
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

September 2022

Deserializing and Exposing In-memory Columnar OLAP/OLTP Deserializing and Exposing In-memory Columnar OLAP/OLTP

Data Data

Prashant Mishra

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Mishra, Prashant, "Deserializing and Exposing In-memory Columnar OLAP/OLTP Data", Technical
Disclosure Commons, (September 18, 2022)
https://www.tdcommons.org/dpubs_series/5378

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5378&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5378?utm_source=www.tdcommons.org%2Fdpubs_series%2F5378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Deserializing and Exposing In-memory Columnar OLAP/OLTP Data

ABSTRACT

This disclosure describes high-performance techniques of using a client library to access

data from OLAP or OLTP databases. Data is transported between the database and the client

library in a columnar in-memory format such as Apache Arrow over a binary protocol such as

RPC. RPC is significantly faster than REST when receiving data due to the use of protocol

Buffers and HTTP/2. In addition, Apache Arrow is zero-copy and does efficient in-memory

computations. The stream of data is processed in separate parser threads, thus maximizing

concurrency and parallel processing. This makes the client library an order of magnitude faster

than the legacy REST based implementations. The client library deserializes columnar in-

memory data into rows such that callers of the client can retrieve data in a familiar backward-

compatible format, e.g., java.sql.ResultSet (if the client library is written in Java), which acts as a

data abstraction layer.

KEYWORDS

● Online analytical system (OLAP)

● Online transaction processing (OLTP)

● Serialization

● Deserialization

● SERDES

● Java database connectivity (JDBC)

● Remote procedure call (RPC)

● Columnar data

● In-memory data

2

Mishra: Deserializing and Exposing In-memory Columnar OLAP/OLTP Data

Published by Technical Disclosure Commons, 2022

BACKGROUND

Online analytical processing (OLAP) is a computing technique that enables client

applications to swiftly and at scale extract data and execute multi-dimensional analytical queries

on databases. Such queries are typically used in business intelligence and reporting applications.

Online transaction processing (OLAP) databases are frequently used to carry out very large

numbers of day-to-day transactions, e.g., online booking, ticket-booking, etc. Client libraries

typically access OLAP or online transaction processing (OLTP) databases via a representational

state transfer (REST) API. For example, such an API is essentially a JavaScript object notation

(JSON) payload over a secure connection (e.g., a HTTPS connection). This is suboptimal for

high-throughput applications.

DESCRIPTION

 This disclosure describes high-performance techniques of using a client library to access

data from OLAP or OLTP databases. The client library can be written in Java or other languages.

Compared to legacy techniques that use REST endpoints, data access performance is improved

by an order of magnitude even as concurrency is optimized and JDBC (or equivalent) data

abstraction layer for data consumption is retained. The client library deserializes columnar, in-

memory data into rows. The client library uses a separate parser thread for deserializing

columnar, in-memory data into rows and it can use one parser thread per stream of data, thus

maximizing concurrency and parallel processing of multiple data streams.

3

Defensive Publications Series, Art. 5378 [2022]

https://www.tdcommons.org/dpubs_series/5378

Fig. 1: Deserializing and exposing in-memory columnar OLAP/OTAP data

 Fig. 1 illustrates deserializing and exposing in-memory columnar OLAP/OLTP data. A

client library (102) reads data from an OLAP or OLTP database (104) in an in-memory columnar

data format such as Apache Arrow and exposes it as JDBC at the abstraction layer. The client

library can be written in Java or other languages. Multiple streams of columnar data (106) are

transferred from the OLAP/OLTP database to the client library in a binary protocol such as RPC

(remote procedure call). If the data is ordered or sorted, just one stream is read. The client library

translates the data from columnar, in-memory data format to a conventional, in-memory, row-

based representation using multiple concurrent parser threads (110) to maximize throughput. The

client library can use one parser thread per stream of in-memory columnar data.

