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Abstract

The brain performs various cognitive functions by learning the spatiotemporal salient fea-

tures of the environment. This learning requires unsupervised segmentation of hierarchically

organized spike sequences, but the underlying neural mechanism is only poorly understood.

Here, we show that a recurrent gated network of neurons with dendrites can efficiently solve

difficult segmentation tasks. In this model, multiplicative recurrent connections learn a con-

text-dependent gating of dendro-somatic information transfers to minimize error in the pre-

diction of somatic responses by the dendrites. Consequently, these connections filter the

redundant input features represented by the dendrites but unnecessary in the given context.

The model was tested on both synthetic and real neural data. In particular, the model was

successful for segmenting multiple cell assemblies repeating in large-scale calcium imaging

data containing thousands of cortical neurons. Our results suggest that recurrent gating of

dendro-somatic signal transfers is crucial for cortical learning of context-dependent segmen-

tation tasks.

Author summary

The brain learns about the environment from continuous streams of information to gen-

erate adequate behavior. This is not easy when sensory and motor sequences are hierar-

chically organized. Some cortical regions jointly represent multiple levels of sequence

hierarchy, but how local cortical circuits learn hierarchical sequences remains largely

unknown. Evidence shows that the dendrites of cortical neurons learn redundant repre-

sentations of sensory information compared to the soma, suggesting a filtering process

within a neuron. Our model proposes that recurrent synaptic inputs multiplicatively regu-

late this intracellular process by gating dendrite-to-soma information transfers depending

on the context of sequence learning. Furthermore, our model provides a powerful tool to

analyze the spatiotemporal patterns of neural activity in large-scale recording data.
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Introduction

The ability of the brain to learn hierarchically organized sequences is fundamental to various

cognitive functions such as language acquisition, motor skill learning, and memory processing

[1–8]. To adequately process the cognitive implications of sequences, the brain has to generate

context-dependent representations of sequence information. For instance, in language pro-

cessing the brain may recognize "nueron" as a misspelling of "neuron" if the brain knows the

word "neuron" but not the word "nueron". However, the brain recognizes "affect" and "effect"

as different words even if the two words are very similar. "Break" and "brake" are also different

words although these words combine the same letters in different serial orders. The brain can

also recognize the same word presented in different temporal lengths. All these examples sug-

gest the inherent flexibility of context-dependent sequence learning in the brain. However, the

neural mechanisms underlying this flexible learning, which occurs in an unsupervised man-

ner, remain elusive.

Segmentation or chunking of sensory and motor information is at the core of the context-

dependent analysis of hierarchically organized sequences [9–12]. However, little is known

about the neural representations and learning mechanisms of hierarchical sequences. Recently,

neurons encoding long-range temporal correlations in the song structure were found in the

higher vocal center of songbirds [13]. These neurons responded differently to the same sylla-

bles (the basic elements of bird song) depending on the preceding phrases (constituted by sev-

eral syllables) or the succeeding phrases. Different responses of the same neurons in different

sequential contexts were also found in the monkey supplementary motor area [14,15]. Hierar-

chical sequences are often assumed to mirror the hierarchical organization of brain regions.

However, the human premotor cortex jointly represents movement chunks and their

sequences [16] and linguistic processing in humans also lacks an orderly anatomical represen-

tation of sequential context [17].

Unsupervised, context-dependent segmentation is difficult in computational models.

Recurrent network models can generate rich sequential dynamics, but these networks are typi-

cally trained by a supervised method. Spike-timing-dependent plasticity was used for unsuper-

vised segmentation of input sequences in a recurrent network model [18]. However, while the

model worked for simple hierarchical spike sequences, it could not learn context-dependent

representations for overlapping spike sequences. Single-cell computation with dendrites could

solve a variety of temporal feature analysis including the unsupervised segmentation of hierar-

chical spike sequences [19], supporting the role of dendrites in sequence processing [20]. How-

ever, context-dependent segmentation was also difficult for this model. Although the

segmentation problem has been partially solved, recurrent connections alone or dendrites

alone are insufficient for solving the difficult segmentation tasks such as exemplified in the

beginning of this article.

Here, we demonstrate that a combination of dendritic computation and a recurrent gating

dramatically improves the ability of neural networks to context-dependently segment hierar-

chical spike sequences. Our central hypothesis is that recurrent synaptic input multiplicatively

regulates the degree of gating of instantaneous current flows from the dendrites to the soma.

We derive an optimal learning rule for afferent and recurrent synapses to minimize a predic-

tion error. The resultant dendrites generally learn redundant representation of multiple

sequence elements while recurrent input learns to selectively gate the dendritic activity suitable

for the given context. Recurrent networks with gating synapses were recently used in super-

vised sequence learning [21].

There is an increasing need for efficient methods to detect and analyze the characteristic

spatiotemporal patterns of activity in large-scale neural recording data. We demonstrate that
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the proposed model can efficiently detect cell-assembly structures in large-scale calcium imag-

ing data. We show two example cases of such analysis in the hippocampus and visual cortex of

behaving rodents. In particular, the latter dataset contains the activity of tremendously many

neurons (~ 6,500), and analyzing the fine-scale spatiotemporal structure of activity patterns is

computationally costly and difficult for any other methods. In contrast, the data size hardly

affected the performance and speed of learning in our model. Surprisingly, the efficiency was

even somewhat higher for larger data sizes. These results highlighted the crucial role of recur-

rent gating in amplifying the weak signature of cell assembly structure detected by the

dendrites.

Results

The dendritic computation with recurrent gating network

Our recurrent network model consists of two-compartment neurons with somatic and den-

dritic compartments (Fig 1A and 1B). The dendritic components receive hierarchically struc-

tured afferent input and recurrent synaptic input, and the sum of these inputs drives the activity

of the dendritic component. Afferent and recurrent connections onto the dendritic component

are plastic and can be either excitatory or inhibitory. Before training, the weights of these con-

nections are initialized by a Gaussian distribution with mean zero (see Methods). The somatic

component receives a nonmodifiable uniform feedback inhibition, which induces competition

among neurons. A similar two-compartment model without recurrent inputs has been studied

in segmentation problems [19]. Here, we hypothesize that recurrent synaptic input multiplica-

tively amplifies or attenuates a current flow from the dendrite to the soma in an input-depen-

dent fashion: The stronger the recurrent input, the larger the dendro-somatic current flow. This

"gating" effect is described by a non-linear function of recurrent input to the neuron and con-

trols the instantaneous impact of dendritic activity on the soma (Fig 1C). As in the previous

models [19,22], all synaptic weights were trained to minimize the prediction error between two

compartments. However, we considered the gated rather than raw dendritic activity in the error

term. The rule derived for afferent synapses is the same as our previous rule [19] except for the

gated dendritic activity in the error term. The learning rule for gating recurrent connections is

novel and depends on the raw dendritic activity prior to gating. We will show below that the

recurrent-driven gating plays a pivotal role in the learning of flexible segmentation. Unless oth-

erwise stated, below the results are shown for network models with multiplicative recurrent

inputs but no additive ones. In this setting, afferent inputs can evoke large somatic responses if

and only if both dendritic activity and gating effect are sufficiently strong. A network model

with both additive and multiplicative recurrent inputs will be considered later.

