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Abstract
Long-lasting synaptic changes within the neuronal network
mediate memory. Neurons bearing such physical traces of
memory (memory engram cells) are often equated with neurons
expressing immediate early genes (IEGs) during a specific
experience. However, past studies observed the expression of
different IEGs in non-overlapping neurons or synaptic plasticity in
neurons that do not express a particular IEG. Importantly, recent
studies revealed that distinct subsets of neurons expressing
different IEGs or even IEG negative-(yet active) neurons support
different aspects of memory or computation, suggesting a more
complex nature of memory engram cells than previously thought.
In this short review, we introduce studies revealing such hetero-
geneous composition of the memory engram and discuss how
the memory system benefits from it.
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Introduction
The question of where and how memories are encoded
and retrieved has been challenging scientists and
www.sciencedirect.com
philosophers for centuries. In 1904, Richard Semon
brought up the concept of memory engrams [1]. He
defined an engram as a physical change in the brain
introduced by a particular experience. After encoding,
specific cues can reactivate this engram leading to

memory retrieval (ecophry). Despite highly systematic
attempts to find the engram, the lack of certain tech-
nologies made it very difficult for Lashley and others to
find evidence of long-lasting changes in the brain that
represent particular experiences (memory trace) during
the 20th century [2,3]. However, the progress in methods
of labeling and manipulating specific cell groups helped
find strong support for the existence of neuronal popu-
lations that contain the engram, so-called memory
engram cells [4]. Josselyn and Tonegawa [5] describe
three major engram evidence strategies: First, finding the

activity of the same neurons during encoding and
retrieval; second, manipulating this respective network of
cells and investigating if this can cause retrieval (gain of
function) or suppress (loss of function) respective
behavioral output; third, implanting a memory by
mimicking the encoding and retrieval process.

Activity-dependent neuronal tagging during a certain
experience makes immediate early genes (IEGs) valu-
able for engram studies. Guzowski et al. (1999) enabled
a significant step forward in this approach. They inves-

tigated the reactivation of a cell group during retrieval at
two sequential time points by utilizing the distribution
time of Arc mRNA from the nucleus to the cytoplasm
[6]. Barth et al. (2004) sophisticated the IEG tagging
technique. They developed a transgenic mouse line
expressing a fosGFP fused protein under the c-Fos pro-
moter [7]. This transgenic mouse line allowed imme-
diate identification of c-Fos expressing cells and their
subsequent electrophysiological investigation in vitro.
However, the fosGFP protein revealed a similar degra-
dation time as the endogenous c-Fos. Later develop-

ment of transgenic mouse lines enabled more stable
labeling of neurons expressing IEGs, allowing in-
vestigations over longer periods [8,9]. Both studies re-
ported reactivation (IEG expression) of neurons during
encoding and retrieval in many brain areas, including the
hippocampus. Those early studies of IEG reactivation
represented the first evidence of the existence of a
memory engram.
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Neves et al. (2008) conceptualized the importance of
manipulating the physiology of neuronal networks active
during encoding [10]. Rizzi et al. (2009) first reported
their successful memory recall by optogenetically reac-
tivating c-Fos tagged neurons. Liu et al. (2012) and
Garner et al. (2012) were the first to publish similar
findings [11e14]. They showed that this manipulation
leads to memory retrieval. One critical factor in some of

the above studies is that their optogenetic activation
cannot imitate the natural sequential activation of
engram cells. As mimicking the natural firing pattern of
cells is challenging, another approach was taken by
inhibiting neurons in the hippocampus that expressed
IEGs (c-Fos or Arc) during fear conditioning and
demonstrated a decrease in context-specific freezing
behavior during inactivation [15,16]. These manipula-
tion studies suggest that the neuronal activity of artifi-
cially activated IEG tagged neurons in the hippocampus
plays an essential role in memory retrieval.

The third engram evidence strategy was first followed
by Steinmetz et al. (1989) by performing classical con-
ditioning of muscles reflexes [17]. The entire learning
process took place intracranially by pairing the stimu-
lation of two cerebellar regions. The restriction to
intracranial stimulation only represents one out of two
criteria proposed by Martin and Morris for implanting
artificial memories [18]. Their second criterion expects
the retrieval of the artificial implanted memory by an
external event, which was accomplished by the study of

Vetere et al. (2019). They took advantage of the well-
known olfactory system and implanted a memory arti-
ficially via optogenetic stimulation of particular olfactory
glomeruli and the aversion and reward mediating ventral
tegmental area. This allowed the retrieval of this
implanted memory via exposure to respective external
odor stimuli [19]. On a similar note, in a study by
Ramirez et al. (2013), channelrhodopsin-2 was intro-
duced in c-Fos expressing cells during the exploration of
a neutral environment [20]. Respective cells were later
optogenetically activated during fear conditioning in a
different environment. Yet, mice revealed subsequently

increased freezing behavior in the previous neutral
environment. The successful artificial memory implan-
tation displays another support for the existence of
memory engram.

