Two-transitive ovals

Antonio Maschietti
(Communicated by W. M. Kantor)

Abstract

An oval \mathcal{O} of a projective plane is called two-transitive if there is a collineation group G fixing \mathcal{O} and acting 2 -transitively on its points. If the plane has odd order, then the plane is desarguesian and the oval is a conic. In the present paper we prove that if a plane has order a power of two and admits a two-transitive oval, then either the plane is desarguesian and the oval is a conic, or the plane is dual to a Lüneburg plane.

Key words. Suzuki group, projective plane, oval, spread, symplectic translation plane, Lüneburg plane.

2000 Mathematics Subject Classification. Primary 20B25, 51E21; Secondary 51A50, 51A35, 05B25, 05E20

1 Introduction

Let $q=2^{2 d+1}$ with $d \geqslant 1$. The Suzuki simple group $\operatorname{Sz}(q)$ (see [25] and [26]) can be represented faithfully as a 2-transitive permutation group on $q^{2}+1$ letters. Known representations of $\mathrm{Sz}(q)$ as an automorphism group of geometric structures comprise
(1) the Tits ovoid in the projective geometry $\operatorname{PG}(3, q)$ (see [19, Chapter IV]);
(2) the Lüneburg plane of order q^{2} (see [19, Chapter IV]); and
(3) the Suzuki-Tits inversive plane of order q (see [6, Chapter 6]).

These structures are equivalent, in the sense that, up to isomorphisms, each of them determines the others.

In this paper we are interested in the following question: Can a non-Lüneburg projective plane of order q^{2}, or its dual, admit a collineation group G isomorphic to $\mathrm{Sz}(q)$?

The possible actions of such a group are described in [19, Theorem 28.11], which are here recalled for the convenience of the reader.

Theorem 1.1. Let Π be a projective plane of order q^{2}, and let G be a collineation group isomorphic to $\mathrm{Sz}(q)$. Then one of the following holds.
(1) G fixes a non-incident point line pair (P, ℓ) and G acts 2-transitively on the set of lines through P as well as on the set of points of ℓ. Moreover, G has two further point orbits of length $\left(q^{2}+1\right)(q-1)$ and $\left(q^{2}+1\right) q(q-1)$ and two further line orbits of length $\left(q^{2}+1\right)(q-1)$ and $\left(q^{2}+1\right) q(q-1)$.
(2) G fixes an oval \mathcal{O} and its nucleus N and acts 2-transitively on the set of lines through N as well as on the set of points of \mathcal{O}. It also acts transitively on the set of secants lines to \mathcal{O} and splits the set of exterior lines to \mathcal{O} into two orbits of length $\frac{1}{4}(q-r+1) q^{2}(q-1)$ and $\frac{1}{4}(q+r+1) q^{2}(q-1)$, where $r^{2}=2 q$. Furthermore, G has two point orbits of length $\left(q^{2}+1\right)(q-1)$ and $\left(q^{2}+1\right) q(q-1)$.
(3) The dual to (2).

All three cases really occur. Cases (1) and (3) hold in Lüneburg planes ([9], [15], [19, Chapter IV], [22]). Therefore Case (2) holds in the dual Lüneburg planes. Our main result states that Case (2) occurs only in the dual Lüneburg planes:

Theorem 1.2. Let Π be a projective plane of even order q^{2}, where $q=2^{2 d+1}$ with $d \geqslant 1$. Assume that Π admits a collineation group G isomorphic to $\mathrm{Sz}(q)$ and that Π has an oval \mathcal{O} on which G acts 2-transitively. Then Π is the dual Lüneburg plane of order q^{2}.

This theorem also solves the open problem about two-transitive ovals, in the case where the plane has order a power of 2 . We briefly recall this problem.

Let Π be a projective plane of order n. An oval in Π is a set of $n+1$ points, no three of which are collinear. For the theory of ovals the reader is referred to [7] and to the survey paper [17]. An oval is called two-transitive if there is a collineation group G of Π fixing the oval and acting 2-transitively on its points.

Two-transitive ovals were firstly considered by Cofman [5] in order to give a local version of the Ostrom-Wagner theorem [24]. Cofman [5] proved: if П has odd order and if every involution of G is a central collineation, then the plane is desarguesian and \mathcal{O} is a conic.

