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a b s t r a c t

The real-time prediction and estimation of the spread of diseases, such as COVID-19 is of paramount
importance as evidenced by the recent pandemic. This work is concerned with the distributed
parameter estimation of the time–space propagation of such diseases using a diffusion–reaction
epidemiological model of the susceptible–exposed–infected–recovered (SEIR) type. State estimation
is based on continuous measurements of the number of infections and deaths per unit of time and
of the host spatial domain. The observer design method is based on positive definite matrices to
parameterize a class of Lyapunov functionals, in order to stabilize the estimation error dynamics. Thus,
the stability conditions can be expressed as a set of matrix inequality constraints which can be solved
numerically using sum of squares (SOS) and standard semi-definite programming (SDP) tools. The
observer performance is analyzed based on a simplified case study corresponding to the situation in
France in March 2020 and shows promising results.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Lately, mathematical models in epidemiology have attracted
onsiderable attention, and extensive research has been carried
ut in this field due to their important role in human life [1–4].
ocial networks provide practical methodologies to simulate epi-
emics spreading by developing mathematical models to predict
nd monitor critical features of outbreaks.
In late 2019, a disease outbreak emerged in Wuhan, China. The

ulprit was a certain strain called Coronavirus Disease 2019 or
OVID-19 in brief. This virus has been identified to cause fever,
ough, shortness of breath, muscle ache, confusion, headache,
ore throat, rhinorrhoea, chest pain, diarrhea, nausea and vom-
ting [5]. Although only seven coronaviruses are known to cause
isease in humans, three of these, COVID-19 included, can cause
much severe infection, and sometimes fatal to humans.
The rapid spread of COVID-19 all over the world has become
matter of grave concern and has hugely altered the lifestyle
nd social behavior of the populations from the beginning of
020. Indeed, it poses considerable economic, environmental,

∗ Corresponding author.
E-mail addresses: ivanfrancisco.yupanquitello@umons.ac.be (I.F.Y. Tello),

lain.vandewouwer@umons.ac.be (A.V. Wouwer), daniel.coutinho@ufsc.br
D. Coutinho).
ttps://doi.org/10.1016/j.jprocont.2022.08.016
959-1524/© 2022 Elsevier Ltd. All rights reserved.
and political challenges all over the world. Consequently, con-
siderable research effort has been made to investigate precise
mathematical models for the outbreak of this newborn virus and
rapid estimation of its future transmission and mortality rates.
For the time being and in spite of the massive vaccination, COVID-
19 infection is still active in many countries at the time of writing
this article. Governments intensify the vaccination campaigns to
combat the disease whereas research institutions try to find out
the effectiveness of the vaccines regarding the new variants of
the virus circulating in many countries.

Several mathematical models have been proposed from var-
ious epidemiological groups [4,6,7]. These models help govern-
ments as an early warning device about the size of the outbreak,
to assess how quickly it will spread, and how effective control
measures may be. However, due to the limited emerging under-
standing of the new variants and their transmission mechanisms,
results may only reflect specific scenarios.

Susceptible–Infectious–Recovered (SIR) models, with compart-
ments representing susceptible, infectious, and recovered por-
tions of a population are often considered as variations of the
well-known Kermack–McKendrick model [1]. While SIR-type
models are commonly used in governing the forward dynamics
of epidemiological systems, a variety of state estimation tech-
niques have been used in the literature for control or monitoring
purposes [8–10]. Particularly for the COVID-19 pandemic, one

can mention, among others, the recent agent-based modeling
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tudies [11,12] and those reported in [13–15] that perform state
stimation of time propagation SIR models. On the other hand,
ime–space propagation applications have not been explored
uch despite their importance for monitoring the evolution of
ompartment distribution in a determined host region.
In this work, employing a new generalized epidemiologi-

al (susceptible–exposed–infected–recovered) model of COVID-
9 spread [7], a model-based state estimator design is developed
or the epidemic spread dynamics in a prescribed host popula-
ion. The presence of time-variant parameters and incomplete
easurements are tackled through a robust state estimator based
n the Lyapunov theory. In this context, the contribution of this
ork is a computationally tractable method for the nonlinear
uenberger-like observer design of the SEIR model of COVID-19
pread [7]. This method provides a guaranteed estimation error
ecay rate and is formulated in terms of LMI constraints and a
olynomial parametrization in such a way that the corresponding
olution provides a convergent estimator. The observer allows
onitoring the susceptible, exposed and infected distribution in
rectangular spatial region with Neumann boundary conditions.
tability analysis in 2D domains sets a challenging problem with
egard to the derivation of possibly not too conservative con-
itions to be solved by semidefinite programming (SDP). The
roposed methodology uses integration by parts as a fundamen-
al tool as well as the Poincaré–Wirtinger inequality and the
-procedure for local stability analysis based on sector conditions.
The reminder of this paper is organized as follows. In Sec-

ion 2, the epidemiological model is presented along with some
reliminary assumptions. Section 3 introduces the mathematical
ramework for the proposed observer synthesis based on the
bstract formulation of the error dynamics and the set-up of
he sector condition related to the nonlinearity embedded into
ts dynamics. The Lyapunov convergence analysis and the main
heoretical contribution of this paper are given in Section 4.
ection 5 is devoted to numerical tests of the proposed observer
esign scheme in a case study dedicated to monitoring of the
pread of COVID-19, based on the model presented in Section 2.
ection 6 draws concluding remarks and points out some possible
esearch lines.

