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Abstract We prove that the action of the full collineation group of a symplectic translation
plane of even order on the set of completely regular line–ovals is transitive. This provides
us with a complete description of the group of collineations fixing a completely regular
line–oval.
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1 Introduction

Symplectic translation planes of even order are interesting geometrical and combinatorial
objects, because of their close relation with non-linear codes [1–4]. Recently, we gave a
necessary and sufficient condition for a finite translation plane of even order to be symplectic
in terms of the existence of completely regular line–ovals (see [5,6] and the next section). A
line–conic in a desarguesian affine plane is the basic, and unique, example of a completely
regular line–oval (see [7]). Line–conics are equivalent to one another with respect to the full
collineation group of the plane. Therefore it is natural to ask whether such a result holds for
completely regular line–ovals in any symplectic translation plane.

In this paper we investigate the action of the full collineation group of the symplectic
translation plane on the set of all completely regular line–ovals. The main result is that such
an action is transitive. Also, this result provides us with a complete description of the group
of all collineations fixing a completely regular line–oval: it is isomorphic to the group fixing
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38 A. Maschietti

the symplectic spread, modulo K ∗, the kernel homology group. As a consequence we prove
that the number of completely regular line–ovals is |T ||K ∗|, where T is the translation group
of the plane.

This paper relies on previous results (see [5,6]) and uses the isomorphism theorem for
symplectic translation planes due to Kantor (see [2,8]). Therefore it can be viewed as a
completion of the previous investigation of completely regular line–ovals.

We conclude with a remark on the notation.
If F is a finite field and α ∈ Aut(F), then xα is the image of x ∈ F under α.
If f : A → B is a mapping, then f (x) is the image of x ∈ A under f . Also, if S ⊆ A

then f (S) := { f (x) | x ∈ S} is the image of S.
If f : A → B and g : B → C are mappings, we write g ◦ f to denote the composition of

f with g:

(g ◦ f )(x) := g( f (x)), for all x ∈ A.

2 Preliminary results

Let� be a projective plane of even order q . A line–hyperoval is a set of q + 2 lines, no three
concurrent. This definition dualizes that of hyperoval, a set of q +2 points no three collinear.
Pick a line of the line–hyperoval H, say �∞, and consider the affine plane��∞ , obtained by
deleting line �∞ and all its points. We get the set O = H \ {�∞} consisting of q + 1 lines,
one for each parallel class and no three concurrent. The set O is currently called a line–oval.
It is clear that, conversely, every line–oval in an affine plane determines a line–hyperoval in
the corresponding projective plane.

Let A be an affine plane of even order q and O a line–oval. In the following �∞ will
denote the line at infinity of the plane, and B(O) the set of points which are on the lines of
the line–oval O. With abuse of language, if P is a point at infinity and if a line r has direction
P , then we say that r is on P or else that P belongs to r .

It is easy to prove that every point of B(O) belongs to precisely two lines of O. Therefore,

|B(O)| = q(q + 1)/2 (2.1)

and

|� ∩ B(O)| = q/2 , for every line � /∈ O. (2.2)

We let � := Aut(A) denote the collineation group of A and �(O) the group of all col-
lineations of A fixing O. In all this paper we assume that the order q of planes involved is
greater than or equal to 8.

Lemma 2.1 �(O) acts faithfully on O.

Proof Let g ∈ �(O) such that g(�) = � for all � ∈ O. We claim that g = 1. First of all we
note that g induces the identity on �∞, since on each point of �∞ there is exactly one line
of O and �(O) fixes �∞. Let P ∈ B(O). There are two distinct lines of O, say � and m,
such that P = � ∩ m. Therefore g(P) = g(�) ∩ g(m) = � ∩ m = P. So g is the identity on
B(O). Let now r be a line not in O. Then |r ∩ B(O)| = q/2. As q ≥ 8 there are on r at least
two fixed points; hence g(r) = r . Therefore g also fixes every line not in O; hence g is the
identity. 	

Corollary 2.2 A collineation g ∈ � induces the identity on the line at infinity and fixes O
if and only if g = 1.
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The group fixing a completely regular line–oval 39

Definition 2.3 A line–oval O (in the affine plane A) is called completely regular if for every
point P ∈ �∞ and for every pair of distinct affine lines x, y on P , with x, y /∈ O, there is a
third affine line z on P such that for every line u at least one of the points u ∩ x , u ∩ y or
u ∩ z belongs to B(O). The triple of lines {x, y, z} is called a P-regular triple (for O).