Later Kantor [8] weakened the condition on the involutions by requiring only that G contained some nonidentical central collineation. Finally, in 1986, Biliotti and Korchmaros [2] gave a strong generalization of the foregoing results by requiring only the primitivity of G. Therefore, for planes of odd order, the problem of twotransitive ovals admits only the classical solution.

In case n is even the situation is more complicated. In view of [1], [4], [17] and Theorem 1.2 there are the following possibilities.

Theorem 1.3. Let Π be a projective plane of even order n and let \mathcal{O} be an oval. If G is a collineation group of Π fixing \mathcal{O} and acting 2-transitively on its points, then G contains non-trivial elations. If Δ is the set of all non-trivial elations of G and if H is the subgroup generated by Δ, then exactly one of the following cases holds.
(A) $|\Delta|=n+1$ and H is a semidirect product of a group of odd order $n+1$ with a group of order two. Moreover, H is transitive on the points of \mathcal{O}, fixes an exterior line to \mathcal{O} and G does not contain Baer involutions.
(B) $n=2^{h}$, П is desarguesian, $H \cong \mathrm{SL}(2, n)$ and \mathcal{O} is a conic.
(C) $n=q^{2}$, where $q=2^{2 d+1}$ with $d \geqslant 1$, П is dual to the Lüneburg plane of order q^{2}, $H \cong \mathrm{Sz}(q)$ and H acts on \mathcal{O} as $\mathrm{Sz}(q)$ in its natural 2-transitive permutation representation.

All three cases occur. Apart from the trivial case $n=2$, the only known example for case (A) is $n=4$. It is conjectured that indeed case (A) for $n>4$ cannot happen. The conjecture has been shown true for all projective planes of order a power of 2 (see [16] and [17]). Case (A) is also investigated in [4] and [3]. Case (C) is a consequence of Theorem 1.2.

In conclusion:

Theorem 1.4. Let Π be a projective plane of even order $n=2^{h}$ and let \mathcal{O} be an oval. Then Π admits a collineation group fixing \mathcal{O} and acting 2 -transitively on its points, if and only if either Π is desarguesian, G contains a subgroup isomorphic to $\operatorname{SL}(2, n)$ and \mathcal{O} is a conic, or $n=2^{2(2 e+1)}$, with $e \geqslant 1, \Pi$ is the dual Lüneburg plane of order n and G contains a subgroup isomorphic to $\mathrm{Sz}\left(2^{2 e+1}\right)$.

Case (A) of Theorem 1.3 remains open, and it seems evident that ad hoc geometric methods are needed for its solution. This is a recurrent theme following theorems using properties of some simple groups, as already remarked by other authors (see for example Kantor [11]).

The paper is structured as follows. In Section 2 we fix notation and recall some results necessary for the proof of Theorem 1.2. Section 3 is devoted to the proof of this theorem.

2 Background

Let Π be a projective plane of even order $q \geqslant 8$, and let \mathcal{O} be an oval in Π. Any line of Π meets \mathcal{O} in either 0,1 or 2 points and is called exterior, tangent or secant, respectively. Since the order is even, all the tangent lines to \mathcal{O} concur at the same point N, called the nucleus (or also the knot) of \mathcal{O}. Moreover, on each point not in $\mathcal{O} \cup\{N\}$ there is one tangent line, $q / 2$ secant lines and $q / 2$ exterior lines. We denote by \mathbf{P} the set of points of Π which are not in $\mathcal{O} \cup\{N\}$. If ℓ is a line of Π, the same symbol ℓ will also denote the set of points incident with ℓ. In particular, if P and Q are distinct points, the line through them is denoted by $P Q$.

Definition 2.1. Let s be a tangent line to \mathcal{O}. We say that \mathcal{O} is s-regular if, for every pair of distinct points $X, Y \in s \cap \mathbf{P}$, there is a third point $Z \in s \cap \mathbf{P}$ such that, for every point $P \neq N$, at least one of the lines $P X, P Y$ or $P Z$ is secant to \mathcal{O}. If \mathcal{O} is s-regular for every tangent line s, then \mathcal{O} is called completely regular.
s-regular ovals are investigated in [20], [21], [23].

