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MEAN FIELD GAMES: NUMERICAL METHODS∗

YVES ACHDOU† AND ITALO CAPUZZO-DOLCETTA‡

Abstract. Mean field type models describing the limiting behavior, as the number of players
tends to +∞, of stochastic differential game problems, have been recently introduced by J.-M. Lasry
and P.-L. Lions [C. R. Math. Acad. Sci. Paris, 343 (2006), pp. 619–625; C. R. Math. Acad. Sci. Paris,
343 (2006), pp. 679–684; Jpn. J. Math., 2 (2007), pp. 229–260]. Numerical methods for the approx-
imation of the stationary and evolutive versions of such models are proposed here. In particular,
existence and uniqueness properties as well as bounds for the solutions of the discrete schemes are
investigated. Numerical experiments are carried out.
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1. Introduction. Mean field type models describing the limiting behavior of
stochastic differential game problems as the number of players tends to +∞ have
recently been introduced by J.-M. Lasry and P.-L. Lions [11, 12, 13]. In the stationary
setting, a typical model of this kind comprises the following system:

−νΔu+H(x,∇u) + λ = V [m] in T
2,(1)

−νΔm− div

(
m
∂H

∂p
(x,∇u)

)
= 0 in T

2,(2) ∫
T2

u = 0,

∫
T2

m = 1, m > 0.(3)

The unknowns are the scalar functions u, m defined on the two-dimensional torus T2

and the real number λ. We consider bidimensional problems for the sake of simplicity,
but the results below hold for any space dimension. The data are a positive number
ν, the Hamiltonian H : T2 × R

2 → R, convex with respect to p and the (nonlinear)
mapping V associating to a probability density m a Lipschitz function V [m] on T

2.
Typical examples for V include nonlocal smoothing operators.

The time-dependent analogue of system (1)–(3), also considered in [11, 12, 13], is

∂u

∂t
− νΔu+H(x,∇u) = V [m] in T

2 × (0, T ),(4)

∂m

∂t
+ νΔm+ div

(
m
∂H

∂p
(x,∇u)

)
= 0 in T

2 × (0, T ),(5) ∫
T2

m(x, t)dx = 1, m > 0,(6)

u(t = 0) = V0[m(t = 0)], m(t = T ) = m0 .(7)
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We refer to the mentioned papers of J.-M. Lasry and P.-L. Lions for analytical results
concerning system (1)–(3) as well as for its interpretation in stochastic game theory.
Let us mention here only that a very important feature of the mean field model above
is that uniqueness and stability may be obtained under reasonable assumptions (see
[11, 12, 13]), in contrast with the Nash system describing the individual behavior of
each player, for which uniqueness hardly occurs.

The aim of the present work is to propose discrete approximations by finite dif-
ference methods of the mean field model, both in the stationary case (1)–(3) or the
evolutive one (4)–(7). The numerical schemes that we use rely basically on monotone
approximations of the Hamiltonian and on a suitable weak formulation of the equation
for m.

These schemes have several important features:
• Existence and uniqueness for the discretized problems can be obtained by similar

arguments as those used in the continuous case.
• They are robust when ν → 0 (the deterministic limit of the models).
• Bounds on the solutions, which are uniform in the grid step, can be proved under

reasonable assumptions on the data.
Let us mention in this respect that an important research activity is currently

going on about approximation procedures for mean field games. Quite recently, we
learned about a different numerical approach, based on the reformulation of the model
as an optimization problem, which is restricted, however, to the case when V [m](x) =
g(m(x)); see [10]. See also [5] for a recent work on discrete time, finite state space
mean field games.

In section 2, we present the approximation of the nonlinear operators involved
in, e.g., (1)–(3) and the main assumptions that are going to be made. The finite
difference scheme for the stationary model is discussed in section 3. Emphasis is put
on existence and uniqueness and on bounds on the solution; the main difficulty faced
there is to obtain bounds on the solution which are uniform in the discretization
parameters. An example of a convergence result is also supplied in section 3.

In section 4 we discuss an implicit in time finite difference method for the following
evolution problem comprising two forward parabolic equations:

∂u

∂t
− νΔu +H(x,∇u) = V [m] in T

2 × (0, T ),(8)

∂m

∂t
− νΔm− div

(
m
∂H

∂p
(x,∇u)

)
= 0 in T

2 × (0, T ),(9) ∫
T2

m(x, t)dx = 1, m > 0,(10)

u(x, 0) = u0(x), m(x, 0) = m0(x).(11)

By analogy with known results long time approximations for the cell problem in
homogenization (see [14]), we expect that there exists some λ ∈ R such that u(x, t)−λt
and m(x, t) converge, as t → +∞, to the solution (u(x),m(x), λ) of the stationary
system (1)–(3). The main result in section 4 is Theorem 5 on the existence for the
discrete system. section 5 deals with a semi-implicit scheme for the evolution system
(4)–(7) and contains results on existence and uniqueness. Finally, the long time
strategy mentioned above and the numerical experiments for the stationary models
are described in section 6.

A Newton method for the evolutive problem (4)–(7) will be discussed in a forth-
coming work (see [1]).
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2. The finite difference operators.

2.1. The proposed schemes. For simplicity, we discuss the approximation of
(1)–(3). Let T2

h be a uniform grid on the torus with mesh step h (assuming that 1/h
is an integer Nh) and xij denote a generic point in T

2
h. The values of u and m at xi,j

will be approximated by Ui,j and Mi,j , respectively.
Hereafter, we will often make the following assumptions on the operator V :
(A1): V : m→ V [m] maps the set of probability measures into a bounded set of

Lipschitz functions on T
2.

(A2): If mn converges weakly to m, then V [mn] converges to V [m] uniformly on
T
2.

A possible approximation of V [m](xi,j) is

(12) (Vh[M ])i,j = V [mh](xi,j),

calling mh the piecewise constant function taking the value Mi,j in the square |x −
xi,j |∞ ≤ h/2, and assuming that V [mh] can be computed in practice.

We introduce the finite difference operators

(13) (D+
1 U)i,j =

Ui+1,j − Ui,j

h
and (D+

2 U)i,j =
Ui,j+1 − Ui,j

h

and the numerical Hamiltonian g : T2 ×R
4 → R. The finite difference approximation

of H(x,∇u) is g(xi,j , (D
+
1 U

n+1)i,j , (D
+
1 U

n+1)i−1,j , (D
+
2 U

n+1)i,j , (D
+
2 U

n+1)i,j−1).
Classically, we choose the discrete version of (1) as

(14) −ν(ΔhU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j

with the notations

(ΔhW )i,j = − 1

h2
(4Wi,j −Wi+1,j −Wi−1,j −Wi,j+1 −Wi,j−1),(15)

[DhW ]i,j =
(
(D+

1 W )i,j , (D
+
1 W )i−1,j , (D

+
2 W )i,j , (D

+
2 W )i,j−1

)T
.(16)

We make the following assumptions on the discrete Hamiltonian g: (q1, q2, q3, q4) →
g (x, q1, q2, q3, q4):

(H1): Monotonicity: g is nonincreasing w.r.t. q1 and q3 and nondecreasing w.r.t.
q2 and q4.

(H2): Consistency:

(17) g (x, q1, q1, q2, q2) = H(x, q) ∀x ∈ T
2∀q = (q1, q2) ∈ R

2.

(H3): Differentiability: g is of class C1.
The discrete version of (2) is chosen according to the following heuristics:
• When u is fixed, (2) is a linear elliptic equation for m. Therefore, when U is

fixed, the discrete version of (2) should yield a matrix with positive diagonal entries
and nonpositive off-diagonal entries so that hopefully a discrete maximum principle
may be used.

• The argument used in [13, 11, 12] for the uniqueness of (1)–(3) and (4)–(7) should
hold in the discrete cases. For this reason, the discrete Hamiltonian g introduced above
should be used in the discrete version of (2) as well, and we will often make another
assumption on g.

(H4): Convexity: the function (q1, q2, q3, q4) → g (x, q1, q2, q3, q4) is convex.
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The main idea is to consider the weak form of (2). It involves the term

−
∫
T2

div

(
m
∂H

∂p
(x,∇u)

)
w =

∫
T2

m
∂H

∂p
(x,∇u) · ∇w

which will be approximated by

h2
∑
i,j

mi,j∇qg(xi,j , [DhU ]i,j) · [DhW ]i,j .

This yields the following discrete version of (9):

(18)

−ν(ΔhM)i,j

− 1

h

⎛⎜⎝ Mi,j
∂g

∂q1
(xi,j , [DhU ]i,j)−Mi−1,j

∂g

∂q1
(xi−1,j , [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2
(xi+1,j , [DhU ]i+1,j)−Mi,j

∂g

∂q2
(xi,j , [DhU ]i,j)

⎞⎟⎠

− 1

h

⎛⎜⎝ Mi,j
∂g

∂q3
(xi,j , [DhU ]i,j)−Mi,j−1

∂g

∂q3
(xi,j−1, [DhU ]i,j−1)

+Mi,j+1
∂g

∂q4
(xi,j+1, [DhU ]i,j+1)−Mi,j

∂g

∂q4
(xi,j , [DhU ]i,j)

⎞⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0.

