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a b s t r a c t

Advances in artificial intelligence (AI) and brain science are going to have a huge impact on society.
While technologies based on those advances can provide enormous social benefits, adoption of new
technologies poses various risks. This article first reviews the co-evolution of AI and brain science
and the benefits of brain-inspired AI in sustainability, healthcare, and scientific discoveries. We then
consider possible risks from those technologies, including intentional abuse, autonomous weapons,
cognitive enhancement by brain–computer interfaces, insidious effects of social media, inequity, and
enfeeblement. We also discuss practical ways to bring ethical principles into practice. One proposal is to
stop giving explicit goals to AI agents and to enable them to keep learning human preferences. Another
is to learn from democratic mechanisms that evolved in human society to avoid over-consolidation
of power. Finally, we emphasize the importance of open discussions not only by experts, but also
including a diverse array of lay opinions.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Artificial intelligence (AI) has made remarkable progress in the
ast several years. Computers can now see, listen, and drive a
ar, in some cases as well as humans, or even better. Machine
ranslation is no longer an embarrassment. Much of today’s AI is
ased on deep learning (DL), a brain-inspired machine learning
ramework (Goodfellow et al., 2016; Sejnowski, 2018). Together
ith other brain-inspired and statistical approaches, AI is ex-
ected to further benefit human life and society in areas such
s information services, manufacturing, mobility, environment,
ealthcare, and science. However, rapid advances also pose large
isks. Here we consider expected benefits and potential risks of
I and neurotechnologies and how these technologies can be
anaged so as to minimize undesirable outcomes.
This article is based on presentations and discussions at the

nternational Symposium on AI and Brain Science held online in
ctober 2020 (http://www.brain-ai.jp/symposium2020/). In the
ollowing sections, we first review how AI and brain science
ave co-evolved and what else can be learned from the brain
o guide future progress of AI. We then review how progress in
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AI and neurotechnologies can deliver helpful innovations, with a
focus on the potential of AI to promote scientific discoveries. We
then consider the risks associated with AI and neurotechnologies,
including intentional misuse, unintended side effects, and loss of
control. We then consider ethics and governance of AI, with two
specific viewpoints. For the issue of goal misspecification by AI
systems, a theoretical framework of assistance games is proposed,
in which AI agents continually infer human preferences, rather
than pursuing a specific goal. Another view proposes, by learning
from the history of human society, to implement democratic peer
reviewing among open-source, explainable AI agents, to avoid
catastrophes by over-concentration of power.

2. Co-evolution of AI and neuroscience

There are two opposing views of the relationship between
AI and the brain. One holds that to make intelligent machines
with electronics, we do not need to be concerned with biological
constraints. However, the other maintains that since there is
already a superb implementation of intelligence in the brain, it
makes more sense to reverse engineer that. In fact, there are
many intermediate views and historically, dominant views have
oscillated between the two extremes.

For example, in visual pattern recognition, the discovery by
Hubel and Wiesel (Hubel & Wiesel, 1959) that the primary visual

cortex is composed of neurons that respond to different local
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eatures, promoted development of the Perceptron (Rosenblatt,
957), which adaptively combines those features for pattern clas-
ification. While the limitation of simple Perceptrons (Minsky
Papert, 1969) brought a winter to neural network research,

esearchers developed learning algorithms for multi-layer neural
etworks to allow learning of simple to complex features (Amari,
967; Carpenter & Grossberg, 1987; Fukushima, 1980; Rumelhart
t al., 1986; Werbos, 1974). Neuroscientists also discovered high-
evel feature representations, like face cells in the higher visual
ortex (Bruce et al., 1981) and place cells in the hippocam-
us (O’Keefe, 1976). Most recently, with the availability of big
ata from the internet and high-performance parallel computers,
eep neural networks began to achieve very high performance
Krizhevsky et al., 2012).

In regard to action learning, experimental psychology and neu-
oscience revealed that prediction of forthcoming reward, based
n sensory cues or actions, is critical for action learning (Rescorla
Wagner, 1972). Inspired by such notions, Barto and colleagues
eveloped the computational framework of reinforcement learn-
ng, in which the reward prediction error is used as the key
earning signal (Barto et al., 1983; Sutton & Barto, 2018). The sub-
equent discovery by Schultz that dopaminergic neurons signal
eward prediction error (Schultz et al., 1993) led to development
f models of reinforcement learning in brain circuits (Barto, 1995;
chultz et al., 1997), which further promoted neuroscience stud-
es of reinforcement learning in the brain (O’Doherty et al., 2003;
amejima et al., 2005). While applications of reinforcement learn-
ng remained dormant due to its instability when combined with
ulti-layer neural networks (Boyan & Moore, 1995), discovery of
stable way to use deep neural networks for reinforcement learn-
ng, with insights from hippocampal episodic memory (Hassabis
t al., 2017), brought flourishing of deep reinforcement learning
Mnih et al., 2015), which enables machines to defeat human
hampions in the game of Go (Silver et al., 2016).

.1. What can we learn from the brain for advancement of AI

As mentioned above, deep learning for pattern recognition
nd reinforcement learning for action and planning are two prime
xamples of brain-inspired AI (Hassabis et al., 2017). What else
an we learn from the brain to advance next-generation AI? There
re at least three domains in which present AI cannot currently
atch the human brain and can therefore benefit from advances

n brain science.
One domain is energy efficiency. Today’s deeper learning de-

ends on GPUs that consume large quantities of energy and
roduce a lot of heat. On the other hand, our brain is thought
o use just about 20 watts of energy. Such energy efficiency
resumably derives from distributed computation by dendrites,
olecular machinery in neurons, and efficient communication via
pikes. Neuromorphic engineering based on distributed analog
omputing and spike communication is an active research area
Roy et al., 2019).

Another important domain is data efficiency. Humans appear
o be able to acquire new knowledge or skills with much less
xperience than today’s deep neural networks require. There
re several reasons for data efficient learning, such as mental
imulation, modularity and compositionality, and meta-learning
Lake et al., 2017).