Basic properties of completely regular line–ovals can be found in [9,5,6]. The main result
of [6] states that only symplectic translation planes of even order admit completely regular
line–ovals. For the theory of translation planes we refer to [10]. We only recall that any finite
translation plane can be constructed from a 2n-dimensional vector space V over a finite field
F of order q , picking a spread of V , that is a family � of qn + 1 subspaces of dimension
n partitioning the set of nonzero vectors of V . The translation plane A(�) has as points the
vectors of V and as lines the cosets S +v, where S ∈ � and v ∈ V . The translations of A(�)

are the maps τw : v → v + w, for all v ∈ V . They form a group isomorphic to the additive
group of V .

The kernel of the spread� or of the plane A(�) is the set of all semilinear endomorphisms
k of V such that k(S) ⊆ S for all S ∈ �. It is the largest field K such that V can be viewed as
a vector space over K and the components of � are K -subspaces. The multiplicative group
K ∗ consists of homologies with center 0 (see [10, Theorem 1. 12]). Every collineation of
A(�) fixing 0 is a semilinear automorphism of V as a K -vector space V (see [10, Theorem
1. 10]). Such collineations form a group, called the translation complement and denoted
by �0.

We are interested in the case where V is equipped with a nondegenerate, alternating, bilin-
ear form β, which will be called a symplectic form. The pair (V, β) is a symplectic space.
A subspace S of V is totally isotropic if β(u, v) = 0 for all u, v ∈ S. More on symplectic
and orthogonal geometries can be found in [11]. A spread of V is symplectic if it consists of
totally isotropic subspaces. The corresponding translation plane is called symplectic too.

Let Q : V → F be a quadratic form. We denote by

S(Q) := {v ∈ V | Q(v) = 0}
the set of singular vectors of Q (including also the zero vector). All the quadratic forms we
consider will be non–degenerate. We say that the quadratic form Q is hyperbolic or elliptic if
the maximal dimension of subspaces contained in S(Q) is n or n−1 (where dimF (V ) = 2n).
The following result will be used later on.

Lemma 2.4 Let Q and Q′ be quadratic forms on V , regarded as a vector space over GF(2).
Assume that Q and Q′ have the same polar form β. Then

1. Q − Q′ = βv0 , for some v0 ∈ V , and where βv0(w) = β(v0, w); and
2. Q and Q′ have the same type (both are hyperbolic or elliptic) if and only if Q(v0) = 0,

where v0 ∈ V is as above.

Proof Since Q and Q′ have the same polar form, we get

Q(v + w)− Q(v)− Q(w) = Q′(v + w)− Q′(v)− Q′(w) = β(v,w).

Hence

(Q − Q′)(v + w) = (Q − Q′)(v)+ (Q − Q′)(w).

So Q − Q′ is a linear functional and there is v0 ∈ V such that Q − Q′ = βv0 . This prove
the first claim. To prove the other claim, first of all note that Q and Q′ have the same type if
and only if |S(Q)| = |S(Q′)|.

123



40 A. Maschietti

Assume that Q′ = Q + βv0 with Q(v0) = 0. Then a simple calculation gives S(Q′) =
S(Q) + v0; hence |S(Q)| = |S(Q′)|, and so Q and Q′ have the same type. Conversely, if
Q(v0) �= 0, then S(Q′) = �(S(Q))+ v0 (here �(S(Q)) is the complement of S(Q)) and so
Q and Q′ cannot have the same type, since S(Q) �= S(Q′). 	


We are now ready to state the theorem which characterizes symplectic translation planes
of even order and provides a description of completely regular line–ovals too.

Theorem 2.5 Let A be an affine plane of even order q ≥ 8 and O a completely regular
line–oval. Then q = 2d and A is a translation plane. Denote by V the set of points of A.
Then V is a 2d−dimensional vector space over GF(2). Let� be the spread of V that defines
the plane. Assume that 0 ∈ B(O). Then there exists a hyperbolic quadratic form Q on V (as
a vector space over GF(2)) such that B(O) is the set of singular vectors of Q. Moreover, if
β is the symplectic form polarized by Q, then the spread � is symplectic with respect to β.

Conversely, let (V, β) be a symplectic space of dimension 2d over GF(2), �a symplectic
spread and A(�) the corresponding symplectic translation plane. Then there is a completely
regular line–oval O such that B(O) is the set of singular vectors of a hyperbolic quadratic
form with polar form β.

For the proof we refer to [6, Theorem 4.6] and [5, Theorems 6, 7, 9].

3 The action on the set of completely regular line–ovals

We fix a symplectic space (V, β) over the finite field F = GF(q), with q = 2d , a symplectic
spread � and the corresponding symplectic translation plane A(�). Let K be the kernel of
�. We want to prove that the full collineation group � of A(�) acts transitively on the set R
of all completely regular line–ovals.

