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COMPLEX ENVELOPE DISPLACEMENT
ANALYSIS: A QUASI-STATIC APPROACH

TO VIBRATIONS
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A new model to analyze high frequency vibrations is presented. Instead of using the
physical oscillating displacement, the problem is described in terms of a complex envelope,
generated by an appropriate use of the Hilbert transform. The model can be put in the
category of those methods that try to describe some representative characteristic of the
oscillating solution (average energy level, thermal trend, etc.) rather than the solution itself,
avoiding the computational problems connected with high frequency problems. Although
the envelope solution, by itself, is sufficient and convenient to deal with structural–acoustic
coupling, the proposed model presents the twofold advantage of avoiding computational
problems connected with high frequency vibrations while keeping the capability of
recovering the oscillating response, when required.
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1. INTRODUCTION

Interest in new formulations of vibro-acoustic problems is turning increasingly to the
medium and high frequency ranges, necessary to analyze and control technical problems
from the design stage, to predict the energy transmission characteristics of structures and
estimate the relative efficiency of different paths in a complex system. In part, this can be
attributed to the development and acceptability of efficient numerical techniques that can
be used reliably to solve typical low frequency structural problems; in part it is due to the
design, in the aeronautical and aerospace industries, of light structures, to their interaction
with the surrounding fluid, and to the increasing power of jet engines, characterized by
broadband excitation; and in part it is due to the increasing attention paid by the civil
community to acoustic pollution, that requires the development of more efficient prediction
of the noise radiated by vibrating structures, especially in the high frequency range where
the traditional formulations meet severe limitation. In fact, high frequencies mean short
characteristic wavelengths, so that the traditional deterministic techniques, such as finite
elements and boundary elements, are impelled to use very fine discretization meshes, with
consequent prohibitive computational costs. On the other hand, the only high frequency
technique proposed since the beginning of the 1960s, Statistical Energy Analysis (SEA),
that has the paramount merit of being able to describe the statistical behaviour of a set
of similar structures at vibro-acoustic frequencies, is still trying to receive general
acceptability, its results being very case dependent. Actually, the recent research on SEA
splits into two main directions: on one side a considerable effort is being put on the
possibility of controlling a priori whether a particular system can satisfy the basic
requirement of SEA (weak coupling among subsystems) [1–3] which would yield an
acceptable SEA solution, and on re-formulating some basic SEA concepts [4–7]; a second
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direction is towards the application of traditional techniques to evaluate the classical SEA
parameters (loss factors, coupling loss factors and modal density) [8].

Other new energy formulations, inspired by SEA, have been proposed since the end of
the 1970s, although they attracted scientific interest from the beginning of the 1990s only.
These formulations are known as thermal methods, and try to extend the basic principles
of SEA, valid for finite subsystems (or for systems equipped with modes), into differential
terms [9–12]. Most of the thermal methods, as others previously, have been developed, to
date, for longitudinal and flexural one-dimensional systems. The important advantage of
these formulations is the possibility of describing the variation of the response along the
system, covering, possibly, the medium frequency gap between deterministic and statistical
approaches. A frequency bandwidth exists, in fact, in which the application of classical
finite elements and boundary element methods become computationally prohibitive, while,
on the contrary, the modal densities of the SEA subsystems are too low to provide
significant SEA results.

However, despite the considerable effort made during these years, the problem is still
far from a definite and efficient solution.

Other procedures, aimed at the same goal as the thermal methods, propose contributions
in a different direction, trying to overcome [13] or refusing the thermal analogy [14]. The
General Energy Formulation (GEF) and its simplified version, the Smooth Energy
Formulation (SEF), describe the balance between the active and reactive energy flows in
a system: the SEF still provides an approximate thermal balance equation for
one-dimensional systems, but fails to achieve this for more complex structures [15, 16].

In the models developed by Carcaterra and Sestieri, one attempts to describe the
envelope trend of some field variable (energy or displacement), transforming the oscillating
solution governed, in the frequency domain, by the Helmholtz equation, into a smooth
solution. The envelope is obtained by an appropriate use of the Hilbert transform, which
removes the oscillating part of the solution, although keeping its main trend along the
structure.

In the attempt to circumvent some drawbacks in the problem formulation, three
different envelope models have successively been developed.

In the first one, the envelope energy model (EEM) [17], only the envelope kinetic energy
was used: although the model was able to recover the energy trend, and a simple linear
governing equation was determined, it was not capable of describing some typical energy
jumps at discontinuity points, so that, as in the thermal problems, it was necessary to utilize
other techniques to estimate transmission and reflection coefficients that are required to
model assembled structures. Moreover, the forcing term in the governing equation is a
function of the input power. This quantity, dependent on both the excitation force and
the physical velocity, is never known before the solution is available, so that an estimate
of it is required. At high frequencies, it is possible to yield a sufficiently accurate estimation
of the input power, because the actual system velocity can be replaced by the corresponding
velocity of the infinite system. However, at low and medium frequencies, the response of
the finite system differs greatly from the response of the infinite one, due to its resonant
behaviour.

Therefore, a second envelope model was developed, that considered, together with the
envelope energy, the displacement phase: the model was called the Envelope-PHase Energy
Model (EPHEM) [18]. With this model the problem related to the energy jumps at
discontinuites is completely solved. However, for flexural beams, some approximations
were introduced to avoid coupling and non-linearities of the envelope and phase equations:
although the extension to more complex structures was never performed, it is very apparent
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that this extension would noticeably complicate the model equations. Furthermore, the
input power was still the excitation term of the equations, with obvious limitations.

Consequently, a last and final model was introduced, for which a different point of view
is used, although the envelope concept is still maintained: the model is called the Complex
Envelope Displacement, and its application Complex Envelope Displacement Analysis
(CEDA) [19, 20].

The basic idea of this formulation consists of defining a new field descriptor, related to
the physical displacement by a one-to-one correspondence, that has the property, under
certain conditions, that most of its energy is concentrated in the low wavenumber region.
While, per se, this approach could be considered a re-formulation of dynamic problems,
leading to interesting developments in vibro-acoustics, the opportunity for a coarse
discretized numerical solution for the coresponding governing equation is also provided,
which is attractive, if not fundamental, in the high frequency range.

2. GENERAL FORMULATION OF THE COMPLEX ENVELOPE
DISPLACEMENT MODEL

2.1.  

The complex envelope displacement theory relies on a suitable variable transformation.
Consider the equation of motion for a general one-dimensional undamped structure,

L[w(x)]+mv2
0w(x)= p(x), (1)

L being a self-adjoint differential operator, w(x) the displacement and p(x) the external
load, here assumed to be harmonic in time with frequency v0, implying that the steady
response of the structure is also harmonic with the same frequency, so that the time
variable is removed from both sides of equation (1). m is the mass per unit length of the
structure.

The complex envelope displacement w� can be introduced through the action of an
envelope operator E on the displacement w, defined as

E(·)= [I(·)+ jH(·)] e−jk0x, (2)

where H and I are the Hilbert and identity transformations, respectively, k0 =v0/c0 is the
carrier wavenumber, corresponding to the excitation frequency, and c0 is the phase wave
speed in the system considered. (The reason for the left arrow adopted to represent the
complex envelope displacement will be better understood later on in the paper; in fact, it
will be shown that the envelope displacement is obtained by shifting a wavenumber
spectrum to the left toward the origin of axes.)