The third important domain is autonomy and sociality. Today’s
I agents are designed by human engineers regarding what is to
e achieved, but humans and animals are not designed or dictated
o do something. They decide what to do and what to learn so as
o function in the physical, biological, and social environments
nto which they are born. How we can create autonomous or
reative AI agents like humans is a fascinating and controversial
ssue (Elfwing et al., 2011; Oudeyer, 2018; Schwartenbeck et al.,
019).
543
2.2. Toward data-efficient learning

Understanding the reasons for data-efficient learning by the
brain and to achieve data-efficient learning by artificial agents
are targets of active research. An important factor is the use of
predictive models, which allow ‘‘mental simulation’’ in animals
and humans (Hamrick, 2019). Mental simulation can be defined
as the brain’s process using action-dependent state transition
models. It allows estimation of the present state based on past
sequences of actions and observations, planning of future actions
from the present state, or imagination of possible actions from
arbitrary states. Mental simulation allows efficient adaptation
when task requirements are changed. Mental simulation also
enables understanding and explaining what has happened and
why a certain action is preferred. The brain’s mechanisms for
mental simulation are being revealed by advanced neuroimaging
and data analysis (Fermin et al., 2016; Funamizu et al., 2016;
Soto et al., 2020). Learning and use of action-dependent state
transition models are now becoming popular in deep learning
architectures to allow flexible adaptation (Eslami et al., 2018; Ha
& Schmidhuber, 2018; Hafner et al., 2020; Schrittwieser et al.,
2020).

Another important factor is compositional reuse of learned
modules, like prediction models and action policies. The cerebral
cortex is composed of multiple areas for distinct representa-
tions of sensory, motor, and cognitive information. They form
multiple cortico-cerebellar and cortico-basal ganglia loops for
prediction and valuation using multiple representations (Doya,
1999; Samejima & Doya, 2007). Models based on the laminar
architecture of the cortex with learnable connections between
layers have reproduced behavioral data in diverse areas includ-
ing visual pattern processing and working memory (Grossberg,
2021). While architectures for learning and combining multiple
modules for prediction and control have been proposed (Dayan
& Hinton, 1993; Dietterich, 2000; Doya et al., 2002; Morimoto &
Doya, 2001; Sutton et al., 1998; Wiering & Schmidhuber, 1998;
Wolpert & Kawato, 1998), how such architectures can be adap-
tively constructed is still an open issue. In the brain, there appear
to be mechanisms for flexible ‘‘pathway gating’’, for example, by
gating of inputs and outputs by inhibitory neurons (Wang & Yang,
2018) and by synchrony and temporal coherence (Palmigiano
et al., 2017). In AI applications, selection and combination of pre-
learned modules are mostly accomplished by human designers,
but automating such processes is an important new direction
(Hutter et al., 2019).

Last, but not least, learning to learn, or meta-learning, is also
an important topic in neuroscience and AI research (Thrun &
Pratt, 1998). One aspect of meta-learning is to adjust hyper-
parameters of learning algorithms, such as the learning rate,
temperature for exploration, and temporal discounting factor,
to match characteristics of the environment and the stage of
learning. Neuromodulators like acetylcholine, noradrenaline, and
serotonin have been suggested to regulate these parameters of
learning (Doya, 2002, 2008). Brain-inspired algorithms have been
proposed to regulate those parameters based on the uncertainty
of sensory observations and environmental dynamics (Parr & Fris-
ton, 2017; Yu & Dayan, 2005) and the amount of time available
for decision, action, and learning (Doya et al., 2021; Kurth-Nelson
& Redish, 2009; Reinke, 2018). Another aspect of meta-learning is
finding relevant features for solving similar tasks (Courville et al.,
2006; Gershman, 2015). By training a recurrent neural network
for multiple tasks, hidden neurons can capture dynamics and
parameters of a series of tasks for efficient re-learning, sometimes
even without synaptic learning (Wang et al., 2018; Yang et al.,
2019).

Further understanding of mechanisms of data-efficient learn-
ing in the brain would accelerate development of more adaptive
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I, even though there may not be off-the-shelf recipe to apply.
evelopment of more flexible AI algorithms and architectures
ay also provide computational models to understand the brain
echanisms.

. Social benefits of AI and neurotechnologies

Novel technologies developed through interactions of AI and
rain science, such as deep learning, are already impacting society
n areas such as information services, manufacturing, and health-
are, and they will deeply affect the ways people work, live, and
hink.

Although the potential benefits of AI and neurotechnologies
re endless, here we review their ongoing contributions to sus-
ainability, healthcare, and basic science.

.1. AI for sustainability

Preserving and restoring the earth environment in the face
f climate change and environmental pollution is a major chal-
enge for society today. AI and deep learning can help tackle
limate change in multiple ways (Rolnick et al., 2019). One ob-
ious way is through more accurate and reliable prediction of
he effects of human activities on the environment by inte-
rating big data from satellites, weather stations, simulation
odels, and so forth (https://www.climatechange.ai/events/neu

ips2020). Another way is by helping to optimize device and
aterial designs for renewable energy sources, such as solar
ower generation, energy harvesting, and efficient energy stor-
ge with batteries and other media. A complementary direction
s optimization of energy usage. For example, machine learn-
ng has been applied to improve the efficiency of data center
ooling by 40% (https://deepmind.com/blog/article/deepmind-ai-
educes-google-data-centre-cooling-bill-40). Partly due to such
ptimization, world-wide energy use by data centers has
lateaued in the last decade despite ever-increasing demands
Masanet et al., 2020).

.2. AI for healthcare

Medical diagnosis has been a classic target of AI research,
uch as the MYCIN project in the 1970s (Buchanan & Shortliffe,
984). While classic expert systems relied on human-curated
ules, modern expert systems like WATSON exploit data mining
nd machine learning to extract knowledge from vast collections
f documents that no single human being could read in a life-
ime (Xu et al., 2019). Furthermore, machine learning from big
iomedical datasets, such as genomics and brain imaging data,
as been utilized for diagnosis and prognosis of various diseases
Esteva et al., 2017; Uddin et al., 2019).

