
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

October 2022

PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES

Gaganjeet Reen

Naveen Gujje

Maneesh Soni

Kaarthik Sivakumar

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Reen, Gaganjeet; Gujje, Naveen; Soni, Maneesh; and Sivakumar, Kaarthik, "PACKET TRACING IN
DISTRIBUTED NETWORK ARCHITECTURES", Technical Disclosure Commons, (October 06, 2022)
https://www.tdcommons.org/dpubs_series/5423

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5423?utm_source=www.tdcommons.org%2Fdpubs_series%2F5423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6805

PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES

AUTHORS:
Gaganjeet Reen
Naveen Gujje
Maneesh Soni

Kaarthik Sivakumar

ABSTRACT

In a distributed network architecture, tracking the network function node instances

through which a network packet traverses, the time that a packet spends in each of the

network functions, and the operations that the functions perform on each packet are

extremely important when troubleshooting packet processing issues. However, such

distributed architectures often include legacy services which cannot be readily extended

(either because of the architecture or because of the programming language used) to include

solutions to facilitate the above-described tracing. Techniques are presented herein that

support a novel OpenTelemetry-based packet tracing approach that facilitates data plane

debugging in a distributed microservices architecture containing heterogenous services

without an explicit need for services to integrate with an OpenTelemetry software

development kit (SDK). Aspects of the presented techniques encompass the enrichment of

log files, a filtering capability, the extension of a Radioactive Tracing-style capability to a

microservices world, etc.

DETAILED DESCRIPTION

In a distributed network architecture, network packets pass through several network

functions (e.g., microservices) which perform operations on those packets. Tracking the

instances through which a packet traverses, the time that a packet spends in each of the

network functions, and the operations that the functions perform on each packet are

extremely important when troubleshooting packet processing issues. Such distributed

architectures often include legacy services that have been lifted and shifted into the cloud

and which cannot be readily extended (either because of the architecture or because of the

programming language used) to include solutions such as OpenTelemetry to facilitate the

above-described tracing.

2

Reen et al.: PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES

Published by Technical Disclosure Commons, 2022

 2 6805

In short, introducing a packet tracing capability into legacy services, with minimal

code changes, is a challenging task.

While several attempts have been made to troubleshoot data plane issues in

distributed network systems and service function chains, each of those approaches entails

one or more limitations.

A first approach encompasses the use of traceroute functionality for

troubleshooting service function chains (see, for example, the Internet Engineering Task

Force (IETF) Internet-Draft draft-penno-sfc-trace-03). The limitations of this approach are

that it requires microservices and service functions to respond to specific trace packets and

it does not allow for the troubleshooting of the actual traffic passing through a distributed

system. A second approach encompasses a Service Function Chaining (SFC) Path Tracer.

The limitation of this approach is that while it allows for the path tracing of simulated

traffic, it does not allow for the debugging of data plane issues that might arise within

services with live traffic. A third approach encompasses the use of an ‘AuditBox.’

However, this approach has similar limitations to the previous approach. While it allows

for the validating of service function chain characteristics and path information, it does not

provide visibility into the operations that each service might perform on a particular packet.

Techniques are presented herein that address the above-described challenge.

Aspects of the techniques presented herein leverage elements of the OpenTelemetry

initiative.

OpenTelemetry is a well-known open-source framework that supports tracing

application-level requests in a distributed environment. Traditionally, services and systems

emit OpenTelemetry spans either directly to a central collector or to a local agent which,

in turn, forwards those requests to a central collector.

However, such an approach requires incorporating OpenTelemetry libraries into

the services, which is not feasible if (as noted previously) there are legacy services in a

distributed system or if the services are developed in a programming language that does

not have a supported OpenTelemetry software development kit (SDK).

