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High frequency structural and acoustic problems require prohibitive computational
efforts. The tendency, nowadays, is to find a solution in statistical terms (SEA) through
an average of the field variables on the space domain. A limitation of SEA is the loss of
any local information. In contrast with SEA, a power flow method [1] can describe a trend
of the energy density along the structure, thus improving the quality of the solution.
However, in dealing with flexural waves, the power flow neglects the near field contribution:
the related solution can sometimes differ considerably from the expected trend. In this
paper a field trend is obtained in a totally different manner. An envelope energy is used
that describes well the exact solution: specifically, only the decaying fields, obtained from
the projection on the real axis of the damped bending wavenumbers are accounted for,
while the propagating components are omitted. Simulated results are presented and
compared with exact and approximate solutions.

7 1995 Academic Press Limited

1. INTRODUCTION

A local solution for acoustic and structural system in the high frequency range is generally
not feasible because of the unacceptable dimension of the related numerical problem. An
approach often adopted in practice is the evaluation of a space-average description of the
field variables obtained through energy balance equations (SEA). The SEA solution yields
a unique value of the field variables of interest, such as the means square velocity of the
structure or the average pressure in an acoustic cavity. However, SEA provides a reliable
result only if, in the frequency range of interest, the structural (and/or acoustic) subsystem
is dominated by a high modal density. When this condition fails, a solution with large
confidence limits is obtained.

To give a more detailed local description, Nefske and Sung [1] developed a power flow
finite element analysis, capable of providing a spectral-average trend of the energy density
along the structure. The method is also known as the ‘‘thermal analogy’’ because of the
similarity of the differential energy equation with that for heat conduction in thermal
problems. Subsequently other authors have reconsidered the thermal analogy and an
analogous equation for the time-averaged energy density has been obtained [2].

By considering the physics of power transmission in three-dimensional structures, it was
shown [3] that an exact time-averaged energy density equation can be obtained only for
particular structures such as beams and plates. Yet, even in these simple cases, the power
flow does not have a thermal-like behaviour and the equations depend non-linearly on the
energy density. The analysis developed in reference [3] gives some insight into the
mechanism of power transmission in mechanical structures and permits one to understand
the limits of the thermal analogy. However, the complex form of the energy equations
obtained suggests their rejection for practical applications. Drawbacks are represented by
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non-linear terms and by the oscillating behaviour of the energy density, which is the same
serious limitation possessed by the much more simple equations of motion in terms of
displacement.

Therefore the use of approximate solutions having a smooth non-oscillatory trend,
similar to the one obtained by the thermal analogy [1], is desirable. This trend, in fact,
provides a useful and convenient description of dynamic problems at high frequencies,
avoids numerical pitfalls and can be numerically solved by standard finite element codes,
with the use of a simple coarse mesh.

Attention here will be addressed to one-dimensional damped flexural structures.
Wohlever and Bernhard [2] discussed the approximations under which the thermal

behaviour is valid for flexural beams: i.e., neglect of the near field contribution; neglect
of the harmonic parts in the time-average energy expression.

Although the results obtained in references [1, 2] are satisfactory, they refer to particular
cases, and do not provide indications on the behaviour in more complex situations or on
the level of approximation introduced.

A theoretical investigation is presented here of an envelope energy, defined through the
Hilbert transform, which yields a smooth description of the system’s dynamic. Then the
effect of damping on the flexural wavenumbers is considered. Through this analysis, a
satisfactory trend for the energy distribution is obtained by the envelope energy, with use
only of the decaying components of the whole damped solution.

To check the validity of the procedure, simulated experiments are performed on
differently loaded and constrained beams. The results are compared with both the
theoretical and power flow solutions presented in reference [1].

2. ENVELOPE ENERGY MODEL FOR FLEXURAL BEAMS

The relevant merit of the power flow method is that it has shown the possibility of
approaching a trend solution for high frequency structural problems and has provided
indications of the direction which can be taken in further investigations. In this context,
a natural idea is the use of a suitable envelope concept. An appropriate envelope kinetic
energy T, in fact, can be defined through the Hilbert transform, that produces a
space-average trend of the energy itself.