We will also use the more compact but less explicit notation

(19)

Bi,j(U,M)

=
1

h

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ Mi,j
∂g

∂q1
(xi,j , [DhU ]i,j)−Mi−1,j

∂g

∂q1
(xi−1,j , [DhU ]i−1,j)

+Mi+1,j
∂g

∂q2
(xi+1,j , [DhU ]i+1,j)−Mi,j

∂g

∂q2
(xi,j , [DhU ]i,j)

⎞⎟⎠

+

⎛⎜⎝ Mi,j
∂g

∂q3
(xi,j , [DhU ]i,j)−Mi,j−1

∂g

∂q3
(xi,j−1, [DhU ]i,j−1)

+Mi,j+1
∂g

∂q4
(xi,j+1, [DhU ]i,j+1)−Mi,j

∂g

∂q4
(xi,j , [DhU ]i,j)

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which makes it possible to write (18) in a shorter way:

(20) −ν(ΔhM)i,j − Bi,j(U,M) = 0.

Remark 1. It is important to realize that the operator M �→ −ν(ΔhM)i,j −
Bi,j(U,M) is the adjoint of the linearized version of the operator U �→ −ν(ΔhU)i,j +
g(xi,j , [DhU ]i,j).

(H5): A further consistency assumption: One has to assume that the discrete
operator in (20) is a consistent approximation of the differential operator in (2), i.e.,
that there exists a positive integer �, a real number δ0, δ0 ∈ (0, 1), and some positive
real number r such that for every v,m ∈ C�,δ0(T2), there is a constant K depending
on the norms of v andm in the previously mentioned Schauder spaces such that for all
h < 1, calling Ṽ and M̃ the grid functions defined by Ṽi,j = (1/h2)

∫
|x−xi,j|∞<h/2

vdx

and M̃i,j = (1/h2)
∫
|x−xi,j|∞<h/2

mdx, we have for all i, j

(21)

∣∣∣∣Bi,j(Ṽ , M̃)− div

(
m
∂H

∂p
(x,∇v)

)
(xi,j)

∣∣∣∣ ≤ Khr.

This assumption is clearly fulfilled if g satisfies (17) and if g and H are smooth enough.
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2.2. Summary. Finally, the finite difference approximation of (1)–(3) is to look
for two grid functions U,M on T

2
h and for a scalar λ such that

−ν(ΔhU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j ∀i, j : 0 ≤ i, j < Nh,(22)

−ν(ΔhM)i,j − Bi,j(U,M) = 0 ∀i, j : 0 ≤ i, j < Nh,(23) ∑
i,j

Ui,j = 0,(24)

h2
∑
i,j

Mi,j = 1 and Mi,j ≥ 0 for 0 ≤ i, j < Nh(25)

with (Vh[M ])i,j defined in (12), Bi,j(U,M) defined in (19), and the numerical Hamil-
tonian g : T2 × R

4 → R satisfying at least (H1)–(H3) above.
The same strategy will be used to approximate the evolutive problems (4)–(7) and

(8)–(11) with an implicit scheme; see, respectively, (75)–(79) and (61)–(62) below.
For two grid functionsW and Z, we define the inner product (W,Z)2 =

∑
i,j Wi,jZi,j .

2.3. A useful lemma. We recall a useful lemma, which can be found in, e.g.,
[4]. We give its proof for completeness.

Lemma 1. Let V be a grid function on T
2
h and ρ be a positive parameter. Assume

that g satisfies (H1)–(H3). There exists a unique grid function U such that

(26) ρUi,j + g(xi,j , [DhU ]i,j)− ν(ΔhU)i,j = Vi,j .

Proof. Existence for (26) is proved by using the Leray–Schauder fixed point

theorem. Indeed, we consider the mapping F : RN2
h �→ R

N2
h ,

(F(U))i,j =
1

ρ
(ν(ΔhU)i,j − g(xi,j , [DhU ]i,j) + Vi,j) ,

and the real number r = max(i,j) |H(xi,j , 0)− Vi,j | /ρ. From the continuity of g, F is

continuous from Br = {U ∈ R
N2

h : ‖U‖∞ ≤ r} to R
N2

h .
Assuming that U ∈ ∂Br, there must exist at least one pair of indices (i0, j0) such

that Ui0,j0 = ±r. Assuming that Ui0,j0 = r, we have

ν(ΔhU)i0,j0 − g(xi0,j0 , [DhU ]i0,j0) ≤ −H(xi0,j0 , 0)

from the monotonicity and the consistency of g. Hence,

(F(U))i0,j0 ≤ 1

ρ
(−H(xi0,j0 , 0) + Vi0,j0) ≤ r

and (F(U))i0,j0 �= λUi0,j0 whenever λ > 1. Similarly, if Ui0,j0 = −r, then (F(U))i0,j0 ≥
−r which implies that (F(U))i0,j0 �= λUi0,j0 . Therefore, F(U) �= λU for all λ > 1
and U ∈ ∂Br. The Leray–Schauder fixed point theorem can be used; there exists a
solution of (26) in Br. Uniqueness for (26) stems from the monotonicity of g.

3. Numerical analysis of the stationary problem (22)–(25). Existence
results for (22)–(25) can be proved under additional assumptions on g and Vh. The
strategy will be to apply the Brouwer theorem to a map χ defined on the compact
and convex set

(27) K =

⎧⎨⎩(Mi,j)0≤i,j<Nh
: h2

∑
i,j

Mi,j = 1,Mi,j ≥ 0

⎫⎬⎭
which can be viewed as the set of the discrete probability measures.
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We will see below that existence can be proved without bounds on U uniform
with respect to h since the problem is finite dimensional. However, when possible, we
will insist much on obtaining such bounds, for example, equicontinuity with respect
to h, because they are important for passing to the limit when h→ 0.

We first define a map Φ :M ∈ K → U , where (U, λ) is the unique solution of (22)
subject to the constraint in (24). The map M → χ(M) is then obtained by solving a
perturbation of (23) with U = Φ(M), subject to the constraints in (25).

The discrete function U = Φ(M) will be obtained by passing to the limit in the
following Hamilton–Jacobi–Bellman equation (hereafter the HJB equation)

(28) ρU
(ρ)
i,j + g(xi,j , [DhU

(ρ)]i,j)− ν(ΔhU
(ρ))i,j = (Vh[M ])i,j

when the positive parameter ρ tends to 0. Such a strategy is reminiscent of those
used for solving the cell problems in the homogenization of HJB equations; see, e.g.,
[14, 2, 3]. We first need to study (28) and obtain some bounds on Uρ uniform w.r.t.
ρ and M (and possibly uniform w.r.t. h); these will yield bounds on U uniform w.r.t.
M (and possibly uniform w.r.t. h).

3.1. Preliminary results. Concerning the continuous problem, one of the as-
sumptions made in [13, 11] was that there exists θ ∈ (0, 1) such that for |p| large,

(29) inf
x∈T2

(
∇xH · p+ θ

2ν
H2

)
> 0.

It was useful in order to apply Bernstein’s method to (1) and get a bound on ‖∇u‖∞.
With assumption (29), we were not able to extend the method of Bernstein to the
discrete level. Several other assumptions on H and g can be made. Assumption 1
below will make it possible to use the results of Kuo and Trudinger [9] and [8] on
Hölder estimates for the solution of (28). The slightly stronger Assumption 2 will
make it possible to apply the recent results of Krylov [7].

We will use the following notation:

(Dc
1U)i,j =

Ui+1,j − Ui−1,j

2h
=

1

2

(
(D+

1 U)i,j + (D+
1 U)i−1,j

)
,

(Dc
2U)i,j =

Ui,j+1 − Ui,j−1

2h
=

1

2

(
(D+

2 U)i,j + (D+
2 U)i,j−1

)
,

(D2
1U)i,j =

Ui+1,j + Ui−1,j − 2Ui,j

h2
=

1

h

(
(D+

1 U)i,j − (D+
1 U)i−1,j

)
,

(D2
2U)i,j =

Ui,j+1 + Ui,j−1 − 2Ui,j

h2
=

1

h

(
(D+

2 U)i,j − (D+
2 U)i,j−1

)
.

Assumption 1. (a) The Hamiltonian H is of the form

(30) H(x, p) = max
α∈A

(p · α− L(x, α)) ,

where A is a compact subset of R2 and L is a C0 function on T
2 ×A. The function

H is continuous with respect to x and of class C1 with respect to p.
(b) The discrete Hamiltonian g : T2 × R

4 → R, (x, q) �→ g(x, q), is continuous
with respect to x uniformly in h. For all h ≤ h0, it satisfies (H1), (H2), and (H3).
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(c) Defining the function F : T2 × R
4 → R, (x, q1, q2, s1, s2) �→ F(x, q1, q2, s1, s2)

by
(31)

−ν(ΔhU)i,j + g(xi,j , [DhU ]i,j) = F(xi,j , (D
c
1U)i,j , (D

c
2U)i,j , (D

2
1U)i,j , (D

2
2U)i,j),

we assume that there exist positive constants a0, a1, and b0 such that for h = 1/Nh ≤
h0,

(32) a0 ≤ −∂F
∂si

≤ a1 and

∣∣∣∣∂F∂qi
∣∣∣∣ ≤ b0.