The Hilbert transform of a function f(x) is given by [22]

H[ f(x)]= f	 (x)=p.v. g
a

−a

f(j)
p(x− j)

dj.

For the new variable—complex envelope displacement—one has the relationship

w� =E[w]= [w+jw̃] e−jk0x = ŵ e−jk0x, (3)

where ŵ is the analytic displacement ŵ=w+jw̃, and j is the imaginary unit z−1.
For the envelope operator and the complex envelope displacement, the following

properties can be demonstrated.
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E admits an inverse: that is,

E(·)−1 =Re [(·) ejk0x].

This relationship permits one to recover the physical displacement once the complex
envelope has been determined. In fact,

w(x)=E−1[w� ]=Re {w� (x) ejk0x}. (4)

It can be easily verified that, if the physical displacement spectrum is band limited
around the carrier wavenumber k0, the complex envelope displacement is band limited
around the wavenumbers’ origin. In fact, for a band-limited spectrum around k0, the
Fourier transform W(x) of the physical displacement is concentrated within two limited
regions around k0 and −k0 of bandwith Dk (see Figure 1(a)). It will be shown later that,
in many cases of practical interest the above condition of band-limited spectrum is
satisfied. The Fourier transform F of the analytic displacement ŵ(x) is then given by

F[ŵ]=W�(k)=W(k)+ jF[w(x) ( 1/px],

where the asterisk denotes convolution. Since F[1/px]=−j sign (k), it follows that

W�(k)=W(k)+ sign (k)W(k):

Figure 1. Fourier transforms. (a) Physical displacement; (b) analytical displacement; (c) complex envelope
displacement.
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i.e., the negative wavenumber contribution of W(k) is deleted, and the positive one is
doubled (see Figure 1(b)). Finally, the Fourier transform of the complex envelope
displacement is simply expressed (see equation (3)) byW� (k)=W�(k+ k0), corresponding
to a shift of the positive wavenumber contribution of W�(k) towards the origin of
wavenumbers (see Figure 1(c)). This last property indicates that the complex envelope
displacement is a low wavenumber function, the correct spatial evolution of which can be
described by using a limited number of samples, according to the Nyquist criterion. The
sampling theorem suggests, in fact, that a correct representation of the signal can be
obtained provided that the sampling frequency (wavenumber) is greater than twice the
maximum frequency (wavenumber) of the signal.

One can summarize these important results. The description of the physical displacement
needs a space sampling that increases with the excitation frequency v0, in that the sampling
wavenumber is directly related to it. On the contrary, for the complex envelope
displacement the space sampling is independent of v0 because it is proportional to the
signal bandwith Dk. Consequently, the chance of describing the dynamic response of the
structure by a coarse set of sampled points is obtained by keeping the same information
content, even for high frequency excitation forces. The physical displacement, rapidly
oscillating in space, is transformed first into a slowly oscillating signal through the complex
envelope, and the solution of the dynamic problem is obtained in terms of this
new variable; then, if required, an inverse transformation can be used to re-obtain the
physical oscillating solution, at the low cost of interpolating the envelope displacement (see
section 4).

To achieve the previous goal, a suitable governing equation in terms of the complex
envelope must be solved. In the following section, this equation is determined.

2.2.   

2.2.1. Narrow-band displacement spectrum: basic envelope operator
For a narrow-band displacement spectrum, the properties described in section 2.1 hold,

and the complex envelope governing equation can be determined directly by applying the
envelope operator to both sides of the equation of motion (1) (a different derivation is
described in Appendix A):

E{L[w]}+mv2
0E{w}=E{p}= p� (x).

Expressing the physical displacement in terms of the complex envelope, by the inverse
envelope operator, one obtains

ELE−1{w� (x)}+mv2
0w� = p� (x):

that is,

L� [w� ]+mv2
0w� = p� =(p+ p̃) e−jk0x, (5)

where a new complex envelope operator is introduced, as

L� =ELE−1. (6)

The complex envelope equation is analogous to the original displacement equation
provided that the physical displacement, the external load and the structural operator are
replaced by the correspondent complex envelope terms.
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2.2.2. Wide-band displacement spectrum: general bandwidth decomposition technique
When the displacement spectrum is not narrow, a bandwidth decomposition technique

can be developed to obtain an envelope solution that still presents a significant numerical
benefit. The basic idea relies on the decomposition of the actual displacement spectrum
of bandwidth Dk, centered around k0, into sub-band components of smaller width dk,
followed by a translation of each sub-band toward the origin of the k’s. By this technique,
a set of sub-problems of small bandwidth size can be solved, which is computationally
more convenient than the solution of the original physical problem.

To this aim, recalling the spectral characteristic of the analytic signal (section 2.1), divide
the bandwith spectrum Dk of the analytic displacement into M sub-bands of amplitude
dk. The nth spectral component of the analytic displacement spectrum W�n (k) is put equal
to the following:

W�n (k)=

g
F

f

W�1s(k) for$k0−
Dk
2

+n dk%QkQ$k0 −
Dk
2

+(n+1)% dk, n=0, 1, . . . , (N−1)

0 elsewhere
h
J

j
.

Now it is possible to apply the described envelope displacement procedure to each of the
spectral components.

To produce the related governing equation for each component, a formal development
is necessary. The nth spectral component of the analytic displacement is generated by
multiplying the original displacement spectrum W�(k) by a rectangular window Gn (k)
centered around [k0 −Dk/2+ (n+1/2) dk]: i.e., W�n (k)=W(k)Gn (k). The inverse Fourier
transform of W�n (k) provides the nth spatial analytic displacement:

ŵn (x)=g
+a

−a

w(j)gn (j− x) dj=w ( gn ,

where

gn (x)=F−1{Gn (k)}=2p dk sin (dkx/2)/(dkx/2).

A set of decomposition operators Dn can be introduced:

Dn (·)=g
a

−a

(·)gn (j− x) dj=(·) ( gn such that ŵn =Dn (w).

Now the nth component of the complex envelope can be obtained by translating each
generating function W�n (k) towards the origin of the k-axis, thus obtaining

W� n (k)=W�n (k+ kn )=W(k+ kn )Gn (k+ kn ),

from which the following relationship is determined:

w� n (x)= ŵn (x) e−jknx =Dn (w) e−jknx.
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Applying the decomposition operator to both sides of equation (1), one obtains

Dn [L(w)]+mv2
0Dn [w]=Dn [p]

c L[Dn (w)]+mv2
0Dn (w)=Dn (p)c L(ŵn )+mv2

0ŵn = p̂n ,

the last step being possible because of the commutation property between the
decomposition and structural operators. Proceeding as in Appendix A from equation (A2)
and substituting ŵn =w� ejknx, one finally has

L� n(w� n )+mv2
0w� n = p� n , (7)

representing the new complex envelope for the nth component. The general solution is
available when the whole set M of differential equations has been solved. The numerical
enhancement achieved by this procedure is discussed in section 4.