Notation. We denote the set of natural, real, positive and non-
egative real numbers by N, R, R> and R≥, respectively. The
ector space of nx dimensional real vectors and nx-by-ny real
atrices are respectively denoted by Rnx and Rnx×ny . Snx ∈ Rnx×nx

represents the subspace of symmetric matrices, where the mul-
tiplicative and additive identities are denoted by Inx ∈ Snx and
nx,ny ∈ Rnx×ny , respectively. The superscript ‘‘T ’’ denotes matrix

transposition, ‘‘⊗’’ the Kronecker product, vec (A) the column
ector by vertically stacking the columns of the matrix A, diag (...)

a block-diagonal matrix, He{P} = P + PT the Hermitian operator
pplied to matrix P , Ω a connected open subset of R2, ∂Ω the

boundary of Ω , ∂tx(z, t), ∂zx(z, t) and ∂2
z x(z, t) the time, first

and second order spatial derivatives of the function x(z, t), with
respect to z, respectively. Lnx2 (Ω) denotes the space of square
Lebesgue integrable nx-dimensional vector valued functions, that
is, functions with finite norm

∥x(·, t)∥2 =

(∫
Ω

xT (z, t)x(z, t)dΩ
) 1

2

< ∞,

also W1,2(Ω) is the Sobolev space, often denoted by H1(Ω) and
efined as
1,2(Ω) = {x ∈ L2(Ω) : Dαx ∈ L2(Ω) ∀ |α| ≤ 1}

where α = (α1, α2), α1, α2 ∈ N0, is a bidimensional multi-index
f order |α| = α1 + α2 and where the following notation is used:
αx = ∂

|α|
α1 α2 x.
z1 z2

232
Explicitly in this work, the Laplacian of x is the sum of all the
unmixed second partial derivatives in the Cartesian coordinates
zi, i = 1, 2:

∆zx =

2∑
i=1

∂2
zix.

Zm(z) = Zm(z1, z2) denotes the vector of monomial bases of
degree m or less, i.e,

Zm(z) =
[
1 z1 z2 z21 z1z2 z22

· · · z1zm−1
2 zm2

]T
.

Instrumental Tools. The following statements are instrumental
for deriving the main theoretical results of this paper.

Definition 1. Let x, x̂ ∈ Rnx . We define by Co(x, x̂) the convex
hull of the set {x, x̂}, i.e.

Co(x, x̂) = {θx + (1 − θ )x̂ : θ ∈ [0, 1]}. (1)

Lemma 1 (Differential Mean Value Theorem [16]).
Let x ∈ Rnx , x̂ ∈ Rnx and r(x) : Rnx → Rnr be a differentiable

function with respect to x. Then, there is an element x̆ ∈ Co(x, x̂),
such that:

r(x) − r(x̂) = ∇r(x̆)(x − x̂) (2)

where ∇r =
[
∂x1 r · · · ∂xn r

]
∈ Rnr×nx .

Lemma 2 (Poincaré–Wirtinger Inequality [17]).
Let Ω be an open bounded Lipschitz connected subset in Rn. Then

there exists a constant CΩ , depending only on Ω , such that for every
function x ∈ W1,2(Ω)∫

Ω

(x(z) − mx)
2 dΩ ≤ CΩ

∫
Ω

|∇zx(z)|2dΩ. (3)

where

mx =
1

|Ω|

∫
Ω

x(z)dΩ. (4)

is the mean value of x over Ω , with |Ω| standing for the Lebesgue
measure of the domain Ω .

Remark 1. The Poincaré constant CΩ depends on the geometry of
the domain Ω . Particularly, if Ω is a bounded, convex, Lipschitz
omain with diameter d, then the Poincaré constant is at most
/π [18].

. Spatiotemporal model of COVID-19 infection spread

We consider the SIR-like model presented in [19] and fur-
her developed in [7] where it is assumed that a host popula-
ion of individuals is divided into compartments corresponding
o disease status, modeling the movement in space and time
f the subpopulation in each compartment. Specifically, these
ompartments are the densities of Susceptible population S, Ex-
osed population E, Symptomatic Infected population Is, Asymp-
omatic Infected population Ia, Under treatment population U ,
emoved population R and the deceased population De. Note

that De refers only to deaths due to COVID-19. We denote the
living host population as N = S + E + Ia + Is + U + R. Due
to the names of the compartments used, this model is often
referred as the susceptible–exposed–infected–recovered (or, in
short, SEIR) model. We therefore formulate the problem in terms
of the state vector x = [S, E, Ia, Is,U, R]T containing the different
compartments. This model assumes that
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Fig. 1. Compartmental representation of the SEIaIsUR-model.

