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Abstract. An oval O of a projective plane is called two-transitive if there is a collineation group
G fixing O and acting 2-transitively on its points. If the plane has odd order, then the plane is
desarguesian and the oval is a conic. In the present paper we prove that if a plane has order a
power of two and admits a two-transitive oval, then either the plane is desarguesian and the
oval is a conic, or the plane is dual to a Lüneburg plane.
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1 Introduction

Let q ¼ 22dþ1 with d d 1. The Suzuki simple group SzðqÞ (see [25] and [26]) can be
represented faithfully as a 2-transitive permutation group on q2 þ 1 letters. Known
representations of SzðqÞ as an automorphism group of geometric structures comprise

(1) the Tits ovoid in the projective geometry PGð3; qÞ (see [19, Chapter IV]);

(2) the Lüneburg plane of order q2 (see [19, Chapter IV]); and

(3) the Suzuki–Tits inversive plane of order q (see [6, Chapter 6]).

These structures are equivalent, in the sense that, up to isomorphisms, each of them
determines the others.

In this paper we are interested in the following question: Can a non-Lüneburg pro-
jective plane of order q2, or its dual, admit a collineation group G isomorphic to
SzðqÞ?

The possible actions of such a group are described in [19, Theorem 28.11], which
are here recalled for the convenience of the reader.

Theorem 1.1. Let P be a projective plane of order q2, and let G be a collineation group

isomorphic to SzðqÞ. Then one of the following holds.
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(1) G fixes a non-incident point line pair ðP; lÞ and G acts 2-transitively on the set of

lines through P as well as on the set of points of l. Moreover, G has two further

point orbits of length ðq2 þ 1Þðq � 1Þ and ðq2 þ 1Þqðq � 1Þ and two further line

orbits of length ðq2 þ 1Þðq � 1Þ and ðq2 þ 1Þqðq � 1Þ.

(2) G fixes an oval O and its nucleus N and acts 2-transitively on the set of lines

through N as well as on the set of points of O. It also acts transitively on the set

of secants lines to O and splits the set of exterior lines to O into two orbits of length
1
4 ðq � r þ 1Þq2ðq � 1Þ and 1

4 ðq þ r þ 1Þq2ðq � 1Þ, where r2 ¼ 2q. Furthermore, G

has two point orbits of length ðq2 þ 1Þðq � 1Þ and ðq2 þ 1Þqðq � 1Þ.

(3) The dual to (2).

All three cases really occur. Cases (1) and (3) hold in Lüneburg planes ([9], [15],
[19, Chapter IV], [22]). Therefore Case (2) holds in the dual Lüneburg planes. Our
main result states that Case (2) occurs only in the dual Lüneburg planes:

Theorem 1.2. Let P be a projective plane of even order q2, where q ¼ 22dþ1 with d d 1.

Assume that P admits a collineation group G isomorphic to SzðqÞ and that P has an

oval O on which G acts 2-transitively. Then P is the dual Lüneburg plane of order q2.

This theorem also solves the open problem about two-transitive ovals, in the case
where the plane has order a power of 2. We briefly recall this problem.

Let P be a projective plane of order n. An oval in P is a set of n þ 1 points, no
three of which are collinear. For the theory of ovals the reader is referred to [7] and
to the survey paper [17]. An oval is called two-transitive if there is a collineation
group G of P fixing the oval and acting 2-transitively on its points.

Two-transitive ovals were firstly considered by Cofman [5] in order to give a local
version of the Ostrom–Wagner theorem [24]. Cofman [5] proved: if P has odd order

and if every involution of G is a central collineation, then the plane is desarguesian and

O is a conic.

Later Kantor [8] weakened the condition on the involutions by requiring only
that G contained some nonidentical central collineation. Finally, in 1986, Biliotti
and Korchmaros [2] gave a strong generalization of the foregoing results by requiring
only the primitivity of G. Therefore, for planes of odd order, the problem of two-
transitive ovals admits only the classical solution.