While we find strong support for the existence of engrams
in these studies, diverse and complex natures of memory
engram cells and the content/aspect these cells are
encoding remain to be elucidated. More specifically, IEG
expression is mostly used as an activity marker, and
respective cells are equated as engram cells. However,

the functional heterogeneity of different plastic changes
will remain essential to consider and might reveal a more
complex nature of our memory system. Encoding any
experience can lead to the storage of a broad range of
different types of information such as different sensory
Current Opinion in Neurobiology 2022, 75:102568
modalities, internally generated signals, or higher-order
information integrating them. Moreover, different types
of computation support those diverse inputs. Neverthe-
less, many engram studies testing the causal relationship
using neuronal manipulation did not have a strong focus
on these aspects of memory. In this review, we highlight
recent studies revealing the heterogeneous nature of
memory engram cells. By introducing hippocampus-

dependent memory as an example, we discuss how
these different memory traces might comprehensively
support our memories of episodic experiences.

The complex induction and functionality of
IEGs
IEGs have been used as neuronal activity markers in
neuroscience fields. IEGs expression is generally low in
quiescent cells but is transiently induced at the tran-

scriptional level by extracellular stimulation [21]. As
early as the 1980s, researchers have found that c-Fos is
rapidly induced after electrical stimulation or admin-
istration of growth factors [22e26]. Significantly, high-
frequency synaptic stimulation, which resembles the
stimulation required to induce long-term potentiation
(LTP), increased IEGs expression [27]. In line with
previous results, Jiang et al. (2021) recently discovered
that Arc-positive neurons showed increased correlated
activity in hippocampal cell culture [28]. Besides
directly manipulating cellular activity, IEG expression

can also be induced by various extracellular signals,
including growth factors, immunological and neuro-
logical signals (e.g., BDNF, IL-6), and sensory and
behavioral stimulations (e.g. the studies by Gallo et al.,
Pfaus et al., Lanahan et al., Morgan et al., O’’Donnell
et al., Wheeler et al.. [29e33]). Because of these fea-
tures, IEGs have provided a cellular method to label
and examine the functionality of activated neurons.
One of the biggest strengths of using IEGs to examine
activity, compared to electrophysiology methods, is
that IEG studies can provide largeescale activity

analysis of multiple neurons and even multiple brain
regions with simple immunohistochemical methods.
For example, Wheeler et al. (2013) analyzed the c-Fos
expressions of 84 brain regions during fear recall,
revealing a critical thalamic-hippocampal-cortical
network involved in long-term fear memory [34].
Other examples are provided by Kubik et al. (2007),
who reviewed IEG evidence of hippocampal function
and the subregional-specific contribution to spatial and
contextual memory [35].

Alterations of gene expression underlie plastic changes
in the networks in the brain and hence support memory
[36]. As the first genes to undergo regulation of
expression following cellular stimulation, IEGs have
been proposed to function as “plasticity” markers. For
example, Arc has been repeatedly shown to participate
in molecular mechanisms of synaptic plasticity [37e40].
Consistent with this idea, Arc knock-out mice do not
www.sciencedirect.com
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express lasting LTP or long-term depression (LTD) in
the hippocampus and are impaired for long-term
memory in behavioral tasks [41] (but also see the
study by Kyrke-Smith et al. [42]). Besides Arc, other
IEGs, including Zif-268 and c-Fos, have also been sug-
gested to play a role in synaptic plasticity [29]. Although
more commonly used as an activity marker rather than a
plasticity marker, IEG expression is not always linked to

increased cellular activities. For example, a seizure study
demonstrated that high-frequency burst firings do not
result in c-Fos expression in multiple brain areas [43].
By inhibiting medial septum input to the hippocampus,
Miyashita et al. (2009) found that the behavioral in-
duction of Arc transcription in CA1 and CA3 regions was
abolished [44]. Because medial septal inactivation does
not eliminate location-specific firing in these regions
[45], their results suggested that increased cell firing is
insufficient to induce Arc transcription. Given that
increased spike rate does not always lead to IEG in-

duction and that IEG-tagged neurons are causally linked
to memory, it would be a more promising approach to
examine physiological activities of the engram cells in
order to determine what is encoded as memory [46].
These studies indicate that IEGs do not simply repre-
sent more or less activity of neurons.