• the spatial mobility is governed by diffusion coefficients
according to the mobility restrictions of the host population;

• only susceptible, exposed and asymptomatic individuals are
moving;

• there is a latency period between exposure and the devel-
opment of symptoms.

escription of the infection flow

The susceptible class contains individuals who do not have
emporary immunity to the virus, then might become infected
f exposed. The exposed class contains individuals who have
een infected but do not have symptoms. The period that starts
hen the person becomes infected, until the person becomes
ymptomatic or asymptomatic is the latent period 1

δl
= 5 days.

he under treatment class contains individuals who are currently
nfected and cannot transmit the infection because of adequate
solation. The recovered class contains individuals who returned
o a normal state of health after having been infected during
he latent period 1

γr
= 7 days. The number of deaths depends

only on the death rate as the number of recovered depends only
on the recovery rate. Finally, the cumulative number of infected
depends only on the exposed and the incubation period. The
diffusion parameters are included in the model to spread the
disease spatially. Fig. 1 depicts the infection flow according to the
explanation above.

The dynamics is governed by a system of three partial differ-
ential equations (PDE) and three ordinary differential equations
(ODE) as follows

∂tS(z, t) = d(t)∆zS(z, t) − w(t)
⎧⎩βeE(z, t)

+ βsIs(z, t) + βaIa(z, t)
⎫⎭ S

N
(z, t)

∂tE(z, t) = d(t)∆zE(z, t) + w(t)
⎧⎩βeE(z, t)

+ βsIs(z, t) + βaIa(z, t)
⎫⎭ S

N
(z, t)

− δlE(z, t)
∂t Ia(z, t) = d(t)∆z Ia(z, t) + (1 − ps)E(z, t)

− γr Ia(z, t)
∂t Is(z, t) = psδE(z, t) − (γr + µd + νt) Is(z, t)
∂tU(z, t) = νt Is(z, t) − (γr + µd)U(z, t)

∂tR(z, t) = γr (Ia(z, t) + Is(z, t) + U(z, t)) (5)

for (z, t) ∈ Ω × (0, ∞) as spatial and time domains respectively.
The total living population is N = S + E + Ia + Is + U + R and
the deaths are De = µd(Is + U). No new recruit is added and, if
we assume that the region of interest is isolated, we prescribe the
233
Table 1
Parameter definitions.
Parameter Definition

wβe Transmission rate
from S to E from
contact with E (days−1)

wβs Transmission rate
from S to E from
contact with Is (days−1)

wβa Transmission rate
from S to E from
contact with Ia (days−1)

δl Latency rate (days−1)

ps Probability of
being symptomatic (days−1)

1 − ps Probability of
being asymptomatic (days−1)

γr Recovery rate (days−1)

µd Death rate (days−1)

νt Under
treatment rate (days−1)

following homogeneous Neumann boundary conditions,

∇zS · n
⏐⏐⏐⏐
∂Ω

= 0 ∇zE · n
⏐⏐⏐⏐
∂Ω

= 0

∇z Ia · n
⏐⏐⏐⏐
∂Ω

= 0 ∇z Is · n
⏐⏐⏐⏐
∂Ω

= 0

∇zU · n
⏐⏐⏐⏐
∂Ω

= 0 ∇zR · n
⏐⏐⏐⏐
∂Ω

= 0

(6)

where n is the outward normal vector to ∂Ω . This selection of
boundary conditions represents the situation where the spatial
region under consideration is closed to any in- or out- flow of
populations, so that the epidemic spread is only due to local
infections, which was the case during lock-down conditions in
the first and second wave of the pandemic. If the population
is traveling in or out of the considered spatial region, then the
boundary conditions need to be formulated in another way using
more general boundary conditions or mixed boundary conditions.
However the computational procedure proposed in the following
is not suited to these conditions, and the approach should be
revisited. Specifically, when other kinds of boundary conditions
are considered, the additional terms in the integration by parts
procedure within the Lyapunov analysis may yield terms that
cannot be expressed in an affine way and hence could not be
approached using SDP tools directly.

The system parameter definitions are listed in Table 1.
Latency period and infection period have been estimated as

5 days and 7 days respectively [20], and thus δl = 1/5 days−1,
γr = 1/7 days−1. To account for the lockdown and unlockdown,
the average number of contacts is updated as follows [21]

w(t) =

⎧⎪⎨⎪⎩
w0, t ≤ tbol
w0e−ρ(t−tbol), tbol ≤ t ≤ teol

(1−η)w0
1+((1−η)e−ρ(teol−tbol)−1)e−2ρ(t−teol)

, t ≥ teol
(7)

hile the diffusion coefficient is set up to

(t) =

⎧⎪⎨⎪⎩
d0, t ≤ tbol
d0e−ρ(t−tbol), tbol ≤ t ≤ teol

d0
1+(eρ(teol−tbol)−1)e−2ρ(t−teol)

, t ≥ teol.
(8)

Here bol stands for beginning of lockdown and eol for end of
lockdown. Unlockdown is assumed to be faster than lockdown.
The parameter 0 ≤ η ≤ 1 is a varying coefficient translating
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espect for distancing. The value of d0 is fixed according to the
verage daily commute related to the host population. Then, the
umerical values of six parameters θ = (ρ, βe, βs, βa, ps, µd) re-
ain to be determined from the measurements Is(ti) and De(ti) for

i = 1, . . . ,N days considering a least square cost function in such
a way that the optimization problem may be solved using Ap-
proximate Bayesian Computation combined with a quasi-Newton
method [7].