For $P \in \mathbf{P}$ let

$$
\begin{equation*}
S_{P}:=\{Q \in \mathbf{P} \mid Q \neq P \text { and } P Q \text { is a secant line }\} . \tag{2.1.1}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\left|S_{P}\right|=\frac{q^{2}}{2}-q \tag{2.1.2}
\end{equation*}
$$

Fix a tangent line s to \mathcal{O}, and let O be the point of tangency of s. For every $P \in \mathbf{P}$, the set $S_{P} \cap s$ consists of $q / 2-1$ distinct points. Let \sim be the following equivalence relation on the set $\mathbf{P} \backslash s$:

$$
\begin{equation*}
P \sim Q \Leftrightarrow S_{P} \cap s=S_{Q} \cap s \tag{2.1.3}
\end{equation*}
$$

Denote by $\Lambda_{i}, i=1, \ldots, b$, the equivalence classes.
Result 2.2 ([23, Theorem 2.17]). © 1 is s-regular if and only if $\left|\Lambda_{i}\right|=q$, for all $i=$ $1, \ldots, b$.

The following observation will be used in the proof of Theorem 1.2.
Lemma 2.3. Let $X \in S \backslash\{O, N\}$. Then S_{X} is union of equivalence classes.
Proof. Let $P \in S_{X}$. Let $Q \sim P$. Then, from $S_{P} \cap s=S_{Q} \cap s$ and $X \in S_{P} \cap s$, it follows that $Q X$ is a secant line to \mathcal{O}. Therefore $Q \in S_{X}$.

We refer to [19] for the theory of translation planes. A translation plane is called symplectic if it is defined by a spread consisting of maximal totally isotropic subspaces with respect to a nondegenerate alternating bilinear form on the underlying vector space. Classical examples of symplectic planes are the desarguesian planes and the Lüneburg planes. Many families of non-classical symplectic planes have been constructed by Kantor [10], [12] and by Kantor and Williams [13], [14].

Result 2.4 ([23, Theorem 4.7]). Let Π be a projective plane of even order. Then Π admits a completely regular oval if and only if the plane is dual to a symplectic translation plane.

3 Proof of Theorem 1.2

In this section Π is a projective plane of even order q^{2}, where $q=2^{2 d+1}$ with $d \geqslant 1, \mathcal{O}$ is an oval with nucleus N and G is a collineation group of Π isomorphic to $\operatorname{Sz}(q)$ and acting 2-transitively on \mathcal{O}. This situation corresponds to Case (2) of Theorem 1.1.

We outline the main steps of the proof of Theorem 1.2. First, we prove that \mathcal{O} is completely regular. This is the main step, which involves Result 2.2. Then, from Result 2.4 , it follows that the plane is dual to a symplectic translation plane of order q^{2}.

The final step uses Liebler's characterization of Lüneburg planes [18] or [19, Theorem 31.1].

Before we begin the proof, we need a summary of some known facts about the action of G.

Lemma 3.1 ([19, Lemma 28.3]). All involutions of G are elations.
Lemma 3.2. (1) G fixes the nucleus N of \mathcal{O} and acts in its natural 2-transitive representation on the set of tangent lines to \mathcal{O}.
(2) Let s be a tangent line to \mathcal{O}. Then G_{s} is a Frobenius group of order $q^{2}(q-1)$. The Frobenius kernel is a Sylow 2-subgroup Σ and each Frobenius complement is cyclic of order $q-1$ and coincides with the stabilizer $G_{s, m}$, for some tangent line $m \neq s$. Moreover $G_{s}=N_{G}(\Sigma)$ (the normalizer of Σ in G) and Σ is the unique Sylow 2-subgroup of G fixing s.
(3) Let Σ be a Sylow 2-subgroup of G. Then Σ has exponent 4, its centre is $Z(\Sigma)=$ $\left\{g \in \Sigma \mid g^{2}=1\right\}$ and $|Z(\Sigma)|=q$. Finally, each Frobenius complement acts transitively on $Z(\Sigma) \backslash\{1\}$.

