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Techniques for Detecting and Classifying User Behavior  

Through the Fusion of Ultrasonic Proximity Data and Doppler-Shift Velocity Data 

 

Abstract: 

This publication describes techniques relating to the detection and classification of user 

behavior through the fusion of ultrasonic proximity data and Doppler-shift velocity data on a 

computing device.  Through the use of an ultrasonic proximity sensor and, in aspects, a radar 

sensor, user position and velocity can be combined and analyzed by the computing device to 

provide accurate user behavior predictions.  These user behavior predictions may be used by the 

computing device to identify unique user behavior features and perform actions based on user 

behavior identification. 

 

Keywords: 
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Background: 

User behavior (e.g., user activity) can be detected by a sensor of a computing device (e.g., 

smartphone, smart home controller) and utilized to enable helpful features (e.g., preserving battery 

power, opening applications based on user behavior).  The utilization of existing hardware sensors 

for such detection is preferred in order to decrease costs.  An ultrasonic proximity sensor in a 

typical computing device may be utilized to detect user position, however it may also detect other 

movement within the sensor range (e.g., a moving ceiling fan, pet).  Additionally, a radar sensor 
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in a typical computing device may be used to detect velocity, however the Doppler radar 

frequencies are often noisy, which can lead to inaccurate readings. 

The combined use of both Doppler-shift velocity data and ultrasonic proximity data may 

be used to reduce inaccuracies and inconsistencies of user behavior detection, and further allow 

for more detailed and unique user behavior detection. 

 

Description: 

This publication describes techniques, implemented on a computing device (e.g., a 

smartphone, a smart watch device, smart home controller), directed to the detection and 

classification of user behavior (e.g., activity, movement, exercise, gesture, action) through the 

fusion of ultrasonic proximity data and Doppler-shift velocity data.  An example computing device 

includes a processor, sensors (e.g., a radar sensor, an ultrasonic proximity sensor), an input/output 

(I/O) device (e.g., a display, a speaker, a microphone), and a computer-readable medium (CRM) 

that stores device data (e.g., a computer program module).  

The sensors are configured for detecting and/or measuring data relating to user behavior 

(e.g., gestures, fitness activity, no users detected).  In aspects, the sensor is a radar sensor that is 

configured to use Doppler-shift to detect and/or measure user behavior to generate Doppler-shift 

velocity data.  Doppler-shift user behavior sensing may provide velocity information of the user 

by comparing the frequency shifts in the reflected signal from the reference transmitted signal.  

The radar sensor uses Doppler shift to emit a microwave signal (transmit signal) that reflects off 

an object and back to the sensor (returned signal).  Based on the frequency of the returned signal, 

a change in the object’s motion can be determined.  In similar applications, current 

implementations of radar sensors in computing devices may provide velocity information of the 
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user behavior.  In addition, radar sensors may differentiate static objects from moving objects, 

thereby reducing the occurrence of false negatives and/or positives in user behavior detection.  

However, this approach provides only Doppler shift velocity data, which is often noisy due to 

many ambient variations and does not provide user position in a given space.  Furthermore, 

integrating this noisy signal to provide the position and proximity of the object (e.g., the user) from 

the device may inaccurate due to drifts and noise accumulation, leading to a possible inability to 

discern between user motion and other motion in a space (e.g., a rotating ceiling fan).   

In another aspect, the sensor is an ultrasonic proximity sensor that is configured to detect 

and/or measure user behavior to generate proximity information (e.g., ultrasonic proximity data).  

The ultrasonic proximity sensor emits high frequency sound waves.  The sound waves reflect off 

an object and back to the sensor, enabling ultrasonic proximity sensing via time-of-flight using 

cross-correlation of the emitted signal with the reflected signal.  The position of the object can be 

analyzed based on the time it takes for the reflected signal to return to the sensor.  While ultrasonic 

proximity sensing is a useful modality for detecting an object’s position in a given space, current 

implementations cannot be used for several important use-cases and are often inaccurate.  This is 

because in current implementations of ultrasonic proximity sensing, the cross-correlation of an 

emitted ultrasonic signal with a reflected ultrasonic signal provides proximity sensing but does not 

provide the velocity of the object.  Additionally, there are many inaccuracies and inconsistencies 

in this approach due to multipath and reflection of static objects, which may create false negatives 

and false positives in user behavior detection, rendering this feature unreliable and inaccurate in 

current devices. 

In aspects, an ultrasonic proximity sensor may be configured to use Doppler-shift to detect 

and/or measure user behavior to generate Doppler-shift velocity data.  Doppler-shift user behavior 
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sensing may provide velocity information of the user by comparing the frequency shifts in the 

reflected signal from the reference transmitted signal.  The ultrasonic proximity sensor uses 

Doppler shift to emit an ultrasonic signal (transmit signal) that reflects off an object and back to 

the sensor (returned signal).  Based on the frequency of the returned signal, a change in the object’s 

motion can be determined.  In addition, the ultrasonic proximity sensor may differentiate static 

objects from moving objects, thereby reducing the occurrence of false negatives and/or positives 

in user behavior detection.   