2.1.    

The Hilbert transform [4] is an integral operator the kernel of which is 1/px:

H{ f (x)}=g
a

−a

f (j)
p(x−j)

dj=f (x) ( 1
px

.

It exists under the hypothesis of existence of the Fourier transform: i.e., it is required that
f(x) is absolutely integrable over the definition domain. The Fourier transform F of the
Hilbert transform is

F[H{ f (x)}]=F{ f (x)}F{1/px},

where

F 6 1
px7=6−j for the wavenumber kq0

j for the wavenumber kQ07.
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Therefore the Hilbert transform is an operator that shifts all the harmonic components
of f(x) by p/2. Then, through the Hilbert transform, an envelope F(x) of a function f(x)
can be defined as [4, 5]

F(x)=[ f 2(x)+H2{ f (x)}]1/2.

Because of the shifting property of H, the envelope tends to cancel the harmonic
components of f(x), performing a smoothing operation.

In the rest of this paper, the modulation property of the Hilbert transform will be used:
i.e.,

H[p(x) e−jkx]=jp(x) e−jkx, H[p(x) ejkx]=−jp(x) ejkx, (1)

where p(x) is an arbitrary function that must satisfy only a band-limited condition [5].
Besides the smoothing property, the envelope has the following energetic property, that

will be useful for further considerations:

g
a

−a

f 2(x) dx=g
a

−a

H2{ f (x)} dx. (2)

If a stationary wave ŵ(x, t)=Im [w(x) ejvt] is forced into a flexural beam, the local
kinetic energy per unit length can be written as

T(x, t)=1
2 rSẇ2(x, t),

S being the cross-section of the beam. The time-average energy is then

�T�=kTw2(x),

with kT=1
4 rSv2. According to the previous proposals, the envelope kinetic energy of an

undamped structure can be defined as

T=(kT /2)[w2+H2(w)].

By using this definition, property (2) provides an energetic equivalence between the total
time-averaged kinetic energy of the system and the total envelope energy. In fact, from
property (2),

g
a

−a

T dx=
kT

2 $g
a

−a

w2 dx+g
a

−a

H2(w) dx%=2
kT

2 g
a

−a

w2 dx.

Consequently, the integrals of the two energies are equal: i.e.,

g
a

−a

T dx=g
a

−a

�T� dx. (3)

For finite structures the previous equivalence is no longer strictly valid, because the
Hilbert transform of a windowed signal is not usually defined within the same limits of
the window. However, the difference is in general not appreciable, so that the areas under
the two curves are very similar.

If a damped beam is considered, as in the rest of this paper, the envelope energy must
be defined as

T=(kT /2)[ww*+H(w)H*(w)], (4)

where the asterisk denotes the complex conjugate.
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2.2.   

The Euler–Bernoulli equation for damped harmonic flexural waves in a uniform beam
is written as

E(1+jh)I d4w/dx4−v2rSw=0,

or

d4w/dx4−k4
dw=0,

with

k4
d=v2rS/E(1+jh)I c k4

d2(1−jh)k4
B .

h is the system loss factor and kd is the damped flexural wavenumber, with kB=v/cB , cB

being the speed of flexural waves. Upon dividing the Euler–Bernouilli equation into its far
and near field operators, the damped elemental equations become

d2w/dx2+k2
dw=0 for the far field, d2w/dx2−k2

dw=0 for the near field,

with k2
d2(1−jh/2)k2

B . The solutions of these equations are given, respectively, by

wff (x)=A e−kdffx+B ekdffx and wnf (x)=C e−kdnfx+D ekdnfx,

with A, B, C and D being complex amplitudes, kdff=j(1−jh/4)kB and kdnf=(1−jh/4)kB .
After some mathematics and using the modulation property of the Hilbert transform,

it can be shown that the envelope kinetic energies, defined in equation (4), are given by

Tff=kT (=A=2 e−kBh/2x+=B=2 ekBh/2x) for the far field flexural component,

Tnf=kT (=C=2 e−2kBx+=D=2 e2kBx) for the near field flexural component. (5)

These envelopes are solutions, respectively, of the equations

T0ff−(hv/2cB )2Tff=0, T0nf−(2v/cB )2Tnf=0. (6)

They can be interpreted as follows. The envelope kinetic energies of elemental flexural
components in one-dimensional systems have a non-oscillating trend, which is formally
(only formally) equivalent to the Nefske and Sung solution [1]. It is not difficult to show
that the potential energy and total energy envelopes of the far and near fields also have
similar behaviours.