In order to reconstruct the physical solution, each of the W� n (k) spectra, concentrated
around the ks’ origin, must be conveniently relocated in its proper position over the k-axis,
shifting W� n (k) on kn towards the positive ks’ direction. In this way the nth spectral
component of the analytic signal, ŵn (x), is correctly determined, and the complete analytic
solution in the wavenumber domain is obtained as

W�(k)= s
M

n=1

W� n (k− kn ).

Transforming back into the space domain one finally has

ŵ(x)= s
M

n=1

w� n (x) ejknx,

so that the physical displacement is easily recovered:

w(x)=Re {ŵ(x)}= s
M

n=1

Re {w� n (x) e+jknx}. (8)

2.2.3. Boundary and continuity conditions
The existence of the inverse transformation (4) yields a straighforward derivation of the

boundary conditions that must be imposed on the envelope equation.
Usually, the physical boundary conditions can be formally expressed through a

suitable differential operator B, the order and number of components of which depend
on the particular problem. In general, it is B� (0,L)(w)=0, where L is the length of the
one-dimensional system. Equation (4), w(x)=E−1[w� (x)], relating the physical to the
complex envelope displacement, leads directly to the boundary conditions of the envelope
problem: i.e.,

B� (0,L)E
−1(w� )=0. (9)

Although some arguments related to the existence of spurious solutions will be discussed
later, this approach establishes a complete formulation of the envelope problem.

Similar considerations can be introduced for the continuity conditions that must be
imposed when assembling structures together. A general form for the continuity conditions
at a joint is given by C� J+(w)=C� J−(w), where C� is a suitable operator, J is the joint location,
and + and − represent the right and left ends of the joint. The inverse transformation
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Figure 2. Integral contributions of the physical displacement in the complex plane.

allows, as for the boundary conditions, an immediate derivation of the continuity
conditions for the envelope problem, as follows:

C� J+E−1(w� )=C� J−E−1{w� }. (10)

At this stage it is possible to summarize the main steps of the complex envelope
displacement analysis as follows: calculation of the envelope displacement w� by solving
equation (5) (or (6)) with related boundary and continuity conditions (9) and (10), using
a low number of sampling points; reconstruction of the physical solution by means of the
inverse envelope operator (4) (or (7)).

2.3.      

In this section the previously mentioned basic property of the envelope operator E is
reconsidered from a geometrical point of view. The envelope operator maps the physical
into the complex envelope displacement. If the band-limitedness hypothesis on the physical
displacement holds, then the new variable w� is a smoother function, implying the
possibility of a lower spatial sampling.

For an undamped system, w is a real function and its spectrum is symmetric around
the origin, i.e., W(k)=W*(−k), so that one can write the displacement decomposition
as

w(x)=
1
2p g

a

0

W(k) ejkx dk+
1
2p g

a

0

W*(k) e−jkx dk.

The two integral contributions can be represented in the complex plane by a couple of
counter-clockwise and clockwise rotating vectors, the sum of which is twice the amplitude
of the physical displacement; see Figure 2. It can easily be proved that

ŵ=
1
p g

a

0

W(k) ejkx dk

and the geometrical meaning of the analytic displacement is apparent.
Now consider the representation of the complex envelope displacement in terms of the

analytic one (equation (3)):

w� = ŵ e−jk0xc 6Re [w� ]
Im [w� ]7=$ cos k0x

−sin k0x
sin k0x
cos k0x%6Re [ŵ]

Im [ŵ]7.
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Figure 3. The real and imaginary parts of the complex envelope displacement as projections of the analytical
displacement on the axes of a moving reference system.

Figure 4. The displacement of a beam subjected to a concentrated load.

The matrix here is a rotation in the complex plane; hence both the analytic and complex
envelope displacements are represented by the same rotating vector, the real and the
imaginary components of which are referred to two different reference systems. In fact,
the real and imaginary parts of w� are the projections of ŵ on the axes of a moving reference
system rotating around the origin of the complex plane at constant angular speed k0 (see
Figure 3).

If the spectrum of the displacement is concentrated around the carrier wavenumber k0,
then the rotating vector associated with ŵ rotates at an angular speed slowly varying
around the value k0. Thus, if the components of this vector are referred to the moving
reference system rotating at the constant angular speed of the carrier wavenumber k0, then
these components are slowly varying functions of the x co-ordinate. In Figures 4 and 5
the physical displacement of a beam subjected to a concentrated force and the associated
real and imaginary components of the complex envelope displacement are plotted,
respectively. The smooth characteristic trend of the complex envelope with respect to the
rapidly oscillating trend exhibited by the physical displacement is very clear. In Figure 6

Figure 5. The real (– – – – –)and imaginary (——) components of the complex envelope displacement.
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Figure 6. The analytic displacement on the complex plane.

the corresponding analytic displacement in the complex plane is shown, while in Figure 7
the plot of the complex envelope in the rotating reference frame is considered. One can
observe how the two orbits described by the analytic displacement are mapped by the
envelope operator into two very small regions almost collapsing into two single points.
(They correspond to two vibrational energy levels along the beam.) This result confirms
the ‘‘quasi-static’’ nature of the complex envelope representation of the dynamic structural
response.

3. ENVELOPE OPERATORS FOR STRUCTURAL PROBLEMS

Due to problems related to an arising spurious solution in the envelope equation (see
section 3.1.3), the envelope operators have been presently developed for one-dimensional
problems (logitudinal and flexural). Here they are given explicitly for particular models
of flexural beams.

3.1. – 

For the flexural vibrations of uniform beams excited by a time-harmonic distributed load
p(x), the structural operator is given by L(·)=d4(·)/dx4. By applying equation (6), or the
procedure explained in Appendix A, the corresponding form of the structural envelope
operator is determined:

L� (·)=d4(·)/dx4 +4jk0 d3(·)/dx3 −6k2
0 d2(·)/dx2 −4jk3

0 d(·)/dx+ k4
0 (·). (11)

The fourth order envelope equation so obtained presents some difficulty in obtaining
explicitly related boundary conditions.

Figure 7. The complex envelope displacement in the rotating reference frame.
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To overcome this problem, it is very useful to use an approximate approach proposed
by Langley [21]. Langley’s technique applies to concentrated loads, thus not covering the
whole set of forcing excitations. However, several problems of practical interest present
this type of load and, in these cases, the approximate solution is straightforward and
computationally convenient. In general cases, it is necessary to solve the fourth order
equation, determining the boundary conditions of the fourth order envelope problem.

3.1.1. Reduced far field equation by Langley’s approach
In Langley’s approach, valid for high frequency vibrations and for concentrated loads,

the fourth order equation of the flexural problem is transformed into a second order
equation accounting for the far field contributions only. However, in this case it is
necessary to determine suitable boundary and joint conditions that must be imposed on
the far field components only.

The differential equation of flexural beams excited by a harmonic point force is

Ld (w)= [d4/dx4 − k4
0 ](w)= (p0/EI)d(x− xF ).