Proof. (1) is Lemma 28.4 of [19]. The rest of the lemma is a consequence of (1) and [19, Theorem 24.2], where the properties of Sylow 2-subgroups of $\mathrm{Sz}(q)$ are described.

Lemma 3.3. Let s be a tangent line to \mathcal{O}, and let Σ be the Sylow 2-subgroup of G fixing s. The following hold.
(1) Σ acts faithfully and semiregularly on the set of points off s, and has q^{2} point orbits of length q^{2}. One of these orbits is $\mathcal{O} \backslash\{O\}$, where O is the point of tangency of s.
(2) Σ splits the points of s in $q+1$ orbits of length 1 and $q-1$ orbits of length q. The orbits of length 1 are $\{O\},\{N\}$ and the $q-1$ centres of the non-trivial elations of Σ.

Proof. This result is inside the proof of [19, Lemma 28.8].
Now we prove the first step of Theorem 1.2.
Theorem 3.4. \mathcal{O} is a completely regular oval.
Proof. Fix a tangent line s. We prove that \mathcal{O} is s-regular. Denote by O the point of tangency of s and let \mathbf{P} be the set of points of Π not in $\mathcal{O} \cup\{N\}$. Let \sim be the equivalence relation on $\mathbf{P} \backslash s$

$$
P \sim Q \Leftrightarrow S_{P} \cap s=S_{Q} \cap s
$$

see (2.1.3). Since the order of the plane is q^{2}, we have

$$
\left|S_{P}\right|=\frac{q^{4}}{2}-q^{2} \quad \text { and } \quad\left|S_{P} \cap s\right|=\frac{q^{2}}{2}-1
$$

Denote by $\Lambda_{i}, i=1, \ldots, b$, the equivalence classes. Let Σ be the Sylow 2-subgroup fixing s. By Lemma 3.3, Σ has $q^{2}-1$ orbits of length q^{2} on the points of $\mathbf{P} \backslash s$.

Put $\Lambda=\Lambda_{i}$, and let Σ_{Λ} be the setwise stabilizer of Λ within Σ. Set $Z(\Sigma)=Z$.
Lemma 3.5. $Z \unlhd \Sigma_{\Lambda}$.
Proof. Clearly $\left(S_{P} \cap s\right)^{g}=S_{P^{g}} \cap s$ for all $g \in \Sigma$. Let $P \in \Lambda$. Then $S_{P} \cap s=S_{P^{z}} \cap s$, for all $z \in Z$, since the elements of Z are elations with axis s, because of Lemma 3.1 and Lemma 3.2 (3).

From Lemma 3.2 (3), $g^{2} \in Z$ for all $g \in \Sigma$. Therefore Σ / Z is an elementary abelian group. Since $Z \unlhd \Sigma_{\Lambda}$, then $\Sigma_{\Lambda} / Z \unlhd \Sigma / Z$. Hence $\Sigma_{\Lambda} \unlhd \Sigma$.

Let $\left|\Sigma_{\Lambda}\right|=2^{a}$, where $q \leqslant 2^{a} \leqslant q^{2}$, because of Lemma 3.5.
Lemma 3.6. Either $\left|\Sigma_{\Lambda}\right|=q$ or $\left|\Sigma_{\Lambda}\right|=q^{2}$.
Proof. Assume that $Z \neq \Sigma_{\Lambda} \neq \Sigma$. Since Σ / Z is an elementary abelian group of order $q=2^{2 d+1}$, it can be viewed as a vector space of dimension $2 d+1$ over $\operatorname{GF}(2)$. Then Σ_{Λ} / Z is a proper subspace of Σ / Z. Let T / Z be a complement of Σ_{Λ} / Z in Σ / Z. Then

$$
\Sigma / Z=\left(\Sigma_{\Lambda} / Z\right)(T / Z) \quad \text { and } \quad \Sigma_{\Lambda} / Z \cap T / Z=\{1\}
$$

Moreover

$$
(\Sigma / Z) /\left(\Sigma_{\Lambda} / Z\right) \cong T / Z \quad \text { and } \quad|T / Z|=\frac{q^{2}}{2^{a}}
$$