The role of recurrent-driven gating in complex segmentation tasks

We first demonstrate the segmentation of two spike pattern sequences (chunks) repeated in

input spike trains (Fig 2A). Each chunk was a combination of three fixed spike patterns out of

the total five: “A”, “B”, “C”, “D” and “E”, where the component pattern “E” appeared in both

chunks. Therefore, the two chunks were mutually overlapped. Throughout this paper, we fixed

the average firing rate of each input neuron at 5 Hz over the entire period of simulations, and

chunks were separated by random spike trains with variable lengths of 50 to 400 ms. As train-

ing proceeded, the correlation between the somatic response and gated dendritic activity

increased (S1 Fig). Interestingly, the trained network generated two distinct cell assemblies,

each of which selectively responded to one of the chunks (Fig 2B and 2C). Notably, each cell

assembly responded to the pattern “E” in a preferred chunk of the cell assembly but not in a

non-preferred chunk (Fig 2C and 2D). A network with a constant gating function trained on
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the same afferent input failed to discriminate the pattern “E” in different chunks and conse-

quently could not learn the chunks (S2 Fig). The result suggests the crucial role of the recur-

rent-driven gating in the segmentation task.

The above results suggest that this model can discriminate the context of sequences (i.e., the

relationship between “E” and other component patterns in a chunk). However, it is also possi-

ble that the model separated the overlapping chunks merely relying on the component patterns

that were not common between the two chunks and/or on the nonhomogeneous occurrence

probabilities among the component patterns. To exclude these possibilities, we examined the

case where different chunks shared all component patterns with equal frequencies (Fig 3A,

left). In other words, the same component patterns occurred in different chunks in different

orders (i.e., “ABCD”, “DCBA”, “BDAC”). During learning, the model was exposed to irregular

spike trains recurring the three chunks intermittently (Fig 3A, right). The model developed

distinct cell assemblies responding selectively to one of these chunks (Fig 3B and see S3A and

S3B Fig), thus successfully discriminating the same components belonging to different chunks.

The network mechanism of context-dependent gating

In this model, the recurrent-driven gating provides context-dependent signals necessary for

segmenting overlapping chunks. To gain an insight into the role of recurrent gating in
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Fig 1. A recurrent gated network of compartmentalized neurons. (a) A network of randomly connected
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(right).

https://doi.org/10.1371/journal.pcbi.1010214.g001
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learning, we investigated how the somatic and dendritic compartments and gating factors of

individual neurons behave during training. The dendritic compartments of these neurons

responded to a preferred component pattern irrespective of which chunk the component

appeared, showing that the dendrites were unable to discriminate the same component pattern

as shared by different chunks (Fig 3C). In contrast, the gating factors responded differently to

the same component pattern appearing in different chunks depending on the preceding com-

ponent patterns (Fig 3D). This selective gating is thought to arise from a memory effect which

is generated by recurrent synaptic input and determined by the previous state of the network.

As a consequence, the somatic compartment could selectively respond to a particular chunk

that strongly activated the gating factor during the presentation of the preferred component

pattern (Fig 3E). Similar results are shown for other neurons in the trained network (S3C Fig).
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Fig 2. Learning of overlapping chunks. (a) Two chunks “AEB” (orange shade) and “CED” (blue shade) were repeated in input Poisson spike trains (left). The

chunks were separated by random spike trains with variable lengths of 50 to 400 ms (unshaded). All neurons had the same firing rate of 5 Hz. Example spike

trains during the initial 3 seconds are shown (right). In each chunk, the component patterns “A”, “B”, “C”, and “D” were 50 ms-long and the shared component

“E” was 100 ms-long. (b) Output spike trains of the trained network model. Neurons were sorted according to their onset response times, and only 160 out of

the total 500 neurons are shown for the visualization purpose. A selective cell assembly emerged for each chunk. (c) The average responses of “AEB”-selective

assembly to chunks “AEB” (left) and “CED” (right) are shown. The responses were averaged over 20 presentations of the chunks and normalized by the

maximal response to the preferred chunk (i.e., chunk 1). (d) Responses of a “AEB”-selective neuron (left) and a “CED”-selective neuron in the trained network

are shown. The raster plots show responses over 20 trials.

https://doi.org/10.1371/journal.pcbi.1010214.g002
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To explore the mechanism of the context dependent computation in our model, we ana-

lyzed the structure of recurrent connections in the trained model. Here, we first classified net-

work neurons into 12 sub-groups according to the selectivity for the 4 component patterns of

the 3 chunks. The average values of the weights between each group were then calculated to

quantify the average strength of gating recurrent connections between the subgroups (S4A

Fig). The diagonal elements of the matrix are greater than the non-diagonal elements, suggest-

ing that neurons within the same sub-groups are connected by strong excitatory synapses. A

further analysis of the interactions between the different assemblies (S4B Fig) shows each

assembly has excitatory connections to the assembly corresponding to the next component in
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https://doi.org/10.1371/journal.pcbi.1010214.g003
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the same chunk (e.g., “A” to “B” in chunk 1), while inhibitory connections to the assemblies

for the previous component (e.g., “B” to “A” in chunk 1). Further, strong inhibition was

formed among the assemblies selective to the same letters in different chunks (e.g., "B" in

chunk 1 and "B" in chunk 2). Thus, a structured connectivity consistent with sequence struc-

ture emerges from the context-dependent learning.

The single-cell model proposed previously [19] could not perfectly segment similar

sequence patterns as shown in Figs 2 and 3. Though the consistency between somatic and den-

dritic activities forces the neuron to respond to a specific input pattern, it could not perfectly

discriminate similar patterns involving overlapping components. In the recurrent gating net-

work, recurrent input on each neuron selectively passes one of similar input patterns from the

dendrite to the soma, enabling the context-dependent segmentation. This cooperative function

of recurrent synaptic input is difficult to prove analytically but is understandable because both

afferent and recurrent synapses are trained by the same learning rule to achieve the same goal,

that is, an optimally predictable somatic response.

