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On the weak maximum principle for fully nonlinear elliptic
pde’s in general unbounded domains

Italo Capuzzo Dolcetta

Abstract1. The aim of this Note is to review some recent research on viscosity solutions
of fully nonlinear equations of the form

F
(
x, u(x), Du(x), D2u(x)

)
= 0 , x ∈ Ω

where Ω is an open set in RN and F is a nonlinear function of its entries which is elliptic

with respect to the Hessian matrix D2u of the unknown function u and satisfies some

suitable structure condition. The main issues touched here are the Alexandrov-Bakelman-

Pucci estimate, the weak Maximum Principle for bounded solutions in general unbounded

domains and qualitative Phragmen-Lindelöf type theorems.

1. Introduction

The paper focuses on some global and local properties of continuous functions u
satisfying fully nonlinear elliptic equations of the form

(1.1) F
(
x, u(x), Du(x), D2u(x)

)
= 0

in the viscosity sense in an open set Ω ⊂ RN . The main topics discussed here are the
validity of Alexandrov-Bakelman-Pucci estimates, the Weak Maximum Principle
(wMP in short) and qualitative Phragmen-Lindelöf type theorems in cylindrical
and conical domains. The results presented apply to a wide class of unbounded
domains, perhaps of infinite measure, which may have a quite irregular boundary
and generalize in several aspects a number of well-known results for smooth or
strong solution of linear elliptic equation see, for example, [19], [13], [12], [16], [17],
[2], [4], [17].
The content of this note is mostly taken from the recent papers [6], [7], [8], [9]. We
refer to these papers for the detailed proofs of the result presented here.

2. Viscosity solutions

We report for the convenience of the reader a few facts about viscosity solutions.
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An upper semicontinuous function u ∈ USC(Ω) is a viscosity subsolution of equa-
tion (1.1) if the inequality

F
(
x0, Φ(x0), DΦ(x0), D2Φ(x0)

)
≥ 0

holds at any point x0 ∈ Ω and for all quadratic polynomials Φ touching from above
the graph of u at x0. Observe that u is a viscosity solution of ∆u ≥ 0 if and only
if u is subharmonic in the sense of potential theory:

for any ball B ⊂ Ω and for any function h such that ∆h = 0 in B

the inequality u ≤ h on ∂B implies u ≤ h in B .

Viscosity supersolutions are defined in a symmetric fashion: a lower semicontinuous
function u ∈ LSC(Ω) is a viscosity supersolution of (1.1) if

F
(
x0, Φ(x0), DΦ(x0), D2Φ(x0)

)
≤ 0

at any point x0 ∈ Ω and for all for all quadratic polynomials Φ touching from below
the graph of u at x0.
A viscosity solution of (1.1) is a function u ∈ C(Ω) which is simultaneously a sub
and a supersolution.
Most of the theory of strong solutions for linear elliptic equations in non-divergence
form

(2.1) Tr
(
A(x)D2u

)
+ b(x) ·Du+ c(x)u = 0

has been carried on to viscosity solutions of (1.1) under the leading assumption of
ellipticity of F :

(2.2) λTrY ≤ F (x, t, p,X + Y )− F (x, t, p,X) ≤ ΛTrY

for some constants 0 < λ ≤ Λ and for all X,Y ∈ SN with Y ≥ 0, where SN and
Tr denote, respectively, the space of real symmetric N ×N matrices endowed with
the partial ordering induced by non-negative definiteness and the trace of such a
matrix.
We refer to [14] and [10] for existence, uniqueness and stability viscosity solutions
of (1.1), to [3] for regularity theory.
Fundamental model examples of elliptic operators F are given by the Pucci extremal
operators P−λ,Λ and P+

λ,Λ defined for X ∈ SN and given parameters 0 < λ ≤ Λ by

(2.3) P−λ,Λ(X) = inf
A∈A

Tr (AX) , P+
λ,Λ(X) = sup

A∈A
Tr (AX)

where
A = A (λ,Λ) =

{
A ∈ SN : λI ≤ A ≤ ΛI

}
see [20], [3]. Other important examples are the Isaac’s operators

sup
j∈K

inf
k∈K

Tr (Ak,j X)

with Ak,j ∈ A , k, j ∈ K, arising in stochastic differential game theory [11].