Consider the subgroup $\Sigma_{\Lambda} T \leqslant \Sigma$. Since $\Sigma_{\Lambda} \unlhd \Sigma_{\Lambda} T$ and $T \unlhd \Sigma_{\Lambda} T$, we get

$$
T /(T \cap Z)=T / Z \cong \Sigma_{\Lambda} T / Z
$$

and

$$
\Sigma_{\Lambda} /\left(\Sigma_{\Lambda} \cap Z\right)=\Sigma_{\Lambda} / Z \cong \Sigma_{\Lambda} T / Z
$$

Therefore $\Sigma_{\Lambda} / Z \cong T / Z$, and so

$$
|T / Z|=\frac{q^{2}}{2^{a}}=\left|\Sigma_{\Lambda} / Z\right|=\frac{2^{a}}{q}
$$

From this, $2^{2 a}=q^{3}$ follows; this is absurd, as $q^{3}=2^{3(2 d+1)}$ is not a square.

Because of this lemma, the equivalence classes are partitioned into two classes: Z-classes: classes whose stabilizer is Z; and Σ-classes: classes whose stabilizer is Σ. Clearly, Σ-classes are point orbits of Σ.

Let t and u be the number of the Z-classes and of the Σ-classes, respectively. Let C be a Frobenius complement of G_{s} (see Lemma 3.2 (2)).

If Λ is a Z-class, then Λ^{Σ} consists of q distinct Z-classes, and $\left(\Lambda^{\Sigma}\right)^{C}=\Lambda^{G_{s}}$ consists of $q(q-1)$ distinct Z-classes. Therefore

$$
\begin{equation*}
t=\mu q(q-1), \quad \text { for some integer } \mu \geqslant 0 \tag{3.6.1}
\end{equation*}
$$

The Σ-classes are split by C into v subsets of size $q-1$. Therefore

$$
\begin{equation*}
u=v(q-1), \quad \text { for some integer } v \geqslant 0 \tag{3.6.2}
\end{equation*}
$$

From (3.6.1) and (3.6.2), the number b of the equivalence classes is

$$
\begin{equation*}
b=t+u=\mu q(q-1)+v(q-1)=(q-1)(\mu q+v) \tag{3.6.3}
\end{equation*}
$$

Let $m \neq s$ be a line through N. The line m intersects each point orbit in exactly one point. Therefore the Σ-classes have $v(q-1)$ points on m. The remaining $q^{2}-1-$ $v(q-1)$ points of m distinct from N and the point of tangency belong to Z-classes. Therefore the number of Z-classes equals at most the number of point orbits that are not Σ-classes. Hence

$$
\begin{equation*}
\mu q(q-1) \leqslant q^{2}-1-v(q-1) \tag{3.6.4}
\end{equation*}
$$

From (3.6.4)

$$
\begin{equation*}
\mu q+v \leqslant q+1 \tag{3.6.5}
\end{equation*}
$$

From (3.6.5), either $\mu=0$ or $\mu=1$.
We prove that the solution $\mu=0$ is impossible. This will be a consequence of the following lemma.

Lemma 3.7. If the point orbit Γ is a Σ-class, then, for every $P \in \Gamma, S_{P} \cap s$ contains all the centres of the non-trivial elations of Z, and $q / 2-1$ orbits of Σ on s of length q.

Proof. Let u be the number of centres contained in $S_{P} \cap s$. Now

$$
\left(S_{P} \cap s\right)^{g}=S_{P^{g}} \cap s=S_{P} \cap s, \quad \text { for all } g \in \Sigma
$$

Therefore, if $X \in S_{P} \cap s$ is a non-centre, then X^{Σ} is an orbit of Σ on s of length q. So the non-centres of $S_{P} \cap s$ are partitioned into v orbits of length q. Hence

$$
\begin{equation*}
\left|S_{P} \cap s\right|=\frac{q^{2}}{2}-1=u+v q \tag{3.7.1}
\end{equation*}
$$

From this equation it follows that q is a solution of the equation

$$
x^{2}-2 v x-2(u+1)=0
$$

Therefore q divides $-2(u+1)$. Since $u+1 \leqslant q$, only two cases are possible: (1) $u+1=q / 2$ and (2) $u+1=q$. Case (1) leads to $q-1=2 v$, which is clearly absurd. Therefore $u=q-1$ and $v=q / 2-1$.