Like other learning models, the performance of the proposed model varies depending on

the values of multiple parameters. We evaluated the trainable number of sequences for a given

size of the network. This number was larger in a network with 600 neurons than in that of 300

neurons, indicating that performance in learning is degraded as the number of input

sequences is increased (S5A Fig). Second, we measured how the performance depends on the

parameter γ, which determines the hysteresis effects in the mean and variance of past neuronal

activities (Eq (5)-(6) in Methods). As we have shown previously [19], standardization with

moments of membrane potentials is crucial for avoiding a trivial solution. We found that the

performance of learning is deteriorated as the parameter γ is increased (S5B Fig). This result is

reasonable as a larger value of γ weakens the hysteresis effect, making the standardization less

stable. Finally, we explored to what extent the strength of static recurrent inhibitory connec-

tions J=
ffiffiffiffi
N
p

affect the model performance. We measured the performance at various values of

the scaling parameter J and found the best performance at J = 0.5 (S5C Fig). These results

show that the model does not require a fine tuning of parameters as the performance is not

narrowly peaked.

Our model developed low-dimensional representations that strongly reflect the temporal

structures of chunks. The principal component analysis (PCA) of the network responses to the

overlapping chunks shown in Fig 2 revealed that a smaller number of eigenvectors explained a

larger cumulative variance as the training progressed (Fig 4A). At different stages of learning,

the low-dimensional trajectories differently represented the chunks. Before learning, the two

chunks and unstructured input segments (i.e., random spike trains) occupied almost the same

portions of the low-dimensional trajectories (Fig 4B, left). At the mid stage of learning, the por-

tions of the chunks grew while those of the random segments shrank (Fig 4B, middle). Neural

states evolved along separate trajectories at the initial (corresponding to “A” and “C”) and final

(corresponding to “B” and “D”) parts of the chunk-representing portions whereas the middle

part (corresponding to “E”) was tangled. After sufficient learning, the trajectories were

completely separated (Fig 4B, right). As previously shown, recurrent gating crucially contrib-

uted to this separation. Indeed, the network generated almost overlapping trajectories for the

pattern "E" if we fastened recurrent gating during learning and test (Fig 4C) or if we trained

the model with recurrent gating but fastened it during test (Fig 4D). Two trajectories for the

overlapping chunks were not clearly separable due to large fluctuations if we randomly shuf-

fled the learned recurrent connections to destroy their connectivity pattern (Fig 4E). Thus, the

context-dependent gating depends crucially on the learned fine structure of recurrent

connections.
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While the network model could learn noisy chunks as far as jitters in spike times were not

too large (S6A and S6B Fig), the magnitude of jitters strongly influenced learning speed. This

was indicated by the slow saturation of normalized mutual information (see Methods) between

network responses and the true labels of chunks during learning (S6C Fig). The normalized

mutual information took near the maximum value (� 1) as far as the variance of jitters fell
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within the length of chunks (50 ms). This information dropped rapidly beyond the chunk

length (S6D Fig).

Just like the brain can recognize a learned sequence irrespective of the length of its presenta-

tion, a learned pattern is detectable for the network even if the pattern is presented with a

length different from the learned one (Fig 5A and 5B). We quantified the similarity of network

responses to otherwise the same input patterns with different lengths. By calculating the rank-

order correlations between responses to stimuli presented with three different lengths, we

measured to what extent the serial order of neural responses are preserved over different con-

ditions. In the network that learned the original pattern, the similarity increased significantly

for all three durations of stimulus presentation (Fig 5C), suggesting that our model learns the

manifold of temporal spike patterns rather than individual specific patterns. We examined the

relative duration (RD) of input sequence beyond which the gating and non-gating models lose

the ability of recognizing a learned sequence. The spike pattern used in Fig 3 was used. As

shown in Fig 5D, performance was gradually deteriorated in both models as the RD was

increased. While the gating model showed better performance than the non-gating model for

RDs less than 3, the superiority of the gating model disappeared when the RD reached 4. These

results demonstrate that the gating model recognizes sequences with RDs up to about 3. The

robustness shown above raises a question about whether the present model can discriminate

precise temporal spike patterns. Indeed, the network model clearly discriminated between

similar but different input patterns when the inputs were learned as separate chunks. To study

this, we trained the network model with random spike trains involving a repeated temporal

pattern and stimulated the learned model with the original pattern (Fig 5E, top) and its time-

reversal version (Fig 5E, bottom). The cell assembly that only learned the original pattern also

responded to the reversed pattern in a reversed temporal order, meaning that the different

temporal patterns were not discriminable in this case (Fig 5F). Interestingly, the same network

model trained with both original pattern and time-reversed pattern self-organized distinct cell

assemblies selective for the individual patterns (Fig 5G). This result may account for discrimi-

nation between "break" and "brake" when these words were learned as separate entities.

Cell assembly detection in large-scale calcium imaging data

A virtue of our model is its applicability to analyzing large-scale neural recoding data. We

show this in two calcium imaging data. The first data contains the activities of 452 hippocam-

pal CA1 neurons recorded from mice running back and forth along a linear track between two

rewarded sites (Fig 6A, top) [23]. Repetitive sequential activations of place cells were reported

previously in the data (https://github.com/zivlab/island). For the use of our model, we binar-

ized the data by thresholding activity of each neuron at the 50% of its maximal intensity (Fig

6A, bottom). After training, model neurons detected groups of input spike trains that tended

to arrive in sequences, each of which was preferentially observed at a particular position of the

track in a particular direction of run (Fig 6B). Sorting the activities of hippocampal neurons

according to the sequential firing of model neurons (Methods) revealed place-cell sequences

without referring to the behavioral data (Fig 6C).

Our second example is from the visual cortex in mice running on an air-floating ball [24].