In case n is even the situation is more complicated. In view of [1], [4], [17] and The-
orem 1.2 there are the following possibilities.

Theorem 1.3. Let P be a projective plane of even order n and let O be an oval. If G is a

collineation group of P fixing O and acting 2-transitively on its points, then G contains

non-trivial elations. If D is the set of all non-trivial elations of G and if H is the sub-

group generated by D, then exactly one of the following cases holds.

(A) jDj ¼ n þ 1 and H is a semidirect product of a group of odd order n þ 1 with a

group of order two. Moreover, H is transitive on the points of O, fixes an exterior

line to O and G does not contain Baer involutions.
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(B) n ¼ 2h, P is desarguesian, H G SLð2; nÞ and O is a conic.

(C) n ¼ q2, where q ¼ 22dþ1 with d d 1, P is dual to the Lüneburg plane of order q2,
H G SzðqÞ and H acts on O as SzðqÞ in its natural 2-transitive permutation repre-

sentation.

All three cases occur. Apart from the trivial case n ¼ 2, the only known example
for case (A) is n ¼ 4. It is conjectured that indeed case (A) for n > 4 cannot happen.
The conjecture has been shown true for all projective planes of order a power of 2
(see [16] and [17]). Case (A) is also investigated in [4] and [3]. Case (C) is a conse-
quence of Theorem 1.2.

In conclusion:

Theorem 1.4. Let P be a projective plane of even order n ¼ 2h and let O be an oval.

Then P admits a collineation group fixing O and acting 2-transitively on its points, if

and only if either P is desarguesian, G contains a subgroup isomorphic to SLð2; nÞ and

O is a conic, or n ¼ 22ð2eþ1Þ, with ed 1, P is the dual Lüneburg plane of order n and G

contains a subgroup isomorphic to Szð22eþ1Þ.

Case (A) of Theorem 1.3 remains open, and it seems evident that ad hoc geometric
methods are needed for its solution. This is a recurrent theme following theorems
using properties of some simple groups, as already remarked by other authors (see
for example Kantor [11]).

The paper is structured as follows. In Section 2 we fix notation and recall some
results necessary for the proof of Theorem 1.2. Section 3 is devoted to the proof of
this theorem.

2 Background

Let P be a projective plane of even order qd 8, and let O be an oval in P. Any line
of P meets O in either 0, 1 or 2 points and is called exterior, tangent or secant, respec-
tively. Since the order is even, all the tangent lines to O concur at the same point N,
called the nucleus (or also the knot) of O. Moreover, on each point not in OU fNg
there is one tangent line, q=2 secant lines and q=2 exterior lines. We denote by P the
set of points of P which are not in OU fNg. If l is a line of P, the same symbol l will
also denote the set of points incident with l. In particular, if P and Q are distinct
points, the line through them is denoted by PQ.

Definition 2.1. Let s be a tangent line to O. We say that O is s-regular if, for every pair
of distinct points X ;Y A sVP, there is a third point Z A sVP such that, for every
point P0N, at least one of the lines PX , PY or PZ is secant to O. If O is s-regular
for every tangent line s, then O is called completely regular.

s-regular ovals are investigated in [20], [21], [23].
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For P A P let

SP :¼ fQ A P jQ0P and PQ is a secant lineg: ð2:1:1Þ

It is easy to verify that

jSPj ¼
q2

2
� q: ð2:1:2Þ

Fix a tangent line s to O, and let O be the point of tangency of s. For every P A P,
the set SP V s consists of q=2 � 1 distinct points. Let @ be the following equivalence
relation on the set Pns:

P@Q , SP V s ¼ SQ V s: ð2:1:3Þ

Denote by Li, i ¼ 1; . . . ; b, the equivalence classes.

Result 2.2 ([23, Theorem 2.17]). O is s-regular if and only if jLij ¼ q, for all i ¼
1; . . . ; b.