Two fundamental tools in deriving the Alexandrov-Bakelman-Pucci estimates for
viscosity solutions of equation (1.1) are the weak Harnack inequality and its so-
called boundary version for nonnegative supersolutions of Pucci type differential
inequalities.
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Proposition 2.1 (the weak Harnack inequality). Let A be an open bounded
domain of RN . If w ∈ LSC(A) satisfies

(2.4) w ≥ 0 , P−λ,Λ(D2w)− b(x)|Dw| ≤ g(x)

with b, g ∈ C(A) ∩ L∞(A),in the viscosity sense, then there exist positive numbers
C, p depending on N,λ,Λ, ‖b‖L∞(B4) such that

(2.5)
(

1
|B1|

∫
B1

wp
)1/p

≤ C
(

inf
B2
w + ‖g‖LN (B4)

)
where B1 ⊂ B2 ⊂ B4 ⊂ A are concentric balls of radii 1, 2 and 4, respectively.

Let BR, BR/τ with τ ∈ (0, 1) be concentric balls such that

A ∩BR 6= ∅ , BR/τ\A 6= ∅ .

For w ∈ LSC(Ā), w ≥ 0, consider the following lower semicontinuous extension
w−m of w

w−m(x) =

{
min(w(x);m) if x ∈ A

m if x 6∈ A
where m = infx∈∂A∩BR/τ w(x).

Proposition 2.2 (the boundary weak Harnack inequality). Let A be an open
bounded domain of RN . If w ∈ LSC(A) satisfies (2.4) in the viscosity sense, with
b, g ∈ C(A) ∩ L∞(A) in the viscosity sense, then

(2.6)
(

1
|BR|

∫
BR

(w−m)p
)1/p

≤ C∗
(

inf
A∩BR

w +R ‖g+‖LN (A∩BR/τ )

)
where p and C∗ depend on N,λ,Λ, τ, R‖b‖L∞(A).

See [3] for the case b ≡ 0 and [6] for the proof in the (slightly) more general case
b 6= 0.

3. A general class of unbounded domains in RN

As mentioned in the Introduction, the aim of this Note is to present some results
about the validity of the wMP for equation (1.1) in general domains. Let us
consider then domains in RN satisfying the following measure/geometric condition
wG:
there exist constants σ, τ ∈ (0, 1) such that for all y ∈ Ω there is a ball BRy of
radius Ry containing y such that

|BRy \ Ωy,τ | ≥ σ|BRy |
where Ωy,τ is the connected component of Ω ∩BRy/τ containing y.

The above condition, proposed first in [5], [22], generalizes the notion of G domains
previously introduced by X. Cabrè: any domain Ω fulfilling condition wG with

Ry = O(1) as |y| → ∞
is in fact a G domain in the sense of [4].
Condition wG is therefore satisfied by any G domain, for example:

• bounded domains: in this case, Ry ≡ diam (Ω)
• domains with finite measure: in this case, Ry ≡ C(N)|Ω|1/N
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• unbounded cylinders with bounded cross-section:

Ω = Rk × ω ⊂ RN−k , k ≥ 1 .

In this case, Ry ≡ diam (ω)
• periodically perforated domains with period ρ > 2:

Ω = RN\
∑
k∈ZN

(ρk +B1(0)) .

In this case Ry ≡ ρ
• the complement of a plane spiral with constant step k, represented in polar

cohordinates as

Ω = R2\
{
ρ =

k

2π
θ

}
.

In this case Ry ≡ k
Note that condition G implies in particular supy∈Ω dist(y, ∂Ω) < +∞; on the other
hand wG domains can have points at arbitrarily large distance from the boundary.
Typical examples of unbounded domains satisfying wG but not G are:

• non-degenerate cones of RN (and their unbounded subsets); for such a set
wG holds with Ry = O(|y|) as |y| → ∞
• parabolically shaped domains, defined for k > 1 by the inequalities

|x′| ≡

√√√√N−1∑
i=1

x2
i < x

1/k
N , xN > 0 .