The 525 second-long dataset [25] contains the activity of 6,532 neurons recorded by two-pho-

ton calcium imaging from the visual cortex as well as the behavioral data (running speed, pupil

area, and whisking) monitored simultaneously with an infrared camera (Fig 6D) (https://

figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visual_cortex_

during_spontaneous_behaviors/6163622/4). Due to the large data size, detecting cell assem-

blies is computationally challenging in this dataset. After training, the network model formed
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several neural ensembles, each of which displayed distinct spatiotemporal response patterns

(Fig 6E). Interestingly, these neural ensembles showed their maximal responses at different

periods of time, and the pupil area also changed its maximal size depending on active neural

ensembles (Fig 6D and 6E). By sorting cortical neurons according to the response patterns of

model neurons (Methods), we could find the repetition of distinct cell assemblies in the visual

cortex (Fig 6F). The result revealed that active cell assemblies were changed between the early

(< 280–290 s) and late epoch of spontaneous behavior, despite that there was no clear distinc-

tion in behavior (S7 Fig). To find the cell-assembly structures, we grouped co-activated model

neurons (Fig 6G: see Methods). Unexpectedly, the time necessary for learning did not change

much with data size, or the time was even slightly shorter for larger data sizes (Fig 6H). Pre-

sumably, this unintuitive result was because each cell assembly was represented by more neu-

rons in larger data [19].

As the gating mechanism is crucial for context-dependent computation, we studied the

effect of gating on the analysis of neural recording data. We first applied the model without

recurrent gating (this model is equivalent to the previous feedforward network [19]) to the

analysis of hippocampal CA1 data. Interestingly, without recurrent gating, the model could

not separate the two sequences corresponding to forward and backward runs (S8A Fig). Next,

we applied the non-gating model to the data recorded from the mouse visual cortex. The

model showed structured activity patterns (S8B Fig) and detected cell assemblies (S8C Fig).

However, compared to the gating model, the non-gating model generated monotonous

responses, suggesting that the cell assemblies detected were contaminated (S8D Fig). Further,

the responses of the gating model were significantly more correlated with the various behav-

iors of mice than those of the non-gating model (S8E Fig). These results show the crucial con-

tribution of recurrent gating to cell assembly detection.

Redundant information representations on dendrites

Evidence from the visual cortex [26], retrosplenial cortex [27], and hippocampus [28] sug-

gested that the representations of sensory and environmental information in cortical neurons

are more redundant on the dendrites compared to the soma. The dendrites can have multiple

receptive fields while the soma generally represents only one of these receptive fields. The

soma is likely to access information represented in a subset of the dendritic branches that

share the same receptive field. A similar redundant coding occurs in the present somato-den-

dritic sequence learning.

To show this, we constructed a recurrent network of neurons having three dendritic com-

ponents and simulated how the model learns orientation tuning. The individual dendritic

branches were assumed to undergo independent recurrent gating and mutual competition

through softmax (see Methods) (Fig 7A). We repeatedly presented a 40 ms-long random

sequence of noisy binary images of oriented bars every 80 ms. The size of each image was

28×28 (= 784) pixels and each bar has a width of 7 pixels. Each pixel was flipped with the

Fig 5. Context-dependent learning of sequence information. (a) For testing on time-warped patterns, the network was trained on random spike

trains embedding a single pattern. (b) The trained network responded sequentially to the original and stretched patterns with two untrained lengths

(i.e., the relative durations RD of 1.5 and 2). (c) Similarities of sequential order between the responses to the original and two untrained patterns were

measured before (blue) and after (purple) learning. Independent simulations were performed 20 times, and p-values were calculated by two-sided

Welch’s t-test. (d) The input spike pattern used in the task in Fig 3 was considered (left) to quantify the degree of time warping that can be tolerated by

our network model. Performance of both gating and non-gating models trained by input patterns with various relative durations are shown. (e) A time-

inverted spike pattern (bottom) was generated from a original pattern (top). (f) The network was exposed to the original pattern in (e) during learning,

and its responses were tested after learning for both original and time-inverted patterns. Both patterns activated a single cell assembly. (g) The network

was exposed to both original and time-inverted patterns during learning as well as testing. Two assemblies with different preferred patterns were

formed. For the visualization purpose, only 160 out of 500 neurons are shown in (f) and (g).

https://doi.org/10.1371/journal.pcbi.1010214.g005
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probability of 0.1, and circular mass was applied to the images to suppress artifacts from the

edges. Input neurons encoded the current value of a pixel by firing with 10 Hz.

During learning, the competition suppressed the dendritic activities that were less corre-

lated with the somatic responses. In the self-organized network, the somatic compartments

Fig 6. Detecting salient activity patterns in calcium imaging data. (a) The positions of a mouse (top) on a linear track and calcium imaging data of activity of 452

hippocampal CA1 neurons (bottom) were obtained from previously recorded data [23]. (b) The learned activities of model neurons were sorted according to their onset

response times. (c) Each CA1 neuron was associated with a model neuron having the highest mutual correlation with the CA1 neuron. Then, the CA1 neurons were sorted

according to the serial order of model neurons shown in (b). (d) The time course of normalized pupil area (top) and simultaneously recorded activities of 6,532 visual

cortical neurons (bottom) were calculated from previously recorded data [24,25]. (e) Activity of a trained network model was sorted according to their onset response

times (Methods). (f) Activities of the cortical neurons were sorted as in (c). (g) Correlation matrix of the population of network neurons is shown. (h) Learning curves over

200 epochs for various size of input neurons are shown. Red, blue and green traces show learning curves with the number of input neurons 1, 2/3, 1/3 times smaller than

original 6,532 neurons. The weight change rate was calculated as the ratio of the sum of the absolute values of synaptic changes to the sum of the absolute values of all

synapses.

https://doi.org/10.1371/journal.pcbi.1010214.g006
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acquired unique preferred orientations (Fig 7B). In contrast, dendritic branches displayed dif-

ferent preferred orientations in some neurons (Fig 7C and 7D). Such redundant representa-

tions were not found in neurons having three dendritic components without gating (S9 Fig).

Thus, the learning rule and recurrent gating proposed in this study possibly underlie the

somatic selection process of redundant dendritic representations.

Role of the conventional recurrent synaptic input

While the multiplicative recurrent input (i.e., recurrent gating) is crucial for segregating com-

plex chunks, what is the role of additive (i.e., conventional) recurrent input? We demonstrate

that the additive component is still needed for retrieving chunked sequences, namely, for pat-

tern completion. We simulated a network model having both recurrent gating and non-van-

ishing additive recurrent inputs. Non-gating recurrent connections were trained with the

same rule as for afferent connections. The network received a temporal input containing two

mutually overlapping chunks (Fig 8A), and all synaptic connections underwent learning. The

trained network formed two cell assemblies responding selectively to either of the chunks, as

in the previous network without additive recurrent connections (S10 Fig). Since only additive

recurrent input, but not recurrent gating, can activate postsynaptic cells, the additive input

generates a reverberating activity, which may in turn assist the retrieval of learned sequences.