The self-adjoint differential operator Ld can be factorized to yield, for the homogeneous
problem, a pair of far field ( ff ) and near field (nf ) equations,

wff + k2
0wff =0, wnf − k2

0wnf =0,

the solutions of which are

wff =A ejk0x +B e−jk0x, wnf =C ek0x +D e−k0x.

In the proximity of a constraint, provided that the vibration frequency is high enough, one
of the contributions of the near field solution can usually be neglected: e.g., in x=0, the
second near field solution can be omitted with respect to the first one, while the first one
can be cancelled at the other constraint.

Then the approximate expression of the near field is written as

wnf = g e2k0x = g elxc w'nf = lwnf ,

where l=2k0, the sign depending on the neglected near field contribution, and g is a
constant denoting the coefficients C or D. Therefore, in the proximity of any constraint,
the near field can be approximated as shown above to give, for the complete solution and
its derivatives up to the third order,

w=wff +wnf , w'=w'ff + lwnf ,

w0= k2
0 (wnf −wff ), w1= k2

0 (lwnf −w'ff ).

The boundary conditions for a flexural beam are two for each end. By expressing them
through the previous relationships, two equations in wff , w'ff and wnf are obtained.
Consequently, it is possible to combine the two equations such that the near field
component is eliminated and a unique condition is obtained for each end in terms of the
far field component and its derivative only. This is the new condition that, together with
the second one at the other end, solves the second order equation in wff .

In the same way, the continuity conditions for coupled beams can be obtained: the four
continuity conditions, linearly combined two by two, yield two joint relations in the
propagating component alone. Therefore, by using Langley’s procedure, the flexural
vibrations of each beam can be described by the second order far field equation,

w0+ k2
0w= q, (12)
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where, for the sake of simplicity, w denotes wff and (see reference [21]), q=−p(x)/2EIk2
0 ,

with p(x)= p0d(x− xF ) being the physical load.
The corresponding complex envelope equation, obtained in Appendix B, is given by

w� 0+2jk0w� '= q� =(q+ jq̃) e−jk0x, (13)

formally identical to the corresponding envelope equation for longitudinal vibrations [19].
Although, for the reasons previously discussed, this equation admits a smooth solution,

the forcing term q� is very steep and computationally troublesome. Therefore it is
convenient to integrate that equation to make the load more smooth and reach a first order
formulation. This new equation is

w� '+2jk0w� =g q� dx, (14)

where f q� dx is a primitive of q� .

3.1.2. Complex envelope bandwidth in the wavenumber domain
The bandwidth of the second order equation solution is here determined to verify under

which conditions its wavenumber spectrum is band limited around the carrier wavenumber
k0. To this end, consider again the second order far field equation of a flexural beam excited
by a time harmonic load q(x) (equation (12)). As is known, its general solution is the sum
of particular solution and the solution of the homogeneous equation.

The solution of the homogeneous equation is

wh (x)=A1 cos k0x+B1 sin k0x

and its Fourier transform is

Wh (k)= 1
2(A1 +B1/j)d(k− k0)+ 1

2(A1 −B1/j)d(k+ k0):

i.e., it is entirely concentrated in k0.
The Fourier transform of the particular solution is simply Wp (k)=Q(k)/(k2

0 − k2) and
its bandwidth depends obviously on the bandwidth of Q(k). However, if q(x) is limited
in space (e.g., a concentrated force), Q(k) is rather flat in the wavenumber domain, whereas
the denominator tends to concentrate the energy of Wp (k) around k0.

Therefore the general displacement of a rather concentrated load is band limited around
the carrier wavenumber, thus providing a possible load for a straight complex envelope
displacement application.

3.1.3. Presence of spurious solutions in the complex envelope equation
It was shown that the complex envelope displacement is a solution of the envelope

equation. However, in addition to it, other ‘‘spurious’’ (undesired) solutions are
determined.

In this section, the general solution of the envelope equation will be determined to show
whether and how these spurious contributions can be eliminated.

The solution of equation (14) is obtained as the sum of a particular solution and the
solution of the associated homogeneous equation, given by w� h (x)=C e2jk0x, where C is a
complex constant. A particular solution is obtained by Fourier transforming equation (14),
providing

W� (k)=−Q� (k)/k(k+2k0).
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Then, the general envelope solution in the space domain is given by

w� (x)=−
1
2p g

a

−a

Q� (k)
k(k+2k0)

ejkx dk+C e2jk0x. (15)

It is worthwhile to point out that the particular solution exactly corresponds to the
complex envelope solution E(w) (Appendix C), that, as shown, is a slowly space-oscillating
solution: this implies that the envelope equation guarantees the existence of E(w), but does
not exclude other results, as does the homogeneous solution. Unfortunately, the presence
of this term is troublesome, because it is a ‘‘spurious’’ rapidly oscillating space component
(wavenumber 2k0), superimposed on the particular solution.

Consequently, the spurious contribution should be eliminated to solve the complex
envelope equation with a low spatial resolution. To obtain this goal, equation (14) is solved
with a particular boundary condition. The complex envelope displacement at x=0 yields

w� (0)=−
1
2 g

a

a

Q� (k)
k(k+2k0)

dk+C. (16)

By assuming that in it C=0, equation (14), solved with this boundary condition, provides
only the desired solution E(w), which can be determined with only a few sampled points.
Once this complex envelope solution (w� 0(x)) is obtained, the space solution is determined
by w0(x)=E−1{w� 0(x)}, which solves the original motion equation w00 + k2

0w0 = p.
Nevertheless, this solution does not satisfy the boundary conditions of the problem: it
represents only a particular solution of the motion equation. Therefore the complete
required solution is given by

w(x)=w0(x)+A cos k0x+B sin k0x, (17)

where A and B are determined by the physical boundary conditions.
This result can be reached by a different procedure. For an equation of the same nature

as equation (13), its solution is defined up to an arbitrary constant. Thus, if w� 0(x) is a
solution of equation (13) (and (14)), so is w� 0(x)+ g, being g a complex constant. Then g

can be determined so that E−1(w� 0(x)+ g) satisfies the physical boundary conditions. Since
g= gR +jgI , there are two real constants to satisfy two boundary conditions, that explicitly
provide a solution equivalent to expression (17). In fact, it is

E−1(w� 0(x)+ g)=Re {(w� 0(x)+ g) ejk0x}=Re {w� 0 ejk0x}+ gR cos k0x− gI sin k0x.