The following observation will be used in the proof of Theorem 1.2.

Lemma 2.3. Let X A snfO;Ng. Then SX is union of equivalence classes.

Proof. Let P A SX . Let Q@P. Then, from SP V s ¼ SQ V s and X A SP V s, it follows
that QX is a secant line to O. Therefore Q A SX .

We refer to [19] for the theory of translation planes. A translation plane is called
symplectic if it is defined by a spread consisting of maximal totally isotropic sub-
spaces with respect to a nondegenerate alternating bilinear form on the underlying
vector space. Classical examples of symplectic planes are the desarguesian planes
and the Lüneburg planes. Many families of non-classical symplectic planes have
been constructed by Kantor [10], [12] and by Kantor and Williams [13], [14].

Result 2.4 ([23, Theorem 4.7]). Let P be a projective plane of even order. Then P ad-

mits a completely regular oval if and only if the plane is dual to a symplectic translation

plane.

3 Proof of Theorem 1.2

In this section P is a projective plane of even order q2, where q ¼ 22dþ1 with d d 1, O
is an oval with nucleus N and G is a collineation group of P isomorphic to SzðqÞ and
acting 2-transitively on O. This situation corresponds to Case (2) of Theorem 1.1.

We outline the main steps of the proof of Theorem 1.2. First, we prove that O is
completely regular. This is the main step, which involves Result 2.2. Then, from Re-
sult 2.4, it follows that the plane is dual to a symplectic translation plane of order q2.
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The final step uses Liebler’s characterization of Lüneburg planes [18] or [19, Theorem
31.1].

Before we begin the proof, we need a summary of some known facts about the
action of G.

Lemma 3.1 ([19, Lemma 28.3]). All involutions of G are elations.

Lemma 3.2. (1) G fixes the nucleus N of O and acts in its natural 2-transitive represen-

tation on the set of tangent lines to O.

(2) Let s be a tangent line to O. Then Gs is a Frobenius group of order q2ðq � 1Þ. The

Frobenius kernel is a Sylow 2-subgroup S and each Frobenius complement is cyclic

of order q � 1 and coincides with the stabilizer Gs;m, for some tangent line m0 s.

Moreover Gs ¼ NGðSÞ (the normalizer of S in G) and S is the unique Sylow

2-subgroup of G fixing s.

(3) Let S be a Sylow 2-subgroup of G. Then S has exponent 4, its centre is ZðSÞ ¼
fg A S j g2 ¼ 1g and jZðSÞj ¼ q. Finally, each Frobenius complement acts transi-

tively on ZðSÞnf1g.

Proof. (1) is Lemma 28.4 of [19]. The rest of the lemma is a consequence of (1)
and [19, Theorem 24.2], where the properties of Sylow 2-subgroups of SzðqÞ are
described.

Lemma 3.3. Let s be a tangent line to O, and let S be the Sylow 2-subgroup of G fixing

s. The following hold.

(1) S acts faithfully and semiregularly on the set of points o¤ s, and has q2 point orbits

of length q2. One of these orbits is OnfOg, where O is the point of tangency of s.

(2) S splits the points of s in q þ 1 orbits of length 1 and q � 1 orbits of length q. The

orbits of length 1 are fOg, fNg and the q � 1 centres of the non-trivial elations

of S.

Proof. This result is inside the proof of [19, Lemma 28.8].

Now we prove the first step of Theorem 1.2.

Theorem 3.4. O is a completely regular oval.

Proof. Fix a tangent line s. We prove that O is s-regular. Denote by O the point of
tangency of s and let P be the set of points of P not in OU fNg. Let@ be the equiv-
alence relation on Pns

P@Q , SP V s ¼ SQ V s;

see (2.1.3). Since the order of the plane is q2, we have

Two-transitive ovals 327

Brought to you by | Universita degli Studi di Roma La Sapienza Biblioteca Alessandrina (Universita degli Studi di Roma La Sapienza Biblioteca Alessandrina)
Authenticated | 172.16.1.226

Download Date | 5/15/12 2:30 PM



jSPj ¼
q4

2
� q2 and jSP V sj ¼ q2

2
� 1:

Denote by Li, i ¼ 1; . . . ; b, the equivalence classes. Let S be the Sylow 2-subgroup
fixing s. By Lemma 3.3, S has q2 � 1 orbits of length q2 on the points of Pns.