Condition wG holds in this case with R = O(x1/k
N )

• the complement of the logarithmic spiral: Ω = R2 \
{
% = eθ, θ ≥ 0

}
. Con-

dition wG is satisfied with Ry = O(|y|) as |y| → ∞
To conclude this section, let us point out explicitly that exterior domains such as
RN \BR are not wG.

4. The structure conditions on F

We shall assume that F = F (x, t, p,X) is continuous with respect to all variables
and (degenerate) elliptic, that is

(4.1) F (x, t, p,X) ≥ F (x, t, p, Y )

for all x ∈ Ω, t ∈ R, p ∈ RN and X,Y ∈ SN with X − Y ≥ O.
Moreover, we assume that the following structure condition holds for all x ∈ Ω,
t ≥ 0, p ∈ RN and X ∈ SN :

(4.2) F (x, t, p,X) ≤ P+
λ,Λ(X) + b(x) |p|

for some non-negative function b ∈ C(Ω)∩L∞(Ω) and for all x ∈ Ω, t ≥ 0, p ∈ RN ,
X ∈ SN . Here, P+

λ,Λ is the Pucci maximal operator.
Assumptions (4.1) and (4.2) are satisfied by any uniformly elliptic F , see (2.2), such
that

t→ F (x, t, p,X) non increasing, F (x, 0, p, O) ≤ b(x) |p| .
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Note, however, that some nonlinear degenerate elliptic operators fulfill our assump-
tions. An example is

F (X) = Λ

(
N∑
i=1

ϕ(µ+
i )

)
− λ

(
N∑
i=1

ψ(µ−i )

)
.

Here, µ±i , i = 1, . . . N , are the positive and negative eigenvalues of the matrix
X ∈ SN and ϕ,ψ : [0,+∞)→ [0,+∞) are continuous and nondecreasing functions
such that ϕ(s) ≤ s ≤ ψ(s).
Observe, finally, that while X → P+

λ,Λ(X) is convex, the structure condition does
not require convexity nor concavity of X → F (x, t, p,X).
We will also consider the case of F having quadratic growth in the gradient variable.
In order to treat this case we will employ the structure condition

(4.3) F (x, t, p,X) ≤ P+
λ,Λ(X) + b(x)|p|+ b2|p|2

for t ≥ 0, where b2 is a positive constant.

5. The Weak Maximum Principle in unbounded domains

We present in this section some recent result concerning the validity of the
wMP for upper semicontinuous viscosity solutions of the partial differential in-
equality

(5.1) F
(
x, u(x), Du(x), D2u(x)

)
≥ 0 , x ∈ Ω ,

in unbounded domains Ω of type wG and for degenerate elliptic functions F satisfy-
ing the structure condition (4.2) or (4.3)) . We will consider in the next subsections
a few different quite general situations in which the validity of the wMP can be
established:

• bounded above solutions, linear growth in Du
• bounded above solutions, quadratic growth in Du
• bounded above solutions in domains of small measure and/or for operators

with a small zero-order term
• exponentially growing solutions in narrow domains
• Phragmèn-Lindelöf theorems in cylindrical and conical domains

5.1. Bounded above solutions, linear growth in Du. Our first result is an
Alexandrov-Bakelman-Pucci type estimate for solutions of

(5.2) F
(
x, u(x), Du(x), D2u(x)

)
≥ f(x) , x ∈ Ω .

Theorem 5.1. Let u ∈ USC(Ω) with supΩ u < +∞ be a viscosity solution of
(5.2) where f ∈ C(Ω) ∩ L∞(Ω). Assume that F is continuous and satisfies (4.1)
and (4.2). Assume, moreover, that Ω satisfies wG for some Ry such that

(5.3) Rb := sup
y∈Ω

Ry ‖b‖L∞(Ωy,τ ) <∞ .

Then

(5.4) sup
Ω
u ≤ sup

∂Ω
u+ + C sup

y∈Ω
Ry ‖f−‖LN (Ωy,τ )

for some positive constant C depending on N , λ, Λ, σ, τ and Rb.
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As an immediate consequence of the above result, the wMP holds:
if u ∈ USC(Ω) is bounded above and F (x, u,Du,D2u) ≥ 0, x ∈ Ω, in the viscosity
sense then

u ≤ 0 on ∂Ω implies u ≤ 0 in Ω .