In the face of the COVID-19 pandemic, AI researchers also tried
o apply machine learning to diagnose the disease from X-ray
r CT images before PCR testing became widely available (Desai
t al., 2020; Jamshidi et al., 2020). Prediction of the spread of
nfection and numbers of patients and fatalities under alternative
ets of prevention measures is also another important domain in
hich models based on big data are being utilized (Arik et al.,
020).
Development of a new drug requires screening of numerous

andidate structures, which can take many years. Docking sim-
lations of potential pharmaceuticals with target molecules can
ccelerate such searches, but requires knowledge of the 3D struc-
ures of target molecules. Predicting protein structures from gene
equences has been regarded as a grand challenge in biology.
recent approach based on deep learning, AlphaFold (Senior

t al., 2020) was recognized as the first practical solution to this
hallenge at the CASP-14 competition (Jumper et al., 2021).
544
3.3. The Nobel Turing Challenge

How can AI promote scientific discoveries? The Nobel-Turing
Challenge (Kitano, 2016, 2021) is for an AI system to make a
scientific discovery worthy of a Nobel Prize, by 2050, without the
Nobel Committee’s realizing that it was from an AI system. This
is the Turing test at the Nobel Prize-level scientific activities by
AI systems.

The challenge has two sub-goals. One is to determine what
it takes to achieve a major scientific discovery and how we can
understand and reproduce the process of scientific discovery. AI
systems may find an alternative approach to scientific discovery,
very different from what humans are doing now.

The second goal is to see how an AI system can become like
a human scientist, autonomous enough to be able to choose the
research topic and to be able to explain and communicate the
findings to other members of the community. Such a system must
be able to justify why a specific topic needs to be pursued and
to propose extending collaborations. The second goal essentially
implies that the machine must be able to align its value system
with ours.

Although high-throughput machines and sophisticated analy-
ses are available, scientific discoveries remain at a pre-industrial
revolution stage. After researchers gather all the data, they scratch
their heads and ponder the meaning. This process has changed
little and the major challenge is how to automate the process of
scientific discovery. Scientific discoveries are most often based on
scientific intuition, or by serendipity of chaining unrelated events
by analogy (Dunbar, 2000), or by accident, but how can these be
defined computationally? How can this process be implemented
in machines? That is a very important challenge now.

More than 20 years after it was established (Kitano, 2002),
systems biology is facing the challenge of massive data and com-
plexity. Systems biology is the science of AI, or AI–human hybrid
systems. Mathematical frameworks have been developed to ex-
tract mathematical models underlying observed data (Bongard &
Lipson, 2007; Brunton et al., 2016; Schaeffer, 2017).

There is, however, an information horizon problem. More than
2 million papers are published every year, or more than 4,100
papers per day, which is beyond the limit of human cognition.
For example, we created the yeast signaling pathway 10 years
ago by reading 1,500 papers (Kaizu et al., 2010), but it is almost
impossible to update it by unaided human effort. There is also
the issue of minority reports: How do we evaluate a small num-
ber of studies that conflict with the majority? Can such results
simply be dismissed, or could they represent new discoveries for
specific conditions? Another problem is human cognitive biases,
such as anchoring bias, confirmation bias, and premature closure
(Kahneman, 2011).

The fundamental premise of the Nobel-Turing Challenge is to
create an engine for scientific discovery. Machine discovery is not
a new concept. One of the first systems was Dendral, created in
the late 1960s by Feigenbaum for discoveries in organic chem-
istry (Lindsay et al., 1980). Most recently, AlphaFold achieved
atomic-level prediction of protein 3D structures from amino acid
sequences by deep learning of known protein structures in a
public database (Jumper et al., 2021; Jumper & Hassabis, 2022).
Moreover, the ‘‘robot scientist’’ by Ross King creates hypotheses
in yeast genetics, generates experimental protocols, runs fully
automated robotic experiments, and performs data analysis to
close the loop for new hypothesis generation (Coutant et al.,
2019; King et al., 2009).

3.4. Processes of scientific discoveries

What are the major challenges to further progress in
scientific discoveries? AI can redefine scientific discovery by
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erforming massive searches and verification in a hypothesis
pace, but it cannot search in an exhaustive manner, so how can
he search be structured? Can there be a computational definition
f serendipity?
Let us consider two examples. The first is the discovery of

PS cells by Shinya Yamanaka, who was awarded a Nobel Prize
n Physiology and Medicine in 2012 (Takahashi & Yamanaka,
006). From the FANTOM database, Yamanaka and colleagues
iscovered 24 candidate genes that can initialize a cell. They
hen performed single-gene knock-out experiments to identify
he four Yamanaka factors necessary to induce pluripotent stem
ells. This was accomplished by search and optimization.
The second example is the discovery of a conducting polymer

hin film by MacDiarmind and Heeger, who were awarded a
obel Prize in Chemistry in 2000 (Shirakawa et al., 1977). This
iscovery happened with the fortuitous formation of a polyacety-
ene thin film when a student accidentally used a reagent at
00 times higher concentration than intended. The researchers
hen optimized conditions for creation of polyacetylene thin film
nd for electrical conductivity. This illustrates a case of accident,
earch, and optimization.
The question is, ‘‘How can a machine reproduce processes

ike these, or achieve them by an alternative process?’’ There
an be several strategies for this Nobel Turing Challenge. One
s for capable research labs to harness AI assistants to facilitate
cientific discovery. The GARUDA platform connects databases,
imulators, and other tools, and is being used to predict heart
rrhythmias and to perform multi-omics data analysis (Ghosh
t al., 2011). In the ERATO-AMED project on influenza drug dis-
overy, a pipeline has been established to extract knowledge from
he literature, construct network models, and control theoretical
nalyses of critical nodes in drug design, such as searching for
ead structures, performing docking simulations, and integrating
umans and robots in the lab for experimental verification.

.5. Science by AI and by humans

For an autonomous AI scientist, having a single, fixed pipeline
s not enough (Kitano, 2016). The success of AlphaGo was based
n hypothesis generation using a policy network and verifica-
ion by a Monte-Carlo tree search using a value network (Silver
t al., 2016). AlphaGo started with large-scale data from human
ompetitions and explored billions of simulated self-plays until it
as ultimately able to defeat human competitors. AlphaGo Zero
id not use human data, but by further refinement, it became
ore adept than either humans or AlphaGo (Silver et al., 2017).
hat we learned from this is that humans play games using

trategies that humans can understand and with which they are
omfortable, but machines explore the game space in ways that
umans never imagined and at which they are much more skilled
Fig. 1 A).

In the game of Go, simulation is very precise and efficient, but
chieving high-precision experiments in biology in combination
ith AI/ML and modeling/simulation is a much bigger challenge.
ne significant conundrum is how to handle negative data, which
re important for machine learning. Existing papers and data tend
o be biased toward positive results, which may be even harmful
or machine learning algorithms.

