
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

September 2022

AUTOMATIC SMART FEATURE ASSIGNMENT FOR CONTINUOUS AUTOMATIC SMART FEATURE ASSIGNMENT FOR CONTINUOUS

INTEGRATION FRAMEWORKS INTEGRATION FRAMEWORKS

Chiara Troiani

Erwan Zerhouni

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Troiani, Chiara and Zerhouni, Erwan, "AUTOMATIC SMART FEATURE ASSIGNMENT FOR CONTINUOUS
INTEGRATION FRAMEWORKS", Technical Disclosure Commons, (September 01, 2022)
https://www.tdcommons.org/dpubs_series/5357

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5357?utm_source=www.tdcommons.org%2Fdpubs_series%2F5357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 6790

AUTOMATIC SMART FEATURE ASSIGNMENT FOR CONTINUOUS
INTEGRATION FRAMEWORKS

AUTHORS:

Chiara Troiani
Erwan Zerhouni

ABSTRACT

Continuous integration of software among a variety of developers and teams

engenders challenges involving task prioritization and efficient resource allocation.

Presented herein are techniques that provide an overview of semantic and codebase

dependencies for new features with respect to open bugs. Further, techniques presented

herein provide an efficient method through which the development of new features can be

assigned by leveraging the relationship between such features and open software bugs.

DETAILED DESCRIPTION

In current software integration environments, when a new software feature is

requested, there is no straightforward way to assess either the new feature's dependency on

any open bug(s) or the affinity of developers with respect to an affected codebase.

Additionally, bugs are often misclassified, resulting frequently as new features.

Presented herein are techniques that provide for achieving various objectives, such

as providing for the ability to automatically assess the complexity of new features across a

project and resolve dependencies between features and open bugs based on complexity,

business requirements, source code and current developers work assignment.

Advantageously, a system configured in accordance with the techniques prescribed herein

can automatically suggest an efficient "next new feature" development to: developers

working on bugs that are semantically related to the new feature, developers working on

bugs that touch at the same part of the code as the new feature, and/or developers who have

enough bandwidth to work on the new feature. Such a system can also provide an overview

of the dependencies between new features and open bugs, which can be visually

represented in an interactive dashboard.

2

Troiani and Zerhouni: AUTOMATIC SMART FEATURE ASSIGNMENT FOR CONTINUOUS INTEGRATION FRA

Published by Technical Disclosure Commons, 2022

 2 6790

The techniques of this proposal can be implemented through a machine learning

(ML) model that can write code and can utilize code repositories under a versioning system

that is implemented with a corresponding ticketing system.

For example, a Complexity Code Assessment Unit (CCAU) can be provided for

the system in which the CCAU is responsible for estimating the time needed for a feature

request. This component can receive, as an input, a description of the feature request

through collaborative version control software, such as GitHub or GitLab, for example.

Multiple metrics can be utilized to evaluate the feature request complexity. For

example, code complexity can first be assessed using a pre-trained ML model that is

finetuned to resolve competitive programming problems. Various code factors can then be

measured, such as time complexity, memory complexity, and the number of lines of the

proposed solution. These metrics can be used to determine the overall code complexity of

the feature request.

Next, the impact of the new code within existing code can be estimated. Stated

differently, the number of modules impacted by the new feature request can be estimated

through which a Code Based Knowledge Graph (CBKG) can be constructed. The

knowledge graph can be leveraged by locating the nodes (i.e., the code files) at which the

feature request will be implemented by using a key word search in the feature request

description. The nodes can be extracted in order to count the number of adjacent vertices,

which corresponds to the number of files that might be impacted by the feature request.

Finally, the time needed for developing the feature request can be estimated using,

for example, the formula as shown below in Equation 1, in which 'C' represents the code

complexity, 'N' represents the number of nodes located within the CBKG, and 'V'

represents the number of adjacent vertices of node 'Nk'.

Equation 1

3

Defensive Publications Series, Art. 5357 [2022]

https://www.tdcommons.org/dpubs_series/5357

 3 6790

An Automatic Work Assignment Unit (AWAU) can also be provided for the system

in which the AWAU is responsible for resolving dependencies between features request

and open bugs for optimizing the development workflow. The AWAU can take, as an input:

the feature complexity assessment RCCAU, the CDKG from the CCAU, the code repositories

under a versioning system with its corresponding ticketing environment, the developers'

current work assignments, and, potentially, business priorities.

 First, using the code repositories, a developer contribution map can be computed

that encodes the ratio of lines that each developer contributed for each of the module in the

code repository. This can provide for the ability to detect affinities between code and

developers.

Second, the nodes corresponding to the new features and all the open bugs from the

CDKG can be identified. Subgraphs containing these nodes and their adjacent nodes can

be extracted (the depth of these subgraphs can be set as parameter) in order to generate

three categories of subgraphs: 1) feature requests without dependencies on open bugs (Pure

features), 2) open bugs without dependencies on any new feature request (Pure bugs), and

3) new feature requests and open bugs which are related to each other, semantically or from

a codebase perspective (Hybrid).

 Third, the workload for each of the three aforementioned categories can be

computed. The workload for the ‘Pure features’ category will correspond to the ranking

generated with the CCAU component. The workload for the ‘Pure bugs’ category workload

will correspond to the size assignment from the ticketing system. The ‘Hybrid’ workload

will be a combination of the CCAU ranking and the size assignment of each bug related to

that feature, as shown in Equation 2, below, in which RCCAU represents the ranking from

the previous component, and Sk is the size of the open bugs related to the feature request.

Equation 2

4

Troiani and Zerhouni: AUTOMATIC SMART FEATURE ASSIGNMENT FOR CONTINUOUS INTEGRATION FRA

Published by Technical Disclosure Commons, 2022

 4 6790

Finally, the optimized assignment of new features can be computed considering

business priorities, the affinity of developers with the codebase, the complexity and

dependencies of the features, and the available workload for each developer. In one

example, the optimized assignment can be computed using the formula as shown below in

Equation 3.

Equation 3

For Equation 3, 'W' represents the matrix of business priorities and is of size 1xB.

Further, 'L' represents the matrix of affinities between a developer and a business (feature)

request (based on how much lines he wrote) and is of size N x B where 'N' is the number

of developers. Additionally, 'A' represents the assignment matrix and is of size N x B, 'F'

represents the workload for a business request and is of size B x 1, and 'U' represents the

unit of time available for each developer and is of size N x 1 where '1' is the unit vector of

size B x 1.

 Accordingly, the system can provide for the ability to automatically assess the

complexity of new features across a project and resolve dependencies between features and

open bugs based on complexity, business requirements, source code and current developers

work assignment. The system can automatically suggest an efficient "next new feature"

development to any combination of developers working on bugs that are semantically

related to the new feature, developers working on bugs that touch at the same part of the

code as the new feature, and/or developers who have enough bandwidth to work on the

new feature. The system can also provide an overview of the dependencies between new

features and open bugs (e.g., the subgraphs constructed by the AWAU), which can be

visually represented in an interactive dashboard.

5

Defensive Publications Series, Art. 5357 [2022]

https://www.tdcommons.org/dpubs_series/5357

	AUTOMATIC SMART FEATURE ASSIGNMENT FOR CONTINUOUS INTEGRATION FRAMEWORKS
	Recommended Citation

	Microsoft Word - Publication Document for CPOL 1036984-US.01 (Draft V2) 4861-0022-0976 v.1.docx