Considering that w0(x)=Re {w� 0 ejk0x}, one has

w(x)=w0(x)− gI sin k0x+ gR cos k0x,

equivalent to solution (17) if gR =A and gI =−B.
In conclusion, the subsequent steps of the procedure are as follows.
Solve initially the equation w� '+2jk0w� = f q� dx with the condition provided by equation

(16) with C=0. Note that for a concentrated load p= p0d(x− xF ), it can be easily shown
that w� (0)2 0, so that in practice the evaluation of expression (16) can be avoided

Determine the physical solution from

w(x)=E−1(w� 0 + g)=Re {(w� 0 + g) ejk0x},

where g is obtained by imposing the boundary conditions.
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3.1.4. Boundary and continuity conditions for flexural beams
As discussed in section 2.2.3, the boundary conditions of the physical problem can be

simply represented by a suitable differential operator B� that, for the flexural problem, is
a third order operator involving the displacement and its derivatives up to the third order,
with four components (two for each end of the beam). By using Langley’s technique, the
flexural problem is reduced to the second order, and the coefficients of the first order B�
operator, with two components, can be easily calculated by applying the reduction
technique previously discussed. Once the far field components of B� are determined, it is
possible to compute the boundary conditions for the envelope equation (13). In fact, it
is

B� (0,L)(w)=B� (0,L)[E−1(w� )]=B� (0,L)[E−1(w� 0 + g)]=B� 0,L [Re {(w� 0 + g) ejk0x}]=0,

where

B� (0,L) =$b11(·) =0 + b12 d(·)/dx =0
b21(·) =L + b22 d(·)/dx =L%.

A similar procedure can be applied for a joint; in this case it is possible to define a (g−

and g+) for any section of beam that also involves the boundary conditions, and write

C� J−[Re {(w� 0 + g−) ejk0−x}]=C� J+[Re {(w� 0 + g+) ejk0+x}]

C� being a second order operator of the form

$c11(·) =J + c12d(·)/dx =J
c21(·) =J + c22d(·)/dx =J%.

k0− and k0+ account for possible different cross-sections of the assembled beams. In this
way, the problem is solved completely.

3.1.5. General fourth order equation
The general flexural problem is characterized by both propagating waves and near field

contributions. The propagating terms e2jk0x give rise, for concentrated loads, to
wavenumbers’ band-limited contributions around the carrier wavenumber k0, that make
the application of the complex envelope displacement approach particularly feasible. On
the contrary, the presence of the evanescent near fields e2k0x produces contributions at
lower wavenumbers, thus generating a different spectral solution. In contrast with the pure
propagating case, the near field contribution extends the signal bandwidth until the origin
of the k-axis.

A possible technique is the bandwidth decomposition discussed in section 2.2.2, implying
the solution of a similar set of equations. For the general band centered in kn , the
corresponding equation is

d4w� n

dx4 +4jkn
d3w� n

dx3 −6k2
n
d2w� n

dx2 −4jk3
n
dw� n

dx
+(k4

n − k4
0 )w� =

p�
EI

.

For any of these equations, the problem of the spurious solutions related to the solution
of the associated homogeneous equation must be considered. A procedure similar to the
one developed in section 3.1.3 must be used to eliminate the spurious solution.
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The general solution is again given by the contribution of a particular solution and the
solution of the homogeneous equation. Upon using the Fourier transform, the first one
yields

(k4 +4khk3 −6k2
hk2 +4k3

hk+ k4
h − k4

0 )W� h (k)=P� h (k),

or, synthetically,

Bh (k)W� h (k)=P� h (k)cWh (k)=P� h (k)/Bh (k).

With khr (r=1, . . . , 4) denoting the characteristic roots of the homogeneous equation, the
general solution is then obtained as

w� h (x)=
1
2 g

a

−a

P� h (k)
Bh (k)

ejkx dk+ s
4

r=1

Chr ejkhr
x.

To eliminate the spurious homogeneous solution containing rapidly oscillating
contributions, it is necessary to choose suitable conditions such that Chr 0 0. They are

dp(w� h )
dxp bx=0

=
1
2 g

a

−a

P� h (k)(jk)p

Bh (k)
dk, p=0, . . . , 3.

The w� 0h (x) are obtained with these conditions, and the particular solution of the original
equation of motion is determined by combining and modulating the w� 0hs: i.e.,

wp (x)= s
h

Re {w� 0h (x) ejkhx}.

The whole solution is calculated by adding to it the homogeneous solution,

w(x)= s
h

Re {w� 0h (x) ejk0x}+A e−jk0x +B ejk0x +C e−k0x +D ek0x,

where the A, B, C and D are determined by imposing the boundary conditions on w(x).
This procedure, more complicated than that developed for the second order equation,

can be used for any applied load, unlike the reduced second order equation determined
from Langley’s approach, which can be applied only to the case of concentrated loads.

3.2.  

As the complex envelope displacement is especially useful to describe high frequency
dynamic problems, it is worthwhile to extend the procedure to the Timoshenko beam
model, in which the effects of rotary inertia and shear deformation are accounted for.

The Timoshenko beam equation is subjected to a time-harmonic load with frequency
v0, is:

14w/1x4 +G2 12w/1x2 − k4
0w= p with G2 = (r/E)(1+ xE/G)v2,

x being the shear parameter, G the shear modulus and r the material density of the beam.
The associatied characteristic polynomial is then k4 +G2k2 − k4

0 =0, the roots of which are

k2 =2X−G2 +zG4 +4k2
0

2
=2a, k2j =2jXG2 +zG4 +4k2

0

2
=2jb.
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The characteristic polynomial can be factorized in the form

(k− a)(k+ a)(k−jb)(k+jb)=0c (k2 − a2)(k2 + b2)=0,

so that the structural operator of the Timoshenko beam can be written as

[14(·)/1x4 +G4 12(·)/1x2 − k4
0 (·)]= [12(·)/1x2 − a2(·)][12(·)/1x2 + b2(·)].

The propagation operator associated with the Timoshenko beam, recovering the far field
solution, is then

Lp (·)= 12(·)/1x2 + b2(·).

In view of the expression for b written above, one finally obtains

12w/1x2 + k2
0Tw= p,

where k2
0T =v2[(z/c2

L )+z(c4
Bz

2 +4c4
L )/c4

Lc4
B ]

and

j=(1+ xE)/G.

Therefore the complex envelope displacement analysis can be directly applied to the
Timoshenko beam without relevant modifications: the derived equation corresponds to
equation (13) with k0T replacing k0.

3.3.   

The introduction of dissipative effects is not trivial.
Consider a structural damped beam. In this case Young’s modulus Ec =E(1+ jh) and

the physical displacement in the equation of motion becomes complex. It is known that
in such a case the Fourier transform of the displacement no longer exhibits a Hilbertian
symmetry in the spectrum. However, it is still possible to introduce the analytic and
complex envelope displacements, using for them the same formal definitions:

w=wR +jwI c ŵ=w+jw̃ =(wR − w̃I )+ j(wI + w̃R ),

w� = ŵ e−jk0x =[(wR − w̃I )+ j(wI + w̃R )] e−jk0x.

Therefore it is straightforward to determine the complex envelope equation in the presence
of damping, as made in the conservative case.

The problem arises when one tries to solve the envelope equation, because now
w$Re {w� ejk0x}, and the boundary conditions of the envelope problem are not
immediately available. This happens due to the loss of symmetry in the spectrum of the
damped displacement. In fact, the application of the envelope operator produces two
effects on the displacement function: the first is the cancellation of the negative
wavenumber contribution in the spectrum; and the second is the shift of the spectrum
towards the origin of the wavenumber axis. The first operation definitely implies a loss
of information about the displacement function when the spectrum is not symmetric: hence
the impossibility of performing an inverse operation, and, consequently, the loss of the
one-to-one correspondence between w and w� . However, there is a way to overcome the
problem. By introducing a vector the components of which are the real and imaginary parts
of the physical displacement, it is possible to write

w0+ k2
0 (1− jh)w= q c (w0R +jw0I )+ k2

0 (1− jh)(wR +jwI )= qR +jqI .
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By separating the real and imaginary parts and writing them in matrix form, one has

6wR

wI7
0

+ k2
0$ 1

−h/2
h/2
1 %6wR

wI7=6qR

qI7c u� 0+Pu� = r� ,

where P is the above matrix and the vectors u� and r� are, respectively,

u� =6wR

wI7, r� =6qR

qI7.