First of all we show that � acts on R.

Lemma 3.1 Let O be a completely regular line–oval. Then for every g ∈ � the line–oval
g(O) is completely regular.

Proof First we observe that B(g(O)) = g(B(O)). Next, we directly prove that if {x, y, z} is
a P−regular triple for O, then {g(x), g(y), g(z)} is a g(P)−regular triple for g(O).

Let � be any line such that � ∩ �∞ = A �= P . If none of the points � ∩ g(x), � ∩ g(y),
�∩g(z)were in B(g(O)), then none of the points g−1(l)∩ x , g−1(l)∩ y, g−1(l)∩ z would be
in B(O); but this is a contradiction, since O is completely regular and {x, y, z} is P-regular
for O. 	

Lemma 3.2 Let β and β be symplectic forms on V (as an F-vector space) with respect to
which � is symplectic. Then there is k ∈ K ∗ such that β(u, v) = β(k(u), k(v)), for all
u, v ∈ V .

Proof (See also [8]) The symplectic form β defines a polarity θ of the projective space
PG(V ). Then θ restricts to a polarity θK of PG(VK ), and every polarity θ ′′ of PG(V ) that
restricts to θK has the form aθ ′, where a ∈ K ∗ and θ ′ = f ◦βK , for some nonzero F−linear
functional f : K → F . Therefore there are at most |K ∗/F∗| such polarities of PG(V ), and
θ is one of them. On the other hand, there are precisely |K ∗/F∗| polarities of PG(V ) that
restricts to θK , and they are defined by the symplectic forms γm, f , where m ∈ K ∗:

γm, f (u, v) := f (m(βK (u, v)), for all u, v ∈ V .
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The group fixing a completely regular line–oval 41

Now to finish the proof it suffices to note that the set of symplectic forms

{β | β(u, v) = β(k(u), k(v)), k ∈ K ∗}
has size |K ∗|, and that { f ◦ m | m ∈ K ∗} is the set of all nonzero F-linear functionals from
K to F . 	

Remark 3.3 The proof of the above lemma is essentially due to Kantor [8] and can be used to
prove that if � is a symplectic spread of the F-vector space V , then � is again a symplectic
spread of the K -vector space V . Note also that the proof that � is again a symplectic spread
of the K -vector space V has been independently obtained by Lunardon [12].

Theorem 3.4 The action of � on the set R of all completely regular line–ovals of A(�) is
transitive. More precisely, let O and O be completely regular line ovals of A(�). Then there
are a translation τ ∈ T and a kernel homology k ∈ K ∗ such that k ◦ τ(O) = O.

Proof First of all note that, up to translations, we can assume that the zero vector belongs
to B(O) and B(O). By Theorem 2.5 there are hyperbolic quadratic forms Q and Q on V
(regarded as a GF(2)−space) such that B(O) and B(O) are the sets of singular vectors
(including 0) of Q and Q, respectively. Let β and β be the respective symplectic forms. Then
� is symplectic with respect to both symplectic forms. By Lemma 3.2, there is k ∈ K ∗ such
that

β(u, v) = β(k(u), k(v)), for all u, v ∈ V .

The quadratic form Q′ : V → GF(2) such that Q′(v) = Q(k(v)) polarizes toβ. Therefore
by Lemma 2.4 there is v0 ∈ V such that Q − Q′ = βv0

, that is,

Q(v) = Q(k(v))+ β(k(v0), k(v)). (3.1)

Then B(O) = S(Q′)+ v0.
Let v ∈ B(O). Then v + v0 ∈ S(Q′), that is,

Q′(v + v0) = 0 = Q(k(v))+ β(k(v0), k(v));
hence k(v) ∈ S(Q)+ k(v0). It follows

k(B(O)) = B(O)+ k(v0)

or, equivalently,

B(O) = k−1(B(O))+ v0 = B(τv0 ◦ k−1(O)),
where τv0 is the translation defined by vector v0. From this,

O = τv0 ◦ k−1(O)
follows. For, if � is a line of O, then � ⊂ B(O); since k ◦ τv0 is a collineation fixing the line
at infinity, k ◦ τv0(�) is a line contained in B(O), and so k ◦ τv0(�) ∈ O. 	


The above theorem allows us to give a description of�(O). We need a result due to Kantor.
If (V, β) is a symplectic space over F , we denote by�Sp(V ) the group of all semilinear auto-
morphisms g ∈ �L(V ) such that β(g(u), g(v)) = aβ(u, v)α for some a ∈ F∗, α ∈ Aut(F),
and all u, v ∈ V .