Different IEGs should not be treated as unitary entities.
One supporting evidence is that the signaling cascades
leading to transcription of different IEGs differ [47].
The induction cascade of IEGs typically includes the

following steps: (1) extracellular stimuli activate mem-
brane receptors and in turn initiate a series of intracel-
lular pathways, (2) kinases mediate the activation of
transcription factors that initiate the expression of IEGs,
(3) protein products of IEGs mediate the expression of
downstream genes or participate in other forms of
signaling [48,49]. Interestingly, different IEGs have
their unique characteristics. For example, unlike c-Fos,
Npas4 expression was selectively induced by only
membrane depolarization, while c-Fos could also be
induced by growth factors or neurotrophins, suggesting
the constitutional difference in their induction path-

ways [50]. Additionally, the induction kinetics of IEGs
varies. Experiments using artificial synaptic stimulation
demonstrate that different IEGs have different stimulus
thresholds for transcriptional induction [51]. For
example, the c-Fos induction threshold is relatively high
compared to others, which provides a good signal-to-
noise ratio and allows anatomical mapping of c-Fos
positive neurons during a complex behavioral paradigm
[52]. In contrast, the expression of Zif-268 is more
responsive to synaptic activities at physiological levels
[53]. To further illustrate the point that IEGs should be

viewed as different entities, here we compare Arc and
Homer 1a. Although they share similar mechanisms for
transcriptional activation (MAPK/ERK cascade) and can
be expressed in the same neuronal population in the
hippocampus, Homer 1a is slower in mRNA transcription
www.sciencedirect.com
and is subject to additional activity-dependent regula-
tion [54]. Even a more striking difference is their
functional outcome. They play a common role in mo-
lecular trafficking but interestingly produce the oppo-
site outcomes in synaptic plasticity. Both Arc and Homer
1a mediate endocytosis and internalize AMPA receptors
to reduce their surface expression [41,55]. However,
while Homer 1a involves homeostatic scaling of recently

potentiated spines [56], Arc preferentially targets
inactive spines to increase contrasts of synaptic weights
[40]. In summary, it is oversimplified to view IEGs solely
as an all-or-none biomarker due to all the differences (in
induction, kinetics, and functionality) leading to the
final expression, and thus, the distinct roles of IEGs in
memory should also be examined carefully.

Memory engram cells are heterogeneous
To better understand the complexity in IEGs, it is
important to determine a specific role of neuronal en-
sembles expressing each IEG. Past studies parsed out a
particular IEG responding to a specific aspect of
memory. The hippocampal IEGs would be a good
example showing such unique contributions. For
example, Jenkins et al. (2004) revealed c-Fos expression
in the hippocampus increases when animals find a
novelty in the spatial arrangement of familiar cues [48].
Rats experienced either a maze where the familiar visual
cues were repositioned or a maze with familiar cues

located at the same position as habituation sessions.
Rats that experienced the relocated cues significantly
increased c-Fos expression in the hippocampus and its
related areas. Importantly, the hippocampal c-Fos did
not respond to familiar cues themselves, suggesting that
c-Fos expression most prominently responds to the
novelty in the arrangement but not the novelty of ele-
ments. The c-Fos response in the hippocampus agrees
with behavioral studies showing that hippocampal lesion
leads to impairment in memory of objectelocation as-
sociation but not of objects themselves [49,50].

Together, these findings indicate that the hippocampal
c-Fos represents “relational” or “structural” features of
the elements of experience.

In line with the notion, a series of studies using the
contextual fear conditioning paradigm, including
context pre-exposure facilitation effect (CPFE),
revealed that the hippocampus contains conjunctive
representations. Conjunctive representation refers to
multiple stimulus elements combined into a single
entity. Immediate shock experiments following pre-

exposure to stimuli showed the hippocampus encodes
co-occurrence of separated features making up the
context. Importantly, a variant of the CPFE paradigm,
the so-called “bucket experiment’, showed that animals
associated the shock with the hippocampal contextual
representation acquired during the pre-exposure session
rather than with the context experienced during shock
presentation [51]. Importantly, under this behavioral
Current Opinion in Neurobiology 2022, 75:102568
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paradigm, the context pre-exposure increases c-Fos
expression in the dorsal hippocampus [57]. The
increased c-Fos positives are shown to be memory
engram cells encoding the contextual information,
which can be later associated with a shock representa-
tion stored in the basolateral amygdala (BLA) [58]. In
their experiment, c-Fos positives in CA1 and BLA are
labeled during pre-exposure and immediate shock,

respectively. Simultaneous optogenetic stimulation of
these two cell populations in their home cage results in
freezing behavior during the later testing session in the
preexposed context. These experiments suggest that c-
Fos positive cells during context pre-exposure are the
conjunctive representation and satisfy a requirement as
memory engram cells.