Remark 2. This work was initially conceived in October 2021
when massive vaccination campaigns were not still available
and the main control strategy was lockdown by means of the
parameters w(t) and d(t). Currently with vaccination as the main
retaining strategy of the disease spread, the PDE model in (5)
may be modified to attend this counteraction of the pandemic as
addressed in [13], thus, considering υ(t) as the vaccination rate

∂tS(z, t) = · · · − υ(t)S(z, t)
∂tR(z, t) = · · · + υ(t)S(z, t)

(9)

which does not impose any constraint in the applicability of the
methodology presented in this paper as it may be verified in the
mathematical developments.

2.1. Basic reproduction numbers

The basic viral reproduction number R0 of the infection is
the expected number of cases directly generated by one case in
a population where all individuals are susceptible to infection.
In [7], a condition on parameters which defines the basic repro-
duction number related to the model described by (5)–(6) such
that the disease has an exponential initial growth is given and to
reflect the spatio-temporal dynamics of the disease, the effective
reproduction number is considered:

Reff (z, t) = w(t)
⎧⎪⎩βe

σ
+

(1 − p)βa

γr

+
pβs

γr + µd + νt

⎫⎪⎭ S(z, t)
N(z, t)

,

(10)

nd its mean with respect to the domain Ω

Reff (t) =
1

A(Ωz)

∫
Ω

Reff (z, t)dΩ. (11)

Property 1. The density population of any host population, at
any time t, would remain constant based on the epidemiological
dynamics (8):

S(z, t) + E(z, t) + Ia(z, t) + Is(z, t) + U(z, t)
+ R(z, t) = N(z, t). (12)

Also, it is worth mentioning that all compartmental variables
have positive values (populations). Thus, it can be concluded that all
of these variables remain bounded during the outbreak management
time due to the boundedness of the total density population N(z, t).

3. State observer design

In this section, a distributed parameter observer is developed
to estimate the compartmental states of the COVID-19 spread
dynamics described by (5)–(6). The reason why state estimation
is required is two-fold: (a) it is impossible to accurately measure
the numbers of susceptible, exposed, and infected asymptomatic
people; and (b) other state measurements are typically global
values throughout the analyzed region, so it might not be con-
venient to use them in real-time control design as proposed

in [13]. In order to derive the LMI conditions for the observer
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design arising from the Lyapunov stability analysis and make
the solution computationally tractable by means of SDP tools,
we address the state estimation problem in a rectangular spatial
domain defined by Ω = (0, l1) × (0, l2) ⊂ R2. This choice
along with the Neumann-type boundary conditions related to the
model, set a feasible analysis for the epidemic propagation in
a general host population whenever the rectangle circumscribes
the entire population distribution.

3.1. Preliminary results

Assuming that the measured output is given by the total
symptomatic and death individuals (which corresponds to the
data usually provided by health authorities), we consider

y(t) =

[
Is(t)
De(t)

]
=

[ ∫
Ω
Is(z, t)dΩ∫

Ω
De(z, t)dΩ

]
. (13)

Then, (5)–(6) take the form of

∂tx(z, t) = D(t)∆x(z, t) − Kx(z, t) + G r(x(z, t))

∇zx(z, t) · n
⏐⏐⏐⏐
∂Ω

= 0.
(14)

by considering

x(z, t) =

⎧⎩S(z, t) E(z, t) Ia(z, t) Is(z, t) U(z, t)

R(z, t)
⎫⎭T

,

D(t) = diag(d(t), d(t), d(t), 0, 0, 0),

K =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0
0 −σ 0 0
0 (1 − ps)δl −γ 0
0 psδl 0 −(γr + µd + νt )
0 0 0 νt
0 0 γr γr

0 0
0 0
0 0
0 0

−(γr + µd) 0
γr 0

⎤⎥⎥⎥⎥⎥⎦ ,

G =
[
−1 1 0 0 0 0

]T
,

r(x(z, t)) =

⎧⎩ωβeE(z, t) + ωβsIs(z, t)

+ωβaIa(z, t)
⎫⎭ S

N
(z, t). (15)

with output measurement

y(t) =

∫
Ω

Cm x(z, t)dz ∈ R2 (16)

where

Cm =

[
0 0 0 1 0 0
0 0 0 µd µd 0

]
. (17)

since De = µd(Is + U).