(d) There exists a function g∞ : R4 → R such that
• g∞(x, 0) = 0,
• for all q ∈ R

4, limε→0 supx∈T2 |εg(x, qε )− g∞(q)| = 0,
• g∞ is nonincreasing with respect to q1 and q3 and nondecreasing with respect to

q2 and q4.
Example 1. Let H be given by (30) with A = {α ∈ R

2, |α| ≤ 1} and L(x, α) =
L(α) = |α|γ/γ with γ > 1. It can be seen that

H(x, p) = H(p) =

⎧⎪⎨⎪⎩
γ − 1

γ
|p| γ

γ−1 , |p| ≤ 1,

|p| − 1

γ
, |p| ≥ 1

and that with the Godunov scheme

g(x, q1, q2, q3, q4) = H

(√
(q−1 )2 + (q−3 )2 + (q+2 )

2 + (q+4 )
2

)
,

Assumption 1 holds with g∞(x, q1, q2, q3, q4) =
√
(q−1 )2 + (q−3 )2 + (q+2 )

2 + (q+4 )
2 in

point (d).
Assumption 2. (a) The Hamiltonian H is of the form (30), where A is a compact

subset of R2 and L is a C0 function on T
2×A. The function H is Lipschitz continuous

with respect to x uniformly in p and of class C1 with respect to p.
(b) The discrete Hamiltonian g satisfies point (b) in Assumption 1.
(c) The discrete Hamiltonian g is of the form

(33) g(x, q1, q2, q3, q4) = sup
β∈B

(
4∑

�=1

(−a�(x, β)s� + b�(x, β)q�)− f(x, β)

)
,

where
• B is a compact set,
• s1 = s2 = (q1 − q2)/h, s3 = s4 = (q3 − q4)/h,
• a1 = a2 ≥ 0 and a3 = a4 ≥ 0,
• the functions a�, b� : T

2×B → R are continuous w.r.t. β (uniformly w.r.t. h), and
b� and

√
ν
2 + a� are Lipschitz continuous w.r.t. x (uniformly w.r.t. h),

• the function f : T2×B → R is continuous w.r.t. β and Lipschitz continuous w.r.t.
x,

• for all h ≤ h0, (x, β) ∈ T
2 × B,

max
(
hb+1 (x, β)− a1(x, β), hb

−
2 (x, β) − a2(x, β),

hb+3 (x, β)− a3(x, β), hb
−
4 (x, β) − a4(x, β)

)
≤ 0.

(d) The discrete Hamiltonian g satisfies point (d) in Assumption 1.
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Example 2. We take H as in Example 1. The Lax–Friedrichs scheme with a
large enough artificial viscosity parameter θ satisfies Assumption 1. It also satisfies
Assumption 2 because

g(x, q1, q2, q3, q4) = H

(
x,

(
q1 + q2

2
,
q3 + q4

2

))
− θ(q1 − q2 + q3 − q4)

= sup
α∈A

(
α1
q1 + q2

2
+ α2

q3 + q4
2

− θ(q1 − q2 + q3 − q4)− L(α)

)
.

Example 3. We give a simple example where H depends only on p1. Let H be
given by (30) with A = {(α, 0), |α| ≤ 1} and L(x, (α, 0)) = |α|θ/θ with θ > 1. It can be

seen that H(x, p) = H(p1) with H(p1) =
θ−1
θ |p1| θ

θ−1 if |p1| ≤ 1 and H(p1) = |p1| − 1
θ

if |p1| ≥ 1. Consider the discrete Hamiltonian

g(x, q1, q2, q3, q4) = max
|β1|≤1,|β2|≤1

(
−β−

1 q1 + β+
2 q2 −

1

θ
|β1|θ − 1

θ
|β2|θ

)
.

Assumption 2 holds. In particular, g∞(x, q1, q2, q3, q4) = max(q2,−q1, q2 − q1, 0).
Proposition 1. Assume that H and g satisfy Assumptions 1 or 2. Let V be a

grid function on T
2
h (we agree to write V instead of Vh) and ρ be a nonnegative real

number.
For h ≤ h0, let the grid function U on T

2
h be the solution of

(34) ρUi,j + g(xi,j , [DhU ]i,j)− ν(ΔhU)i,j = Vi,j ;

see Lemma 1.
If Assumption 1 holds and if ‖V ‖∞ is bounded uniformly w.r.t. h ≤ h0 by a

constant c0, then there exist two constants δ, δ ∈ (0, 1) and C, C > 0, both depending
on a0, a1, b0, c0 and on ‖U‖∞ but not on h and ρ such that for all h ≤ h0, 0 < ρ ≤ 1,

(35) |U(ξ)− U(ξ′)| ≤ C|ξ − ξ′|δ ∀ξ, ξ′ ∈ T
2
h.

If Assumption 2 holds and if

(36) ‖V ‖∞ + ‖DhV ‖∞ is bounded uniformly w.r.t. h ≤ h0 by a constant c0,

there exists a constant C depending on ‖U‖∞ but not on h and ρ such that for all
h ≤ h0, 0 < ρ ≤ 1,

(37) |U(ξ)− U(ξ′)| ≤ C|ξ − ξ′| ∀ξ, ξ′ ∈ T
2
h.

Proof. In the first case, the result is a consequence of a theorem due to Kuo and
Trudinger; see formula (3.10) in [9] and also [8] (which makes use of (32)).

In the second case, (37) is a particular case of a discrete Lipschitz estimate recently
proved by Krylov with a very clever discrete Bernstein method (see [7], Theorem 2.5
and Remark 4.5).

Remark 2. To cast the discrete quasi-linear operator into the setting of Theo-
rem 2.5 in [7], one needs to consider the grid function Wi,j = −Ui,j .

In Proposition 1 the constants C depend on ‖Uρ‖∞. It is possible to improve this
result by realizing that the constants actually depend on ‖Uρ−Uρ

0,0‖∞ and by showing
that this quantity is bounded uniformly w.r.t. ρ and h. The following proposition is
due to Camilli and Marchi; see [3]. We give its proof for completeness.
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Proposition 2.

1. If Assumption 1 holds and if ‖V ‖∞ is bounded uniformly w.r.t. h ≤ h0 by
a constant c0, then there exist two constants δ, δ ∈ (0, 1) and C > 0, both
independent of h ≤ h0 and ρ such that for all ρ, 1 ≥ ρ > 0, the solution of
(34) satisfies

(38) max
ξ 	=ξ′∈T

2
h

|U (ρ)(ξ)− U (ρ)(ξ′)|
|ξ − ξ′|δ ≤ C.

2. If Assumption 2 and (36) hold, then there exists a constant C independent of
h ≤ h0 and ρ such that for all ρ, 1 ≥ ρ > 0, the solution of (34) satisfies

(39) max
ξ 	=ξ′∈T

2
h

|U (ρ)(ξ)− U (ρ)(ξ′)|
|ξ − ξ′| ≤ C.

Proof. We give the proof in only the first case since the second case is done
similarly.

Lemma 1 yields existence for (34). We also easily obtain a bound on ‖ρU (ρ)‖∞,
namely, that

(40) ‖ρU (ρ)‖∞ ≤ max
i,j

(|H(xi,j , 0)|+ |Vi,j |)

so there exists a positive constantC1 independent of h and ρ such that ‖ρU (ρ)‖∞ ≤ C1.

Let us have ρ tend to 0. We set W (ρ) = U (ρ) − U
(ρ)
0,0 . Fixing h, assume that there

exists a sequence ρk such that limk→∞ ‖W (ρk)‖∞ = +∞. We use the notation εk =
1/‖W (ρk)‖∞. The grid function Z(k) = εkW

(ρk) satisfies

Z
(k)
0,0 = 0, ‖Z(k)‖∞ = 1,(41)

ρk
εk
Z

(k)
i,j − ν

εk
(ΔhZ

(k))i,j + g

(
xi,j ,

1

εk
[DhZ

(k)]i,j

)
+ ρkU

(ρk)
0,0 = Vi,j .(42)

But (42) is equivalent to

(43) ρkZ
(k)
i,j − ν(ΔhZ

(k))i,j + εkg

(
xi,j ,

1

εk
[DhZ

(k)]i,j

)
+ ρkεkU

(ρk)
0,0 = εkVi,j .