While c-Fos positive cells in the hippocampus encode
contextual information as a conjunctive representation,
it is not necessarily the case that other IEGs play

identical roles. Experiments by Barbosa et al. (2013)
showed that responses to novel relational structures
differed between IEGs [59]. In the hippocampus, c-Fos
expression responds to a novel location of the object,
while Zif-268 did not show such specific responses to
the contextual feature. Further, it has also been reported
that there is no overlap between Homer 1a positive cells
formed during pre-exposure and Arc positive cells during
immediate shock. This observation indicates that these
two IEGs make inconsistent contributions to the for-
mation and expression of contextual memory [60].

Another recent example showed that different IEG-
expressing engram cells mediate different computa-
tions. Sun et al. (2020) demonstrated a functional het-
erogeneity between c-Fos-expressing and Npas4-
expressing engram cells in the dentate gyrus (DG)
during contextual fear conditioning [61]. They found
that c-Fos-expressing engram cells promote memory
generalization, while Npas4-expressing engram cells
promote memory discrimination. Moreover, the two
classes of engram cells receive afferent projections that
were differently modified by contextual fear condition-
ing, suggesting the engram cells engage distinct func-

tional circuitry. Overall, these findings suggest that
neuronal ensembles characterized by the expression of
different IEGs do not have interchangeable roles for
memory, even within the same subregion of
the hippocampus.

Reconciliation of hippocampal codes: A
perspective from heterogeneous memory
engrams
How does the heterogeneity in engram cells reconcile a
coherent functioning of a specific brain structure? It is
important to note that, in the hippocampus, the field
has not reached a fully comprehensive view of its role in
memory. Vast literature demonstrates its involvement in
Current Opinion in Neurobiology 2022, 75:102568
spatial navigation [62e66]. This cognitive process re-
quires the more specific computation of locale infor-
mation based on sensory cues and self-movement signals
to navigate the animal from the current position to
another location [67e70]. Extended views posit the
hippocampal computation being navigation within
‘memory space’ or ‘mental map’ that allows sequences of
events to be integrated into more generalized concep-

tual dimensions [71,72]. In these views, a critical
question is whether the hippocampus computes the
navigation within the abstract space or only provides a
substrate to define the relational structure of events or
cues [73]. The former requires a stable map for accurate
computation (but also see the study by Kinsky et al.
[74]). The latter can assimilate multiple maps for the
same physical space depending on the nature of the
experience. Previous studies do not reject these two
hypotheses. As a support for the first view, the location-
specific firing of place cells becomes more stable when

the animal participates in a spatial task than the spatial
map of randomly foraging animals [75]. Also, in line with
the navigational computation by hippocampal place
cells, Ormond and O’Keefe (2021) recently reported
strong modulation of place fields by vectors pointing to a
goal location [76]. In contrast, various internal factors
influence the hippocampal activity and produce
“remapping” of place fields [77e79]. As a striking
example, contextual fear conditioning caused a robust
remapping of place fields even though the animal was in
the same physical space [80]. These studies raise two

opposing views on the hippocampal role of memory and
its contribution to spatial navigation.

The apparent incompatibility of the two hypotheses can
be resolved by discarding an assumption that the hip-
pocampus has the sole role in episodic memory. Here,
we propose that the hippocampus has more than two
different roles for episodic memory, each supported by
distinct types of memory engram cells. As opposed to
the over-simplified architecture of the hippocampal tri-
synaptic circuit, anatomical studies elucidated more
complicated and diverse connections with extra-

hippocampal structures, possibly allowing flexible rout-
ing of different kinds of information (e.g. the study by
Goode et al. [81]). Each hippocampal subfield is also
more heterogeneous in multiple dimensions than pre-
viously thought, making various contributions to its
physiology and function [82e87]. For example, a recent
study found that DG represented sensory cues and
spatial information in orthogonal populations of granule
cells [88]. Importantly, non-homogeneous hippocampal
wiring alone does not fully account for the heteroge-
neous memory engram cells. As we reviewed earlier,

different IEGs have non-overlapping induction path-
ways and play diverse roles in plasticity. And different
classes of engram cells characterized by different IEGs
www.sciencedirect.com
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Figure 1