3.2. Nonlinear Luenberger-type state observer

Defining the Luenberger-type state observer for

∂t x̂(z, t) = D(t)∆z x̂(z, t) − Kx̂(z, t)
+Gr

(
x̂(z, t)

)
+ LD(z)

(
y(t) − ŷ(t)

)
(18)

or (z, t) ∈ Ω × (0, ∞), subject to

∇zx · n
⏐⏐⏐⏐ = 0 (19)

∂Ω
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nd the initial condition

ˆ0(z) = x̂(z, 0) (20)

for z ∈ Ω . Here the gain LD(z) : Ω → Rnx×ny is the output in-
jection gain to be designed. The dynamics of the state estimation
error e(z, t) = x(z, t) − x̂(z, t), satisfies

∂te(z, t) = D(t)∆ze(z, t) − Ke(z, t)
+G

[
r (x(z, t)) − r

(
x̂(z, t)

)]
− LD(z)

(
y(t) − ŷ(t)

)
(21)

subject to

∇ze · n
⏐⏐⏐⏐
∂Ω

= 0 (22)

and the initial condition

e0(z) = e(z, 0). (23)

The function denoted as ν(z, t) = r(x(z, t)) − r(x̂(z, t)) and
the estimation error e(z, t) satisfy a sector condition based on the
boundedness of the Jacobian matrix of the nonlinear function r(·).
Then, the Differential Mean Value Theorem gives

ν(z, t) = r(x(z, t)) − r(x̂(z, t))
= ∇xr

(
x̆(z, t)

)
e(z, t)

(24)

where x̆(z, t) ∈ Co(x(z, t), x̂(z, t)) for all (z, t) = Ω × (0, ∞). Let
Γ1, Γ2 ∈ R1×6 be the constant matrices whose entries are the
local lower and upper bounds, respectively, of the Jacobian matrix
entries of r(·) and hence the following inequality holds

Γ1 e(z, t) ≤ ν(z, t) ≤ Γ2 e(z, t), (25)

which implies the following⟨[
e(z, t)
ν(z, t)

]
,

[
Γ T
1 Γ2+Γ T

2 Γ1
2 −

Γ T
1 +Γ T

2
2

−
Γ1+Γ2

2 I

]
  

M

[
e(z, t)
ν(z, t)

]⟩
≤ 0 (26)

From the definition of the rate function in (15), its jacobian is
given by

∇xr(x) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

wβe
E
N + wβs

Is
N + wβa

Ia
N

−
S
N

(
wβe

E
N + wβs

Is
N + wβa

Ia
N

)
wβe

S
N −

S
N

(
wβe

E
N + wβs

Is
N + wβa

Ia
N

)
wβa

S
N −

S
N

(
wβe

E
N + wβs

Is
N + wβa

Ia
N

)
wβs

S
N −

S
N

(
wβe

E
N + wβs

Is
N + wβa

Ia
N

)
−

S
N

(
wβe

E
N + wβs

Is
N + wβa

Ia
N

)
−

S
N

(
wβe

E
N + wβs

Is
N + wβa

Ia
N

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.
(27)

From Property 1, E
N ,

Is
N ,

Ia
N and S

N ∈ [0, 1], hence one choice for
1, Γ2 may be defined as

1 =

⎡⎢⎢⎢⎢⎢⎣
0

−wmaxβs − wmaxβa
−wmaxβe − wmaxβs
−wmaxβe − wmaxβa

−wmaxβe − wmaxβs − wmaxβa
−wmaxβe − wmaxβs − wmaxβa

⎤⎥⎥⎥⎥⎥⎦
T

Γ2 =

⎡⎢⎢⎢⎢⎢⎣
wmaxβe + wmaxβs + wmaxβa

wmaxβe
wmaxβa
wmaxβs

0
0

⎤⎥⎥⎥⎥⎥⎦
T (28)

ith w = max w(t).
max t∈R≥

235
Fig. 2. Lure-System representation of the error dynamics.

3.3. Abstract formulation

The error dynamics described by (21)–(22) can be rewritten as
an abstract first order ordinary differential equation in the Hilbert
space H = L62(Ω) according to

∂te(z, t) = (A − LD(z)C)e(z, t) + Gν(z, t),
e(z, 0) = e0(z) ∈ H

(29)

where the operators A : D(A) → H, C : D(C) → R2 are defined
as

Ae(z, t) = D(t)∆ze(z, t) − Ke(z, t)
D(A) =

{
e(z, t) ∈ H : e(z, t), ∂z1e(z, t), ∂z2e(z, t)
are absolutely continuous, ∆e(z, t) ∈ H

and ∇e(z, t) · n
⏐⏐
∂Ω

= 0
}

(30)

Ce(z, t) =

[
⟨1Ω (·), cT1e(·, t)⟩
⟨1Ω (·), cT2e(·, t)⟩

]
. (31)

The error dynamics in (29) can be represented as a Lure
system, depicted in Fig. 2, where the sector condition for the
estimation error e(z, t) and the deviation function ν(z, t) are ex-
pressed through the scalar constraint (26) that can be embedded
into the local stability analysis by applying the S-Procedure [22].

4. Lyapunov convergence analysis

The state observer design problem is addressed within a
weighted Lyapunov framework, with the weight function as a
degree of freedom. The analysis of the corresponding dissipation
mechanism leads to an LMI convergence condition, in which
depending on the spatial coordinates, the observer gain and the
Lyapunov weight function are the decision variables. To this
end, let us set the positive-definite weighted candidate Lyapunov
functional V : L62(Ω) → R as

V (t) = ⟨e(·, t),Pe(·, t)⟩ (32)

where P : L62(Ω) → L62(Ω) is a strictly positive operator defined
by the polynomial matrix W (z) as

(Pe)(z) = W (z)e(z). (33)

for all z ∈ Ω . The following Lemma shows how two positive
semi-definite matrices Q , R > 0 and some constant ϵ > 0
can be used to define the polynomial matrix W (z) such that
the operator P is positive and therefore the functional V is a
Lyapunov candidate for the observation error dynamics (29).