Remark 5.2. For F = F (X) and Ω bounded, the estimate (5.4) has been estab-
lished in [3]. When F does not depend on Du, then b ≡ 0 and condition (5.3) is
trivially satisfied in any wG domain. In general, however, some condition relating
the size of the domain with the size of first order terms at infinity is required for
the validity of the wMP in unbounded domains. Indeed,

u(x) = u(x1, x2) =
(

1− e1−xα1
) (

1− e1−xα2
)

with 0 < α < 1, is bounded and satisfies

u|∂Ω = 0 , u > 0 , ∆u+B(x) ·Du = 0 in Ω

in the cone
Ω =

{
x = (x1, x2) ∈ R2 : x1 > 1, x2 > 1

}
with B given by

B(x) = B(x1, x2) =
(

α

x1−α
1

+
1− α
x1

,
α

x1−α
2

+
1− α
x2

)
.

Since Ω satisfies wG with Ry = O(|y|) as |y| → ∞ and the structure condition
(4.2) holds with b(x) = |B(x)|, condition (5.3) fails in this example.

Remark 5.3. For bounded b, in order to enforce (5.3) the requirement on Ω
amounts to

sup
y∈Ω

Ry ≤ R0 < +∞

meaning that Ω should be in fact a G domain. For G domains, the result of our
Theorem 5.1 can be regarded essentially as a nonlinear version of the Alexandrov-
Bakelman-Pucci estimate for linear elliptic equations with bounded coefficients
proved in [4].
In the case of parabolically shaped domains, defined for k > 1 by the inequalities

|x′| ≡

√√√√N−1∑
i=1

xi < x
1/k
N , xN > 0 ,

for which wG holds with R = O(x1/k
N ), one can show that (5.3) holds provided

b(x) = O(1/x1/k
N ) as |x| → ∞ .

Note that cylindrical and conical domains can be seen as limiting cases of above
situation when, respectively, k → +∞ and k → 1.

The detailed proof of Theorem 5.1 can be found in [6]. The first step is to observe
that w(x) = M − u+(x) with M : = supx∈Ω u

+(x) < +∞ satisfies

w ≥ 0 , P−(D2w)− b(x) |Dw| ≤ f−(x) in Ω

in the viscosity sense. By the boundary weak Harnack inequality (2.6)

(5.5)

(
1
|BRy |

∫
BRy

(w−m)p
)1/p

≤ C∗y
(

inf
Ωy,τ∩BRy

w +Ry ‖f−‖LN (Ωy,τ )

)
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for positive constants p and C∗y depending on N , λ, Λ, τ and Ry, ‖b‖L∞(Ωy,τ ).
Using the wG condition it is not hard to show that the left-hand side of the above
inequality can be estimated from below as follows

(5.6)

(
1
|BRy |

∫
BRy

(w−m)p
)1/p

≥ mσ1/p .

From (5.5), (5.6) we deduce that

mσ1/p ≤ C∗y
(
M − u+(y) +Ry ‖f−‖LN (Ωy,τ )

)
at any point y ∈ Ω. Observing that m ≥ M − supz∈∂Ω u

+(z), after some simple
computations we are led to the pointwise estimate

(5.7) u+(y) ≤
(

1− σ1/p

C∗y

)
sup

Ω
u+ +

σ1/p

C∗y
sup
∂Ω

u+ +Ry ‖f−‖LN (Ωy,τ )

Thanks to the assumption (5.3), the constant C∗y/σ
1/p can be bounded above by

some θ ∈ (0, 1), independently on y. Taking the supremum on both sides of (5.7),
we obtain (5.4).

5.2. Bounded above solutions, quadratic growth in Du. Let us briefly de-
scribe how the results of the previous section can be extended to the case of an F
having at most quadratic growth in the gradient variable.
Observe at this purpose that if v, 0 ≤ v ≤M = sup v is a viscosity solution of

(5.8) P−λ,Λ(D2v)− b(x)|Dv| − b2|Dv|2 ≤ g(x)

then the Hopf-Cole type transform

w = h−1(v)

where h is smooth, non-negative, increasing and convex, satisfies

P−λ,Λ(D2w) + λ
h′′(w)
h′(w)