Put L ¼ Li, and let SL be the setwise stabilizer of L within S. Set ZðSÞ ¼ Z.

Lemma 3.5. Z t SL.

Proof. Clearly ðSP V sÞg ¼ SPg V s for all g A S. Let P A L. Then SP V s ¼ SP z V s, for
all z A Z, since the elements of Z are elations with axis s, because of Lemma 3.1 and
Lemma 3.2 (3).

From Lemma 3.2 (3), g2 A Z for all g A S. Therefore S=Z is an elementary abelian
group. Since Z t SL, then SL=Z t S=Z. Hence SL t S.

Let jSLj ¼ 2a, where qc 2a c q2, because of Lemma 3.5.

Lemma 3.6. Either jSLj ¼ q or jSLj ¼ q2.

Proof. Assume that Z 0SL 0S. Since S=Z is an elementary abelian group of order
q ¼ 22dþ1, it can be viewed as a vector space of dimension 2d þ 1 over GFð2Þ. Then
SL=Z is a proper subspace of S=Z. Let T=Z be a complement of SL=Z in S=Z. Then

S=Z ¼ ðSL=ZÞðT=ZÞ and SL=Z VT=Z ¼ f1g:

Moreover

ðS=ZÞ=ðSL=ZÞGT=Z and jT=Zj ¼ q2

2a
:

Consider the subgroup SLT cS. Since SL t SLT and T t SLT , we get

T=ðT VZÞ ¼ T=Z GSLT=Z

and

SL=ðSL VZÞ ¼ SL=Z GSLT=Z:

Therefore SL=Z GT=Z, and so

jT=Zj ¼ q2

2a
¼ jSL=Zj ¼ 2a

q
:

From this, 22a ¼ q3 follows; this is absurd, as q3 ¼ 23ð2dþ1Þ is not a square.
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Because of this lemma, the equivalence classes are partitioned into two classes:
Z-classes: classes whose stabilizer is Z; and S-classes: classes whose stabilizer is S.
Clearly, S-classes are point orbits of S.

Let t and u be the number of the Z-classes and of the S-classes, respectively. Let C

be a Frobenius complement of Gs (see Lemma 3.2 (2)).
If L is a Z-class, then LS consists of q distinct Z-classes, and ðLSÞC ¼ LGs consists

of qðq � 1Þ distinct Z-classes. Therefore

t ¼ mqðq � 1Þ; for some integer md 0: ð3:6:1Þ

The S-classes are split by C into n subsets of size q � 1. Therefore

u ¼ nðq � 1Þ; for some integer nd 0: ð3:6:2Þ

From (3.6.1) and (3.6.2), the number b of the equivalence classes is

b ¼ t þ u ¼ mqðq � 1Þ þ nðq � 1Þ ¼ ðq � 1Þðmq þ nÞ: ð3:6:3Þ

Let m0 s be a line through N. The line m intersects each point orbit in exactly one
point. Therefore the S-classes have nðq � 1Þ points on m. The remaining q2 � 1�
nðq � 1Þ points of m distinct from N and the point of tangency belong to Z-classes.
Therefore the number of Z-classes equals at most the number of point orbits that are
not S-classes. Hence

mqðq � 1Þc q2 � 1 � nðq � 1Þ: ð3:6:4Þ

From (3.6.4)

mq þ nc q þ 1: ð3:6:5Þ

From (3.6.5), either m ¼ 0 or m ¼ 1.
We prove that the solution m ¼ 0 is impossible. This will be a consequence of the

following lemma.