Note that

− ν(ΔhZ
(k))i,j + εkg

(
xi,j ,

1

εk
[DhZ

(k)]i,j

)
= G(xi,j , (Dc

1Z)i,j , (D
c
2Z)i,j , (D

2
1Z)i,j , (D

2
2Z)i,j),

where G(x, q1, q2, s1, s2) = εF(x, q1/ε, q2/ε, s1/ε, s2/ε), so G also satisfies estimate (32).
From this and (40), we can apply estimate (35) to Z(k); we get that the grid func-

tions Z(k) are equibounded and equicontinuous. Up to a subsequence, Z(k) converges
to Z as k tends to infinity and Z satisfies

Z0,0 = 0 and − ν(ΔhZ)i,j + g∞(xi,j , [DhZ]i,j) = 0 ∀i, j.
The assumptions made above on g∞ and the discrete maximum principle yield that

Z = 0, which contradicts (41). We have proved that ‖U (ρ) − U
(ρ)
0,0 ‖∞ ≤ C for a

constant C independent of ρ, and (38) is a consequence of Proposition 1.
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It can be shown by a similar contradiction argument using the Ascoli–Arzelà

theorem that the constant C in the bound ‖U (ρ) − U
(ρ)
0,0 ‖∞ ≤ C does not depend on

h because the unique viscosity solution of −νΔz + supα∈A α.∇z = 0 with z(0) = 0 is
0.

3.2. Existence for the discrete problem.
Theorem 1. If Assumption 1 is satisfied and if the operator V maps the proba-

bility measures to a bounded set of continuous functions on T
2 and satisfies (A2), then

the discrete problem (22)–(25) has at least a solution and there exist two constants δ,
δ ∈ (0, 1) and C > 0 such that (s.t.) for all h = 1/Nh < h0,

(44) ‖U‖∞ + max
ξ 	=ξ′∈T

2
h

|U(ξ)− U(ξ′)|
|ξ − ξ′|δ ≤ C.

Proof. Step 1. We consider a mapping Φ : M ∈ K → U , where U is part of the
solution of the problem. Find a grid function U and a scalar λ such that

(45) −ν(ΔhU)i,j + g(xi,j , [DhU ]i,j) + λ = (Vh[M ])i,j

with
∑

i,j Ui,j = 0. Indeed, it can be proved that if g satisfies the assumptions
mentioned above, then there exist a unique λ ∈ R and a unique grid function U
satisfying (45). To do it, we pass to the limit in (28) as ρ → 0. Existence and
uniqueness for (28) stem from Lemma 1. We may apply Proposition 2 since Vh[M ]
is bounded uniformly w.r.t. h and M . Proposition 2 implies that there exist two
constants C > 0 and δ ∈ (0, 1) independent of h, M , and ρ such that (38) holds.
Thus, there exists a constant c(h) ∼ hδ−1 independent of M and ρ such that

(46) ‖DhU
(ρ)‖∞ ≤ c(h).

Up to the extraction of a subsequence, we may say that as ρ tends to 0, U (ρ) −
h2
∑

i,j U
(ρ)
i,j converges to a grid function U such that

∑
i,j Ui,j = 0 and that ρh2

∑
i,j

U
(ρ)
i,j converges to λ ∈ R. It is an easy matter to check that (U, λ) satisfies (45) and

that the bounds (38) and (46) hold for U .
Uniqueness for λ stems from the following comparison principle: If U is a sub-

solution of (45) with λ = λ1 and W is a supersolution of (45) with λ = λ2, then
λ2 ≤ λ1. Uniqueness for U is obtained by repeatedly applying the discrete maximum
principle from the monotonicity of g. We have defined the map Φ : M ∈ K → U ,
where (U, λ) solve (45) and

∑
i,j Ui,j = 0.

Step 2: continuity of Φ. Consider a sequence of grid functions M (k) in K which
tends to M ∈ K as k tends to infinity. From the assumptions on V and Vh, Vh[M

(k)]
converges to Vh[M ]. Consider λ and U a solution of (45), and call λ(k), U (k) a
solution of (45) with M =M (k). From the estimates above, the sequences (λk)k and
(‖U (k)‖∞)k are bounded. One can extract a subsequence k′ such that λ(k) tends to

λ̃ and U (k′) tends to Ũ and such that

−ν(ΔhŨ)i,j + g(xi,j , [DhŨ ]i,j) + λ̃ = (Vh[M ])i,j ∀i, j, and
∑
i,j

Ũi,j = 0.

Uniqueness for (45) implies that λ̃ = λ and Ũ = U . The whole sequences (λ(k))k,
(U (k))k therefore tend to λ, U .

We have proved that the map Φ is continuous.
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Step 3. For M ∈ K and U = Φ(M), consider the following linear problem. Find

M̃ such that

(47) μM̃i,j − ν(ΔhM̃)i,j − Bi,j(U, M̃) = μMi,j ,

where μ is a sufficiently large positive number which will be chosen later. This linear
problem may be written

(48) μM̃ +AM̃ = μM,

where A is a linear operator depending on U .
The assumptions of the monotonicity of g imply that ∂g

∂q1
≤ 0, ∂g

∂q2
≥ 0, ∂g

∂q3
≤ 0,

and ∂g
∂q4

≥ 0. This yields that the matrix corresponding to A has positive diagonal

entries and nonpositive off-diagonal entries. Furthermore, since g is C1, (46) implies
that there exists a constant C independent of M (but possibly on h) such that for all
i, j, 0 ≤ i, j ≤ Nh, and for all � = 1, 2, 3, 4,

(49)

∣∣∣∣ ∂g∂q� (xi,j , [DhU ]i,j)

∣∣∣∣ ≤ C.

From this, we see that for μ large enough depending possibly on h but not on M ,
the matrix corresponding to μId+A is an M-matrix and is therefore invertible. The
system of linear equations (47) has a unique solution M̃ , and M̃ is nonnegative since
M is nonnegative.

We are left with proving that h2(M̃, 1)2 = h2(M, 1)2 = 1. For two grid functions
W and Z, let us compute (AW,Z)2. Discrete integrations by part lead to

(AW,Z)2 = ν
∑
i,j

(
(D+

1 W )i,j(D
+
1 Z)i,j + (D+

2 W )i,j(D
+
2 Z)i,j

)
+
∑
i,j

Wi,j [DhZ]i,j · ∇qg
(
xi,j , [DhU ]i,j

)
.

(50)

It is easy to check that for all grid functions W , (AW, 1)2 = 0. Therefore, taking

the inner product of (48) with the function Z = 1, we obtain that h2(M̃, 1)2 =

h2(M, 1)2 = 1, so M̃ ∈ K.

We call χ : K �→ K the mapping defined by χ :M → M̃ .
Step 4: existence of a fixed point of χ. From the boundedness and continuity of

the mapping Φ, and from the fact that g is C1 in the variable q , we obtain that χ is
continuous. Therefore, we can apply Brouwer’s fixed point theorem and obtain that
χ has a fixed point.

We obtain a better result under Assumption 2 and stronger assumptions on V .
Theorem 2. If Assumption 2 holds and if V satisfies (A1) and (A2), then the

discrete problem (22)–(25) has at least a solution and there exists a constant C such
that for all h = 1/Nh < h0,

(51) ‖U‖∞ + max
ξ 	=ξ′∈T

2
h

|U(ξ)− U(ξ′)|
|ξ − ξ′| ≤ C.

Proof. The proof is similar to that of Theorem 1, using now the second part of
Proposition 2.

Since the discrete problem is finite dimensional, existence for (22)–(25) can be
proved without a bound on U uniform with respect to h. Different assumptions on
the structure of g can be made; for example, see the following theorem.
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Theorem 3. Assume that
• g satisfies (H1), (H2) and (H3),
• there exist two positive constants α > 0 and γ > 1 and a nonnegative constant

C such that

(52) g(x, q1, q2, q3, q4) ≥ α((q−1 )2 + (q+2 )
2 + (q−3 )

2 + (q+4 )
2)γ/2 − C ∀x ∈ T

2,

• V maps the probability measures to a bounded set of continuous functions on
T
2 and satisfies (A2).

The discrete problem (22)–(25) has at least a solution.
Proof. The proof follows the same steps as that of Theorem 1. Only the first step

of the proof is modified as follows.
Existence and uniqueness for (28) follow from Lemma 1. We also easily obtain a

bound on ‖ρU (ρ)‖∞, namely, that

(53) ‖ρU (ρ)‖∞ ≤ max
i,j

∣∣∣H(xi,j , 0) + (Vh[M ])i,j

∣∣∣ ,
so there exists a positive constant C1 independent of M and ρ such that ‖ρU (ρ)‖∞ ≤
C1. From this, we deduce that there exists a positive constant C2 independent of M
and ρ such that

(54) g(xi,j , [DhU
(ρ)]i,j)− ν(ΔhU

(ρ))i,j ≤ C2 ∀i, j.

Using (52), we see that

g(xi,j , [DhW ]i,j)− ν(ΔhW )i,j

≥ α
(
((D+

1 W )−i,j)
2 + ((D+

1 W )+i−1,j)
2 + ((D+

2 W )−i,j)
2 + ((D+

2 W )+i,j−1)
2
)γ/2 − C

− ν

h

(
(D+

1 W )+i,j + (D+
1 W )−i−1,j + (D+

2 W )+i,j + (D+
2 W )−i,j−1

)
.

Calling Pρ = ‖DhU
(ρ)‖∞ = maxi,j max(|(D+

1 U
(ρ))i,j |, |(D+

2 U
(ρ))i,j |), we deduce from

(54) and the previous estimate that there exists a constant C3 independent of M and
ρ such that

αP γ
ρ − 4

ν

h
Pρ ≤ C3.