; |Dw|2 − b(x)|Dw| − b2h′(w)|Dw|2 ≤ g(x)
h′(w)

in the viscosity sense. The proof of this fact requires some viscosity calculus together
with the superadditivity and the ellipticity of P−λ,Λ.
Solving the ordinary differential equation

λh′
′
(t)− b2(h′)2(t) = 0

one finds

h(t) =
λ

b2
log
(

1− b2t

λ

)−1

which satisfies the required properties for t ∈ [0, λb2 ). Correspondingly, the function

w =
λ

b2

(
1− e−b2v/λ

)
is a solution of

w ≥ 0 , P−λ,Λ(D2w)− b(x)|Dw| ≤ g(x)
(

1− 1
λ
b2w

)
.

Applying inequality (2.5) of Section 2 to w and observing that

1− e−b2M/λ

b2M
λ

v ≤ w ≤ v
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we conclude that the weak Harnack inequality

(5.9)
(

1
|B1|

∫
B1

vp
)1/p

≤ C
(

inf
B2
v + ‖g‖LN (B4)

)
holds for solutions of (5.8).

Remark 5.4. Observe that the constant C depends on b2M . The dependence on
the upper bound M in the estimate seems to be unavoidable, see [21], [15].

A boundary version of inequality (5.9) can be easily obtained in the present
setting much in the same way as in Section 2:(

1
|BR|

∫
BR

(v−m)p
)1/p

≤ C∗
(

inf
A∩BR

v +R ‖g+‖LN (A∩BR/τ )

)
where p and C∗ are positive constants depending on N , λ, Λ, τ , b2M and
R‖b‖L∞(A∩BR/τ ).

The Alexandrov-Bakelman-Pucci estimate and the wMP continue therefore to hold
true in the quadratic case under consideration:

Theorem 5.5. Let u ∈ USC(Ω) with supΩ u < +∞ be a viscosity solution of (5.2)
where f ∈ C(Ω) ∩ L∞(Ω).
Assume that F is continuous and satisfies (4.1) and (4.3). Assume, moreover, that
Ω satisfies wG for some Ry such that

Rb := sup
y∈Ω

Ry ‖b‖L∞(Ωy,τ ) <∞ .

Then
sup

Ω
u ≤ sup

∂Ω
u+ + C sup

y∈Ω
Ry ‖f−‖LN (Ωy,τ )

for some positive constant C depending on N , λ, Λ, σ, τ and Rb.

As an immediate consequence of the above result, the wMP holds:
if u ∈ USC(Ω) is bounded above and F (x, u,Du,D2u) ≥ 0, x ∈ Ω, in the viscosity
sense then

u ≤ 0 on ∂Ω implies u ≤ 0 in Ω .

5.3. Bounded above solutions for the perturbed operator F + c(x). The
next result, see [2] for the linear case, establishes the validity of a qualitative version
of the wMP for the perturbed operator F + c(x) under a condition relating the
radii Ry in condition wG with the size of function c+. Note that the case c ≤ 0 is
trivially included in Theorem 5.1.

Theorem 5.6. Let u ∈ USC(Ω) with supΩ u < +∞ and u ≤ 0 on ∂Ω be a viscosity
solution of

F (x, u,Du,D2u) + c(x)u ≥ f(x)
where f ∈ C(Ω) ∩ L∞(Ω). Assume that F is continuous and satisfies (4.1) and
(4.2). Assume, moreover, that Ω satisfies wG for some Ry such that

Rb := sup
y∈Ω

Ry ‖b‖L∞(Ωy,τ ) <∞

and that
sup
y∈Ω

R2
y ‖c+‖L∞(Ωy,τ ) is sufficiently small.
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Then
sup

Ω
u ≤ C sup

y∈Ω
Ry ‖f−‖LN (Ωy,τ )

for some positive constant C depending on N , λ, Λ, σ, τ and Rb.

Since
F (x, u,Du,D2u)− c−(x)u ≥ −c+(x)u+ f(x)

a direct application of Theorem 5.1 yields

sup
Ω
u ≤ C sup

y∈Ω
Ry
(
‖(−c+u)−‖LN (Ωy,τ ) + ‖f−‖LN (Ωy,τ )

)
≤ C ′ sup

y∈Ω
R2
y ‖c+‖L∞(Ωy,τ ) sup

y∈Ω
u+(y) + C sup

y∈Ω
Ry ‖f−‖LN (Ωy,τ ) .