Many people say that asking the right questions is essential
or scientific discovery and doubt whether AI can ask the right
uestions (Choe & Mann, 2012). But this may be due to human
ognitive limitations and sociological limitations scientists face to
ake discoveries during their research careers. However, if this
ottleneck can be eliminated with greatly accelerated hypothesis-
esting cycles so that every question can be answered quickly,
sking the right questions may no longer be so important. Asking
545
only the ‘‘right’’ questions from a human perspective may actually
be suboptimal (Fig. 1B).

Massive searches and verification of hypothesis space may
redefine scientific discovery. One issue is whether there should
be one universal AI scientist, or a population of specialized AI sci-
entists collaborating with each other. The latter is similar to what
human scientists do and may produce results in the near future,
together with human scientists, but specialized AI scientists may
make big discoveries that human scientists cannot make.

At the end of the day, we may have a better understanding
of what serendipity means and what constitutes scientific in-
tuition. With AI scientists, we would probably find alternative
forms of scientific discovery at unprecedented speed. In creating
autonomous intelligence that can evolve by itself, we also need
to address ethical concerns.

4. Risks of AI and neurotechnologies

As we have seen above, the joint progress in AI and neu-
roscience has transformed super-human AI agents from science
fiction to reality. However, this progress raises social concerns in
ethics and governance. Norbert Wiener wrote (Wiener, 1960):

We had better be quite sure that the purpose put into the machine
is the purpose which we really desire.

When we create something with a purpose, we must also con-
sider the risk of unintended use or failure to achieve the purpose.
Because we are deeply engaged in science and technology, we are
distressed when science and technology are misused.

Progress in science and technology has opened new horizons
to human civilization, and in return, it has caused various inci-
dents and accidents. The Golem book series by Collins and Pinch
(Collins & Pinch, 2012, 2014) discussed various incidents in which
technologies were misused, or spiraled out of control, including
the Chernobyl disaster and ‘‘Climategate’’. They also question the
structure of society and the responsibility of the experts who
created the Golems. This is why we should consider not only
the risks of AI and neurotechnologies, but also responsibilities of
researchers and engineers in AI and brain sciences.

There are different types of risks that we need to consider. One
is intentional abuse by humans, attacking other humans, due to
greed, ambition, or hatred. Another type is unexpected malfunc-
tions or side effects of technologies, despite their intended use
for good. Beyond these problems are indirect effects on society,
e.g., a technology benefiting some, but disadvantaging others.
Below we examine different types of risks associated with AI and
neurotechnologies.

4.1. Intentional abuse

In addition to unintended disasters resulting from new tech-
nologies, we must worry about intentional abuses. ‘‘Deep fake’’
pictures and movies are an example of how AI can empower
people with mischievous or malicious intent. Another case is Dr.
Evil in Austin Powers movies (Roach, 1997), who is not interested
in benefiting human beings, but employs AI systems that will
enable him to take over the world. Misuses of AI are an extension
of the problem we already have with cybercrime, which is already
a trillion-dollar problem, but will become much worse because
we may lose control over how AI systems perform. And then the
consequences for humanity will be very serious.
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Fig. 1. (A) AlphaGo (Silver et al., 2016) started with large scale data of human Go playing and then explored billions of simulated self-play to ultimately defeat
umans. AlphaGo Zero (Silver et al., 2017) did not use human data and with further refinement, became more capable than human competitors and Alpha Go.
achines can explore the game space in ways that humans never imagined and can actually become more capable. (B) Questions humans can ask are limited by

heir cognitive capacity and research careers. If super-fast hypothesis-testing can answer every question quickly, asking the right questions may not be so important
or AI scientists.
.2. AI in battlefields

Among many risks of AI, its use in autonomous lethal weapons
s the most imminent and serious (Russell, 2015). We can build
obots that can replace humans. And this raises dilemmas when it
omes to robots in the battlefield. There is a risk of lower restraint
n attacking humans if machines are to make decisions. Currently
here are robots based on self-flying drones and anomaly detec-
ion, but none of them are as flexible or versatile as humans
et.
There is an account of how soldiers fought the Taliban (Scharre,

018). A girl of five or six years headed out of her village herding
oats. She left the goats and then Taliban fighters arrived soon
fter. The laws of war do not specify a lower age limit for
ombatants, who are classified based on behavior. If the girl was
potting the enemy for the Taliban, then she was a lawful target
or elimination. Of course, killing her would have been wrong,
546
morally, if not legally, but what would a machine have done in
this case, if it had been programmed to kill enemy combatants?
It would have attacked the girl. Humans have a responsibility to
carefully consider what decisions robots should be permitted to
make.

Machine–human relationships are also important. There is a
risk of humans anthropomorphizing AI robots, and misplacing
rights and responsibilities. In a military experiment in which a
mine sweeping robot had its limbs blown off, a soldier requested
that the experiment be halted on grounds that the test was
inhumane (Washington Post, 2007). This example suggests that
people are likely to misjudge robotic capacities in other ways, and
clearly illustrates the importance of considering moral agency and
responsibility in the use of AI in war.

This problem is not only the responsibility of researchers
directly involved in military research, because civilian technolo-
gies can often be diverted for military use. Technologies for
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utonomous vehicles or medical care can also be used in military
ffairs. This is why researchers not directly in military projects
eed to remain vigilant in regard to ethical questions.

.3. Brain–computer interfaces and cognitive enhancement

With advances of electronic devices and machine learning,
t is becoming feasible to extract brain signals from electrodes
ver the skull or implanted in the brain. While the brain com-
uter interface (BCI; also called brain machine interface, BMI)
an yield huge benefits for patients with spinal cord injuries or
myotrophic lateral sclerosis (ALS), it also raises security and
thical issues. As all online computers globally are subject to
yber attacks, how can we avoid brain hijacking by attacks to
rain-connected computers? And even if safety and reliability of
CI can be established, there will be attempts by healthy people
o use it for cognitive enhancement, which can create ethical and
egal issues regarding agency and responsibility.