Lemma 3. Given any positive semi-definite matrices Q , R1, R2 ∈

S3(m+1)(m+2), and
Z(z) = Zm(z1, z2) ⊗ I6 (34)
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here z ∈ Ω = (0, l1)×(0, l2) ⊂ R2, Zm(z) is a vector of monomials
ith degree m or less and ⊗ is Kronecker product. Let for all z ∈ Ω

1(z1) = z1(l1 − z1), g2(z2)(l2 − z2) (35)

f for some ϵ > 0

(z) = Z(z)T (Q + g1(z1)R1 + g2(z2)R2)Z(z) + ϵIn, (36)

hen the functional V : L62(Ω) → R, defined as

(e(·, t)) = ⟨e(·, t),Pe(·, t)⟩

=

∫
Ω

eT (z, t)W (z)e(z, t)dΩ,
(37)

is a strictly positive functional over L62(Ω), whenever e(·, t) ̸= 0, and
satisfies

V (e(·, t)) = ⟨e(·, t),Pe(·, t)⟩ ≥ ϵ∥e(·, t)∥2,

∀e(·, t) ∈ L62(Ω). (38)

Theorem 1. The error dynamics in (29) is (locally) exponentially
stable with decay rate γ if there exist

• m, q ∈ N, and real positive scalars ϵ, τ ,
• block diagonal positive semidefinite matrices Q =

diag(Q1,Q2), R1 = diag(R11, R12), R2 = diag(R21, R22) with
Q1, Q2, R11, R12, R2,1, R2,2 ∈ S

3
2 (m+1)(m+2) such that the

polynomial matrix W (z) : Ω → R6×6 satisfy (36),
• the qth degree polynomial matrix LD(z) : Ω → R6×3

and the following matrix inequality is feasible:

P(z, t) − τ

[
M 0
0 0

]
< 0 (39)

∀z ∈ Ω and t ∈ R+ where

P(z, t) =

[P11(z, t) P12(z) P13(z)
∗ P22(z) P23(z)
∗ ∗ P33(z)

]
(40)

with
P11(z, t) = −∆W (z)D(t) − W (z)K − K TW (z)

+ 2γW (z)
P12(z) = W (z)G

P13(z) = −l1l2
(
L̃D(z)Cm + CT

mL̃
T
D(z)

)
+

2
√
l21 + l22d(t)ϵ

π
I

P22(z) = 0
P23(z) = 0

P33(z) = −

2
√
l21 + l22d(t)ϵ

π
I

(41)

˜D(z) = W (z)LD(z) (42)

Proof. Consider the linear dissipation expression of the Lyapunov
function

V̇ (t) + 2γV (t) = 2⟨e(·, t),PAe(·, t)⟩
+ 2⟨e(·, t),PGν(·, t)⟩ − 2⟨e(·, t),PLD(z)Ce(·, t)⟩

+ 2γ ⟨e(·, t),Pe(·, t)⟩ (43)

then, the substitution of (21) into (43) yields

V̇ (t) + 2γV (t) = 2
∫

eT (z, t)W (z)D(t)∆e(z, t)dΩ

Ω

236
−2
∫

Ω

eT (z, t)W (z) (K − γ I) e(z, t)dΩ

+2
∫

Ω

eT (z, t)W (z)Gν(z, t)dΩ

−2
∫

Ω

eT (z, t)W (z)LD(z)Cm

(∫
Ω

e(z, t)dΩ
)
dΩ. (44)

Applying the first mean value theorem for integration, there
exists a scalar ztm ∈ Ω such that

e(ztm, t) =
1
l1l2

∫
Ω

e(z, t)dΩ, ∀t ∈ R+ (45)

and regarding the constraints on the definitions of Q and R,
W (z)D(t) : Ω → Snx . Hence, in order to apply the integration by
parts in (44), we take (59) into account as presented in Appendix.
Thus, (44) becomes

V̇ (t) + 2γV (t) =

∫
Ω

eT (z, t)∆W (z)D(t)e(z, t)dΩ

−2
∫

Ω

(vec∇e(z, t))T [I2 ⊗ W (z)D(t)] (vec∇e(z, t)) dΩ

−

∫
Ω

eT (z, t)
(
KW (z) + W (z)K T

− 2γW (z)
)
e(z, t)dΩ

+2
∫

Ω

eT (z, t)W (z)Gν(z, t)dΩ

−2l1l2

∫
Ω

eT (z, t)L̃D(z)Cme(ztm, t)dΩ. (46)

Notice by the virtue of Poincaré inequality that the following
holds∫

Ω

(vec∇e(z, t))T [I2 ⊗ W (z)D(t)] (vec∇e(z, t)) dΩ ≥

Cint

∫
Ω

(
e(z, t) − e(ztm, t)

)T (
e(z, t) − e(ztm, t)

)
dΩ.