 The client library uses the table schema of the database to identify different column labels

in the input columnar in-memory data. A schema of a given query includes a definition of the

columns used. It has information such as the data type of the columns along with other metadata

4

Mishra: Deserializing and Exposing In-memory Columnar OLAP/OLTP Data

Published by Technical Disclosure Commons, 2022

about the columns (such as the column's nullability) for the columns used. The schema is also

used to map a given column with its index number.

 Based on the schema of the database, the parser thread deserializes columnar data into

rows and populates a shared blocking queue with a certain number of records. The deserialized

data is exposed, e.g., as a java.sql.ResultSet (if the client library is written in Java), which acts as

an abstraction layer (108). The deserialized data is consumed by the callers of the client library.

The shared blocking queue enables synchronization of the production of data (e.g., imported

from the database) and the consumption of data (e.g., consumed by the callers of the client

library).

The abstraction layer can have a number of function calls, e.g., hasNext(), next(),

getString(), getInt(), getLong(), etc., to enable the caller of the client library to access database

entries as they transform to rows. For example, the hasNext() function, which returns a Boolean,

can be used to query if the next row is now available for consumption. If hasNext() returns true,

then the function next() can be used to retrieve the latest row from the blocking queue. If

hasNext() returns false, then all rows thus far received from the database have been read, e.g., no

new rows are available for the given query. However, if hasNext() returns true, and all the rows

from the blocking queue has already been read but there are more record(s) yet to be received

from the database, the consumer waits at the next() call until the next row arrives

 RPC is significantly faster than REST when receiving data mainly due to the use of

protocol buffers and HTTP/2. In addition, Apache Arrow is zero-copy and does efficient in-

memory computations. This makes the client library an order of magnitude faster than legacy

REST based implementations. By deserializing columns to rows, callers of the client library can

retrieve data in a familiar backward-compatible format.

5

Defensive Publications Series, Art. 5378 [2022]

https://www.tdcommons.org/dpubs_series/5378

Fig. 2: Workflow

 Fig. 2 illustrates the workflow. An OLAP/OLTP database (202) includes datasets with

tables defined by their schema, which can include a list of columns, their data-type mapping, etc.

Based on the schema of the query under execution (204b), multiple streams of data serialized in

in-memory columnar format are transferred from the OLAP/OLTP database to the client library

over a binary protocol such as RPC (204a).

If the data is ordered or sorted, just one stream is used. The client library parses in-

memory columnar data into rows of data based on the schema (206) of the query. Data is

exposed, e.g., as java.sql.ResultSet (if the client library is written in Java), which acts as a data

abstraction layer (208). Data is consumed by the application in its own thread (210). The

6

Mishra: Deserializing and Exposing In-memory Columnar OLAP/OLTP Data

Published by Technical Disclosure Commons, 2022

techniques apply across cloud client libraries and database products regardless of programming

language.

CONCLUSION

This disclosure describes high-performance techniques of using a client library to access

data from OLAP or OLTP databases. Data is transported between the database and the client

library in a columnar in-memory format such as Apache Arrow over a binary protocol such as

RPC. RPC is significantly faster than REST when receiving data due to the use of protocol

Buffers and HTTP/2. In addition, Apache Arrow is zero-copy and does efficient in-memory

computations. The stream of data is processed in separate parser threads, thus maximizing

concurrency and parallel processing. This makes the client library an order of magnitude faster

than the legacy REST based implementations. The client library deserializes columnar in-

memory data into rows such that callers of the client can retrieve data in a familiar backward-

compatible format, e.g., java.sql.ResultSet (if the client library is written in Java), which acts as a

data abstraction layer.

7

Defensive Publications Series, Art. 5378 [2022]

https://www.tdcommons.org/dpubs_series/5378

	Deserializing and Exposing In-memory Columnar OLAP/OLTP Data
	Recommended Citation

	tmp.1663303662.pdf.y3cdR