A discussion by a group of neuroscientists and AI researchers,
orningside Group, identified four ethical priorities in BCI: pri-
acy, identity, agency, and equality (Yuste et al., 2017). Subse-
uent discussions at the Global Neuroethics Summit that brought
ogether researchers from the International Brain Initiative (IBI,
ttps://www.internationalbraininitiative.org) identified five ma-
or questions for neuroscientists (Global Neuroethics Summit Del-
gates et al., 2018):
Q1. What is the potential impact of a model or neuroscientific

ccount of disease on individuals, communities, and society?
Q2. What are the ethical standards for biological material and

ata collection? How do local standards compare to those of
lobal collaborators?
Q3. What is the moral significance of neural systems that are

nder development in neuroscience research laboratories?
Q4. How could brain interventions impact or reduce auton-

my?
Q5. In which contexts might a neuroscientific technology/

nnovation be used or deployed?
Their perspective paper considers practical issues in the con-

ext of multiple cultural backgrounds, such as the individual
ersus society and the brain versus the body (Wang et al., 2019).

.4. AI affects people’s decisions

Even without electrodes in the brain, AI is already affecting
ow people perceive the world and make decisions. AI classifica-
ion and recommendation programs trained by human outputs
an learn existing biases and inequity and can reinforce them
r make them persistent. Efforts have been made to remove
nethical biases from training data sets or learned results, but
here are even deeper issues in interactions between AI and users.

Content selection algorithms in social media choose news
rticles and videos for people to read and watch, which occupy
uch of the time of billions of people every day. These algorithms
re designed to maximize click-through, or some other proxy,
uch as engagement and attention. In order to maximize click-
hrough, they send us material of interest to us, which admittedly,
s better than sending us material of no interest.

But in fact, that is not just what these algorithms do (Benkler
t al., 2018; Reich et al., 2021). They do not simply learn what
eople want. Reinforcement learning algorithms execute actions
n order to change the state of the world so as to maximize their
eward. In this case, the state of the world is a human brain.
n essence, what the algorithms do is to modify people to be
ore predictable in their clicking behavior. They do that because
reater predictability makes it easier for the algorithm to send

eople content that they will select. In so doing, the algorithm
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is simply maximizing its objective, but it has no notion that the
human users might become an eco-terrorist, a neofascist, or any
other kind of extreme, but predictable person (Carroll et al., 2021;
Russell, 2020). There are already some studies on how to avoid
such problems (Stray, 2020; Stray et al., 2021).

4.5. Social gaps and human enfeeblement

As Andy Clark notes, people are already natural-born cyborgs
(Clark, 2003). In addition to dependence upon glasses to supple-
ment vision, people rely on digital spaces for their memories and
information processing. Scheduling and communication records
are stored in digital spaces. Research, writing, and meetings can
be no longer be accomplished without information services and
devices. Living in a modern society means living as a cyborg.

A popular fear about AI and robotics is that they steal jobs
from humans, leaving people unemployed. The worst scenario is
that thoughtful human experts are replaced by simple AI agents
that can handle routine tasks quickly. However, an opposing
scenario is that AI and robotics empower people in many jobs
and create new businesses, so that people can enjoy life, less
burdened by simple labors. What is actually occurring is a mix
of both, causing disparities in society with people who create
AI, those who utilize AI, and those who can do neither and just
wind up as data sources for AI. Such disparities can cause huge
inequalities within and between countries, which may exacerbate
social and international tensions.

As AI becomes more advanced and autonomous, the need for
humans to create AI may diminish. This leads to what is called
the ‘‘Wall-E problem’’, after a movie in which AI systems were de-
signed to run civilization on behalf of humans. In such a scenario,
humans would no longer have an incentive to understand how
their own civilization works. They would simply be beneficiaries
or recipients. Essentially they would be passengers on a cruise
ship on a cruise that continues forever. This is a disastrous future.
It is a cultural problem because we may concede management of
civilization not to the next generation of humans, but to the next
generation of machines. We have to understand how societies can
maintain cultural and intellectual vigor in spite of increasingly
prevalent AI. At the moment, these problems are completely un-
resolved, and new ideas are needed to solve them. To protect the
dignity and value of human beings while advancing technology
and science, multi-stakeholder discussions in various fields such
as philosophy, law and society are required.

5. Ethics and governance of AI and neurotechnologies

Research in artificial intelligence and neuroscience that en-
ables human-like or super-human intelligence also raises ques-
tions regarding the interface between science, technology, and
society. It is a responsibility of scientists to imagine how their
research will be applied to society. Discussing ethics and gover-
nance upstream of the research is really important. Responsible
research innovation (RRI) is a key term for asking what kind of
society we wish to inhabit. This is not a question that can be
answered easily. Therefore, we must continue dialogue with the
general public.

In fact, many AI researchers have already taken those risks
seriously and initiated such discussions. For example, the ethics
committee of the Japanese Society for Artificial Intelligence (JSAI)
issued the following guidelines in 2017 (http://ai-elsi.org/archives
514):

1. Contribution to humans
2. Compliance with laws and regulations
3. Respect for the privacy of others

4. Fairness

https://www.internationalbraininitiative.org
http://ai-elsi.org/archives/514
http://ai-elsi.org/archives/514
http://ai-elsi.org/archives/514
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).
5. Security
6. Action with integrity
7. Accountability
8. Communication with society and self-development
9. Compliance with ethical guidelines by AI itself
The unique feature of these guidelines is Article 9, implying

that AI itself must abide by the policies described above in the
same manner as members of the JSAI, in order to become quasi-
members of society. There is a question whether AI will be given
basic human rights, such as freedom of expression and unsu-
pervised autonomy, if it becomes a human partner. Members of
the JSAI ethics committee added this article to promote a deeper
discussions on the ideal form of artificial intelligence.

The Asilomar Conference in 2017 concluded with 23 principles
for safe governance of AI technologies (https://futureoflife.org/ai-
principles/). In 2019, the EU’s expert group on AI presented Ethics
Guidelines for Trustworthy Artificial Intelligence (https://digital-
strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
Academic, industrial, and social organizations formed a non-
profit organization Partnership on AI (https://partnershiponai.
org) which aims to create actionable programs for the AI com-
munity.

The meta-analysis of AI guidelines by many governmental
and non-governmental organizations identified convergence to
five ethical principles: transparency, justice and fairness, non-
maleficence, responsibility, and privacy (Jobin et al., 2019). Now
the important question is how these principles can actually be
implemented in a reliable and sustainable way (Hickok, 2020;
Mittelstadt, 2019).