For complete flexural waves, the envelope energy is not so smooth. In fact, T is not
simply the sum of Tff and Tnf but mixed terms appear that, when developed, give rise to
the following oscillatory component:

kT [(Re [AD*] emkBx+Re [BC*] e−mkBx) cos mkBx+(Im [AD*] emkBx

−Im [BC*] e−mkBx) sin mkBx].

Here m=1−h/421. It is worth noting, however, that this oscillatory component is
absolutely negligible: thus, it can be conveniently omitted.

With this position, the envelope T of the energy density is

T3kT (=A=2 e−kB (h/2)x+=B=2 ekB (h/2)x+=C=2 e−2kBx+=D=2 e2kBx). (7)

The corresponding envelope energy equation can be determined by noting that the
characteristic polynomial of the equation has the following four roots: 2kB (h/2); 22kB .
Simple operations lead to the fourth order differential equation of the envelope, which is

TIV−4k2
Bn

2T0+16k4
B (n2−1)T=0, (8)
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with n2=1+h2/16. Equation (8) satisfies the requirements of our approximate analysis, in
that the dimension of the eventual numerical problem is independent of frequency, as in
the thermal analogy. Note that the solution of equation (8) provides the complete trend
of the exact solution.

It is now possible to introduce the power flow associated with the envelope energy,
provided that the relations that hold for the physical energy can be extended to the
envelope. Assuming the structural dissipated envelope power is proportional to the local
envelope energy, i.e. Pdiss=2hvT, and assuming that the envelope power flow is given by
f=Pdiss , from equation (8) one obtains

f=−(2v/k4
Bh)[TIV−4k2

Bn
2T0]. (9)

Finally, an envelope transmission potential c, that can be useful to express some boundary
conditions of the problem, can be defined as [3]

f=−P'=12c/1x2 c c=−(2v/k4
Bh)[T0−4k2

Bn
2T]. (10)

The main result of this section can be summarized as follows. An envelope energy can
be defined which provides the desired local average trend one looks for when analyzing
high frequency problems. In fact, by neglecting the oscillatory term, which is certainly
acceptable, an interesting linear equation is obtained, the solution of which yields the trend
of the exact energy density, and can be successfully used for the analysis at high
frequencies.

It is easy to show that this result can be extended to the envelope energy of longitudinal
waves.

2.3.  

The differential equation (8) of the envelope energy needs four suitable boundary
conditions.

To deal with this problem, an approach commonly used in the wave train closure
principle [6] is considered. It consists in assuming that, close to any constraint, the
displacement wave of the damped flexural equation wIV−k4

dw=0 can be represented by

w(x)2A e−jkdx+B ejkdx+C e−kdx, (11)

the near field arriving from the other end being neglected.
The procedure to determine the boundary conditions of the envelope will be shown here

with reference to the general constraint shown in Figure 1. In this case the boundary
conditions are

EdIw1(0)+Kww(0)=0, EdIw0(0)+Kuw'(0)=0, (12)

where Ed=E(1+jh), and Kw and Ku are generally complex if the translational and
rotational springs include a structural damping.

Figure 1. Scheme of a general constraint.
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By defining the quantities

hw=k3
dEdI/Kw , hu=kdEdI/Ku ,

and substituting equation (11) into the boundary conditions, one obtains

A(1+jhw )+B(1−jhw )+C(1−hw )=0, −A(1+jhu )+B(1−jhu )−C(1−hu )=0.

For the sake of simplicity, let

a11=(1+jhw )/(1−hw ), a12=(1−jhw )/(1−hw ),

a21=−(1+jhu )/(1−hu ), a22=(1−jhu )/(1−hu ).