This yields (46) for a constant c(h) independent of M and ρ. Up to the extraction

of a subsequence, we may say that as ρ tends to 0, U (ρ) − h2
∑

i,j U
(ρ)
i,j converges to

a grid function U such that
∑

i,j Ui,j = 0 and that ρh2
∑

i,j U
(ρ)
i,j converges to λ ∈ R.

The limits U and λ satisfy (45). Uniqueness for (45) is proved as above, so Φ is well
defined.

Remark 3. In Theorem 3, we were not able to obtain an estimate on U uniform
w.r.t. h.

Remark 4. Note that the assumption (A2) can be relaxed in the discrete case.
Indeed, Theorem 1 holds if we replace (A2) with the assumption that Vh is a continu-
ous map from K defined in (27) to grid functions bounded by a constant independent
of h. Theorem 3 holds if Vh is a continuous map from K to grid functions.

These observations lead to existence results when Vh is a local operator; see
section 3.4.
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3.3. Uniqueness.
Proposition 3. If g satisfies (H1)–(H4) and if the operator Vh is strictly mono-

tone, i.e., (
Vh[M ]− Vh[M̃ ],M − M̃

)
2
≤ 0 ⇒M = M̃,

then (22)–(25) has at most a solution.

Proof. Let (U,M, λ) and Ũ , M̃ , λ̃ be two solutions of (22)–(25). We have
(55)

−ν(Δh(U−Ũ))i,j+g(xi,j , [DhU ]i,j)−g(xi,j , [DhŨ ]i,j)+λ− λ̃ =
(
Vh[M ]− Vh[M̃ ]

)
i,j
.

Take a grid function such that
∑

i,j Zi,j = 0. Multiplying by Zi,j and summing over
all i, j yields

(56) − ν(Δh(U − Ũ), Z)2 +
∑
i,j

(g(xi,j , [DhU ]i,j)− g(xi,j , [DhŨ ]i,j))Zi,j

=
(
Vh[M ]− Vh[M̃ ], Z

)
2
.

On the other hand, multiplying (23) by −Wi,j and summing over all i, j leads to

(57) ν(M,ΔhW )2 −
∑
i,j

Mi,j[DhW ]i,j · ∇qg (xi,j , [DhU ]i,j) = 0.

From this and the similar equation satisfied by M̃ , we obtain

0 = ν((M − M̃),ΔhW )2 −
∑
i,j

Mi,j [DhW ]i,j · ∇qg (xi,j , [DhU ]i,j)

+
∑
i,j

M̃i,j [DhW ]i,j · ∇qg
(
xi,j , [DhŨ ]i,j

)
.

(58)

Taking Z =M−M̃ in (56) andW = U−Ũ in (58) and adding the resulting equations
leads to

0 =
∑
i,j

Mi,j

(
g
(
xi,j , [DhŨ ]i,j

)
− g (xi,j , [DhU ]i,j)

−Dh(Ũ − U)i,j · ∇qg (xi,j , [DhU ]i,j)

)

+
∑
i,j

M̃i,j

⎛⎝ g (xi,j , [DhU ]i,j)− g
(
xi,j , [DhŨ ]i,j

)
−Dh(U − Ũ)i,j · ∇qg

(
xi,j , [DhŨ ]i,j

) ⎞⎠
+
(
Vh[M ]− Vh[M̃ ],M − M̃

)
2
.

From the convexity of g and the monotonicity of F , the three terms in the left-hand
side must vanish. The strong monotonicity of Vh implies thatM = M̃ . A comparison
argument similar to that used in the first step of the proof of Theorem 1 yields that
λ = λ̃ and that U = Ũ .

3.4. The case when V is a local operator. We now aim at relaxing the
assumptions on V . We assume that V is a local operator, i.e., V [m](x) = F (m(x), x),
where F is a bounded and C0 function defined on R× T

2.
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3.4.1. Existence. From Remark 4, we have the analogues of Theorems 1 and 3
in the following proposition.

Proposition 4. Take V as above. If Assumption 1 holds, then the discrete
problem (22)–(25) has at least a solution and there exist two constants δ, δ ∈ (0, 1)
and C > 0 such that (44) is satisfied for all h = 1/Nh < h0.

Proposition 5. If g satisfies the same assumptions as in Theorem 3 and if
V [m](x) = F (m(x), x) with F is a C0 function defined on R × T

2, then the problem
(22)–(25) has at least a solution.

Remark 5. In Proposition 5, there is no bound on U uniform w.r.t. h.

3.4.2. Uniqueness. We have the following corollary of Proposition 3.
Corollary 1. If g satisfies assumptions (H1)–(H4) and if F is strictly mono-

tone, i.e.,

(F (m,x) − F (m̃, x))(m − m̃) ≤ 0 ⇒ m = m̃,

then (22)–(25) has at most a solution.

3.5. A convergence result. It is possible to prove several convergence results.
We give the simplest one as an example.

Theorem 4. We make the same assumptions as in Theorem 1, and we suppose
furthermore that (H4)–(H5) hold and that there exist real numbers c, s, c > 0, s > 0,

such that for all h < 1 for all grid functions M and M̃ ,

h2
(
Vh[M ]− Vh[M̃ ],M − M̃

)
2
≥ c‖Vh[M ]− Vh[M̃ ]‖s∞.(59)

Assume that (1)–(3) has a unique solution such that u and m belong to C�,δ0(T2) ∩
C2(T2); see (21). Calling (U,M, λh) the solution of the discrete problem (22)–(25), we
have

lim
h→0

sup
i,j

|u(xi,j)− Ui,j | = 0 and lim
h→0

|λ− λh| = 0.

Proof. We call Ũ and M̃ the grid functions s.t. Ũi,j = h−2
∫
|x−xi,j|∞<h/2

u(x)

and M̃i,j = h−2
∫
|x−xi,j|∞<h/2

m(x). From the consistency assumptions, we have that

(60)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ν(ΔhŨ)i,j + g(xi,j , [DhŨ ]i,j) + λ =
(
Vh[M̃ ]

)
i,j

+ o(1),

−ν(ΔhM̃)i,j − Bi,j(Ũ , M̃) = o(1),

M̃i,j ≥ 0,

h2
∑
i,j

M̃i,j = 1, and
∑
i,j

Ũi,j = 0,

where o(1) means a grid function whose maximum norm tends to 0 as h tends to 0.
On the other hand, from Theorem 1, ‖U‖∞ is bounded by a constant. Therefore,
with the same argument as the one used for uniqueness in section 3.3, we obtain that

o(h−2) =
(
Vh[M ]− Vh[M̃ ],M − M̃

)
2

+
∑
i,j

Mi,j

(
g
(
xi,j , [DhŨ ]i,j

)
− g (xi,j , [DhU ]i,j)

−Dh(Ũ − U)i,j · ∇qg (xi,j , [DhU ]i,j)

)

+
∑
i,j

M̃i,j

⎛⎝ g (xi,j , [DhU ]i,j)− g
(
xi,j , [DhŨ ]i,j

)
−Dh(U − Ũ)i,j · ∇qg

(
xi,j , [DhŨ ]i,j

) ⎞⎠ .
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From this, the convexity of g, and (59), we obtain that limh→0 ‖Vh[M ]−Vh[M̃ ]‖∞ = 0.
Thus, {

−ν(ΔhŨ)i,j + g(xi,j , [DhŨ ]i,j) + λ = (Vh[M ])i,j + o(1),

−ν(ΔhU)i,j + g(xi,j , [DhU ]i,j) + λh = (Vh[M ])i,j .

A comparison argument at the maximum of Ũ−U yields that λ−λh ≤ o(1). The same

argument at the maximum of U−Ũ yields λh−λ ≤ o(1). Therefore, limh→0 |λ−λh| =
0.

We know that the family of grid functions uh is equibounded and equicontinu-

ous. There exists a function u′ and a subsequence uhn = (U
(n)
i,j )n ∈ N such that

limh→0 supi,j |u′(xi,j) − U
(n)
i,j | = 0. The function u′ is a viscosity solution of (1) and

is such that
∫
T2 u

′dx = 0. This implies that u = u′. Therefore, the whole sequence
uh converges to u.

4. Approximation of the evolution system (8)–(11). Let NT be a positive
integer and Δt = T/NT , tn = nΔt, and n = 0, . . . , NT . The values of u and m
at (xi,j , tn) are approximated by Un

i,j and Mn
i,j , respectively. Given M0 ∈ K (the

compact set K is defined in (27)) and U0, the discrete problem is to look for (Un,Mn),
n = 1, . . . , NT , s.t.

(61)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Un+1
i,j − Un

i,j

Δt
− ν(ΔhU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) =

(
Vh[M

n+1]
)
i,j
,

Mn+1
i,j −Mn

i,j

Δt
− ν(ΔhM

n+1)i,j − Bi,j(U
n+1,Mn+1) = 0,

Mn+1
i,j ≥ 0,

for all n, i, j : 0 ≤ n < NT , 0 ≤ i, j < Nh, with the notations introduced above (in
particular, Bi,j is defined in (19)) and

(62) h2
∑
i,j

Mn+1
i,j = 1 for n = 0, . . . NT − 1.