We can now prove that $\mu=0$ is impossible. Clearly, $\mu=0$ means that there is no Z-class. Therefore all the point orbits are Σ-classes. Each point orbit consists of q^{2} points. So, from Result 2.2, \mathcal{O} is s-regular (note that the plane has order q^{2}). Let $X \in s$ be a centre. Because of Lemma 3.7 and Lemma 2.3, S_{X} should contain all the Σ-classes, which is clearly absurd, since $\left|S_{X}\right|=q^{4} / 2-q^{2}$.

We have then $\mu=1$. In this case, either $v=0$ or $v=1$.
We prove that $v=0$ is impossible. Now $v=0$ means that there are only Z-classes. Moreover, each Z-class has the same number of points. Let n be this number. Then

$$
n q(q-1)=q^{2}\left(q^{2}-1\right)
$$

hence

$$
n=q(q+1)
$$

Let $X \in s \backslash\{O, N\}$. From Lemma 2.3, the set S_{X} is the union of ρZ-classes. Therefore

$$
\left|S_{X}\right|=\frac{q^{4}}{2}-q^{2}=\rho q(q+1)
$$

which is clearly absurd, as $q+1$ is odd.
In conclusion, there are $q(q-1) Z$-classes and $q-1 \Sigma$-classes. Each Σ-class contains q^{2} points. Every Z-class also contains q^{2} points. For, if n is the number of points that each Z-class contains, then from

$$
n q(q-1)=q^{2}\left(q^{2}-1\right)-q^{2}(q-1)
$$

we get $n=q^{2}$.
From Result 2.2, \mathcal{O} is s-regular. Since the proof holds for every tangent line s, \mathcal{O} is a completely regular oval.

Completion of the proof of Theorem 1.2. Since \mathcal{O} is completely regular, by Result 2.4 the plane is dual to a symplectic translation plane Π^{*} of order q^{2}, and Π^{*} admits a collineation group isomorphic to the Suzuki group $\operatorname{Sz}(q)$. By Liebler's characterization of Lüneburg planes (see [18] or [19, Theorem 31.1]), Π^{*} is the Lüneburg plane of order q^{2}. Therefore Π is dual to the Lüneburg plane of order q^{2}.

Theorem 1.2 also provides a new characterization of Lüneburg planes.

Theorem 3.8. Let $\mathfrak{A l}$ be an affine plane of even order q^{2}, where $q=2^{2 d+1}$ with $d \geqslant 1$. Let ℓ_{∞} be its line at infinity. Then \mathfrak{H} is the Lüneburg plane of order q^{2} if and only if it admits a collineation group G isomorphic to $\operatorname{Sz}(q)$ and a line-oval \mathcal{O} with nucleus ℓ_{∞}, such that G acts 2-transitively on the set of lines of \mathcal{O}.