(47)

with Cint =

√
l21+l22d(t)ϵ

π
. Hence, substituting (47) into (46) leads to

V̇ (t) + 2γV (t) ≤∫
Ω

⎧⎩eT (z, t)
⎧⎩−∆W (z)D(t) − KW (z) − W (z)K T

+2γW (z) −

2
√
l21 + l22d(t)ϵ

π
I

⎫⎪⎪⎪⎪⎪⎪⎭ e(z, t)dz

⎫⎪⎪⎪⎪⎪⎪⎭
+2

∫
Ω

eT (z, t)W (z)Gν(z, t)dΩ∫
Ω

⎧⎩eT (z, t)
⎧⎩−2l1l2L̃D(z)Cm

+

4
√
l21 + l22d(t)ϵ

π
I

⎫⎪⎪⎪⎪⎪⎪⎭ e(ztm, t)dΩ

⎫⎪⎪⎪⎪⎪⎪⎭
−

2
√
l21 + l22d(t)ϵ

π

∫
Ω

eT (ztm, t)e(ztm, t)dΩ. (48)

We can rewrite (48) as

˙ (t) + 2γV (t) ≤

∫
Ω

eT (z, t)P(z, t)e(z, t)dΩ (49)

where e(z, t) = [e(z, t) ν(z, t) e(ztm, t)]T . Therefore, in order to
ensure the negativity of the right side of (49), it suffices that

P(z, t) < 0, ∀z ∈ Ω and t ∈ R+ (50)
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Fig. 3. Population density of France N0(z) (people/km2).

Applying the S-procedure to (26) and (50), we obtain

P(z, t) − τ

[
M 0
0 0

]
< 0, ∀z ∈ Ω and t ∈ R+. (51)

Then (51) implies that

(t) ≤ e−2γ tV (0) (52)

nd from the comparison lemma [23], it follows that

e(z, t)∥ ≤ Me∥e0(z)∥e−γ t (53)

here

Me(e0) =

√
V (e0(z))

ϵ
. □ (54)

. Covid spread monitoring

In this section, the distributed parameter observer is evaluated
nder some realistic scenarios. Particularly, the state estimation
f the compartmental variables in a host population defined
y a 2D spatial domain corresponding to the French situation
n March 2020 is discussed. Based on data available from the
ational Institute of Statistics and Economic Studies (INSEE), the
verage commuting implies d0 = 252/16 km2/day and the values
orresponding to the model parameters are w0βe = 0.122920,
0βs = 0.384542, w0βa = 0.445237, ρ = 0.043198, δl = 1/5,
s = 0.503939, γr = 1/7, µd = 0.010381 [7]. The population dis-
ribution is depicted in Figs. 3 and 4 shows the initial simulation
cenario in which the population distribution corresponds to the
nfected symptomatic confirmed on 18 March 2020 by the health
uthorities.
Firstly, we show the feasibility provided through the solution

f the LMIs in (39) for different selections of lower bound decay
ates γ . Then, the convergence features of the proposed observer
re assessed through the numerical simulation of the observer
ystem.
As formulated in Section 3, the available online measurements

re the global infected Is(t) and dead population De(t). Thus, the
system detectability is sufficiently set by means of the LMI feasi-
bility in (39) according to the conditions presented in Theorem 1.
To obtain the output injection gain LD(z) : Ω → R6×2 through the
application of the sufficient conditions presented in Theorem 1,
we make use of SOSTOOLS for Matlab with SeDuMi [24]. The
following algorithm for the computation of the output injection
gain L (z) is proposed for prescribed values of m, q ∈ N.
D

237
Fig. 4. Initial infection density Is,0(z) (people/km2) on 18 March 2020.

Table 2
γmax of the proposed approach
for different combinations of m
and q.
(m, q) γmax

(5, 3) 0.14
(6, 4) 0.26
(7, 5) 0.37

Algorithm 1.

1. Define the values of γ > 0 and ϵ > 0.
2. Declare matrices Q , R and scalar τ > 0.
3. Construct polynomial matrices W (z) and L̃D(z).
4. Construct matrices Pmax(z) and Pmin(z) corresponding to the

respective substitution of d(t) by dmax and dmin into (40).
5. Solve the affine constraint (39) for Pmax(z) and Pmin(z) si-

multaneously.
6. Compute LD(z) = W−1(z)L̃D(z).

Thus, the solution for different values of m and q, along with
isection search, provides γmax for each case. Some results are
resented in Table 2.
For (m, q) = (7, 5), the observer and system responses are

enerated via numerical simulation starting from the system
nitial conditions defined in Figs. 3 and 4 which represent the
nfection situation on 18 March 2020 whereas the observer initial
onditions are set to zero. The simulation scenario considers
first time interval tbol = 0 days, teol = 54 days which

orresponds to the end of lockdown on 11 May 2020 and sched-
les the time-varying definitions of w(t) and d(t) in (7) and (8)
espectively.