The techniques presented herein facilitate tracing in such heterogeneous distributed

environments. Additionally, aspects of the presented techniques trace individual network

packets as opposed to most OpenTelemetry-based solutions which trace application-level

3

Defensive Publications Series, Art. 5423 [2022]

https://www.tdcommons.org/dpubs_series/5423

 3 6805

requests. The techniques presented herein encompass multiple aspects, each of which will

be described below.

A first aspect incorporates an open source OpenTelemetry schema that may be used

for visualization. The OpenTelemetry concepts, span and trace, are utilized to generate a

directed acyclic graph (DAG) of a packet’s path as the packet traverses through

microservices in a distributed system. A span is the primary building block of a distributed

trace, representing an individual unit of work that is completed in a distributed system.

Each component of a distributed system contributes a span – i.e., a named, timed operation

representing a piece of a workflow.

Spans can (and generally do) contain references to other spans, which allows

multiple spans to be assembled into one complete trace – i.e., a visualization of the life of

a request as it moves through a distributed system.

According to the techniques presented herein, a trace (which may be identified by

a unique trace identifier (ID)) represents all of the operations that are performed on a

specific packet by all of the services. A span (which may be identified by a unique ID

within a trace) encapsulates all of the operations that are performed on a specific packet in

a single microservice. Fields in the network packets may be employed to propagate a trace

ID and a span ID from one microservice to the next. Whenever a microservice performs

any operation on a packet and emits logs, aspects of the techniques presented herein enrich

the existing logs with additional information (such as a trace ID, a previous span ID, a

current span ID, and a timestamp).

A second aspect of the techniques presented herein encompasses the construction

of an extensible infrastructure that utilizes the OpenTelemetry protocol to send data. The

enriched logs from different services, from a microservice infrastructure layer, from an

orchestration layer, and from any other components may, through the use of a log forwarder,

be forwarded to a central location. There, processing logic may be employed to collate the

logs, sort them by trace ID and span ID, and convert them into a standard, interoperable,

and extensible format. There are many such formats that may be used, OpenTelemetry

being a popular one. The newly formatted data may then be sent to a collector or visualizer.

Key during the above-described processing is the taking of logs from legacy

services that do not know about or do not use standard formats (such as OpenTelemetry or

4

Reen et al.: PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES

Published by Technical Disclosure Commons, 2022

 4 6805

other modern logging frameworks) and then the programmatic insertion into those artifacts

of modern infrastructure capabilities. Instead of requiring services to integrate with

OpenTelemetry libraries and exporting spans directly to agents and collectors, aspects of

the techniques presented herein only require that services emit their existing logs which are

then enriched to allow for the tracing of network packets. Additionally, the out-of-band

export of traces also helps in reducing the overhead costs that are involved during the actual

traversal of packets.

A third aspect of the techniques presented herein encompasses the construction of

an infrastructure that has filtering capabilities to identify the specific packets that need to

be traced. The mechanism to identify and track packets for tracing follows what is

commonly referred to as Radioactive Tracing. A Radioactive Tracing infrastructure is

typically applied to modules within a single system running on a single piece of hardware.

Aspects of the techniques presented herein extend this feature to the microservices world.

A filter may be applied on the point-of-entry to a microservices world. Such a filter

may be based on the five tuple flow information which implies that it is also possible to

filter encrypted traffic. The filtering capabilities may be further extended to include

information such as the identity of the user sending a flow, an application type, or any other

criteria depending upon the traffic inspection capabilities of the services in a distributed

network system.

Once a filter identifies that a packet is to be traced, it may note the information

internally in a cache so that subsequent packets for the same flow do not need pass through

the filters again, thus helping with performance.

An ingress node may also set a bit in the header of a packet (either directly in the

packet, in an overlay header, or through other methods). The rest of the distributed system,

the services, as well as the infrastructure components may then use that bit to identify if

the packet is to be traced in each of the services through which the packet passes. The

egress node of the distributed system may remove the flag prior to letting the packet exit

the entire system.

