.
These mutations alter the phenotype of the ribozyme upon exposure
to a stressful environment, possibly providing a way for evolutionary
adaptation8. Altogether, our data support the theory that evolutionary
innovation and adaptation are more likely to happen through the
expansion of small contiguous motifs rather than through sudden
large-scale structural changes51.

Finally, we focused on themutational interactions that govern the
topography and predictability of this neutral network. Earlier studies
have shown that fitness landscapes can be encoded into sparse
background-averaged interaction terms and canbe determined from a
small fraction of key mutational interactions43,52. Similarly, our results
showed that the topography of this neutral network is largely encoded
within lower-order background-averaged interaction terms. Other
studies have leveraged this sparsity alongside knowledge from the
field of compressed sensing (CS) to better predict fitness values from
small sample sizes43,44,52. Our algorithm, which utilized genetic pro-
cesses,was also able topredictdistant genotypesdespite being trained
mostly on lower-order mutants. This offers a potentially simpler
approach that could also be relevant for understanding how early
evolution identified key interaction terms during its navigation of the
fitness landscape.

The astronomical size of the fitness landscape implies that we will
probably never be able to map it in its entirety. However, the obser-
vations we made here, including that the prediction of the fitness
landscape across large distances is possible, especially within neutral
networks, offer hope that extrapolation from small sampling is possi-
ble. Finally, the large sequence-activity dataset that we generated,
particularly the empirical evidence of a neutral network, warrants
further quantitative analysis. In particular, whether the properties we
have discovered are unique to this neutral network and whether
information learned here can be used to predict other parts of the
landscape should be determined. This may have important implica-
tions in areas ranging frommolecular engineering53 to viral evolution54.
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Methods
Preparation of ligase ribozyme libraries
Commercially available custom oligo pools (Twist Biosciences) were
used to construct dsDNA templates of ribozyme libraries for in vitro
transcription. The oligo pools were ordered with the T7 promoter and
ribozyme sequence, which were amplified by PCR using primers
Ligase-lib-f and Ligase-lib-r (Supplementary Data 1) and Phusion High-
Fidelity PCR Master Mix with HF Buffer (New England Biolabs (NEB)).
The PCR product was column-purified using the DNA Clean &
Concentrator-5 kit (Zymo Research). In vitro transcription was per-
formed using a purified dsDNA template with a ScriptMAX Thermo T7
Transcription Kit (Toyobo) in a volume of 10 µL. After the transcription
reaction, the solution was incubated for 10min at 37 °C with a DNase-I
(NEB) solution consisting of 2 µL DNase I (2 U/μL), 2 µL 10× DNase I
Reaction Buffer, and 6 µL nuclease-free water. The RNA product was
column-purified using the RNA Clean & Concentrator-5 kit (Zymo
Research).

Ligation reactions of ribozyme libraries
The ribozyme pool (0.8μM) was mixed with substrate F1*subA (Sup-
plementary Data 1) at 8μM in nuclease-free water in a reaction volume
of 24 µL. The solutionwas heated to 72 °C for 3min, and then cooled to
4 °C for 5min. The RNA solution and the 4× reaction buffer (200mM
EPPS pH 7.5, 2.0mM MgCl2, 8 U/μL RNase Inhibitor, Murine (NEB))
were separately incubated at 37 °C for 3min. The reactionwas initiated
by adding the RNA solution to 8 µL of reaction buffer, followed by
incubation for 60min at 37 °C. The reaction was terminated by adding
72 µL of cold stop solution (25 µL 0.5M EDTA and 65 µL RNA Loading
Dye (2×) (NEB)) and kept on ice.