This actually occurred in our simulations. Applying a cue stimulus, which was the first compo-

nent pattern of one of the learned chunks, enabled the trained network to retrieve the subse-

quent component patterns in the chunk (Fig 8B and 8C). Thus, recurrent gating and additive

recurrent inputs contribute to learning and retrieval of segmented sequence memory, respec-

tively, in our network model.
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Fig 7. Redundant dendritic representations of preferred sensory features. (a) A schematic illustration of the neuron model with three

dendritic compartments. The dendritic branches have independent gating factors, which compete with each other by softmax. (b) Somatic

responses are shown for all neurons in the trained network. (c) Trained weight matrices are displayed for afferent inputs to three dendritic

branches of three example neurons. (d) Somatic and dendritic activities of the three neurons in (c) are shown.

https://doi.org/10.1371/journal.pcbi.1010214.g007
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Discussion

In this study, we constructed a recurrent network of compartmentalized neuron models to

explore the neural mechanisms to segment temporal input. The crucial role of recurrent gating

in context-dependent chunking of complex sequences is a major finding. Recurrent gating

enables the instantaneous network state to regulate the degree of the dendro-somatic informa-

tion transfer in single neurons in different contexts. In contrast, simple segmentation tasks do

not necessarily require recurrent connections. With the help of recurrent gating, the model is

capable of detecting the fine structures of cell assemblies in large-scale neural recording data.

Our model describes a possible form of integrating dendritic computation into computa-

tion at the network level. Learning in our model minimizes the prediction error between the

soma and dendrites, thus improving the consistency in responding to synaptic input between

the input terminal (dendrites) and the output terminal (soma) of single neurons. This enables

the neurons to learn repeated patterns in synaptic input in a self-supervised manner. Previous

theoretical studies utilized the local dendritic potential with a fixed gating factor to predict the

somatic spike responses [19,22]. We extended the previous learning rule over recurrent

Fig 8. Spontaneous completion of learned sequences. The two chunks shown in Fig 2 were used for training a network having both recurrent gating and

additive recurrent inputs. (a) In the testing phase, the first component pattern of each chunk (cue 1 or cue2; dark raster plots), but not the subsequent

component patterns (light raster plots), was presented to the network. (b) The raster plot of network activities in the testing phase is shown. Cue 1 and cue 2

were presented alternately every 5 seconds. Neurons were sorted according to their onset response times, and only 160 out of the total 500 neurons are

shown for the visualization purpose. (c) Sequential responses of the two assemblies were averaged over 20 trials. Vertical lines indicate the end of cue

presentation. The sequential responses were evoked in the learned order.

https://doi.org/10.1371/journal.pcbi.1010214.g008
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connections such that recurrent input helps the dendritic compartment to predict the somatic

responses by regulating the degree of signal transfer to the soma in a network state-dependent

manner. As a consequence of recurrent gating, the soma can respond differently to the same

sequence component depending on the preceding element in sequences, whereas the dendrites

respond similarly to the same component. As in our model, some neurons in the premotor

nucleus HVC in canaries change their responses to a song element depending on the preced-

ing phrases in songs [13]. However, the response of HVC neurons can also vary according to

the following phrases in songs. Such response modulations are likely to represent action plan-

ning, which was not considered in this study. Previous experimental and theoretical studies

suggested that dendritic inhibition implements a gating operation on synaptic input [29–32].

The role of inhibition on the context-dependent segmentation of input should also be investi-

gated further.

Previously, spike-timing-dependent plasticity was used for detecting recurring patterns in

input spike trains in a recurrent neural network without recurrent gating [18]. While the

model successfully discriminated relatively simple sequences, it could not discriminate com-

plex sequences involving, for instance, overlapping spatiotemporal patterns. Our results sug-

gest that additive recurrent connections are unlikely to be crucial for learning hierarchically

organized sequences. These connections are necessary for retrieving chunked sequences but

are unnecessary for learning these sequences. Our results instead suggest that such learning

crucially relies on recurrent gating and its context-dependent tunning. Thus, multiplicative

and additive recurrent connections have a clear division of labor in the present model. Recur-

rent synapses were shown to amplify the responses of cortical neurons having similar receptive

fields [33], and this amplification resembles the selective amplification of a particular sequence

component shown in this study. Further, it was previously shown that postsynaptic inhibition

multiplicatively modulates the membrane potential of visual neurons in the locust [34]. In

addition, a recent study suggests that the thalamocortical feedback is necessary for reliable

propagation of a synaptically evoked dendritic depolarization to the soma in layer-5 pyramidal

neurons [35]. This phenomenon is reminiscent of the gating mechanism proposed in this

study. Thus, such a mechanism may be realized on a large spatial scale by cortico-thalamocor-

tical recurrent circuits. However, the biological mechanisms of recurrent gating are open to

future studies.

Some neural network models in artificial intelligence also utilize gating operations. A well-

known example is Long Short-Term Memory (LSTM) for sequence learning and control [36].

The most general form of LSTM contains three types of gate functions, i.e., input, output, and

forget gates, and these functions are optimized through supervised learning. In an interesting

attempt at the learning-to-learn paradigm [37–39], LSTM was coupled with another network

model for self-supervised learning of visual features [40]. In another LSTM-inspired model,

neural dynamics with oscillatory gated recurrent input were used to convert spatial activity

patterns to temporal sequences in working memory and motor control [21]. In contrast to

LSTM, our model learns the optimal gating of the dendro-somatic information transfer by

seeking a self-consistent solution to the optimization problem without supervision. Unlike in

LSTM, our model only has a single type of gate, which likely corresponds to the input gate of

LSTM, to regulate a current flow into the output terminal (soma) of the neuron. In LSTM,

however, the most influential gate on learning performance is thought to be the forget gate

[41,42]. It is intriguing to ask whether and how recurrent networks learn an optimal forget

gate for unsupervised learning of hierarchical sequences in addition to the proposed gate.

When multiple dendritic branches compete for repeated patterns of synaptic input to a sin-

gle neuron, recurrent gating enables these branches to learn different input features. Conse-

quently, in each neuron, the dendrites learn more redundant representations of input
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information than the soma. In pyramidal neurons in the rodent primary visual cortex, the den-

dritic branches have heterogeneous orientation preferences while the somata have unique ori-

entation preferences [26]. Similarly, in retrosplenial cortex [27] and place cells in the

hippocampal CA3 [28], the dendritic branches have multiple receptive fields whereas the

somata have unique receptive fields. Our model provides a possible neural mechanism for

these redundant representations on the dendrites. When the environment suddenly changes,

such redundancy may allow neural networks to quickly remodel their responses to adapt to

the novel situation. However, the functional benefit of this redundancy has yet to be clarified.