If supy∈ΩR
2
y‖c+‖L∞(Ωy,τ ) is sufficiently small, we conclude that supΩ u ≤ θ supΩ u

+

for some θ < 1 and the statement follows.

Remark 5.7. Theorem 5.6 applies of course when either supy∈ΩRy or ‖c+‖L∞(Ω)

is small enough, e.g. if |Ω| is finite and sufficiently small. A more interesting case is
when Ω a strictly convex cone with sufficiently small opening and c+ = O(1/|y|2)
as |y| → ∞. Indeed, in this case we can apply Theorem 5.6 taking Ry ≤ ε |y|, for
sufficiently small ε, in condition wG and ‖c+‖L∞(Ωy,τ ) = O(1/|y|2).

5.4. Exponentially growing solutions in narrow domains. The next result
shows that a qualitative version of the wMP holds even for unbounded above solu-
tions of (5.2) provided the unbounded domain satisfies an appropriate narrowness
condition related to the admissible rate of growth at infinity of the solution. More
precisely, consider the unbounded cylinder

Ω = Rk × ω with k + h = N, h, k ≥ 1 ,

where ω is a bounded domain of Rh. As pointed out in Section 3 this is typical
example of G domain.

Theorem 5.8. For F as in Theorem 5.1 and Ω as above, suppose ‖b‖L∞(Ω) ≤ b1
and let

u ∈ USC(Ω) , F
(
x, u(x), Du(x), D2u(x)

)
≥ 0 , x ∈ Ω ,

with
u ≤ 0 on ∂Ω , u+(x) = o(eβ|x|) as |x| → +∞ .

Then for any β > 0 there exists a positive number d = d(N,λ,Λ, b1, β) such that,
if diam (ω) < d, then u ≤ 0 in Ω.

Conversely, for any fixed d > 0 there exists β = β(N,λ,Λ, b1, d) such that if
diam (ω) < d, then u ≤ 0 in Ω.

Qualitative results of this type for general linear uniformly elliptic operators can
be found in [1], for semilinear equations on cylinders.
In the special case of subharmonic functions on the 2-dimensional strip Ω = R ×
(0, d) there is a precise quantitative relationship between the diameter d and the
growth exponent β, namely β = π/d, see [12]. The proof of Theorem 5.8 is based
on the construction of a suitable sequence of smooth barrier functions Φk on finite
cylinders C̄k = B̄k(0)× ω̄, k ∈ N, such that

P+
(
D2Φk(x)

)
+ b1 |DΦk(x)| ≤ 0 in Ck ,

Φk ≥ 0 in C̄k , Φk ≥ u+ on ∂C̄k\∂Ω
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and for each fixed x ∈ Ω
lim
k→∞

Φk(x) = 0 .

The barriers have the form

Φk(x, y) = Kk/(eβR cosh(αd/2)) exp(β|x|)
h∏
j=1

sinαyj

for suitable choices of the parameters. It is a familiar technique in the case of a
linear operator to use the wMP in bounded domains Ck, considering differences
u−Φk, and then passing to the limit as k →∞. The difficulty in implementing this
procedure in the present nonlinear setting is overcome by the use of the structure
condition (4.2), together with the superadditivity of the maximal Pucci operator,
since standard calculus rules apply due to the fact that Φk is twice continuously
differentiable, see [6] for details.

A similar result holds for viscosity subsolutions with polynomial growth u(x) =
O(|x|α) in angular sectors Ω = Rk × ω, where ω is a cone in Rh and h + k = N ,
provided (4.2) holds true with b(x) = O(1/|x|) as |x| → ∞. In this case, in order to
deduce the validity of the wMP the opening of the cone has to be sufficiently small
depending on the exponent α and the various structural parameters. We refer to
[18] for previous results in this direction.