By Hilbert transforming this equation, one has

û0+Pû= r̂. (18)

Then the complex envelope displacement vector can be introduced as

u �=6u� Ru� I7=6ûR e−jk0x

ûI e−jk0x7=$e−jk0x

0
0

e−jk0x%6ûR

ûI7,

so that

û=[Exp]u� �, with Exp=$ejk0x

0
0

ejk0x%.

By substituting this expression into equation (18), the complex envelope displacement
equation for the damped beam is obtained,

u� 0+2jk0u� '+Pu� = r� ,

and, after integration,

u� '+2jk0u� +P g u� (j) dj=g r� (j) dj.

Then a solution technique analogous to the one made for the undamped case can be
developed.

In this case it would be particularly convenient to obtain the solution by using the
Fourier transform in the wavenumber domain: namely,

jkU� +2jk0U� +P(1/jk)U� =(1/jk)R� ,

so that

U� =(1/jk)[(1/jk)P+j(k+2k0)I]−1R� ,

and thus the spatial displacement solution is

u� =Re [Exp (F−1{U� } + c� )],

where c� is a vector used to fit the boundary conditions.
Note that if the same Fourier transform technique is applied to the original equation

of motion, the mesh necessary to perform the numerical integration is much finer than the
one necessary to solve the complex envelope equation (see section 4.3).
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4. COMPUTATIONAL PROBLEMS

4.1.      

In the application of the envelope method, the only quantity that must be practically
determined to solve the envelope equation is the envelope input load E[q(x)]. Specifically
(see equation (4)), one must compute the integral

g E[q(x)] dx=g q� dx=g(q+jq̃) e−jk0x dx.

This operation implies that an algorithm must be available to determine q̃.
The problem is sufficiently dealt with in the literature [22, 23] and different solutions are

possible. Note that for some functions the Hilbert transform is known analytically. One
of these cases is the concentrated load q(x)= q0d(x− xF ). Then, apparently, the problem
should be of immediate solution because this transform is analytically available as [23]

H{d(x− xF )}=1/p(x− xF ).

However, this function presents a singular point at x= xF , which is also present as a
forcing term in the envelope equation:

g $d(x− xF )+ j
1

p(x− xF )% e−jk0x dx.

This implies a considerable numerical difficulty. To circumvent this problem, it is
convenient to use a numerical approach based on the Fourier transform to compute the
Hilbert transform. In fact, the Fourier transform of a convolution is a product: i.e.,

q̃(x)= q(x) ( 1/px c Q	 (k)=Q(k)F{1/px}=−j sign (k)Q(k),

so that it is finally

q̃=F−1{−j sign (k)Q(k)}. (19)

For the numerical application of this algorithm to a concentrated load
q(x)= q0d(x− xF ), it can be convenient to approximate q(x) by the function qa (x) (a
Hanning window):

qa(x)=g
G

G

F

f
$1−

cos 2p(x− xF )
Dx % q0

Dx
for xF −Dx/2Q xQ xF +Dx/2

0 for xq =Dx/2=

h
G

G

J

j

.

Since fL
0 q(x) dx= q0, provided that the condition Dx�l0 is fulfilled, l0 =2p/k being the

forced wavelength on the beam, the load distribution previously defined behaves as a
concentrated load. Therefore equation (19), that uses the FFT, permits one to perform the
Hilbert transform of any load, including the case of concentrated forces.

4.2.    :   

Once the envelope displacement is determined, the physical response can be
reconstructed whenever required. It is necessary to remember that, due to the mentioned
spectral properties, the solution of the complex envelope equation is usually obtained with
a few samples; the opposite holds for the physical solution, which requires a high number
of grid points.
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Figure 8. A block diagram to recover the physical displacement from the complex envelope displacement.

The recovering expression for the physical displacement is w=E−1(w� )=Re {w� ejk0x}.
Then, to obtain w the complex envelope displacement must be multiplied by the complex
exponential, which is very rapidly oscillating in space. More specifically, the numerical
solution of w� consists of Nr values (see section 4.3); on the contrary, the complex
exponential consists of N samples. Usually, N�Nr . Therefore, one has to add a
suitable number of samples to the original numerical solution of the envelope displacement
to recover the physical one. This can be obtained by interpolation.

Several interpolation techniques can be used: in many tests performed we verified that
even a linear interpolation yields satisfactory results.

The recovery scheme is shown in the block diagram of Figure 8.
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4.3.        

Attention is here focused on the time saving of the complex envelope displacement with
respect to the physical solution.

The basic spectral properties of both the physical and envelope displacements, are as
previously noted, F(w)=0 for =k− k0 =qDk and F(w� )=0 for =k =qDk. The second
property implies a few considerations highlighting the numerical efficiency of the complex
envelope displacement in the high frequency range. In fact, it can be argued that a correct
sampling can be obtained provided that, for the physical and complex envelope
displacements, the samping steps satisfy the following Nyquist limitations, respectively:

DxE 1/2(k0 +Dk), Dxr E 1/2Dk.

Analogous limitations for the number of samples hold: i.e.,

N=L/Dxe 2(k0 +Dk)L, Nr =L/Dxr e 2DkL,

where L is the length of the beam. By these relationships, the numerical time saving in
terms of the sampled points can be expressed in the simple form N/Nr =1+ k0/Dk. It is
also important to determine the general relationship between the computational time for
both the physical and envelope displacement procedures.

The solution of a differential equation by some numerical procedures, such as the finite
element or finite difference technique, leads generally to an algebraic problem, implying
the calculation of an inverse matrix. The solution of a N-dimensional problem requires
a computational time proportional to N3, when using general matrix inversion algorithms
such as Gauss–Jordan elimination, LU decomposition etc., that can solve the problem
without any assumption about the matrix form. In this case, the ratio between the time
required by a traditional procedure and by the envelope displacement technique can be
simply expressed as

eff=
Ttrad

TCEDA
=0N

Nr1
3

=01+
k0

Dk1
3

=0 k0

Dk1
3

+30 k0

Dk1
2

+30 k0

Dk1+1. (20)

As is obvious, the numerical efficiency of the complex envelope displacement depends on
the ratio between the value of the carrier wavenumber and the bandwidth of the
displacement spectrum. When this spectrum is concentrated around the carrier
wavenumber, i.e., the bandwidth is relatively small in comparison with k0, the efficiency
is very high.