Preparation of sequencing templates
The reaction solutions were heated to 95 °C for 3min and separated
on a 12% urea polyacrylamide gel. The gels were stained with SYBR
Gold (Thermo Fisher) and visualized using a blue light transillumi-
nator. Ligated and unligated ribozymes bands were excised and
crushed. RNAwas extracted in Tris/NaCl buffer (30mMTris-HCl, pH
7.5, 30mM NaCl) by shaking at 1200 rpm and 4 °C for 18 h. RNAs
were precipitated by ethanol using Quick-Precip Plus Solution
(EdgeBio), washed twice with 70% ethanol, and resuspended in
nuclease-free water. The ligated and unligated RNA was dissolved in
10 µL of nuclease-free water, and 5 μL was used for reverse-
transcription reactions. Reverse-transcription reactions were per-
formed in a 10 µL volume with Maxima H Minus Reverse Tran-
scriptase (Thermo Fisher) according to the manufacturer’s
instructions. R1-[barcode]-F1-lig (Supplementary Data 1) was used as
the reverse-transcription primer. Different barcodes were used for
unligated and ligated ribozymes. Reverse-transcription reactions
were allowed to proceed for 30min at 65 °C, and the enzyme was
inactivated at 85 °C for 5min. To remove the primers, 1 µL of 20 U/µL
exonuclease I (NEB) was added to the reverse-transcription solution
and incubated for 30min at 37 °C followed by 15 min at 85 °C. The
solutions (ligated and unligated) were combined and diluted for
PCR analysis. Primers R2-F1-lig and R1-f2 (Supplementary Data 1)
were used to amplify the cDNA mixture using the Phusion High-
Fidelity PCR Master Mix with HF Buffer. The PCR product was
diluted and used in a second PCR using TruSeq-i7-UDI000# and
TruSeq-i5-UDI000# primers (Supplementary Data 1). Different UDIs
were used to identify different replicates if they were sequenced
simultaneously. The final PCR products were purified by agarose gel
electrophoresis using the Zymoclean Gel DNA Recovery Kit (Zymo
Research). DNA concentration was measured by real-time PCR
(StepOnePlus, Thermo Fisher) using the NEBNext Library Quant Kit
for Illumina (NEB) and analyzed using Illumina NovaSeq orMiSeq by
the Sequencing Section at OIST.

Sequencing data analysis
CustomPython scripts were used to analyze the sequencing data. Each
read in the FASTQ file was sorted into ligated or unligated pools based
on the barcode sequence. Then, the readwas scanned to search for the
variable catalytic core region, which was then quality-filtered to obtain
all base calls with QS ≥ 20. For the F1*Um and WT/Mut libraries, a
maximum of one base call in the variable region was allowed to have
QS < 20. For each variant, the read count of the ligated sequence
(Nligated) and that of the unligated sequence (Nunligated) was determined
to calculate the FL (FL =Nligated/(Nligated +Nunligated)). The FL for each
variant was divided by that of the WT, which was included in every
generation, to calculate the RA. Each generation was assayed in
duplicate, and variants were discarded if the total read count
(Nligated +Nunligated) in either replicate was below 30 for the F1*Um

library or below 100 for all other libraries. ThemeanRAwas calculated
from the two measurements for each variant and is referred to as the
RA for subsequent analysis.

PAGE analysis of individual ligase ribozymes
DNA templates for individual ribozyme variants were constructed
by annealing and extending two oligonucleotides using OneTaq 2X
Master Mix with Standard Buffer (NEB). (Supplementary Data 1) The
PCR products were column-purified using DNA Clean &
Concentrator-5 and then transcribed in vitro as described above.
Ligation reactions were performed as described above, except for
the use of excess ligase ribozyme (2 μM) over the FAM-labeled
substrate (FAM-F1*subA, 0.1 μM, FASMAC). Polyacrylamide gels
were imaged using a Typhoon FLA9500 (GE Healthcare) and quan-
tified using ImageJ 2.3.0 software.

In silico selection, mutation, and recombination
Our evolutionary pipeline consisted of iterative cycles of oligo pool
synthesis, experimental assay, in silico selection, in silico recombina-
tion, and in silico mutation. Flowcharts describing the steps in the
algorithm are shown in Supplementary Figs. 3 and 4. Tournament
selection was used as a selection method. First, a predetermined
number of variants from the population were randomly selected, and
the variantwith the highest RAwas retained as a parent. The remaining
variants (losers) were returned to the population, and the process was
repeated until a predetermined number of variants were selected as
parents. Tournament selection allows a small percentage ofmedium to
low RA variants to be selected along with high RA variants for the next
generation. This mechanism potentially accounts for the epistatic
nature of the fitness landscape, where less-active mutants might
become more active later with additional mutations.

In the first design of the algorithm, two parental sequences were
picked at random to be recombined using one-point crossover at a
randomposition, and one of the resulting recombinantswas randomly
selected for substitution. Each position in the sequence has a 1/35
chance of mutating to one of the three other bases with an equal
probability. Therefore, on average, each recombined mutant had one
substitution. This process was repeated until the total number of off-
spring was reached. Mutants were selected only if they had not been
previously selected. Finally, some mutants were randomly replaced
with the controls (Supplementary Fig. 3). This strategy was used to
design generations 2–5.

From generation 6 onward, parents were picked again by tour-
nament selection. A set of pure recombinantswas then generated from
the parents. Next, a random variant was selected from the pool of
recombinants and parents. This variant was then randomly mutated,
and the process was repeated to create another set of point mutants
that were generated by random substitution of parents or recombi-
nants. The new generation consisted of a combination of pure
recombinants and random point mutants (Supplementary Fig. 4).
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The parameters used in the in silico algorithm, including
tournament size, number of parents, number of pure recombinants,
number of random mutants, and total population size, are given in
Supplementary Table 1. From generation 3 onward, we increased
the total population size to increase the chance of finding neutral
mutants during each round of experimental screening. From gen-
eration 7 onward, we reduced the tournament size and increased
the number of selected parents to account for the increased frac-
tion of neutral mutants. This led to an overall reduction in selection
stringency to ensure that some variants with lower activity were still
being selected.