By simple manipulation, C can be eliminated from the previous equations and the ratio
between A and B can be determined as a parameter g, which is a function of hw and hu :

A/B=−(a12+a22)/(a11+a21)=g.

Thus A and B can be expressed through C as follows:

A=gC/(a21g+a22), B=C/(a21g+a22).

Substitution of A and B into the displacement expression gives

w(x)=C $ 1
a21g+a22

(g e−jkdx+ejkdx)+e−kdx%.

The displacement field can now be associated with the envelope energy, by using
equation (7), to obtain

T(x)=kT =C =2 $ 1
=a21g+a22=2

(=g =2 e−kB (h/2)x+ekB (h/2)x)+e−2kBx%. (13)

From this expression the values of the envelope energy and its first two derivatives at the
constraint (x=0) can be easily computed, showing that, whatever the boundary conditions,
it is possible to write down two linear relationship between them, as follows:

T'0−kB f1(hw , hu , h)T0=0, T00−k2
B f2(hw , hu , h)T0=0. (14)

Here two new parameters, called envelope constraint factors (ECF) ( f1 and f2), are
introduced, that depend on the particular boundary condition, the beam parameters, the
frequency of excitation and the dissipation mechanism. The previous relationships
completely solve the boundary conditions for the envelope energy. Very simple expressions
for f1 and f2 can be determined for standard boundary conditions. In Table 1 the values
of hw and hu for some constraints and the correspondent envelope constraints factors are
provided.

For zero damping (h=0), Kw and Ku as well as hw and hu are real. Moreover, in this case,
it is f1=f2=ECF(hw , hu ). In Figure 2 the envelope constraint factor ECF is plotted as a
function of the two constraint parameter hw and hu . Note that in the hw–hu plane all the
boundary conditions can be represented.

It is interesting to show, by using equation (13), that the third derivative of the envelope
energy at the constraint can be linked to T'(0), to give

T10 −4k2
BT'0=0.
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T 1

Envelope constraint factors

Constraint hw hu f1 f2

EdIk3
d

Kw

EdIkd

Ku

h

2 (=g =2−1)−2=a21g+a22=2

=g =2+1+=a21g+a22=2

h2

4 (=g =2+1)+4=a21g+a22=2

=g =2+1+=a21g+a22=2

0 0

1
h2+16

8

a a

a 0

0
h2

4

0 a

This is equivalent to stating that, at the boundary, the first derivative of the transmission
potential is zero: i.e., the envelope output power is zero,

Pout=−c'0=0.

This condition can be used instead of either of the conditions (12).

Figure 2. Envelope constraint factors versus hw and hu .



.   . 290

By using the definition of envelope power, given in section 2.2 as the derivative of the
transmission potential, the envelope equation for a beam forced by a lumped force at x=xF

can be written as

P'+2hvT=Pind(x−xF ).

By integrating along the beam, one obtains

g
l

0

P' dx+2hv g
L

0

T dx=g
l

0

Pind(x−xF ) dx:

that is,

Pout (l)−Pout (0)+2hv g
l

0

T dx=Pin .

But it was previously shown that Pout=0 at the boundaries. Therefore, recalling
equation (3), one finally obtains

Pin=2hv g
l

0

�T� dx=Pin ,

showing that the envelope input power is equal to the physical input power.
In the first example presented in section 5, we also use the transmission potential to

express one of the boundary conditions at the end of the beam excited by a lumped force.
In fact the envelope power P across a section Sx of the beam is written as

P=−c'=Sx=(2v/k4
Bh)(T1−4n2k2

BT')=Sx .

If Pin is the known physical power entering the system, this condition is simply obtained
as P=−c'=Pin . In the second example of section 5, the lumped force is applied at the
center of a symmetric system. Therefore the input power is exactly known on each side
of the beam (=Pin /2) and a condition analogous to the previous one can be used. For more
complex situations, such as forces acting on any point of the beam or axisymmetric
systems, the continuity conditions are much more complex to determine: this point is
currently being investigated.

The second continuity condition at the point of application of the lumped force can be
determined by stating that, at the excitation point, the local energy �T� is equal to the
envelope energy T.

3. SOME NOTES ON THE ENVELOPE MODEL

3.1.   