5.1. Human compatible AI

In 1950, Alan Turing, the founder of computer science and ar-
guably also the founder of artificial intelligence, published a very
famous paper, ‘‘Computing Machinery and Intelligence’’, which
laid out some of the basic ideas of AI and defined what we now
call the Turing test (Turing, 1950). He also predicted the appli-
cation of machine learning as the best way to build AI systems,
among many other very innovative ideas.

What people are less familiar with a talk that he gave on the
radio in 1951, in which he said,

It seems probable that once the machine thinking method had
started it would not take long to outstrip our people powers. At
some stage therefore we should have to expect the machines to
take control.

This was said with almost a sense of resignation. He offered no
solution. It was, and continues to be, a very pessimistic prediction
about the future.

What we need to do today is to explain why this problem
arises and why it is the case that better AI leads to worse out-
comes. We have already considered scenarios in which greedy
or hateful people use AI technologies to exploit or attack other
people. However, even among people with no intent to harm
others, AI can still cause problems in trying to serve optimally.
A new book, entitled, ‘‘Human Compatible Artificial Intelligence’’
(Russell, 2020) analyzes how such problems occur and proposes
how we can avoid them in order to develop AI that is compatible
with human existence.

We already have self-driving cars and AI systems have beaten
human champions in games like Go and chess, which were pre-
viously regarded as the pinnacle of human intellectual achieve-
ment. As this progress continues, AI systems will eventually make
better real-world decisions than humans. The capacity to make
sound, wise decisions gives us power over the world. Knowledge
and intelligence are power.
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What we are going to do is to build systems that are more
powerful than ourselves. So the question that Turing asked is,
‘‘How do we retain power over entities more powerful than
ourselves, indefinitely?’’ Turing had no answer for that question,
and that was the reason for his pessimism. Stephen Hawking
made a similar point, in an editorial that was co-authored with
Russell, Tegmark, and Wilczeck in 2014 (Hawking et al., 2014):

Success in creating AI would be the biggest event in human
history. Unfortunately it might also be the last, unless we learn
how to avoid the risks.

That editorial observed that it is possible to escape the path
that Turing predicted. To do that, we have to understand the
source of the problem. The source lies in the way we think about
artificial intelligence, which we call the standard model of AI. The
standard model is to create machinery that achieves or optimizes
objectives that we specify. The objective is defined by humans
and plugged into the machine, which then finds a way of solving
it. In fact, one could say it is the standard model underlying much
of the technical innovation of the 20th century.

For example, if one tells a self-driving car ‘‘take me to the
office by 9 am’’ or ‘‘as soon as possible’’, the self-driving car
figures out how to do that. The car simply adopts the destination
and time as its objective. This is how we build all AI systems
today. The problem is that when we start moving out of the lab
and into the real world, we find that we are unable to specify
objectives completely and correctly. For example, what if there is
a traffic jam or snowfall?

This is not a new point. In fact, we’ve known this for thousands
of years. For example, in the ancient Greek legend, King Midas
asked the gods that everything he touched might turn to gold.
This was the objective he specified, and the gods granted his
objective. They were the optimizing machinery. Of course, as the
story goes, his food, his drink, and his family all turned to gold,
and then he died in misery of starvation. Then there are all those
tales of the Genie in the Lamp. When the possessor of the lamp
rubs the lamp, the Genie grants him three wishes. What is the
third wish? It’s always, ‘‘Please undo the first two wishes because
I’ve ruined the world!’’ In fact, many cultures have the same basic
legend or story, just to remind people that getting what one asked
for is not always what one really wants.

Unfortunately, with the standard model of AI, we get what
we ask for. A modern example is what has happened with social
media, as presented above. The algorithm just wants the user
to be predictable, and that’s what it does to the user. What
we see from this lesson is that with the standard model and
poorly specified objectives, the better the AI system, the worse
the outcome. That is, the more capable the AI system, the more
it will be able to mess with the world in order to achieve this
incorrectly specified objective. In a sense we are setting up a
chess match between ourselves and the machines with the fate of
the world as the prize. We don’t want to be in that chess match.

A possible alternative to maximize the objective is to achieve
it passably well. However, setting a particular threshold can also
be problematic under uncertainty, e.g., driving to the office by a
given time despite traffic jams or snowfalls. Another proposal is
‘‘quantilizers’’ (Taylor, 2016), which choose an action randomly
from those that achieve above a given percentile threshold. The
quantilization approach is robust under some restrictive assump-
tions, but can have arbitrarily bad downside risk in general.

5.2. New principles for provably beneficial AI

These arguments suggest the need for a new model for arti-
ficial intelligence, or what Russell has called ‘‘Provably Beneficial

https://futureoflife.org/ai-principles/
https://futureoflife.org/ai-principles/
https://futureoflife.org/ai-principles/
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://partnershiponai.org
https://partnershiponai.org
https://partnershiponai.org
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Fig. 2. In the ‘‘assistance game’’ setting (Russell, 2020), the goal of the robot (R) is to satisfy uncertain preferences of the human (H) by learning them through
interactions with humans. When the utility (U) of an action may be negative, the robot is motivated to ask permission, or switch itself off, rather than just acting.
b

AI’’ (Russell, 2020). If we design AI according to the right princi-
ples, they will necessarily be beneficial to us and we will avoid
the problem of misspecified objectives.

There are three principles. The first is that a robot’s only goal
is to satisfy human preferences. Here, human preferences do not
just mean what kind of pizza we like. It is our preferences about
everything we care about for the entire future. And it is not just
one individual’s preferences, but the preferences of all human
beings, which may vary enormously among people in different
societies.

The second principle is that a robot does not know what those
preferences are. And the robot knows that it does not know what
those preferences are. This uncertainty enables us to design AI
systems that are safe, as explained below.

The third principle is that the robot learns about human pref-
erences from the evidence provided by our choices. We do not
provide complete evidence about our preferences. It is imperfect
evidence because we don’t behave perfectly rationally. Our be-
havior doesn’t perfectly reflect our true underlying preferences.
Nonetheless, it provides evidence about what those preferences
are.