5.5. Phragmen-Lindelöf type theorems in general domains. In Subsection
5.4 we proposed some Phragmèn-Lindelöf type results for viscosity solutions in
cylinders and narrow cones. On this basis, one may expect that wMP should
hold in more general wG domains of cylindrical type (that is, wG holds with
Ry ≤ R < +∞) or conical type (that is, wG holds with Ry = O(|y|) as |y| → ∞)
under a suitable exponential, respectively, polynomial growth of subsolutions at
infinity. However, the explicit constructions of the barrier functions used in the
proofs of the above mentioned results, see [6] for more details, relies heavily on
the simple geometry of cylinders and cones and cannot be easily carried over to
geometrically more complex general G or wG domains.
An alternative way to obtain qualitative Phragmèn-Lindelöf type results in general
cylindrical or conical wG domains relies instead on the validity of the Maximum
Principle for bounded above viscosity solutions of

P+
λ,Λ(D2w(x)) + γ1(x)|Dw(x)|+ γ2(x)w+(x) ≥ 0

where the coefficient γ2 is allowed to be positive but suitably small.
Indeed, by Theorem 5.6, if γ+

2 (x) ≤ c1 (in the case of cylindrical domains) and
γ+

2 (x) ≤ c1/|x|2 as |x| → ∞ (in the case of conical domains), then the wMP
holds provided c1, a positive number depending on the structure of F and on the
geometric parameters occurring in the G or wG conditions, is small enough. Two
model results in this direction are the following:

Theorem 5.9. Assume that Ω is a wG domain of RN of cylindrical type and that
F satisfies

F (x, t, p,X) ≤ P+
λ,Λ(X) + b(x)|p|+ c(x)t

with
|b(x)| ≤ b0 , c(x) ≤ c1 ,
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c1 > 0 small enough. Then there exists α > 0, depending on F and Ω, such that if
u ∈ USC(Ω) is a viscosity solution of

F
(
x, u(x), Du(x), D2u(x)

)
≥ 0 in Ω

with u ≤ 0 on ∂Ω and u(x) = O(eα|x|) as |x| → +∞, then u ≤ 0 in Ω.

Theorem 5.10. Assume that Ω is a wG domain of conical type and that F satisfies

F (x, t, p,X) ≤ P+
λ,Λ(X) + b(x)|p|+ c(x)t

with

|b(x)| ≤ b0

(1 + |x|2)
1
2
, c(x) ≤ c1

1 + |x|2
,

c1 > 0 small enough. Then there exists α > 0, depending on F and Ω, such that if
u ∈ USC(Ω) is a viscosity solution of

F
(
x, u(x), Du(x), D2u(x)

)
≥ 0 in Ω

with u ≤ 0 on ∂Ω and u(x) = O(|x|α) as |x| → +∞, then u ≤ 0 in Ω.

A sketchy proof of Theorem 5.10 starts with the consideration of the smooth
positive function

ξ(x) = (1 + |x|2)α/2

where α > 0 is a parameter. If u(x) = O(|x|α) then

w(x) =
u(x)
ξ(x)

is bounded above and obviously w(x) ≤ 0 on ∂Ω. A straightforward calculation
shows now that

|Dξ|
ξ
≤ α

2(1 + |x|2)1/2
,
|D2ξ|
ξ
≤ 2N α

1 + |x|2
.

By some viscosity calculus and using the decay condition on b we deduce that

P+
λ,Λ(D2w(x)) + γ1(x)|Dw(x)|+ γ2(x)w+(x) ≥ 0

with

γ1(x) =
CNΛα+ b0

2(1 + |x|2)1/2
, γ2(x) =

α(CN2Λ + b0) + c1
1 + |x|2

for some positive constant C. The zero order coefficient γ2 in the above inequality
can be made are arbitrarily small by choosing suitably small values of α. From
Theorem 5.6 it follows then that w and u are non positive on Ω.
The proof of Theorem 5.9 goes the same way, modulo the use of the function

ζ(x) = eα(1+|x|2)1/2

instead of ξ in the above computations.

Remark 5.11. Theorems 5.9 and 5.10 above extend in particular the results of
[16], [23] in the direction of more general unbounded domains as well as of viscosity
solutions of (non necessarily uniformly) elliptic fully nonlinear differential inequal-
ities containing lower order terms. Finally, let us point out that, in view of the
discussion in Subsection 5.2, the Phragmèn-Lindelöf theorems above continue to
hold true for operators with quadratic growth in the gradient variable.
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