A practically interesting feature of our model is its applicability to large-scale neural record-

ing data. For such purposes, various mathematical tools have been proposed based on methods

in computer science and machine learning [43–47]. However, many of these methods suffer

time-consuming, combinatorial problems necessary for an exhaustive search for activity pat-

terns in the neural population. In contrast, our model with a biologically inspired learning rule

is free from this problem, presumably due to the same reason that cortical circuits do not have

this problem. Actually, the present data from the mice visual cortex contain more than 6,000

active neurons, yet our analysis revealed clear evidence for cell assembly structures. These

results are interesting because they suggest that cell assemblies underly the multidimensional

neural representations of mice spontaneous behavior [24]. As the size of neural recording data

is increasing rapidly, the low computational burden and high sensitivity to structured activity

patterns show big advantages of this model.

Methods

Neural network model

Our network model consists of Nin input neurons and N recurrently connected neurons. Each

neuron in the recurrent network consists of two compartments: the somatic and dendritic

compartments. Inspired from a previous single neuron model, the somatic response can be

approximated as an attenuated version of the dendritic potential V [22]. In our recurrent net-

work model, the dendro-somatic signal transfer is regulated by the gating factor λ that depends

on recurrent synaptic inputs through the local potential c as follows:

ciðtÞ ¼ wnetðcÞ
i � enetðtÞ; ð1Þ

liðtÞ ¼ gGðĉiðtÞÞ ð2Þ

ViðtÞ ¼ wnetðVÞ
i � enetðtÞ þ wextðVÞ

i � eextðtÞ; ð3Þ

where the subscript i is the neuron index, wnetðcÞ
i are the N-dimensional weight vector of recur-

rent gating on the local potential c, and wnetðVÞ
i the N-dimensional weight vector of additive

recurrent connections on the dendrite of the i-th neuron. In Eq (2), gG and ĉ will be defined

later. The Nin-dimensional vector wextðVÞ
i represents the weights of afferent inputs. Except in

Fig 8, we set as wnetðVÞ
i ¼ 0. The variables enet and eext are the post-synaptic potentials evoked

by recurrent and afferent inputs, respectively. The initial values of wnetðc;VÞ
i and wextðVÞ

i were gen-

erated by Gaussian distributions with zero mean and the standard deviations of 1=
ffiffiffiffi
N
p

and

1=
ffiffiffiffiffiffi
Nin
p

, respectively. All three types of connections are fully connected.

The dynamics of the somatic membrane potential are described as

_Ui tð Þ ¼ �
1

t
Ui tð Þ þ li tð Þð� UiðtÞ þ V̂ iðtÞÞ � Gi � e

net tð Þ; ð4Þ
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where τ = 15 ms is the membrane time constant. The last term in Eq (4) represents a peri-

somatic recurrent inhibition with uniform inhibitory weights of the strength J=
ffiffiffiffi
N
p

, with

J = 0.5 in all simulations. No self-inhibition is considered. Further, ĉi and V̂ i are the standard-

ized potentials calculated as

ĉiðtÞ ¼ ½ciðtÞ � m
c
iðtÞ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc
iðtÞ � mc

iðtÞ
2

q

; ð5Þ

V̂ iðtÞ ¼ ½ViðtÞ � m
V
i ðtÞ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rV
i ðtÞ � mV

i ðtÞ
2

q

; ð6Þ

where mc
iðtÞ and rc

iðtÞ are exponentially decaying averages of the membrane potential and its

square of the gating compartment,

mc
iðtÞ ¼ ð1 � gÞm

c
iðt � 1Þ þ gciðtÞ; ð7Þ

rc
iðtÞ ¼ ð1 � gÞr

c
iðt � 1Þ þ gciðtÞ

2
; ð8Þ

respectively (0<γ<1). The values of mV
i ðtÞ and rV

i ðtÞ are calculated from Vi in a similar fashion.

As we have shown previously [19], the standardization enables the model to avoid a trivial

solution. Without standardization, our learning rule can minimize the error between the

somatic and dendritic activities to zero by making both activities simultaneously zero (see Eq

(18)). This trivial solution occurs when all synaptic weights vanish after learning. The stan-

dardization prevents the trivial solution by maintaining temporal fluctuations of O(1) in the

somatic membrane potential, thus ensuring successful learning of nontrivial temporal features.

In Eq (2), the gating function gG(x) is defined as

gGðxÞ ¼ g0½1þ expð� bGðx � yGÞÞ�
� 1
; ð9Þ

where g0 = 0.7, βG = 5 and θG = 0.5.

The somatic compartment generates a Poisson spike train with saturating instantaneous fir-

ing rate given as

�ðxÞ ¼ �0½1þ expð� bðx � yÞÞ�� 1
; ð10Þ

where ϕ0 = 0.05 kHz, β = 5 and θ = 1 throughout the present simulations.

Afferent inputs are described as Poisson spike trains of Nin input neurons:

Xext
k ðtÞ ¼

X

q
dðt � textk;qÞ; ð11Þ

where δ is the Dirac’s delta function and textk;q is the time of the q-th spike generated by the k-th

input neuron. The postsynaptic potential evoked by the k-th input is calculated as

ts
_I extk ¼ � I

ext
k þ

1

t
Xext

k ; ð12Þ

_eextk ¼ �
eextk

t
þ e0I

ext
k ; ð13Þ

where τs = 5 ms and e0 = 25. Note that the parameter τ in Eqs (12) and (13) is the membrane

time constant used in Eq (4). The scaling by τ−1 ensures that the last term in Eq (12) is in a unit

of current. The postsynaptic potentials induced by recurrent inputs, enet, are similarly

calculated.
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The optimal learning rule for recurrent gated neural networks

We derive an optimal learning rule for the gating recurrent neural network in the spirit of

minimization of regularized information loss (MRIL), which we recently proposed for single

neurons [19]. The objective function is the KL-divergence between two Poisson distributions

associated with the somatic and dendritic activities:

EðWVWCÞ ¼

Z T

0

dt
X

i

DKL½ðUiðtÞÞjj�ðV
�

i ðtÞÞ�

* +

; ð14Þ

where angle bracket stands for the averaging over input spike trains, and WV and Wc are the

weight matrix of synaptic inputs onto the dendrite V and those onto the local potential c for

recurrent gating, respectively. The gated dendritic potential V�i is defined as

V�i tð Þ �
gGðciÞ

gL þ gGðciÞ
Vi tð Þ; ð15Þ

where gL = τ−1. The crucial point in Eq (15) is that the degree of gating depends on c, and

hence on network states through Eq (1).