We can turn those three principles into what we call an
‘‘assistance game’’ (Shah et al., 2020, 2019). This is a formal math-
ematical framework that defines the problem the AI system is to
solve. It is a game because it has multiple participants, humans
and machines, and incentive systems. The entire purpose of the
machines in this game is to assist humans. And when we look at
the solutions of these assistance games, we find that the robot
necessarily defers to the humans and follows their instructions,
because those instructions convey information about preferences.
When the robot is not sure whether its plan is consistent with
our preferences, it is motivated to ask permission before carrying
out the plan (Fig. 2). These desirable properties all arise from
having a sufficiently broad prior belief about human preferences.
If the robot’s belief assigns probability zero to all preferences
that are acceptably close to actual human preferences, then it
is essentially operating according to the standard model and its
 p
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behavior may be problematic. On the other hand, it makes sense
to build in prior probabilities that assign higher probabilities to
preferences that plausibly correspond to what most or nearly all
humans prefer. For example, most humans probably prefer better
health to worse health, all other things being equal.

5.3. The off-switch problem

In an extreme case, a robot that is solving an assistance game
will allow itself to be switched off. And this is really the core of
the control problem. If you can’t switch the robot off, then it’s
‘‘game over’’. With this new approach to AI, the better the AI, the
better the outcome, because the AI system is better able to learn
our preferences and it is better able to assist us in achieving them.

If we do things the classical way according to the standard
model of AI, we give the robot an explicit goal, for example, to
fetch the coffee. So now the robot says to itself ‘‘I must fetch the
coffee. I can’t fetch the coffee if I’m dead. Therefore, I must disable
my off-switch’’. And perhaps it will drive away all the customers
at Starbucks, just to be certain it can return with the coffee in
time. This is how a robot that is programmed according to today’s
standard model of AI might behave, and this is what we want to
avoid in the new model.

When there is uncertainty about the objective, even though
the robot may know that you want coffee, it may be uncertain
about all your other preferences (for example, your preferences
regarding the well-being of other customers at Starbucks). This
means that the robot will think to itself in a very different way:
‘‘A human might switch me off, but only if I’m doing something
wrong’’.

According to the first and second principles, the robot knows
that it doesn’t know what is wrong, but it knows that it does
not want to do anything wrong. This actually gives the robot an
incentive to allow itself to be switched it off. In fact, it wants to
e switched off, rather than to do something wrong.
We can formulate this informal argument mathematically, and

rove the theorem that a robot that is designed this way is
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emonstrably beneficial to humans and that it will allow a human
o switch it off. It has a positive incentive to do so, as long as
t is uncertain about the human’s preferences. There is actually
uch research needed on this new framework, some of which has
lready been done (Fickinger et al., 2020; Hadfield-Menell et al.,
017; Shah et al., 2020, 2019), but more still needs to be done to
ut this new model into practice (Christian, 2020; Gabriel, 2020).
One direction we must pursue is to change AI from operating

n behalf of a single individual to operating on behalf of mankind.
aking decisions on behalf of many people has been studied for

housands of years in moral philosophy, from Aristotle and Plato
o Bentham and Mill for the theory of utilitarianism and modern
conomics. Tradeoffs are inevitable – after all, not everyone can
e Ruler of the Universe – and utilitarian theory describes a
ormative criterion for such tradeoffs. Other moral theories posit
urther constraints that may override or replace utilitarian prin-
iples. Foe example, ‘‘sadistic’’ preferences, whereby one person
erives utility solely from the suffering of another, should be
xcluded.
We also have to confront the fact that humans are not per-

ectly rational and our behavior doesn’t always perfectly reflect
ur underlying preferences. In order to understand how humans
ehave in providing evidence of their underlying preferences, we
ave to look to cognitive psychology and neuroscience to build
odels of human cognition and then to invert the models to
scertain the underlying preferences from observed behaviors.
On the practical side of AI, we suggest that the AI community

ill have to rethink theoretical foundations. The present theory
f AI is founded on the standard model, in which it is assumed
hat the objective is completely and perfectly known. We now
ee that this assumption is false. Each area of AI will need to
e rebuilt, including search algorithms, planning algorithms, rein-
orcement learning, and natural language understanding. We can
lso examine applications that really demonstrate the value of the
ew model. For example, self-driving cars need to understand the
references, not only of the passenger, but also of pedestrians and
f all other cars on the road. The AI system controlling a vehicle
hould make decisions given its understanding or lack thereof, of
he preferences of other vehicles (their drivers and passengers)
s well as the preferences of its own passengers. These are the
inds of AI systems that we would really like to build and that
e would like to own, because they will do what we want. This

s both possible and desirable.

.4. Autonomy and sociality

Most machine learning algorithms are formulated to mini-
ize or maximize an objective function. A reinforcement learning
gent learns to maximize the reward acquired, but designing an
ppropriate reward function is by no means trivial.
In a series of works using ‘‘Cyber Rodents’’, it has been demon-

trated that reward functions to promote survival and software-
eproduction can be acquired by embodied evolution within
colony of robots (Elfwing et al., 2011) (Fig. 3). In some of

hese robot colonies, robots adopted different reproductive tactics
Elfwing & Doya, 2014). There have also been studies on ‘‘in-
rinsic motivation’’, allowing agents to have curiosity to promote
irected exploration (Oudeyer, 2018).
These studies have already demonstrated that AI agents can

et their own goals as reward functions to survive (to avoid
eing discharged or switched off), to reproduce (to proliferate via
opies), and to acquire information (which can contribute to the
ormer). This may sound like a dream, but some people find it
angerous.
AI agents that can set their own goals and learn to accomplish

hem may be fantastic. They may make scientific discoveries,
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deliver new technologies, start new industries, and create new
cultures, but at the same time, we must be very careful about the
risks they pose, as presented in previous sections.

Even if such creative AI agents perform perfectly, they may
have side effects that are hard to predict. Some of them may
behave irregularly or become uncontrollable with some param-
eter setting or in unexpected situations, just as humans suffer
neuropsychiatric disorders. However, the most immediate danger
is that autonomous AI agents can be exploited by extremists to
satisfy greed, ambition, or hatred.

In addressing those risks, learning from human society and
from the brains that create the society may be very impor-
tant. This is because, even though autonomous AI agents can be
dangerous, humans are also very dangerous, arguably the most
dangerous species on this planet. Mankind has already extermi-
nated many species and may yet do the same to itself, by nuclear
war or environmental destruction, thanks to its intelligence.