Machine learning
Five machine-learning models for binary classification were trained
using data from generations 1–6. All models made predictions by try-
ing to fit a function that describes the relationship between the input
features, which in this case is the position and identity of the nucleo-
tide in each ribozyme sequence, and the class labels that are either
neutral or deleterious. For a more comprehensive discussion of dif-
ferent machine-learning techniques, we refer the reader to the review
in ref. 55, and each model is also briefly described below.

LR is a linear model that assigns different weights to the input
features. Predictions aremade using a linear combination of the input
features and theirweights, followedby a sigmoid function that outputs
the class probability. LR can only model the additive contribution of
each mutation to fitness and therefore cannot model nonlinear inter-
actions between positions.

An SVM with a linear kernel assumes that the classes in the data
are linearly separable in the feature space and attempts to draw a
boundary line to separate them. The optimal solution was achieved by
maximizing the distance between each class and the boundary line.
SVM with a linear kernel can only model a linear combination of
mutations, similar to LR, although the tendency tooverfit SVM is lower.
Overfitting is observed when a model accurately predicts the training
data but creates poor predictions for new data points.

The k-nearest neighbor (k-NN) method does not assume a linear
separation of classes. The prediction for a new input is made based on
the majority class of the k number of neighboring training points
closest to thenew input in the feature space. This allows k-NN tomodel
nonlinearity better than SVM or LR, but it is more affected by noise in
the data and is more likely to become overfit.

The GBDT makes predictions by constructing a group of “trees”
that branch out each time a condition for a feature is met (e.g., is
position 23 in the sequence a guanosine?). The tree depth determines
the complexity of these conditions for making the final decision
regarding the class label. Gradient boosting is a technique that uses a
large number of trees with shallow depths to vote on the final class
label. This typically enables a higher prediction accuracy and less
overfitting than individual trees or a small group of very deep trees.
The GBDT can model more complex nonlinear interactions than LR
and SVM.

The MLP is a simple neural network model. A neural network
consists of a group of individual “neurons” that take an input value and
transform them using a nonlinear function. These neurons are arran-
ged in fully connected layers, meaning that the output of one neuron
becomes the input of the other neuron. This architecture allows a
neural network to approximate any function. Thismeans thatMLP can
potentially model mutational interactions or epistasis at a very high
order better than the other models. However, neural networks require
substantially more data to accurately learn a function without
overfitting.

For training, the sequences were one-hot encoded and flat-
tened into 1 × 140 binary vectors. Thirty percent of the dataset was
used as the testing set, and the rest was used as the training set. The
LR, k-NN, SVM, and GBDT were trained using the Python scikit-learn

package. k-NN, LR, and SVM were trained using the default hyper-
parameters for the binary classification of sequences into neutral
(RA ≥ 0.2) or deleterious (RA < 0.2). The GBDT was trained in the
same manner using a maximum tree depth of 10. The MLP was
written using the TensorFlow 2 Python library. Themodel consisted
of three dense layers with rectified linear unit (ReLU) activation,
batch normalization, and 20% dropout. The dense layers consisted
of 128, 64, and 32 neurons, respectively. This was followed by a final
dense layer with sigmoid activation for the classification output.
The model was compiled using the Adam optimizer, with a learning
rate of 0.005. Binary cross-entropy was used as the loss function.
During training, 10% of the training set was used as a validation set,
and the model was trained for 100 epochs with a batch size of 1024.
All the trained model performances were evaluated on the test
dataset using precision and recall as metrics. All codes were written
in Python 3.9. The software libraries used were pandas 1.4.4, numpy
1.21.2, tqdm 4.62.3, scipy 1.7.3, matplotlib 3.5.1, seaborn 0.11.2,
scikit-learn 1.0.2 and tensorflow 2.8.0.