So far the main results related to the envelope energy have been presented. To achieve a
deeper insight into the envelope, the damped behaviour of one-dimensional flexural
structures can be considered. Flexural waves in finite beams present a twofold contribution
from a propagating and a decaying near field. For undamped systems, the wavenumber
corresponding to these fields lie on the positive and negative axes of the complex plane, being
all equal in modulus (k). For damped structures, the elasticity modulus becomes complex
(Ec=E(1+jh)), and it can be shown that the corresponding wavenumbers rotate in the
complex plane by an equal angle, thus all presenting a real and an imaginary component (see
Figure 3). Their modulus is not changed. The real components of the propagating fields
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Figure 3. Pure bending waves: wavenumber position without and with damping.

introduce a decaying behaviour, while the imaginary parts of the near fields generate a
travelling wave, which is much faster than the undamped propagating wave.

The projection on the real axis of the complex wavenumbers (2kdff , 2kdnf ) produce the
four real numbers

k�dff22kBh/4, k�dnf22kB .

At this point one can observe that, for a flexural beam, the energy envelope in which the
oscillating term is neglected, is described by the exponential coefficients 2kBh/2 and 22kB .
Comparing these coefficients with the real part of the complex wavenumbers of the flexural
damped waves, one notes that they exactly correspond, the former being double than the
latter. Thus knowledge of the real part of the complex wavenumbers is sufficient to
determine the envelope trend. In particular, kBh/2 is associated with the decaying component
of the far field, and 2kB is associated with the decaying component of the near field.

With the concept of wavenumber projection on the real axis in mind, one can now
observe that for h:0 (n2:1), equation (8) transforms into

TIV−4k2
BT0=0,

and, after integration, into

T0−4k2
BT=0.

This exactly corresponds to the equation of the envelope energy for the near field. In fact,
for h:0, the projections on the real axis of the far field components are so small that they
collapse into the origin, and only the near field components are kept.

A similar result is obtained when correcting terms for shear and rotary inertia is
considered. When no damping is present the four wavenumbers still lie on the complex
axes, but the imaginary components of the corrected wavenumbers (far field components)
become bigger than the real ones (near fields). For damped structures, the rotation

Figure 4. Corrected bending waves: wavenumber position without and with damping.
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Figure 5. Static analogy of the envelope model.

involved introduces, for any wavenumber, a real and an imaginary contribution, namely,
again, a far field decaying trend and a near field tranvelling contribution (see Figure 4).

3.2.   

The analytical structure of equation (8) for the envelope energy suggests an interesting
physical interpretation. Let us write equation (8) again as

EITIV−4EIk2
Bn

2T0+16EIk4
B (n2−1)T=0.

This equation is formally equivalent to the static equation for a beam on a spring layer
of stiffness Kel , subjected to a constant, tensile, longitudinal force N (see Figure 5), the
equation of which is

EIjIV−Nj0+Kelj=0.

Comparing these two equations, a correspondence among the physical variables can be
determined as j=T, N=4EIk2

Bn
2 and Kel=16EIk4

B (n2−1). Therefore a static analogy is
established between the kinetic envelope energy and the static displacement of the beam
on a spring layer subjected to a constant, tensile, longitudinal force.

It can be easily verified that, in this analogy, the envelope power through any section
of the beam (P=−c'=Sx ) corresponds to the shear force of the static beam. Finally, the
physical constraints of the dynamic beam can be transformed into suitable constraints in
the static analogy. Generally, they do not correspond (for example, a hinged end is
transformed into a guided end in the static analogy). The transformation laws can be
derived from equations (14) of the boundary conditions, by using the appropriate ECF.

As a matter of fact, the static analogy makes clear the numerical advantage obtained
by using the envelope energy, because the dynamic problem is transformed into an
analogous static one.

4. DISPLACEMENT APPROACH TO THE ENVELOPE ENERGY

By using the projection of the complex wavenumbers, another approximate solution,
with the same character as the envelope can be determined.

For a given frequency, the exponential coefficients of the envelope energy depend on
the elastic, geometric, inertial and damping characteristics of the system (E, I, A, r, h).
Therefore the previous analysis suggests that an envelope trend can be determined by the
knowledge of these parameters.