4.1. The main theorem on existence.
Theorem 5. Assume that
• g satisfies (H1)–(H3) and there exists a constant C such that

(63)∣∣∣∣∂g∂x(x, (q1, q2, q3, q4)
∣∣∣∣ ≤ C(1 + |q1|+ |q2|+ |q3|+ |q4|) ∀x ∈ T

2 ∀q1, q2, q3, q4,

• V satisfies (A1) and (A2).
If M0 ∈ K, then (61)–(62) has a solution. If there exists a constant C independent of
h such that ‖DhU

0‖∞ ≤ C, then for all n, ‖DhU
n‖∞ ≤ c for a constant c independent

of h and δt.
Proof. The strategy of the proof is similar to that used for Theorem 1. We are

going to construct a continuous mapping χ : KNT → KNT and use Brouwer’s fixed
point theorem. We proceed in several steps.

Step 1: a mapping M → U . Given (U0
i,j)0≤i,j<Nh

, consider the map

Φ : (Mn)1≤n≤NT ∈ KNT → (Un)1≤n≤NT , a solution of the first equation in (61),
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i.e.,

(64)
Un+1
i,j − Un

i,j

Δt
− ν(ΔhU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) =

(
Vh[M

n+1]
)
i,j

for n = 0, . . . , NT − 1 and 0 ≤ i, j < Nh. The existence and uniqueness of Un+1,
n = 0, . . . , NT − 1 are obtained by induction. At each step, we use Lemma 1 with
ρ = 1/Δt and Vi,j = Un

i,j/Δt+
(
Vh[M

n+1]
)
i,j
.

Step 2: boundedness and continuity of Φ. Looking at the proof of Lemma 1, we
see that

‖Un+1‖∞ ≤ max
(i,j)

∣∣∣Δt(H(xi,j , 0)−
(
Vh[M

n+1]
)
i,j

)
− Un

i,j

∣∣∣ ,
which implies, from the uniform boundedness assumption on V and of H(·, 0), that
there exists a constant C depending on ‖U0‖ but independent of (Mn) such that

‖Un‖∞ ≤ C(1 + T ). Therefore, Φ maps KNT to a bounded subset of (RN2
h)NT .

Moreover, by using the assumption on the continuity of V and well-known results on
continuous dependence on the data for monotone schemes (see, e.g., [4]), we see that

the mapping Φ is continuous from KNT to (RN2
h)NT .

Step 3: discrete Lipschitz continuity estimates on Φ((Mn)n=1,...,NT ). The solution
of (64) is noted

Un+1 = Ψ(Un,Mn+1).

Standard arguments on monotone schemes yield that for all M ∈ K, U,W ∈ R
N2

h ,

‖ (Ψ(U,M)−Ψ(W,M))
+ ‖∞ ≤ ‖(U −W )+‖∞,(65)

‖Ψ(U,M)−Ψ(W,M)‖∞ ≤ ‖U −W‖∞.(66)

For (�,m) ∈ Z
2, call τ�,mU the discrete function defined by

(τ�,mU)i,j = U�+i,m+j .

It is a simple matter to check that

(τ�,mU)n+1
i,j − (τ�,mU)ni,j

Δt
− ν(Δh(τ�,mU

n+1))i,j + g(xi,j , [Dh(τ�,mU
n+1)]i,j)

=
(
Vh[M

n+1]
)
i,j

+
(
Vh[M

n+1]
)
i+�,j+m

− (Vh[Mn+1]
)
i,j

− g(xi+�,j+m, [Dh(τ�,mU
n+1)]i,j) + g(xi,j , [Dh(τ�,mU

n+1)]i,j)

and therefore

τ�,mU
n+1 = Ψ(τ�,mU

n +ΔtE,Mn+1),

Ei,j =

⎛⎝ (
Vh[M

n+1]
)
i+�,j+m

− (Vh[Mn+1]
)
i,j

−g(xi+�,j+m, [Dh(τ�,mU
n+1)]i,j) + g(xi,j , [Dh(τ�,mU

n+1)]i,j)

⎞⎠ .

From the assumptions on V and on g (in particular, (63)), there exists a constant C
(independent of n, (Mn), h, and Δt) such that

‖E‖∞ ≤ C
(
1 + ‖DhU

n+1‖∞
)
h
√
�2 +m2.
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We conclude from (66) that

(67) ‖τ�,mUn+1−Un+1‖∞ ≤ ‖τ�,mUn−Un‖∞+ChΔt
√
�2 +m2

(
1 + ‖DhU

n+1‖∞
)
.

Thanks to (67),

(1− CΔt)‖DhU
n+1‖∞ ≤ ‖DhU

n‖∞ + CΔt.

A discrete version of Gronwall’s lemma yields that there exists a constant L which
depends only on C, T and the initial condition ‖DhU

0‖∞ such that for all n, 1 ≤ n ≤
NT ,

(68) ‖DhU
n+1‖∞ ≤ L,

which is a discrete Lipschitz continuity estimate, uniform with respect to (Mn)1≤n≤NT .
Step 4: a fixed point problem for (Mn)1≤n≤NT . For (Mn)1≤n≤NT ∈ KNT and

(Un)1≤n≤NT = Φ((Mn)1≤n≤NT ) and a positive real number μ, consider the following

linear problem. Find (M̃n)1≤n≤NT such that

(69)
M̃n+1

i,j − M̃n
i,j

Δt
+ μM̃n+1

i,j − ν(ΔhM̃
n+1)i,j − Bi,j(U

n+1, M̃n+1) = μMn+1
i,j

with the initial condition M̃0 =M0 with h2
∑

i,j M
0
i,j = 1 and M0 ≥ 0.

We are going to prove first that for μ large enough, (69) has a unique solution

(M̃n)1≤n≤NT ∈ KNT and then that the mapping (Mn)1≤n≤NT → (M̃n)1≤n≤NT has
a fixed point. Existence for (61)–(62) will then be proved.

Step 5: existence for (69). Clearly (69) is a discrete version of a linear parabolic
initial value problem. It can be written as

(70) M̃n+1 +Δt(μM̃n+1 +An+1M̃n+1) = M̃n + μΔtMn+1,

where An+1 is a linear operator depending on Un+1.
As in the proof of Theorem 1, the assumptions on the monotonicity of g imply

that the matrix corresponding to Id + ΔtAn+1 has positive diagonal entries and
nonpositive off-diagonal entries. Furthermore, since g is C1, (68) implies that there
exists a constant C depending only on ‖DhU

0‖ (in particular, independent of (Mn))
such that for all n, 1 ≤ n ≤ NT , for all i, j, 0 ≤ i, j ≤ Nh, and for all � = 1, 2, 3, 4,

(71)

∣∣∣∣ ∂g∂q� (xi,j , [DhU
n]i,j)

∣∣∣∣ ≤ C.

From this, we see that for μ large enough but independent of (Mn), the matrix
corresponding to Id+Δt(μId+An+1) is an M-matrix and is therefore invertible. The
system of linear equations (70) has a unique solution.

Moreover, since M0 ≥ 0 for all n = 0, . . . , NT and since Id +Δt(μId + An+1) is

an M-matrix for all n, 1 ≤ n ≤ NT , M̃
n ≥ 0 for all n = 0, . . . , NT .

We are left with proving that h2
∑

i,j M̃
n
i,j = 1 for all n, 1 ≤ n ≤ NT . As in the

proof of Theorem 1, we see that for two grid functions W and Z, we have

(AnW,Z)2 = ν
∑
i,j

(D+
1 W )i,j(D

+
1 Z)i,j + ν

∑
i,j

(D+
2 W )i,j(D

+
2 Z)i,j

+
∑
i,j

Wi,j [DhZ]i,j · ∇qg
(
xi,j , [DhU

n]i,j

)
.

(72)



MEAN FIELD GAMES: NUMERICAL METHODS 1153

From (72) and (70), it can be proved by induction that if h2(M0, 1)2 = 1, then the

condition h2(M̃n, 1)2 = 1 holds for all n, 1 ≤ n ≤ NT .
Step 6: existence of a fixed point of χ. From the boundedness and continuity

of the mapping Φ and from the fact that g is C1, we obtain that χ is continuous.
Therefore, we can apply Brouwer’s fixed point theorem and obtain that χ has a fixed
point.

Conclusion. Assuming that M0 is such that M0 > 0 and h2(M0, 1)2 = 1, we
have proved that the mapping χ has a fixed point that we call (Mn)1≤n≤NT . Calling
(Un)1≤n≤Nt = Φ((Mn)1≤n≤Nt), (Mn)n=1...,NT and (Un)n=1...,NT satisfy (61) and
(62).

Remark 6. Existence for problem (61)–(62) can also be obtained without (63)
and when V is a local operator (see section 3.4).

Remark 7. The second equation in (61) can be written in the form

(73) Mn+1 +ΔtAn+1Mn+1 =Mn,

where An+1 is a linear operator depending on Un+1. From the monotonicity of g and
Remark 1, we know that (I + ΔtAn+1)T is an M-matrix. Therefore, it is invertible
and so is I +ΔtAn+1. This implies that (73) has a unique solution.