Heterogeneous memory traces in the hippocampal CA1. One type of
memory trace supports spatial navigation through stable spatial maps.
Another type of memory trace provides the relational structure of
contextual elements in the experience.
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do not always have identical roles for memory. This ev-
idence favors a view that each memory is collectively
and heterogeneously supported by different kinds of

long-lasting changes [89,90].
Figure 2

Different responses and roles of distinct classes of memory engrams. In
sponses in their firing rates and place fields. In DG, c-Fos positive engram cells
distinct Npas4 positive engram cells play a role in pattern separation and con

www.sciencedirect.com
The proposed scheme explains that spatial computation
for navigation and storage of relational structure are
achieved by two distinct classes of hippocampal memory
engram cells. Upon exposure to a novel environment,
only a fraction of place cells express c-Fos in CA1 of the
hippocampus [46] (a similar observation with Arc is re-
ported in the study by Lee et al.[91]). The IEG studies
discussed earlier suggest these engram cells encode the

relational structure of the contextual cues. Importantly,
when revisiting the same environment later, c-Fos pos-
itive cells are more likely to change their firing locations,
indicating their unreliability of computation for spatial
navigation. On the other hand, the remaining population
of place cells (c-Fos negatives) stably maintains their
place fields. Notably, the formation of location-specific
firing is mediated by experience-dependent hippocam-
pal plasticity, suggesting that the c-Fos negative neurons
undergo synaptic changes during the experience and
thus are also a part of memory engram cells (e.g. the

studies by Wilson et al., Geiller et al. [92,93]). A recent
study supports this view and found preferential thala-
mocortical synaptic strengthening in c-Fos negative cells
in the superficial layers of the barrel cortex after the
olfactory association task [94]. These results suggest
that, in the hippocampus, ‘c-Fos positive engram cells’
store the relational structure of the experience, and ‘“c-
Fos negative engram cells” achieve computation of
the CA1, c-Fos positive and negative pyramidal cells show different re-
contribute to pattern completion and support context generalization, while
text discrimination.

Current Opinion in Neurobiology 2022, 75:102568

www.sciencedirect.com/science/journal/09594388


6 Systems Neuroscience 2022
locale information for spatial navigation (Figure 1), again
indicating heterogeneous neuronal ensembles to sup-
port hippocampal contribution to memory.
Conclusion
Memory engram studies, combining IEG tagging and
manipulation of neuronal activity, demonstrated a causal
link between the activity in a subset of neurons and a
specific piece of memory. However, further in-
vestigations of IEGs and their complexity are required
to unveil the mechanisms underlying memory repre-
sentation, encoding, and retrieval. Different factors
activate different IEGs, producing various plastic

changes in the network and making distinct contribu-
tions to the mnemonic processes. In that sense, memory
engram is not a unitary entity.

The use of IEGs is still a powerful approach to disen-
tangle their specific roles for memory. For example, c-Fos
expression is significantly elevated in the hippocampus
when the animal found a novel arrangement in the
familiar cues, supporting the role of the c-Fos ensemble
for encoding relational structure in the experience [95].
Importantly, the c-Fos positive cells are a neuronal sub-

population distinct from stable place cells in the CA1 and
Npas4 positive granule cells in DG, suggesting each
memory engram supports different aspects of the
episodic experience for later retrieval (Figure 2) [46,61].

Cooperativity across heterogeneous memory traces
might explain how representational drift in the hippo-
campal spatial maps achieves congruency of memory
over time. Contrary to the expectation that represen-
tations of memory need to be stable, long-term imaging
of Ca2þ activity in the hippocampal neurons revealed
continuous drifting in their representation of space

[96e99]. Although firing locations of place cells are not
stable, recent studies imply hippocampal neural codes
independent of spike locations. Examples of these codes
include context-specific firing rates of IEG positive cells
[46,91] and synchronous activity that cannot be
explained solely by overlaps of place fields [100]. If one
of the representations is as stable as memory itself,
functional coupling of these different representations
provides reliable computation for spatial navigation
while robustly retaining the hippocampal memory
[101]. Further studies are required to test this predic-

tion and understand how our brain stores memory under
continuous changes of the network.
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