References

[1] M. Biliotti, G. Korchmáros, Collineation groups strongly irreducible on an oval. In: Combinatorics '84 (Bari, 1984), volume 123 of North-Holland Math. Stud., 85-97, North-Holland 1986. MR861286 (87k:51021) Zbl 0601.51012
[2] M. Biliotti, G. Korchmáros, Collineation groups which are primitive on an oval of a projective plane of odd order. J. London Math. Soc. (2) 33 (1986), 525-534. MR850968 (87i:51027) Zbl 0597.51007
[3] A. Bonisoli, On a theorem of Hering and two-transitive ovals with a fixed external line. In: Mostly finite geometries (Iowa City, IA, 1996), 169-183, Dekker 1997. MR1463981 (98h:51015) Zbl 0893.51011
[4] A. Bonisoli, G. Korchmáros, On two-transitive ovals in projective planes of even order. Arch. Math. (Basel) 65 (1995), 89-93. MR1336229 (96d:51007) Zbl 0822.51006
[5] J. Cofman, Double transitivity in finite affine and projective planes. Proc. Proj. Geometry Conference, Univ. of Illinois, Chicago (1967), 16-19. Zbl 0176.17705
[6] P. Dembowski, Finite geometries. Springer 1968. MR0233275 (38 \#1597) Zbl 0159.50001
[7] J. W. P. Hirschfeld, Projective geometries over finite fields. Oxford Univ. Press 1998. MR1612570 (99b:51006) Zbl 0899.51002
[8] W. M. Kantor, On unitary polarities of finite projective planes. Canad. J. Math. 23 (1971), 1060-1077. MR0293491 (45 \#2568) Zbl 0225.50011
[9] W. M. Kantor, Symplectic groups, symmetric designs, and line ovals. J. Algebra 33 (1975), 43-58. MR0363934 (51 \#189) Zbl 0298.05016
[10] W. M. Kantor, Spreads, translation planes and Kerdock sets. I. SIAM J. Algebraic Discrete Methods 3 (1982), 151-165. MR655556 (83m:51013a) Zbl 0493.51008
[11] W. M. Kantor, 2-transitive and flag-transitive designs. In: Coding theory, design theory, group theory (Burlington, VT, 1990), 13-30, Wiley, New York 1993.
MR1227117 (94e:51018)
[12] W. M. Kantor, Projective planes of order q whose collineation groups have order q^{2}. J. Algebraic Combin. 3 (1994), 405-425. MR 1293823 (96a:51003) Zbl 0810.51002
[13] W. M. Kantor, M. E. Williams, New flag-transitive affine planes of even order. J. Combin. Theory Ser. A 74 (1996), 1-13. MR1383501 (97e:51012) Zbl 0852.51005
[14] W. M. Kantor, M. E. Williams, Symplectic semifield planes and \mathbb{Z}_{4}-linear codes. Trans. Amer. Math. Soc. 356 (2004), 895-938. MR 1984461 (2005e:51011) Zbl 1038.51003
[15] G. Korchmáros, The line ovals of the Lüneburg plane of order $2^{2 r}$ that can be transformed into themselves by a collineation group isomorphic to the simple group $\mathrm{Sz}\left(2^{r}\right)$ of Suzuki. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 15 (1979), 293-315. MR560152 (83c:51005) Zbl 0445.51003
[16] G. Korchmáros, Collineation groups doubly transitive on the points at infinity in an affine plane of order 2^{r}. Arch. Math. (Basel) 37 (1981), 572-576. MR646518 (83b:51013) Zbl 0472.51004
[17] G. Korchmáros, Old and new results on ovals in finite projective planes. In: Surveys in combinatorics, 1991 (Guildford, 1991), volume 166 of London Math. Soc. Lecture Note Ser., 41-72, Cambridge Univ. Press 1991. MR1161460 (93b:51014) Zbl 0748.51012
[18] R. A. Liebler, A characterization of the Lüneburg planes. Math. Z. 126 (1972), 82-90. MR0301623 (46 \#779) Zbl 0229.50028
[19] H. Lüneburg, Translation planes. Springer 1980. MR572791 (83h:51008) Zbl 0446.51003
[20] A. Maschietti, Regular triples with respect to a hyperoval. Ars Combin. 39 (1995), 75-88. MR1328485 (96m:51008) Zbl 0828.51003
[21] A. Maschietti, A characterization of translation hyperovals. European J. Combin. 18 (1997), 893-899. MR1485374 (98j:51014) Zbl 0889.51011
[22] A. Maschietti, Symplectic translation planes and line ovals. Adv. Geom. 3 (2003), 123-143. MR1967995 (2004c:51008) Zbl 1030.51002
[23] A. Maschietti, Completely regular ovals. Adv. Geom (to appear 2006).
[24] T. G. Ostrom, A. Wagner, On projective and affine planes with transitive collineation groups. Math. Z 71 (1959), 186-199. MR0110975 (22 \#1843) Zbl 0085.14302
[25] M. Suzuki, A new type of simple groups of finite order. Proc. Nat. Acad. Sci. USA 46 (1960), 868-870. MR0120283 (22 \#11038) Zbl 0093.02301
[26] M. Suzuki, On a class of doubly transitive groups. Ann. of Math. (2) 75 (1962), 105-145. MR0136646 (25 \#112) Zbl 0106.24702

Received 19 July, 2004
A. Maschietti, Dipartimento di Matematica, Università "La Sapienza", P.le A. Moro, I-00182 Roma, Italy
Email: maschiet@mat.uniromal.it