Lemma 3.7. If the point orbit G is a S-class, then, for every P A G, SP V s contains all

the centres of the non-trivial elations of Z, and q=2 � 1 orbits of S on s of length q.

Proof. Let u be the number of centres contained in SP V s. Now

ðSP V sÞg ¼ SPg V s ¼ SP V s; for all g A S:

Therefore, if X A SP V s is a non-centre, then X S is an orbit of S on s of length q. So
the non-centres of SP V s are partitioned into v orbits of length q. Hence

jSP V sj ¼ q2

2
� 1 ¼ u þ vq: ð3:7:1Þ
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From this equation it follows that q is a solution of the equation

x2 � 2vx � 2ðu þ 1Þ ¼ 0:

Therefore q divides �2ðu þ 1Þ. Since u þ 1c q, only two cases are possible: (1)
u þ 1 ¼ q=2 and (2) u þ 1 ¼ q. Case (1) leads to q � 1 ¼ 2v, which is clearly absurd.
Therefore u ¼ q � 1 and v ¼ q=2 � 1.

We can now prove that m ¼ 0 is impossible. Clearly, m ¼ 0 means that there is no
Z-class. Therefore all the point orbits are S-classes. Each point orbit consists of q2

points. So, from Result 2.2, O is s-regular (note that the plane has order q2). Let
X A s be a centre. Because of Lemma 3.7 and Lemma 2.3, SX should contain all the
S-classes, which is clearly absurd, since jSX j ¼ q4=2 � q2.

We have then m ¼ 1. In this case, either n ¼ 0 or n ¼ 1.
We prove that n ¼ 0 is impossible. Now n ¼ 0 means that there are only Z-classes.

Moreover, each Z-class has the same number of points. Let n be this number. Then

nqðq � 1Þ ¼ q2ðq2 � 1Þ;

hence

n ¼ qðq þ 1Þ:

Let X A snfO;Ng. From Lemma 2.3, the set SX is the union of r Z-classes. Therefore

jSX j ¼
q4

2
� q2 ¼ rqðq þ 1Þ;

which is clearly absurd, as q þ 1 is odd.
In conclusion, there are qðq � 1Þ Z-classes and q � 1 S-classes. Each S-class con-

tains q2 points. Every Z-class also contains q2 points. For, if n is the number of points
that each Z-class contains, then from

nqðq � 1Þ ¼ q2ðq2 � 1Þ � q2ðq � 1Þ

we get n ¼ q2.
From Result 2.2, O is s-regular. Since the proof holds for every tangent line s, O is

a completely regular oval.

Completion of the proof of Theorem 1.2. Since O is completely regular, by Result 2.4
the plane is dual to a symplectic translation plane P� of order q2, and P� admits a
collineation group isomorphic to the Suzuki group SzðqÞ. By Liebler’s characteriza-
tion of Lüneburg planes (see [18] or [19, Theorem 31.1]), P� is the Lüneburg plane of
order q2. Therefore P is dual to the Lüneburg plane of order q2.

Theorem 1.2 also provides a new characterization of Lüneburg planes.
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Theorem 3.8. Let A be an a‰ne plane of even order q2, where q ¼ 22dþ1 with d d 1.

Let ly be its line at infinity. Then A is the Lüneburg plane of order q2 if and only if it

admits a collineation group G isomorphic to SzðqÞ and a line-oval O with nucleus ly,
such that G acts 2-transitively on the set of lines of O.
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[2] M. Biliotti, G. Korchmáros, Collineation groups which are primitive on an oval of a
projective plane of odd order. J. London Math. Soc. (2) 33 (1986), 525–534.
MR850968 (87i:51027) Zbl 0597.51007

[3] A. Bonisoli, On a theorem of Hering and two-transitive ovals with a fixed external line.
In: Mostly finite geometries (Iowa City, IA, 1996), 169–183, Dekker 1997.
MR1463981 (98h:51015) Zbl 0893.51011
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