The device data includes program instructions for one or more computer program modules 

(e.g., applications, an operating system) executable by the processor to provide functionality 

described herein.  The term “module” refers to computer program logic (e.g., program instructions) 

used to provide the specified functionality.  Thus, a module can be implemented in hardware, 

firmware, and/or software.  The computer program modules in the device include a Fusion 

Manager module that represents functionality that receives, using data from the sensor(s), user 

behavior information; analyzes features of user behavior using a machine-learned model (ML 

model) to predict a user behavior; and then uses the predicted user behavior information to perform 

a function (e.g., open an application, go into sleep mode).   

The device data also includes a ML model.  The ML model may be a standard 

neural-network-based model with corresponding layers required for processing input features like 

fixed-side vectors, text embeddings, or variable length sequences.  The ML model may be 

implemented as a convolutional neural network (CNN) or other machine-learning techniques.  The 

ML model is trained to classify detected user behaviors and generate user behavior predictions.   
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Figure 1 

Figure 1 illustrates an aspect of a technique directed to the detection and classification of 

user behavior through the fusion of ultrasonic proximity data and Doppler-shift velocity data that 

may be performed by the Fusion Manager module to combine user position and velocity 

information.  User behavior position is generated using an ultrasonic proximity sensor that detects 

user position within a space.  User behavior velocity is generated using an ultrasonic proximity 

sensor or a radar sensor that detects user velocity within the space.  The user behavior predictions 

generated by the Fusion Manager module enable the computing device to perform an action (e.g., 

open an application, power down) based on user behavior predictions.  To provide the most 

accurate detection and sensing of various user behaviors, the technique combines the use of 

position sensing and velocity sensing.   

In Figure 1, utilizing the ultrasonic proximity data and the Doppler-shift velocity data, a 

2D input image that plots Doppler shift (velocity) versus proximity (position) from the computing 

device (e.g., distance of the user frame) is generated at each time instance (e.g., a scatter plot 

depicting a particular user behavior at that instance in time).  This 2D image (Input Image) is fed 

6

Nadig: Techniques for Detecting and Classifying User Behavior Through th

Published by Technical Disclosure Commons, 2022



into a first CNN layer (CNN Layer 1) that includes a 2D convolutional block, a batch normalization 

block, and a ReLU (Rectified Linear Unit) block.  The output of the first CNN layer is fed to a 

Max Pooling layer that allows for faster computation speed by reducing the number of 

computations necessary on the network.  The output of the Max Pooling layer is then provided as 

input to a second CNN layer (CNN Layer 2) that also includes a 2D convolutional block, a batch 

normalization block, and a ReLU block.  The output of the second CNN layer is then fed to a fully 

connected layer to generate the final classification of various user activities as an output. 

By generating continual 2D images over time, the Fusion Manager module of the 

computing device may be able to analyze user behavior to detect unique user behavior features 

(e.g., movement, exercise, location in a space).  The Fusion Manager module may be equipped 

with pre-determined user behavior classifications such as various recognizable exercise 

movements (e.g., push-ups, jumping jacks, squats), or detecting no user movement (e.g., to tun on 

a power-saving mode).  The CNN model may be trained through methods of machine learning to 

detect unique user behavior features and classify them into pre-designated activities to perform an 

action (e.g., open an application, go into power-saving mode). 

Model training can be performed on a remote computing system.  For example, to train the 

ML model, user behavior can be mimicked at a testing facility and the corresponding velocity vs. 

position 2D image can be collected into a dataset that can be used to train the ML model to 

recognize different features of user behavior.  The remote computing system may send periodic 

model updates to the user computing device to continue classifying user behaviors and performing 

actions in real-time.  After sufficient training, the ML model can be deployed to the CRM.  Instead 

of, or in addition to model training on a remote computing system, the model training may be 

performed on the user computing device.   
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One application of the techniques described herein may include home health and fitness 

tracking.  For example, assume that a user is beginning an exercise regimen in a room with a smart 

home controller device.  When the user begins their exercise activity (e.g., push-ups, sit-ups, 

squats) the device will detect that a workout has begun and further detect the type of exercise the 

user is performing and open a fitness application.  When the user has completed their exercise, the 

device may detect an input from the user to “End the workout” or no longer detect exercise activity 

and close the fitness application.  In another application of the techniques described herein may 

include enabling a power saving mode of a computing device.  For example, assume that a digital 

home assistant device is in a vacant space with no user activity detected; the device would power 

down or enter a sleep mode to conserve power until a new user activity is detected.   

Throughout this disclosure, examples are described where a computing system (e.g., the 

computing device) may analyze information (e.g., user behavior information) associated with a 

user, for example, a fitness movement such as jumping jacks.  Further to the descriptions above, a 

user may be provided with controls allowing the user to make an election as to which systems, 

programs, and/or features described herein may access information about a user’s behaviors, and 

if the user is sent content or communications from a server.  Further, individual users may have 

constant control over what programs can or cannot do with the information.  In addition, 

information collected may be pre-treated in one or more ways before it is transferred, stored, or 

otherwise used, so that personally identifiable information is removed.  Thus, the user may have 

control over whether information is collected about the user and the user’s device, and how such 

information, if collected, may be used by the computing device and/or a remote computing system. 
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