Remark 8. From Remark 7, keeping the strategy of the latter proof unchanged
up to Step 3, it is tempting to take μ = 0 in (69), so Step 4 consists of solving the
sequence of linear problems

(74)
M̃n+1

i,j − M̃n
i,j

Δt
− ν(ΔhM̃

n+1)i,j − Bi,j(U
n+1, M̃n+1) = 0.

We must then check that if M0 ∈ K, then M̃n ∈ K for n = 1, . . . , NT . This can be
achieved via a fixed point argument for the map M ∈ K → M̌ ∈ K, where

M̌i,j − M̃n
i,j

Δt
+ μM̌i,j − ν(ΔhM̌)i,j − Bi,j(U

n+1, M̌) = μMi,j

and μ > 0 is large enough so the matrix of the problem is an M-matrix.
Remark 9. Note also that under a mild restriction on the time step, it is possible

to prove a discrete G̊arding’s inequality from the uniform Lipschitz bound (68) on
Un. There exists a nonnegative constant σ depending only on ‖DhU

0‖∞ s.t. for all
grid functions W ,

(AnW,W )2 ≥ ν

2
|||W |||2 − σ‖W‖22 with |||W |||2 =

∑
i,j

(
(D+

1 W )2i,j + (D+
2 W )2i,j

)
.

Remark 10. Using the discrete G̊arding’s inequality above and assuming that V
is a Lipschitz map from L1(T2) to C0(T2), it is possible to prove that if 2σΔt < 1, then
there exists a constant C such that maxn(h‖Mn+1−Mn‖2+‖Un+1−Un‖∞) ≤ C

√
Δt,

i.e., Hölder in time estimates for the solution of (61)–(62).

5. Approximation of the evolution system (4)–(7).

5.1. Description of the scheme. Although an implicit scheme for (4)–(7) is
quite possible, we rather describe a semi-implicit scheme because uniqueness is easier
to prove.
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Given MNT , we consider the semi-implicit scheme

Un+1
i,j − Un

i,j

Δt
− ν(ΔhU

n+1)i,j + g(xi,j , [DhU
n+1]i,j) = (Vh[M

n])i,j ,(75)

Mn+1
i,j −Mn

i,j

Δt
+ ν(ΔhM

n)i,j + Bi,j(U
n+1,Mn) = 0,(76)

Mn
i,j ≥ 0,(77)

for n = 0, . . . , NT − 1 and 0 ≤ i, j < Nh with

(78) h2
∑
i,j

Mn
i,j = 1 for n = 0, . . . , NT − 1

and

(79) U0
i,j =

(
V0,h(M

0)
)
i,j

≡ V0[m
0
h](xi,j),

where m0
h is the piecewise constant function taking the value M0

i,j in the square
|x− xi,j |∞ ≤ h/2. We have the analogue of Theorem 5.

Theorem 6. We make the same assumptions as in Theorem 5, and we also
assume that V0 satisfies (A1) and (A2). If MNT ≥ 0 and

∑
i,j M

NT

i,j = 1, then (75)–
(79) has a solution. There exists a constant C independent of h and Δt such that
‖DhU

n‖∞ ≤ C for all n.
Proof. The proof is similar to that of Theorem 5.

5.2. Uniqueness.
Theorem 7. We make the same assumptions as in Theorem 6. We assume

furthermore that g is convex w.r.t. to (q1, q2, q3, q4), i.e., (H4), and that the operators
Vh and V0,h are strictly monotone, i.e.,(

Vh[M ]− Vh[M̃ ],M − M̃
)
2
≤ 0 ⇒ Vh[M ] = Vh[M̃ ],(

V0,h[M ]− V0,h[M̃ ],M − M̃
)
2
≤ 0 ⇒ V0,h[M ] = V0,h[M̃ ].

Problem (75)–(79) has a unique solution.

Proof. Let (Un,Mn)n=0,...,NT and (Ũn, M̃n)n=0,...,NT be two solutions of (75)–

(79). Multiplying (75) satisfied by (Ũn
i,j , M̃

n
i,j)n,i,j by Mn

i,j − M̃n
i,j , doing the same

thing with (75) satisfied by (Un
i,j ,M

n
i,j)n,i,j and subtracting, then summing the results

for all n = 0, . . . , NT − 1 and all (i, j), we obtain

NT−1∑
n=0

((Un+1 − Ũn+1)− (Un − Ũn),Mn − M̃n)2
Δt

+

NT−1∑
n=0

∑
i,j

(g(xi,j , [DhU
n+1]i,j)− g(xi,j , [DhŨ

n+1]i,j))(M
n
i,j − M̃n

i,j)

− ν(Δh(U
n+1 − Ũn+1),Mn − M̃n)2 =

NT−1∑
n=0

(
Vh[M

n]− Vh[M̃
n],Mn − M̃n

)
2
.

(80)
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Similarly, subtracting (76) satisfied by (Ũn
i,j , M̃

n
i,j)n,i,j from the same equation satisfied

by (Un
i,j ,M

n
i,j)n,i,j and multiplying the result by Un+1

i,j − Ũn+1
i,j , summing for all n =

0, . . . , NT − 1 and all (i, j) leads to

1

Δt

NT−1∑
n=0

((Mn+1 −Mn)− (M̃n+1 − M̃n), (Un+1 − Ũn+1))2

+ ν((Mn − M̃n),Δh(U
n+1 − Ũn+1))2

−
NT−1∑
n=0

∑
i,j

Mn
i,j [Dh(U

n+1 − Ũn+1)]i,j · ∇qg
(
xi,j , [DhU

n+1]i,j
)

+

NT−1∑
n=0

∑
i,j

M̃n
i,j [Dh(U

n+1 − Ũn+1)]i,j · ∇qg
(
xi,j , [DhŨ

n+1]i,j

)
= 0.

(81)

Adding (80) and (81) leads to

0 =

NT−1∑
n=0

∑
i,j

Mn
i,j

(
g(xi,j , [DhŨ

n+1]i,j)− g
(
xi,j , [DhU

n+1]i,j
)

−[Dh(Ũ
n+1 − Un+1)]i,j · ∇qg

(
xi,j , [DhU

n+1]i,j
) )

+

NT−1∑
n=0

∑
i,j

M̃n
i,j

(
g(xi,j , [DhU

n+1]i,j)− g(xi,j , [DhŨ
n+1]i,j)

−[Dh(U
n+1 − Ũn+1)]i,j · ∇qg(xi,j , [DhŨ

n+1]i,j)

)

+

NT−1∑
n=0

(
Vh[M

n]− Vh[M̃
n],Mn − M̃n

)
2
+

1

Δt

(
V0,h[M

0]− V0h[M̃
0],M0 − M̃0

)
2

from (79) and because M and M̃ satisfy the same terminal conditions.
The four terms in the sum above being nonnegative, they must be zero. The strict

monotonicity of Vh and V0,h implies that Vh[M
n] = Vh[M̃

n] for all n = 0, . . . , NT and

V0,h[M
0] = V0,h[M̃

0]. This implies that U0 = Ũ0 and then that Un = Ũn for all
n = 0, . . . , NT since the scheme for Un is monotone. Finally, uniqueness for (76)

(given (Un)n) yields that M
n = M̃n for all n = 0, . . . , NT .

5.3. A convergence result. A convergence result similar to Theorem 4 for the
infinite horizon problem can be obtained. For brevity, we state it for smooth solutions
of (4)–(7) which indeed exist with our assumptions; see [12, 13].

Theorem 8. We make the same assumptions as in Theorem 6, and we suppose
furthermore that (H4)–(H5) hold and that there exist real numbers c, s, c > 0, s > 0,

such that for all h < 1 for all grid functions M and M̃ , (59) holds.
Assume that (4)–(7) has a unique solution u and m in C∞(T2 × [0, T ]). Calling

(Un,Mn) the solution of the discrete problem (75)–(79), we have

lim
h,Δt→0

sup
i,j,n

|u(xi,j , tn)− Un
i,j | = 0.

Proof. Since the proof is rather similar to that of Theorem 4, we just sketch it.
We call Ũn and M̃n the grid functions such that Ũn

i,j = h−2
∫
|x−xi,j|∞<h/2

u(x, nΔt)dx

and M̃n
i,j = h−2

∫
|x−xi,j|∞<h/2m(x, nΔt)dx. Note that M̃0 =M0.

The scheme (75)–(79) is satisfied by Ũn and M̃n up to a consistency error, which
tends to zero in maximum norm as h and Δt tend to zero.
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On the other hand, from Theorem 6, ‖Un‖∞ is bounded by a constant independent of
n. This makes it possible to carry out a similar argument as the one used for proving
uniqueness. We obtain that

lim
h,Δt→0

h2
NT−1∑
n=0

Δt
(
Vh[M

n]− Vh[M̃
n],Mn − M̃n

)
2
= 0

and from (59), limh,Δt→0

∑NT−1
n=0 Δt‖Vh[Mn] − Vh[M̃

n]‖s∞ = 0. From assumption

(A1), this implies that limh,Δt→0

∑NT−1
n=0 Δt‖Vh[Mn]− Vh[M̃

n]‖∞ = 0.
Then, using the consistency of V0,h and applying inductively a maximum principle

(using the monotonicity of g), we get that limh,Δt→0maxn ‖Un − Ũn‖∞ = 0. The
conclusion follows easily.