The weights of all synaptic connections on the dendritic compartment (i.e., the weights of

both afferent input and additive recurrent input) obey learning rules similar to the previously

derived rule [19] except that the degree of gating is no longer constant in the present model:

DwnetðVÞ;extðVÞ
i / �

@E
@wnetðVÞ;extðVÞ

i

¼ h
R T

0
dt cV

ðci;V�i Þ½�ðUÞ � �ðV
�
i Þ�e

net;exti;

ð16Þ

where the function c
V
ðci;V�i Þ is defined as

c
V ci;V

�

i

� �
¼

bgGðciÞ
gL þ gGðciÞ

1 �
�ðV�i Þ
�0

� �

: ð17Þ

The learning rule for recurrent gating is novel and can be calculated by a gradient descent

as follows:

DwnetðcÞ
i / �

@E
@wnetðcÞ

i

¼

R T

0
dt �ðUiÞ

@

@wnetðcÞ
i

log�ðV�i Þ �
@

@wnetðcÞ
i

�ðV�i Þ

" #* +

¼

R T

0
dt
�
0
ðV�i Þ

�ðV�i Þ
�ðUiÞ � �ðV

�

i Þ
� �

Vi
@

@wnetðcÞ
i

gGðciÞ
gL þ gGðciÞ

* +

¼

R T

0
dt
bGgLgG cið Þ 1 �

gGðciÞ
g0

� �

½gL þ gGðciÞ�
2

�
0
ðV�i Þ

�ðV�i Þ
½�ðUiÞ � �ðV

�

i Þ�Vie
net

* +

¼ h
R T

0
dtcc
ðci;V�i Þ½�ðUiÞ � �ðV�i Þ�Vieneti;

ð18Þ
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where the function c
c
ðci;V�i Þ is defined as

c
c cið Þ ¼

bGgL 1 �
gGðciÞ
g0

h i

gL þ gGðciÞ
c

V cið Þ: ð19Þ

In the present simulations, we used an online version of the above learning rules:

DwnetðVÞ;extðVÞ
i ¼ εnetðVÞ;extðVÞc

V
ðci;V

�

i Þ½�ðUiÞ � �ðV
�

i Þ�e
net;ext ð20Þ

DwnetðcÞ
i ¼ εnetðcÞc

c
ðci;V

�

i Þ½�ðUiÞ � �ðV
�

i Þ�Vie
net; ð21Þ

where the learning rates were given as εextðVÞ ¼ 10� 5; εnetðVÞ ¼ 10� 5, and εnetðcÞ ¼ 10� 4.

The optimal learning rule for multi-dendrite neuron model

For the multi-dendrite neuron model used in Fig 7, the membrane potential of the k-th den-

drite of the i-th neuron and the dynamics of the corresponding somatic potential were calcu-

lated as

Vi;kðtÞ ¼ wextðVÞ
i � eextðtÞ; ð22Þ

_Ui tð Þ ¼ �
1

t
Ui tð Þ þ

XK

k¼1
li;kðtÞð� UiðtÞ þ V̂ i;kðtÞÞ � Gie

net tð Þ; ð23Þ

where K is the number of dendrites in each neuron. In this study, K = 3 for all neurons. We

assumed that the dendritic compartments compete for the somatic activity of each neuron,

governed by recurrent gating with a softmax function:

li;k tð Þ ¼
expðbGci;kðtÞÞP
lexpðbGci;lðtÞÞ

; ð24Þ

where ci,k is calculated as

ci;kðtÞ ¼ wnetðcÞ
i;k � enetðtÞ: ð25Þ

Since V�i ¼ ðgL þ 1Þ
� 1P

lli;lVi;l, it straightforward to derive the update rule for connections

onto to the dendrites:

DwextðVÞ
i;k ¼ εextðVÞc

V
ðli;k;V

�

i Þ½�ðUiÞ � �ðV
�

i Þ�e
ext; ð26Þ

where

c
V
li;k;V

�

i

� �
¼

li;k

gL þ 1
� V�i
� �

1 �
�ðV�i Þ
�0

� �

: ð27Þ

Using the fact that @li;k=@ci;l ¼ li;kðdl;k � li;kÞ; we can derive the update rule for recurrent

gating as follows:

DwnetðcÞ
i;k ¼ εnetðcÞ

X

l
c

c
k;lðλi;V

�

i Þ½�ðUiÞ � �ðV
�

i Þ�Vi;le
net; ð28Þ
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where

c
c
k;lðλi;V

�

i Þ ¼ ðdl;k � li;kÞc
V
ðli;l;V

�

i Þ: ð29Þ

Normalized mutual information score

In S3 Fig, we determined the estimated labels of the output response by Affinity Propagation

[48], and then calculated the normalized mutual information score [49] between the estimated

labels X and the true label Y as

NMI ¼ 2
IðX;YÞ

HðXÞ þHðYÞ
; ð30Þ

where I(X;Y) is the mutual information between X and Y and H(X) is the entropy of X.

The Spearman’s rank-order correlation

In Fig 5C, we quantified the extent to which the order of sequential responses was preserved in

network activity. To this end, we calculated the Spearman’s rank-order correlation [50]

between network responses as

r ¼ 1 �
6
PN

n¼1
Dn

2

N3 � N
; ð31Þ

where N is the number of neurons in the network and Dn is the difference in the ranks of the

n-th neuron between two datasets when sorted according to their onset response times.

The capacity of gating recurrent network

In S5A Fig, we considered the network of sizes 300 and 600. For each network, learning was

performed with 3, 5, and 7 sequences. These sequences were randomly selected from 4! = 24

permutations of sequence a-b-c-d. After training, we evaluated the performance of the model

by calculating the index SI of feature selectivity as

SI ¼ 1 �
1

K

XK

k¼1

< rk >nk
< rk >k

where K is the number of stimuli (or the number of the corresponding assemblies) and rk is

the population-averaged activity of the k-th assembly. Note that 0�SI�1. The brackets<r>k

and<r>\k refer to temporal averages during the presentation of the k-th stimulus or all stimuli

except the k-th stimulus, respectively.