Fig. 5 shows a few snapshots of the evolution of the actual
istribution (on the left) as compared to the estimated distribu-
ion (on the right) of the Ia asymptomatic compartmental variable
onsidering the proposed observer. As depicted in the corre-
ponding figures, the uniform wave front propagates for t ≥

eol. This is logical, because w(t) and d(t) increases during this
ime period. It may also be seen that the state estimation has
onverged in space with respect to the actual variables by these
orresponding time instants.
Fig. 6 shows the time evolution of the total values of the

ompartmental variables, while Fig. 7 shows the evolution of the
stimation error norm.
Although the initial estimation profiles were all set to be

ero, the estimation error norm converges quickly (approximately
fter 12 days), and hence, provides very satisfactory estimates.
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Fig. 5. Spatial distribution of Ia(z, t) and Îa(z, t) (people/km2) at time instants t1 = 54, t2 = 90 days.
n the same figure, the result corresponding to the inclusion of
easurement white noise (variance V = 2.7) in the Is(t) variable

s depicted. It should be observed that the procedure outlined
ere guarantees that the state estimate robustly converges to the
rue state.

One of the main virtues of the SEIR distributed model based
tate estimation is to attain the monitoring of the pandemic
hroughout the host region which plays a fundamental role as
arning system of the current epidemiological situation in each
ub-population in contrast with state estimation techniques
ased on lumped SIR models such as [15]. Thus, the distributed
stimation of the effective reproduction number may be helpful
nd a good strategy for authorities to take measures regarding the
eographical propagation of the disease. Hence, applying the state
stimation methodology proposed in this work, Fig. 8 displays
uch variable in the host region of study on 11 May 2020 (end of
he lockdown).

. Conclusion

In this work,a nonlinear Luenberger-like state observer was
esigned to estimate the compartmental variables of the gener-
238
alized epidemiological SEIR model of COVID-19 spread proposed
in [7]. The proposed approach aims at obtaining a mechanism
to monitor the COVID-19 epidemic in a prescribed host region
with different population distributions by considering the realis-
tic scenario of time-variant parameters of diffusion and transmis-
sion and only measurement data provided by health authorities,
namely positive tests and deaths. The Lyapunov method has
been applied to derive a set of LMI based conditions with SOS
parametrization to ensure the local stability of the error dy-
namics which has been modeled as a Lure type system with
a multivariable sector condition, thus the appropriate choice of
the observer gains results from a SDP problem solution. In this
framework, the presence of bounded time variant parameters and
incomplete measurement feedback has been tackled through the
polytope analysis of the proposed LMIs which guarantees a robust
convergence. Numerical experiments are presented to illustrate
the method efficiency. Future work entails the extension of the
approach to time and space varying diffusion coefficients relative
to the distinct mobility of the compartmental population, as well
as the effect of vaccination.
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Fig. 6. Time evolution of the total number of individuals in the several compartments of the generalized epidemiological SEIR model of COVID-19.
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Fig. 7. Time evolution of the estimation error norm ∥e(z, t)∥.

Fig. 8. Estimation of the reproduction number R̂eff (z, t) at the end of lockdown
n 11 May 2020.
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Appendix

In this work, we will restrict ourselves to the use of equalities
generated through the use of the technique known as integration
by parts. In its most general form, this equality is defined by
the following, where for a vector field u and a scalar function v
defined in the closure of an open region Ω ∈ R2.∫

Ω

u · ∇vdΩ =

∫
∂Ω

vu · nd∂Ω −

∫
Ω

v∇ · udΩ. (55)

The case u = ∇u, where u ∈ C2(Ω), is known as the first of
Green’s identities:∫

Ω

∇u · ∇vdΩ =

∫
∂Ω

v∆u · nd∂Ω −

∫
Ω

v∆udΩ. (56)

We are particularly interested in the integral∫
Ω

eT (z)D̃(z)∆e(z)dΩ =

n∑
i,j

∫
Ω

ei(z)d̃ij(z)∆ej(z)dΩ. (57)

with D̃ : Ω → Sn. Applying Green’s first identity in the right side
of (57), it yields
n∑
i,j

∫
Ω

ei(z)d̃ij(z)∆ej(z)dz =

n∑
i,j

⎧⎪⎩∫
∂Ω

ei(z)d̃ij(z)∇ej(z) · ndl

−

∫
Ω

d̃ij(z)∇ei(z) · ∇ej(z)dΩ
⎫⎪⎭

+
1
2

∫
Ω

ei(z)∆d̃ij(z)ej(z)dz

−
1
2

∫
∂Ω

ej(z)∇d̃ij(z)ei(z) · ndl. (58)

For Neumann boundary conditions ∆e · n
⏐⏐⏐⏐
∂Ω

= 0 in a rectan-

gular domain defined by Ω = (0, l1) × (0, l2)∫
Ω

eT (z)D̃(z)∆e(z)dΩ =
1
2

∫
Ω

eT (z)∆W̃ (z)e(z)dΩ

−

∫
Ω

(vec∇e(z))T
[
I2 ⊗ W̃ (z)

]
(vec∇e(z)) dΩ. (59)
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