123



42 A. Maschietti

Theorem 3.5 [8, Theorem 2] Let �1 and �2 be symplectic spreads of the finite symplectic
space (V, β) over F. Let K2 be the kernel of �2. Assume that either |F | is even or [K2 : F]
is odd. If g ∈ �L(V ) sends �1 to �2, then g = h ◦ s with h ∈ K ∗

2 and s ∈ �Sp(V ) sending
�1 to �2.

In particular by letting �1 = �2 = � in the above theorem, we get

Corollary 3.6 Let� be a symplectic spread of the F-symplectic space (V, β) and let A(�)

be the corresponding symplectic translation plane. Assume that the kernel K of � con-
tains F and that either |F | is even or [K : F] is odd. Then the translation complement of
� = Aut(A(�)) can be factored as the product of its homologies with centre 0 and its
intersection with �Sp(V ).

In view of this corollary we denote by �Sp(V )(�) the group of all g ∈ �Sp(V ) fixing
�. Then �Sp(V )(�) = �0 ∩ �Sp(V ). If K = F the corollary says that �0 coincides with
�Sp(VK )(�).

Now we can describe the group �(O). Let T be the translation group of the plane, K the
kernel of �, and assume that F ⊆ K . Denote by VK the K−vector space V and let


(�) := {g ∈ �Sp(VK )(�) | σ ◦ g ∈ �(O), some σ ∈ T }.
Lemma 3.7 
(�) is a subgroup of �Sp(VK )(�). Moreover, K ∗ ∩
(�) = {1} and

�Sp(VK )(�) = K ∗
(�).

Proof Let g, h ∈ 
(�). By definition there are σ, τ ∈ T such that σ ◦ g, τ ◦ h ∈ �(O).
Therefore

σ ◦ g ◦ (τ ◦ h)−1 = σ ◦ g ◦ h−1 ◦ τ ∈ �(O).
As T is a normal subgroup, there is τ ′ ∈ T such that

σ ◦ g ◦ h−1 ◦ τ = σ ◦ τ ′ ◦ g ◦ h−1 ∈ �(O).
Thus g ◦ h−1
(�).
Let k ∈ K ∗ ∩
(�). Then σ ◦ k ∈ �(O), and so k ∈ �(σ(O)). By Corollary 2.2 we get

k = 1.
To prove the last assertion, let g ∈ �Sp(VK )(�). Note that if g ∈ �(O), then clearly

g ∈ 
(�). Let then g /∈ �(O). Since g(O) is a completely regular line–oval, by Theorem
3.4 there are τ ∈ T and k ∈ K ∗ such that k ◦ τ(g(O)) = O; whence τ ◦ (k ◦ g)(O) = O,
and so k ◦ g ∈ 
(�). 	

Theorem 3.8

�(O) ∼= 
(�) ∼= �Sp(VK )(�)/K ∗ = �0/K ∗.

Proof We only need to check that the map ψ : 
(�) → �(O) such that ψ(g) = σ ◦ g is a
group homomorphism. Let g, h ∈ 
(�) and let τ, τ ′, τ ′′ ∈ T such that

ψ(g) = τ ◦ g, ψ(h) = τ ′ ◦ h, ψ(g ◦ h) = τ ′′ ◦ g ◦ h.

Now τ ◦ g ◦ τ ′ ◦ h ∈ �(O) and τ ◦ g ◦ τ ′ ◦ h = τ ◦ σ ◦ g ◦ h, some σ ∈ T . Since ψ is
bijective then τ ◦σ ◦ g ◦ h = τ ′′ ◦ g ◦ h and so τ ◦ g ◦ τ ′ ◦ h = ψ(g) ◦ψ(h) = τ ′′ ◦ g ◦ h. 	
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A standard result in the theory of permutation groups allows us to calculate the number
of completely regular line–ovals. Let us denote by O� the orbit of O under the action of �.
Then the stabilizer of O is the group �(O); hence

|O�| = |�|/|�(O)| = |T ||�0|/|�(O)| = |T ||K ∗|. (3.2)

Corollary 3.9 The number of completely regular line–ovals of A(�) is |T ||K ∗|, where T is
the translation group and K the kernel of �.

In case A(�) is desarguesian of order q , then every completely regular line–oval is a
line–conic (see [7]). Thus with respect to the line at infinity there are q2(q − 1) line–conics.
In the projective completion PG(2, q) the collineation group is transitive on the set of lines,
which are q2 + q + 1 in number. Therefore the total number of line–conics of PG(2, q) is

(q2 + q + 1)q2(q − 1)

which is clearly also the number of irreducible conics of PG(2, q).
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