When the solving matrix is sparse or banded, some specific algorithm can be
conveniently employed. The simplification in this case can reduce the computational effort,
and the computational time is generally proportional to a power a of the size of the
problem, where 1 Q aQ 3. Therefore the efficiency of the complex envelope displacement
algorithm depends on the order of the discretization procedure used so that the efficiency
is more generally expressed by

eff=Ttrad /TCEDA =(N/Nr )a =(1+ k0/Dk)a, 1Q aQ 3. (21)

In section 3 the possibility of solving the problem directly in the wavenumber domain
through the use of the Fourier transform was considered. It is well known that when using
the Fast Fourier Transform (FFT) algorithm on a set of N samples, the number of
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numerical computations is proportional to N log2 (N). Then, the numerical efficiency of
the envelope displacement, when the FFT technique is used, can be computed as

eff=
N log2 (N)
Nr log2 (Nr )

=0N
Nr1$ log2 (N)

log2 (Nr )%=01+
k0

Dk1$log2 [2(k0 +Dk)L
log2 [2DkL] %.

Under the assumption that k0/Dk�1, a simplified expression is obtained,

eff1 (k0/Dk) log2 (k0), (22)

and even in this case the numerical advantage of the complex envelope displacement
analysis is apparent.

The efficiency of the complex envelope displacement when the decomposition technique
presented in section 2.2.2 is used can be obtained as follows. Each equation generated in
the decomposition process requires (2dkL) sampled points, so that a computational time
(2dkL)a can be estimated. This procedure must be repeated for each spectral displacement
component: i.e., M=Dk/dk times. The efficiency is then

eff=
[2(k0 +Dk)L]a

M(2dkL)a =
(k0 +Dk)a

(dk)a−1 Dk
=01+

k0

Dk1
a

6pDk
dk 1

a−1

. (23)

This expression is directly comparable with the one obtained from the standard envelope
displacement procedure. The effect of the new factor (Dk/dk)a−1 is evident. If a=1 the
efficiency equals the value of the standard procedure; otherwise one has a considerable
advantage as the sub-bandwidth size dk decreases. There is, of course, a limitation on the
minimum acceptable size for it. In fact, the basic condition dkq 1/L must be verified to
avoid that the sampling step Dxn of each sub-problem exceeds the length of the beam. With
the limitation, the following efficiency expression is obtained:

eff=(1+ k0/Dk)a(DkL)a−1 = (1+ k0/Dk)a(N/2)a−1.

This shows that the numerical efficiency increases with respect to the standard complex
envelope displacement analysis as the number of samples of the physical solution increases.

The possibility of a drastic reduction of samples and the related low spatial resolution
make it clear that the complex envelope displacement permits a low cost numerical
solution, especially in the high frequency range.

5. SIMULATED RESULTS

The following numerical simulations are presented only for the reduced second order
equation obtained by Langley’s procedure, which is certainly the case of major interest in
practical applications. Three cases are considered of increasing difficulty.

The first example refers to two steel beams (E=2·1×1011 N/m2, r=7800 kg/m3) of
equal cross-section with hinged ends, coupled by a simple support. The characteristic
dimensions of the beams and their section are shown in Figure 9.

The system is excited by two concentrated loads of amplitude F1 =1000 N and
F2 =500 N, respectively, and equal frequency ( f=12 000 Hz). For this case, all of the
characteristic variables of the CEDA model are presented. The first operation is performed
on the excitation load F1d(x−0·5)+F2d(x−2·5). As explained in section 4.1, these loads
are numerically represented by two Hanning windows located at x=0·5 and x=2·5,
respectively, of amplitude Dx=0·02 m. It is worthwhile to point out that the wavelength
corresponding to the frequency of 12 000 Hz is equal to 0·17 m. The Hilbert transform of
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Figure 9. Simulated test 1: the dimensions of the beam.

Figure 10. Test 1: the real (——) and imaginary (– – –) parts of the analytic load.

the load is computed through the Fourier transform. In Figure 10 the determined loads,
p and p̂, are considered, while in Figure 11 the real and imaginary parts of the complex
envelope load f q� dx are presented. After the skipping operation (see the block diagram
of Figure 8), the complex envelope load was described by 15 samples only for each beam.
The envelope equation (14) was solved with this load, obtaining the solution w� 0, the real

Figure 11. Test 1: the real (– – –) and imaginary (——) components of the complex envelope load.
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Figure 12. Test 1: the real (–––––) and imaginary (– – –) components of the complex envelope displacement.

and imaginary parts of which are shown in Figure 12. In Figure 13 the complex envelope
displacement is considered in the complex plane (see section 2.3). At different abscissas
x, the end of this complex vector moves on the complex plane towards four delimited
regions, almost collapsing into a point. These points correspond to four vibro-energetic
levels along the beam (see Figure 14). It is confirmed that the energetic content of w� 0 is
mainly concentrated at low wavenumbers. The subsequent steps concerning interpolation
and demodulation lead to the physical displacement shown in Figure 14, which is
compared with the exact numerical solution (obtained by a finite difference scheme, with
400 sampled points). The agreement is quite good, especially in view of the difference
between the number of samples for the CEDA solution versus those of the exact one (30
versus 400).

The second case refers to the same two beams of the previous case, coupled, as before,
by a simple support. The applied load consists, in this case, of two periodic forces, the
amplitudes of which are F1 =1000 N and F2 =500 N respectively. The period of the two
forces is the same and the force spectrum consists of two harmonics f1 =12 000 Hz and

Figure 13. Test 1: the vector end of the complex envelope displacement in the complex plane.
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Figure 14. Test 1: a comparison between the physical and recovered displacements. – – –, Exact solution; ——,
CEDA solution.

f2 =8000 Hz. Let w1(w) and w2(x) be the demodulated solutions corresponding to F1 and
F2 when applied separately; then the total response can be expressed by

w(x, t)=w1(x) cos v1t+w2(x) cos v2t,

but, for comparison, the root-mean-square solution is considered:

w̄(x)= (z2/2)[w2
1 (x)+w2

2 (x)]1/2.

The exact and CEDA solutions are shown in Figure 15 (30 versus 300 points).
The third case refers to two coupled beams with hinged ends and differing cross-sections

(see Figure 16). Two harmonic forces of equal frequency (f=12 000 Hz) are applied to
the system: their amplitudes are F1 =1000 N and F2 =2000 N respectively. It is very
interesting to note that even in this complex case the reconstructed physical displacement

Figure 15. Test 2: a comparison between the physical and recovered displacements. Key as Figure 14.
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Figure 16. Simulated test 3: the dimensions of the beam.

matches the exact solution almost perfectly (Figure 17), although the envelope solution
is obtained with 30 samples only against 400 samples for the exact one.

6. CONCLUSIONS AND PERSPECTIVES

A complex envelope displacement analysis, useful for dealing with medium and high
frequency vibro-acoustic problems, has been presented here for one-dimensional flexural
systems. The model is the natural evolution of previously developed envelope models,
EEM and EPHEM [20], based on the concept of envelope energy density. This new
formulation retains the main advantages of the mentioned approaches concerning the
possibility of providing both the trend and the complete oscillating solution at low
computational cost, but introduces some important improvements with respect to both the
envelope approaches and the thermal methods. In particular, the forcing term of the
governing equation is no longer the input power to the system that can be only roughly
evaluated, but an expression directly related to the excitation force. Unlike EPHEM, which
for flexural problems results in a pair of non-linear coupled equations for the envelope and
the phase, the equation of this new model is linear and can be extended to more complex
systems.