Neural sorting algorithms

In all figures except Fig 6E, neurons in the trained network were sorted according to the onset

response times of these neurons. In Fig 6E, we first grouped neurons such that all pairs in a

group had a correlation coefficient greater than 0.2. We then sorted the resultant groups based

on their onset response times. In Fig 6C and 6F, we first sorted model neurons based on their

peak response times. We then sorted the experimental data by associating each cortical neuron

with a model neuron showing the highest correlation.
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Simulation parameters

The values of parameters used in the present simulations are as follows: in Figs 2, 4, 5, 8 and

S1, S2, S6, and S10 Figs, N = 500, Nin = 2,000 and γ = 0.0003; in Figs 3 and 2. S3 and S4 Figs,

N = 1,200, Nin = 2,000 and γ = 0.0003; in Fig 6A–6C and S4A Fig, N = 600, Nin = 452 and γ =

0.0003; in Fig 6D–6F and S8B and S8C Fig, N = 600, Nin = 6,532 and γ = 0.00005; in Fig 7 and

S9 Fig, N = 200, Nin = 28×28 and γ = 0.0003. Usually, the network was trained for the duration

of 1,000 seconds. In Fig 6, the input spike trains constructed from experimental data were

repeated 200 times during training.

Data and Code

All numerical datasets necessary to replicate the results shown in this article can easily be gen-

erated by numerical simulations with the software code provided below. No datasets were gen-

erated during this study. All codes were written in Python3 with numpy 1.17.3 and scipy

0.18.1. Example program codes used for the present numerical simulations and data analysis

are available at https://github.com/ToshitakeAsabuki/dendritic_gating.

Supporting information

S1 Fig. Learning curve of recurrent gating network. Correlation coefficient between somatic

and dendritic activity during learning in a task considered in Fig 2 is shown. Here, the 1,000

seconds-long learning period was divided into multiple training sections and the correlation

coefficient between somatic and dendrite activity was calculated in each section. The solid line

and shaded area (invisible) represent the mean and the s.d. of correlation over 10 independent

simulations.

(PDF)

S2 Fig. Learning of overlapping patterns in a recurrent network without gating. (a) Output

spike trains of the trained recurrent network are shown. Neurons were sorted according to

their onset response times. (b) The responses to the two chunks were averaged over 20 trials.

(c) PCA was applied to obtain the low-dimensional trajectories of the trained network. The

black, orange, and blue portions indicate the periods of random spike input, chunk 1 and

chunk 2, respectively. The two trajectories corresponding to the two chunks were inseparable

and the network failed to learn the chunks.

(PDF)

S3 Fig. Chunk-selective responses in the network trained in Fig 3. (a) The responses of the

first cell assembly to its preferred (left) and non-preferred (middle, right) chunks are shown.

These responses were averaged and normalized as in Fig 2C. (b) Preferred responses of two

neurons are shown as examples. Top and bottom traces show the responses of chunk2-D and

chunk3-D selective neurons, respectively. (c) As in Fig 3C–3E, trial-averaged responses of den-

drite, gating factor and soma are shown for two other neurons.

(PDF)

S4 Fig. Analysis of trained gating recurrent connections. (a) The average values of the

weights between 12 assemblies defined according to the selective response to the 4 component

patterns of the 3 chunks are shown. (b) Mean weights between groups of neurons in three

cases are shown. Cyan and green colors indicate the connections project to assemblies corre-

spond to previous and next component patterns within chunk, while magenta indicates inter-

actions between assemblies correspond to the same component patterns but belong to
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different chunks.

(PDF)

S5 Fig. Model performance dependences on various parameters. (a) Performances of net-

works with sizes 600 and 300 are shown over different number of chunks are shown. Error

bars show s.d.s. (b) Learning performances of network of size 600 over various values of

parameter γ (see Eq (7) and (8)) are shown. Error bars show s.d.s. (c) Same as in (b), but over

the strength of inhibition are shown.

(PDF)

S6 Fig. Robustness against spike timing jitters. (a) Responses of the networks trained on

input spike trains with timing jitters of 70 ms (top) and 100 ms (bottom) are shown. Here,

spike times within chunks were sifted by the amounts drawn by a Gaussian distribution with

mean zero and s.d of jitter strength, and these jitters were present during learning and testing.

Neurons were sorted according to the times of their response onsets during chunks, and only

160 out of the total 500 neurons are shown for the visualization purpose. (b) The normalized

average activities of the two assemblies with timing jitters of 70 ms (left) and 100 ms (right) are

shown. (c) Learning curves are shown when the average jitter was 0 ms (purple), 70 ms

(green), and 100 ms (blue), respectively. The solid lines and shaded areas represent the aver-

ages and s.d over 20 trials, respectively. Learning performance was measured by the normal-

ized mutual information between network activity and target labels (Methods). (d) The

performance measures averaged over 20 trials are shown at various sizes of jitters. Error bars

stand for the s.d.

(PDF)

S7 Fig. Behaviors of freely behaving mouse. Running speed (top), whisking (middle), and

pupil area (bottom) of freely behaving mouse are shown.

(PDF)

S8 Fig. Analysis of calcium imaging data without recurrent gating. (a) The positions of a

mouse on a linear track [23] (top) and the activities of model neurons learned without recur-

rent gating (bottom) are shown. Model neurons were sorted according to their onset response

times. Separations between the two sequences corresponding to forward and backward runs

are invisible (c.f. Fig 6B). (b) Activities of model neurons trained on the neural data recorded

from the mice visual cortex [24,25] without recurrent gating are shown. The model neurons

were sorted according to their onset response times. (c) We associated each cortical neuron

with a model neuron having the highest correlation with the cortical neuron. Then, we sorted

the cortical neurons according to the serial order of model neurons shown in (b). (d) Popula-

tion-averaged activities of network model trained on the data of visual cortex with (left) and

without (right) gating are shown. (e) Correlation between average activities shown in (d) and

various behaviors are shown. Blue and magenta plots correspond to gating and non-gating,

respectively. In both type of networks, 10 independent simulations were performed.

(PDF)

S9 Fig. Multi-dendrite neuron model without gating. (a) A schematic illustration of the neu-

ron model with three dendritic compartments without gating. (b) Trained weight matrices are

displayed for afferent inputs to three dendritic branches of three example neurons. (c) (d)

Somatic and dendritic activities of the three neurons in (b) are shown.

(PDF)

S10 Fig. Sequence learning in the copresence of recurrent gating and recurrent input. Den-

drites received additive recurrent inputs as well as afferent inputs and the dendritic activity
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underwent recurrent gating. (a) As in Fig 2, the trained network segmented two overlapping

chunks in the presence of additive recurrent inputs. (b) Normalized average responses of two

emergent assemblies during the presentations of chunk 1 and chunk 2. (c) PCA showed that

the different chunks were distinguishable by different low-dimensional trajectories, of which

the black, orange, and blue portions indicate the periods of random spike input, chunk 1 and

chunk 2, respectively.

(PDF)
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