In such a way, all of the services and a microservices infrastructure do not need to

be explicitly configured to trace a specific packet based on criteria that a customer cares

about. In particular, since different services may know different details about different parts

5

Defensive Publications Series, Art. 5423 [2022]

https://www.tdcommons.org/dpubs_series/5423

 5 6805

of a packet or a flow, it would be impossible to create a single filter configuration that

could be directly applied to all of the services. By applying the filtering criteria at the point

of ingress, it is possible to make the services function without understanding the

complexity of the filtering criteria.

A fourth aspect of the techniques presented herein encompasses the fact that packet

flows in both directions may be traced. The third aspect (which was presented above)

described a filtering process and tracing in one direction. For a reverse flow, a similar

approach may be established or a cache may be used to identify whether or not a packet

must be traced based on the forward path of the packet.

A fifth aspect of the techniques presented herein encompasses the fact that services

will automatically scale (or auto-scale) up or down based on the volume of traffic that is

flowing through a network. The techniques presented herein are ideal for such auto-scale

scenarios. Since the filtering criteria is only applied on ingress, service instances that are

launched do not have to learn about any filtering criteria. Instead, they need only look at a

packet's Radioactive Tracing bit to see if a packet must be traced within the service. If an

instance of a service were to go down (due either to a crash or being auto-scaled down),

packets of the same flow will then go to a different instance of the service. That instance

of the service does not need to know what criteria must be used for tracing. Instead, it can

also track the Radioactive Tracing bit for tracing packets. Since the logs for all of the

services and for all of the service instances are centralized on a log server, the failure of a

service instance and the migration of the packet processing to a different instance will not

in any way impact the ability to troubleshoot the packets of a particular flow. If a service

processes a packet and emits a log, that log will be available for analysis.

There is a significant benefit to following the approach that is expressed through

the techniques presented herein. For example, through those techniques it becomes possible

to bring the logging of all of the existing legacy services to the cloud and microservices

world while supporting integrated and unified troubleshooting across all of those services

and the infrastructure. Additionally, it becomes possible to track packets across an entire

distributed system irrespective of auto-scale up or down being applied on the services.

Further, since services employ a Radioactive Tracing bit on a packet’s header to decide

6

Reen et al.: PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES

Published by Technical Disclosure Commons, 2022

 6 6805

whether or not to trace a packet, new instances of services do not need to load any

configuration information to determine the filtering criteria.

Figure 1, below, presents elements of an exemplary architecture that is possible

according to aspects of the techniques presented herein and that is reflective of the above

discussion.

Figure 1: Exemplary Architecture

Figure 2, below, presents elements of a sample packet trace, comprising three spans

(corresponding to three services as depicted in Figure 1, above), that is possible according

to aspects of the techniques presented herein.

Figure 2: Illustrative Packet Trace

7

Defensive Publications Series, Art. 5423 [2022]

https://www.tdcommons.org/dpubs_series/5423

 7 6805

Additionally, Figure 3, below, presents elements of a sample packet trace,

comprising logs collected from a service (corresponding to three services as depicted in

Figure 2, above), that is possible according to aspects of the techniques presented herein.

Figure 3: Example Logs Collected from Services of Figure 2

In summary, techniques have been presented herein that support a novel

OpenTelemetry-based packet tracing approach that facilitates data plane debugging in a

distributed microservices architecture containing heterogenous services without an explicit

need for services to integrate with an OpenTelemetry SDK. Aspects of the presented

techniques encompass the enrichment of log files, a filtering capability, the extension of a

Radioactive Tracing-style capability to a microservices world, etc.

8

Reen et al.: PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES

Published by Technical Disclosure Commons, 2022

	PACKET TRACING IN DISTRIBUTED NETWORK ARCHITECTURES
	Recommended Citation

	Microsoft Word - Publication Document for CPOL 1036317-US.01 (Draft V3) 4895-8350-8278 v.1.docx