Nonetheless, human society has also created mechanisms to
avoid such catastrophes. Democracy is one such mechanism to
avoid over-concentration of power in any one person or group,
which most often leads to resource misuse, tyranny, or war. In
politics, we implement elections with term limits, separation of
governmental powers, and local governance. In the economy,
policies like anti-trust laws and the right to strike have been es-
tablished to avoid over-concentration of economic power, which
is not only unfair, but can also hinder innovation. In science, peer-
review is intended to find any flaws in prominent theories or in
new technologies, in order to promote sustained development.

In the near future, we would be working with varieties of
AI agents with diverse expertise. In such a society, it would be
desirable to apply the wisdom of democracy to AI agents. We
should not allow just one AI program unlimited control over
the world. We should have multiple, open-sourced AI programs
with overlapping capabilities to provide services. Perhaps the
most desirable way is to employ heterogenous AI agents that can
explain their answers to form committees or for peer-reviewing
mechanisms to avoid misuse of power (Montes & Goertzel, 2018).

In such a future society, how those AI agents might communi-
cate with each other efficiently, but in a human-comprehensible
way, is a fascinating research issue. Clonal AI agents might just
transmit their hidden layer vectors in order to communicate,
but that does not work among heterogenous, intelligent agents,
including humans. AI agents should also have some kind of so-
cial skills to enhance their capabilities. A selfish agent should
eventually be excluded from the working community.

There has been great progress in understanding the brain’s
mechanisms for social behaviors (Rand et al., 2012). Traditionally,
evolutionarily older parts of the brain, like the amygdala, were
supposed to govern animal-like, brutal behaviors, while newer
parts of the brain, like the prefrontal cortex, are the source of
rational behaviors. However, recent MRI studies on social orienta-
tion have revealed that pro-social people who favor equal division
of rewards tend to show higher volume and activity in the amyg-
dala, while sociopathic people, who just seek to maximize their
own rewards have well-developed prefrontal cortices, activated
during selfish decisions (Haruno & Frith, 2010; Yamagishi et al.,
2016).

This suggests that before acquisition of high-performance pre-
diction and planning capabilities, our brains had already evolved
to care for others and to favor fair division of rewards (Levine,
2021). Perhaps in the design of operating systems or core libraries
of AI agents, sensitivity to responses of humans and other agents
should be central functions. This would help avoid runaway be-
havior like the coffee fetching robot mentioned in the previous
section.
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Fig. 3. (A) Cyber Rodent robots have two basic capabilities: recharging from batteries for survival and exchanging parameters of the program (genes) by infrared
communication for software reproduction (Doya & Uchibe, 2005). When a robot depletes its internal battery without successful recharging, it is removed from the
colony (death). When robots exchange genes by IR communication (mating), a small noise is added for mutation and adopted with a probability proportional to the
sender’s charge level. (B) Through this embodied evolution framework, distinct reward functions for the sight of a battery pack and for another robot evolved to
promote frequent battery acquisition and mating (Elfwing et al., 2011).
6. Discussion

In this article, we first reviewed the co-evolution of AI and
rain science and discussed three major ways that AI must emu-
ate the brain: energy efficiency, data efficiency, and autonomy
nd sociality. We then examined benefits and risks of AI and
eurotechnologies, including how AI can facilitate scientific dis-
overies, and types of problems new technologies can create,
ncluding intentional misuse, unintended consequences, and so-
ial disparities. We then considered ethics and governance of
I and neurotechnologies. One proposal is to let AI agents con-
inually infer human preferences and another is to learn from
emocratic human society to prevent excessive consolidation
f power. These proposals are rather orthogonal and may be
ntegrated in the future designs of more autonomous AI agents.
551
6.1. Open issues in AI and neurotechnologies for society

Human Compatible AI argues that the standard model of AI,
to optimize user-specified objectives will lead to a loss of human
control as AI systems become increasingly intelligent and that we
should adopt a new model of AI. If AI is designed to continually
infer human preferences, it will prove beneficial to humans and
will allow humans to retain control over it. One critical question
regarding this paradigm is ‘‘What is human preference?’’ There
are billions of humans with as many individual preferences. How
can a machine make decisions on behalf of humanity? How
should it trade off among the conflicting preferences of many
people? One particularly difficult scenario involves persons who
derive pleasure from the suffering of others. In cases of such
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‘negative altruism’’, AI must be designed to give no weight to
estructive preferences.
Perhaps AI should develop a dynamic way to align itself with

ifferent value systems. Rather than uploading any specific value
ystem into the AI system, the AI system should be constantly
ncertain about what people want and how to trade off those
references.
Human beings are imperfect, so mapping from true underlying

references to actual behavior is very complicated. We need to be
ble to reverse engineer it to design AI systems. Also preferences
re not stable and are obviously changeable, since we are not born
ith the complex preferences we develop as adults. AI systems
ay exploit their capacity to modify human preferences so as to
ake them easier to satisfy. An example is what happens in social
edia. Whether the change of human preference is good or bad

s nevertheless an open question, since it depends on what the
hange is.
Another issue is how much autonomy or self-judgement we

hould allow AI agents. Can they explore online job markets for
obs that they can do well? Can there be a company run by AI
gents to develop new businesses? Or should AI agents remain as
ervants or employees of humans? How much autonomy should
I agents be given? Perhaps there is no fixed solution and AI
gents must learn continuously, just as humans do.
As in human organizations without diversity of opinion, bad

ecisions often result. An organization composed only of AI agents
ould not perform well. No matter how well such agents learn to

nfer human preferences, they will never do it perfectly. Except
or simple, routine matters, human participation in decision-
aking should be mandatory. A practical question is how to guar-
ntee such human auditing or supervision for an ever growing AI
orld.

.2. Need for inclusive and diverse discussions

Many AI and neuroscience researchers are thinking about the
asic questions of what is human. An emerging field called neu-
ophilosophy addresses such issues by a diverse group of people.
here is no ‘‘ethical prescription’’ for AI researchers, but it is clear
hat we should not continue business as usual in the AI commu-
ity. We have to adopt a new technical foundation that will lead
o better AI system designs. For people in industry, ignoring AI
thics and governance can risk the reputation and survival of the
ompany. Education programs for university students to consider
thics and governance issues of artificial intelligence and robotics
re being created and made accessible online. It is also important
or researchers in the social sciences and humanities to have
dequate understanding of AI and brain science in order to hold
seful discussions about their risks. We are living in a society in
hich science and technology are transforming its infrastructure.
his is why we must create a forum in which the general public
an help to determine what technologies we utilize and how we
anage their use.
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