The most interesting property of the proposed approach relies on the quasi-static nature
of the envelope solution, which can have interesting and attractive applications in
vibro-acoustic problems and permits a low cost numerical computation; moreover, this
does not prevent the possibility of reconstructing the oscillating response by simple

Figure 17. Test 3: a comparison between the physical and recovered displacements. – – –, Exact solution;
——, CEDA solution.



.   . 230

demodulation. Even if not necessary or convenient for further vibro-acoustic
developments, it is a matter of fact that very often this possibility is of great importance.
None of the previous proposed approaches provides this convenient property.

Another attractive application of the envelope solution could concern its use as a field
descriptor related to the low wavenumber content of the response, linked to the radiating
supersonic components of a vibrating structure. This point deserves careful analysis, but
is likely to provide promising developments.

Although the method is particularly developed here for vibro-acoustic frequencies, it
could be equally applied for any range of frequencies, because in the general formulation
there is no restrictive hypothesis on the frequency. This is a relevant point because it is
a matter of fact that both deterministic and statistical methods are unable to cover the
whole range of interested frequencies, and a gap exists between the maximum frequency
of the deterministic methods and the minimum frequency of the statistical ones, in which
neither the former nor the latter are able to provide significant results.

In this paper, a detailed analysis of the proposed method has been presented,
encompassing theoretical, practical and computational aspects; in particular, both the
cases of narrow-band and wide-band displacement spectra have been considered, with
exposition of their different solution schemes. The computational efficiency has been
analyzed and discussed for different conditions.

Simulated results have been presented for simple and complex assembled beams to show
the nature of the envelope solution.

ACKNOWLEDGMENTS

The authors wish to acknowledge Professors Fahy and Langley of the University of
Southampton for their suggestions and co-operation during the visit, as a Ph.D. student,
of Dr Carcaterra to the ISVR.

The present work has been supported partly by MURST through a 60% grant and
partly by CNR (PFT2) through grant CT-01459.PF74.

REFERENCES

1. F. J. F 1993 Proceedings of Inter-Noise, Leuven, Statistical energy analysis: a wolf in sheep
clothing?

2. C. R. F̈ 1995 Doctoral Thesis, Chalmers University of Technology, Göteborg, Statistical
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APPENDIX A: AN ALTERNATIVE DERIVATION OF THE COMPLEX ENVELOPE
DISPLACEMENT EQUATION

Consider the two operators L and H defined above. It can be shown [19] that these
operators commute: i.e., H[L(·)]=L[H(·)]. Applying the Hilbert transform to both sides
of the equation of motion (1), one obtains

H{L[w]+mv2
0w}=H{p},

so that, for the commutation property

L[w̃]+mv2
0w̃ = p̃. (A1)

By combining equation (1) with equation (A1), the following equation is obtained in terms
of the analytic displacement:

L[ŵ(x)]+m(x)v2ŵ(x)= p̂(x).

Now expressing the analytic displacement ŵ in terms of the complex envelope displacement
(equation (3)), one obtains

L[w� ejk0x]+mv2
0w� ejk0x = p̂.

Finally, upon multiplying each term by e−jk0x, the complex envelope displacement equations
is obtained as

L� [w� ]+mv2
0w� = p� , (A3)

where the complex envelope operator is L� (·)=L[(·) ejk0x] e−jk0x equivalent to the definition
given in section 2.2.
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APPENDIX B: AN EXPLICIT FORM OF THE COMPLEX ENVELOPE EQUATION FOR
FLEXURAL BEAMS

The equation of the Euler beam subjected to a harmonic load is given in the frequency
domain by wIV − k2

0w= p/EI. By applying the Hilbert transform to any term of this
equation and adding this new equation to the equation of motion, one obtains

ŵIV − k4
0ŵ= p̂/EI= q̂, (B1)

where ŵ denotes the analytic displacement. Upon remembering that (from equation (3))
ŵ=w� ejk0x, it is straightforward to derive the complex envelope equation in terms of w� .
The subsequent derivatives of the analytic displacement are

ŵ=w� ejk0x, ŵ'= (w� '+ jk0w� ) ejk0x,

ŵ0=(w� 0+2jk0ŵ'− k2
0w� ) ejk0x,

ŵ1=(w� 1+3jk0w� 0−3k2
0w� '− jk3

0w� ) ejk0x,

w� IV =(w� IV +4jk0w� 1−6k2
0w� 0−4jk3

0w� '+ k4
0w� ) ejk0x.

By substituting ŵIV and ŵ in equation (B1), one has

(w� IV +4jk0w� 1−6k2
0w� 0−4jk3

0w� '+ k4
0w� )− k4

0w� = q� ,

from which the structural envelope operator (7) is obtained. Therefore the complex
envelope equation is given by L� (w� )− k4

0w� = q� . By using Langley’s approach [22], the
fourth order equation is reduced to the second order far field equation

w0+ k2
0w=−p/2EIk2

0 = q.

Upon writing the analytic displacement equation, and using the derivatives previously
determined, the second order complex envelope equation becomes

(w� 0+2jk0w� '− k2
0w� )+ k2

0w� = q� , (B2)

so that the structural envelope operator is, for the second order equation,

L� (·)=d2(·)/dx2 +2jk0 d(·)/dx+ k2
0 (·).

After performing simplifications, the final form of the complex far field flexural
displacement equation reduces to

w� 0+2jk0w� '= q� . (B3)

APPENDIX C: THE FOURIER TRANSFORM OF A PARTICULAR SOLUTION

Here it is shown that

w� 0(x)=−1
2 g

a

−a

P� (k)
k(k+2k0)

ejkx dk=E(w0):

i.e., it is the only part of the solution of equations (13) or (14) one is interested in. w0(x)
is a particular solution of the Helmholtz equation, viz., w00 + k2

0w0 = p. By Fourier
transforming, one obtains

−k2W0(k)+ k2
0W0(k)=P(k)cW0(k)=P(k)/(k2

0 − k2).
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The analytical signal that cancels the negative part of the spectrum yields
W�0(k)=P
 (k)/(k2

0 − k2). Applying the envelope operator that shifts the positive part of the
spectrum towards the origin of the k-axis, one has

W� 0(k)=W�0(k+ k0)=
P
 (k+ k0)

k2
0 − (k+ k0)2 =

P� (k)
k(k+2k0)

.

Therefore W� 0(k) is the complex envelope spectrum of a particular solution of the physical
motion equation. By inverse transforming into space,

w� 0(x)=−1
2 g

a

−a

P� (k)
k(k+2k0)

ejkx dk,

which shows that the first term of the general solution of the envelope equation exactly
corresponds to the complex envelope of a particular solution of the physical equation.

It is easy to verify that this is a low wavenumber signal due to the same nature of P� (k)
(nil for kQ−k0) and to the factor 1/k(k+2k0) that concentrates the energy around k0.