5.4. Solution procedure for (75)–(79). The system (75)–(79) can be seen as
a forward discrete HJB equation for U with a Cauchy condition at t = 0 (possibly
involvingM) coupled with a backward discrete Fokker–Planck equation for M with a
Cauchy condition at final time. This structure prohibits the use of a straightforward
time-marching solution procedure. In [1], in the context of planning problems, we
discuss a strategy which consists of solving the whole coupled system (whose number
of unknowns is large, of the order of 2NTN

2) by means of a Newton method; the
systems of linear equations which arise are solved by means of an iterative method
(for example, BiCGStab). Numerical experiments are presented, too.

6. Numerical simulations.

6.1. Long time approximation of the stationary problem. As mentioned
in the introduction, we consider a solution (ũ, m̃) of (8)–(11) with the Cauchy data
m̃0 and ũ0 defined on T

2, m0 being a probability measure. We expect that there exist
a C2 function u on T

2, a function m in W 1,p(T2), and a scalar λ such that

lim
t→∞ ũ(t, x)− λt = u(x), lim

t→∞ m̃(t, x) = m(x),

and
∫
T2 u = 0. If so, then (u,m, λ) is a solution of (1)–(3).

Such long time approximations have been justified for the cell problem in the ho-
mogenization of Hamilton–Jacobi or HJB equations; see, for example, [14, 2, 3]. This
approach is close to the so-called eductive strategy in economy. In [6], Guéant studies
the eductive stability on some examples where V has not the monotony property used
in Proposition 3 and justifies the approach.

The same long time approximation method may be used at the discrete level.
In the results presented here, the discrete version of (8)–(11) is the implicit scheme

(61)–(62). Each time step consists of solving a coupled system of nonlinear equations
for (Un+1,Mn+1) (by means of a Newton method). The time step can be progressively
increased; when the asymptotic regime is reached, very long time steps (Δt ∼ 1000)
can been used.

Remark 11. Alternatively it is possible to solve the coupled system of nonlinear
equations for (Un+1,Mn+1) only approximatively by performing only one step of the
Newton method. Indeed, we have observed that generally one Newton step is enough
to reduce the residual by a factor smaller that 10−4. Here, too, the time step can be
progressively increased. On the other hand, if the condition mn+1 ≥ 0 is violated,
then it is possible to start back from (un,mn) and to decrease the time step δtm. This
method gives similar resuts as the fully implicit scheme, which will not be reported
here.
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Table 1

The real number ν, the Hamiltonian H, and the operator V .

Test ν H(x, p) V [m](x)

1 1 H̃(x) + |p|2 m2(x)

2 0.01 H̃(x) + |p|2 m2(x)

3 0.1 H̃(x) + |p|α m2(x)
α = 1.5, 3, 6, 9

4 0.1 H̃(x) + |p|2 − log(m(x))

5 0.1 H̃(x) + |p|3/2 200
(
(1−Δ)−1(1 −Δ)−1m

)
(x)

6 0.001 H̃(x) + |p|3/2 200
(
(1−Δ)−1(1 −Δ)−1m

)
(x)

In Tests 1, 2, and 4, the Hamiltonian is of the form H(x, p) = |p|2+ g(x). In such
cases, as observed in [13], the system (1)–(3) is equivalent to a generalized Hartree
equation. Indeed, introducing φ(x) = φ0 exp (−u(x)/ν) and taking m = φ2, (1)–(3)
becomes

(82) −ν2Δφ− gφ+ φV [φ2] = λφ in T
2 and

∫
T2

φ2 = 1,

and the constant φ0 is fixed by the equation
∫
T2 log(φ/φ0) = 0. As a consequence, m

can be written as a function of u.

6.2. Results. In all the problems considered below, the Hamiltonian is of the
form H(x, p) = ψ(x, |p|), and the discrete Hamiltonian is obtained via a Godunov
scheme, i.e,

g(x, q1, q2, q3, q4) = ψ

(
x,

√
(q−1 )2 + (q−3 )2 + (q+2 )

2 + (q+4 )
2

)
.

Table 1 contains the data of the problems simulated below, i.e., the real number ν,
the Hamiltonian H , and the operator V . Hereafter, we note H̃ the potential

(83) H̃(x) = sin(2πx2) + sin(2πx1) + cos(4πx1).

The contours of the potential H̃ are displayed in Figure 1.

6.2.1. Test 1. See Table 1 for the data of the problem. We first check that
the long time approximation yields the expected asymptotic behavior. In the left
side of Figure 2, we plot the graph of (h2/T )

∑
i,j Ui,j(t = T ) when the mesh step is

h = 1/50; as T tends to infinity, this quantity tends to a constant λh, as expected.
Here we find that λh � 0.9784.

Here V [m](x) = F (m(x)), where F (y) = y2 is a nondecreasing function. Such
a function is used to model repulsive cases when the players do not like to share
their position with others. If ν is not too small, then the players’ positions should be
well distributed, i.e., the density m should not be strongly localized. In Figure 3, we
plot the contours of uh and mh; we see, indeed, that mh is supported in the whole
domain T

2. We have seen above that m is a smooth decreasing function of u since
the Hamiltonian is quadratic. This explains why the contour plots of uh and mh have
the same aspect.

In order to estimate the rate of convergence as h tends to 0, we compare the
solutions with that computed by solving the Hartree equation (82) with a fourth
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Fig. 1. The contours of the potential H̃ used in Tests 1–6.
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Fig. 2. Nh = 50. Graph of (h2/T )
∑

i,j Ui,j(t = T ). Left: Test 1. Right: Test 2.
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Fig. 3. Test 1: the contours of uh(left) and mh(right) with Nh = 200.

order scheme on a 400× 400 grid. (A Newton solver is used for solving the system of
nonlinear equations.) We consider the sum of the relative errors in the max norm

(84) Err =
‖U − Uhartree‖∞

‖Uhartree‖∞ +
‖M −Mhartree‖∞
‖Mhartree − 1‖∞ .
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Fig. 4. Test 1: relative error (see (84)) w.r.t. the solution of (82) computed with a fourth order
scheme on a 400× 400 grid as a function of h.
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Fig. 5. Test 2: the contours of uh(left) and mh(right) with Nh = 200.

The graphs of the error are shown in Figure 4. The convergence looks linear (for h
small enough).

6.2.2. Test 2. See Table 1 for the data of the problem. Here the value of ν = 0.01
is small, so the case is close to the deterministic limit.

As in Test 1, the solution of the discrete evolution problem has the expected
behavior for large times. In the right side of Figure 2, we plot the graph of (h2/T )

∑
i,j

Ui,j(t = T ) when the mesh step is h = 1/50; as T tends to infinity, this quantity tends
to a constant λh, as expected. Here we find that λh � 1.187.

In Figure 5, we plot the contours of uh and mh. Note that the supports of ∇uh
and of mh tend to be disjoint for such a small value of ν. This is coherent with the
results concerning the deterministic limit in [13]. This test shows that the method is
robust for small values of ν.
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Fig. 6. Test 3: contours of mh: comparison for α = 1.5 (top left), α = 3 (bottom left), α = 6
(top right), and α = 9 (bottom right).
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Fig. 7. Test 4: the contours of uh(left) and mh(right) with Nh = 100.

6.2.3. Test 3. In Figure 6, we comparemh for different values of α (see Table 1).
We see that the variations of mh become stiffer as α grows.

6.2.4. Test 4. See Table 1 for the data of the problem. Here V [m](x) = F (m(x))
with F (y) = − log(y). By contrast with Tests 1 and 2, F is a decreasing function.
Such a function F is used to describe situations when the agents are gregarious, i.e.,
they like to all be in the same position. Guéant proved results concerning the eductive
stability in close cases; see [6]. Indeed, we observe that the solution of the discrete
evolution problem has the expected behavior for large times.

In Figure 7, we plot the contours of uh and mh. Note that the measure mh con-
centrates near the minimum of uh, i.e., the players take positions close to each other.
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Fig. 8. Test 5: the contours of uh(left) and mh(right) with Nh = 100.
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Fig. 9. Test 6: the graphs of uh(top) and mh(bottom).

6.2.5. Test 5. See Table 1 for the data of the problem. By contrast with the
previous cases, the operator V is nonlocal. This example has been chosen because V
satisfies the assumptions (A1) and (A2). At the discrete level, applying V is done
by solving a system of linear equations. Alternatively a method based on fast Fourier
transform could be used. In Figure 8, we plot the contours of uh and mh.

6.2.6. Test 6. See Table 1 for the data of the problem. Compared to Test 5,
everything is kept unchanged except that ν = 0.001. In Figure 9, we plot the graphs
of uh and mh. We see that uh is not better than Lipschitz continuous and that mh

is close to a sum of two Dirac masses located at the minima of uh, which does not
contradict the theoretical results in section 3. Since V is a smoothing operator, it is
not surprising that singular measures m arise in the deterministic limit.
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