Evolutionary algorithm
The MLP model was retrained using data from generations 1–7 in the
same manner as described for Machine learning. Model performances
were also tested using tenfold cross-validation (Supplementary Fig. 9).
To account for class imbalance, we adjusted the prediction threshold
using the receiver operating characteristic (ROC) curve. Prediction
thresholds that produced the largest geometric mean
(Geometric mean =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
True positive rates × (1-False positive rates)

p
)

were used for subsequent classification by themodel. Generation 7was
used as the starting parent population for the in silico evolution.
Tournament selection was used to select variants as parents. If more
than one variant in the tournament was classified as neutral, then a
random variant was selected. In each generation, 80% of the variants
were created by recombination, and the remainder were created by
point mutations. These variants were classified as neutral or deleter-
iousmutants usingMLP (Supplementary Fig. 5). Thiswas repeated over
100 rounds, and the average Hamming distance in each round was
tracked to ensure an increase in diversity (Supplementary Fig. 10). After
100 rounds of evolution, themeanHamming distance plateaued at ~13.
Increasing the number of rounds of in silico evolutionmight lead to an
increased average Hamming distance; however, this was slowed by the
increased search space and a likely increase in false positives. For the
last round, the total number of variants was increased to 12,000 to
maximize the coverage of the sequence space for experimental
screening, and only variants that were predicted to be neutral by the
MLP were selected as generation 8. The parameters of the in silico
evolutionary algorithm are listed in Supplementary Table 1.

Expected RA and robustness calculation
In a log-additive model, the expected RA (expRA) of mutant g with no
epistasis was calculated as ln expRAg

� �
=∑m

i lnðMiÞγi, wherem= 105 is
the total number of singlemutants andMi is the RA of a singlemutant.
γi = 1 if the sequence contains the mutationMi and γi =0 if it does not.
The coefficient of determination (R2) was used to determine the frac-
tion of the observed ln(RA) predicted by the model. R2 was calculated
using the r2_score function in the Python scikit-learn package using
default parameters.

Equation ωðnÞ= e�αnβ
was fitted using the nonlinear least-

squares curve fitting function in the SciPy Python library. ω(n) is
the fraction of neutral mutants (RA ≥ 0.2) at Hamming distance n
from the reference sequence (WT or F1*Um). α is the decay para-
meter, where a lower α indicates higher mutational robustness. β is
the strength of directional epitasis. When β > 1, there is an excess of
negative epistasis; when β < 1 there is an excess of positive epistasis.
If β is equal to one, there is a balanced mix of positive and negative
epistasis, or there is no epistasis.
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Estimation of the fraction of reciprocal sign epistasis
For generations 1–8 and the WT/Mut library, we separately identified
all unique pairs ofmutants that differed by two substitutions.Of these,
pairs of mutants in which both intermediate single mutants were
present in the dataset were retained. For each pair of sequences,
reciprocal sign epistasis was identified if both the RA values were
higher or lower than those of the intermediate single mutants. For
each set of sequences, the sequence with the lowest Hamming dis-
tance to the WT was used as the reference sequence. This was only
used to measure reciprocal sign epistasis at each mutational step
(Hamming distance) from theWT. The identification of reciprocal sign
epistasis is not affected by the choice of the reference sequence. The
fraction of reciprocal sign epistasis was calculated by dividing the
number of reciprocal sign epistasis by the total number of 22 genotype
subgraphs identified at each Hamming distance from the WT.

Analyzing epistasis of a combinatorially complete landscape
A combinatorially complete landscape consists of 2N possible variants.
In the case of the WT/Mut library, this equaled 65,336 possible com-
binations for 16 mutations (216). Each variant can be represented as a
16-bit binary with 1 or 0 as each digit, indicating the presence or
absence of each mutation. The ln(RA) value of each variant can be
sorted according to the binary order to give vectorw. Vectorw can be
linearly mapped into the epistatic terms relative to a single reference
erel using erel =Gw.G is amatrix that defines all interactions fromorder
0 to n and can be recursively defined as:

Gn+ 1 =
Gn 0

�Gn Gn

� �
with G0 = 1 ð1Þ

To calculate the background-averaged interaction terms, eavg we use
the equation eavg =VHw.

H is the Hadamard matrix which can be defined recursively as:

Hn+ 1 =
Hn Hn

Hn �Hn

� �
with H0 = 1 ð2Þ

V is a weighting matrix that can be defined recursively as:

Vn+ 1 =
1
2Vn 0

0 �Vn

 !
with V0 = 1 ð3Þ

Multiplying w by VH yields the weighted Walsh–Hadamard transform
of ln(RA) values.w canbe reconstructed from erel or eavg bymultiplying
with the inverse of the matrix VH or G. (w= ðVHÞ�1eavg, w=G�1erel)
More detailed explanations of the theory can be found in ref. 42.
Predictions made by reconstructed w were compared to observed w
using R2 calculated in the same way as described in “Expected RA and
robustness calculation”.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing reads generated and analyzed in this study have
been deposited in the Sequencing Reads Archive under BioProject
number PRJNA863914. Processed and filtered read files with all ribo-
zyme sequences and their associated activity measurements are
deposited in Zenodo: https://doi.org/10.5281/zenodo.6945203 (ref. 56).

Code availability
All codes that reproduce all figures in this study are deposited and
freely accessible from Zenodo: https://doi.org/10.5281/zenodo.
6945203 (ref. 56).
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