The displacement field of the beam is given by

w(x)=A e−kdff
x+B ekdff

x+C e−kdnf
x+D ekdnf

x, (15)

where the four complex wavenumbers are shown in Figure 3. Writing down an envelope
displacement using the real contributions k�dff and k�dnf , instead of the complex wavenumbers
kdff and kdnf , one obtains

ŵ(x)=A
 e−kB (h/4)x+B
 ekB (h/4)x+C
 e−kBx+D
 ekBx. (16)
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The envelope energy associated with this displacement field is

T
 (x)=kTŵ2(x).

By simple substitution, the exponential coefficients of T
 (x) are given by 2kB (h/2), 22kB

and 2kB (12h/4)22kB . One can observe that the first two terms are exactly the same
coefficients obtained for the energy envelope, while the last one is the wavenumber related
to the mixed terms. One can thus conclude that using ŵ(x), determined from the real parts
of the complex wavenumbers, yields an envelope energy T
 (x) the character of which is
analogous to the energy envelope in equation (7). Of course, an envelope displacement
equation, analogous to equation (8), can be easily determined, provided that one uses only
the first two wavenumbers and omits the wavenumber of the oscillating component. By
operating as in section 2.2, a fourth order differential equation for the displacement
envelope is obtained as follows:

ŵIV−n2k2
Bŵ0+k4

B (n2−1)ŵ=0. (17)

It should be evident that the displacement envelope is directly related to the energy
envelope through the square root operation. Therefore either the energy or the
displacement envelopes can be successfully used to obtain the approximate field solution.

5. SIMULATION ON BEAMS AND COMPARISONS

To illustrate the envelope approach and emphasize the differences with the results
obtained by the thermal analogy, two cases are presented. For both beams the envelope
solution is compared with the exact solution, obtained by modal analysis, and with the
power flow finite element method solution of reference [1].

The first simulation is performed on a clamped–free beam (1×0·1×0·1 m) with a
lumped harmonic force applied at the free end. The excitation frequency is 10 000 Hz. The
three results (exact, envelope approach and power flow [1]) are summarized in Figure 6.
All the curves were obtained with shear deformation and rotary inertia neglected. A
damping loss factor of 0·05 was assumed. The energy envelope solution fits the exact result
better than the power flow method. Due to the neglect of the near field, the power flow
solution is particulary inconsistent near the application force.

Very similar results are obtained for the second beam (1×0·03×0·03 m), clamped at
both ends, with a concentrated force applied at its center. The excitation frequency is, in

Figure 6. Clamped–free beam: comparison of results. - - - -, Exact solution; – – –, envelope solution; ----,
PFFEM solution.
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Figure 7. Clamped–clamped beam: comparison of results. Key as Figure 6.

this case, 17 000 Hz, and the damping loss factor is 0·2. As for the previous beam, the
envelope solution, obtained by the direct energy envelope approach, matches very
satisfactorily the exact trend. As in the previous case, it differs from the power flow solution
especially at the excitation point (see Figure 7).

It is worthwhile to stress that both the envelope energy and power flow solutions differ
considerably from a classical SEA solution, which would have a constant value along the
whole structure.

6. CONCLUSIONS

In studying structural–acoustic problems at high frequencies, serious drawbacks, from
a numerical point of view, are introduced by the oscillatory solution, the wavelength of
which decreases with the increase of frequency. The possibility of using approximate
solutions describing the trend of the energy density along a structure has been explored.
It has been shown that an appropriate definition of an envelope energy permits one to
obtain a very effective equation the solution of which is appropriate for the analysis of
dynamic problems in the high frequency range. The smooth trend of the envelope can be
determined with any finite element code, without requring too fine a mesh.

The envelope is characterized by the projection on the real axis of the complex damped
wavenumbers, that can be easily estimated by the knowledge of the geometrical and
physical properties of the structure.

Ongoing work is being devoted to the development of this approach to two- and
three-dimensional as well as to joined structures. If the early promise of the method
continues, the quality of the SEA solution will be considerably improved, and new
advances in structural–acoustic problems will be obtained.
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